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ABSTRACT 15 

Aims: In riverine ecosystems, variations in disturbance and stress intensities along the flood gradient shape the 16 

community structure. However, human modifications to the flood regime may change the magnitude of 17 

disturbance and stress, leading to different species distribution patterns along environmental gradients. We 18 

aimed to study the effects of local- and broad-scale environmental gradients on riparian plant CSR strategies 19 

along a highly regulated river. 20 

Location: Rhône River, France. 21 

Methods: We assessed how changes in elevation, fine sediment content and annual temperature influenced 22 

CSR strategies of riparian communities, by studying variations in CWM and FDis, on gravel bars along a 250 km 23 

north-south river corridor. 24 

Results: Species with contrasting ecological strategies co-occurred less on gravel bars subject to fine sediment 25 

deposition, leading to patterns of biotic homogenization along the flood gradients. Furthermore, a shift in CSR 26 

strategies from ruderal to stress-tolerant communities was highlighted along the elevation gradient on the bars 27 

with low proportions of fine sediments and from stress-tolerant to ruderal communities along the elevation 28 

gradient on the bars with high proportions of fine sediments. Regarding the climatic gradient, the ruderal 29 

dimension of communities increased with the average temperature. Also, the stress-tolerant dimension of 30 

communities diverged between the north and south gravel bars when the proportion of fine sediments was 31 

low and converged when the proportion of fine sediments was high.  32 

Conclusions: Overbank fine sedimentation alleviates the intensity of stress along not only the elevation 33 

gradient but also the climatic gradient. By homogenizing the functional composition of communities, this 34 

process may have detrimental consequences for riparian plants diversity, especially the ruderal pioneer 35 

communities in the tidal zone. In regulated river systems, restoration measures should therefore 36 

comprehensively integrate an increase in the intensity of (i) disturbance through the reactivation of bedload 37 

supply and transport and (ii) stress through increased flow dynamics. 38 

 39 

Keywords: community structure, ecological strategies, environmental gradients, flood gradient, functional 40 

ecology, Grime’s CSR theory, overbank fine sedimentation, riparian ecology  41 
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INTRODUCTION 42 

Grime’s CSR theory is perhaps one of the most influential niche-based theories of plant community assembly 43 

and vegetation succession (Li & Shipley 2017). This theory proposes to both functionally classify plants and 44 

predict changes in the community structure along environmental gradients by focusing on only three 45 

dimensions of a ternary ordination plot describing the responses of species to disturbance (i.e., partial or total 46 

destruction of biomass) and stress (i.e., external constraints that restrict biomass production) intensities (Grime 47 

1977). Recent advances in functional ecology have shown that the use of three representative leaf traits (i.e., 48 

leaf area, leaf dry matter content and specific leaf area) can be used to determine the ecological strategies of 49 

plant species in a wide range of ecosystems (Pierce et al. 2017). Through the linkages between leaf traits and 50 

CSR functional strategies applied in a unified framework, it now appears possible to quantitatively compare the 51 

strategy-environment relationships of vascular plants. Furthermore, by using the ternary coordinates of each 52 

species, it become possible to compute a community-wide average strategy (e.g., Li & Shipley 2017) and thus 53 

avoid the use of large categories of plant functional types (Van Bodegom et al. 2012). Overall, this approach 54 

gives an empirical link between CSR theory and the functional structure of vegetation, making it possible to 55 

compare the strategies of plant communities along environmental gradients and/or in response to human-56 

induced changes (e.g., Caccianiga et al. 2006; Li & Shipley 2017). 57 

Riparian zones are transitional areas at the interface between freshwater and terrestrial ecosystems where 58 

sharp environmental gradients shape the community structure (Naiman & Decamps 1997). Due to the 59 

variations in disturbance (i.e., flood regime) and stress (i.e., soil moisture and nutriments) intensities from the 60 

lower to the upper parts of banks, these dynamic ecosystems encompass a wide variety of habitat 61 

geomorphology, which induces niche differentiation and a shift in trait values (Blom 1999; Lytle & Poff 2004; 62 

Steiger et al. 2005). As a result, predictable successional pathways are usually reported along elevation 63 

gradients from ruderal to competitor life strategies (Kyle & Leishman 2009; McCoy-Sulentic et al. 2017). 64 

However, the alteration of the flow and sediment regimes of most rivers worldwide has led to changes in the 65 

response of riparian plant species guilds to the flood gradient (Bejarano et al. 2018; Aguiar et al. 2018). Indeed, 66 

flow regulation induces a decrease in the intensity and magnitude of the inundation regime (Poff et al. 1997; 67 

Poff et al. 2007), which limits the destruction of plant biomass by scouring and thus favors vegetation 68 

encroachment by drought-adapted species (Merritt & Poff 2010; González et al. 2010; Nadal-Sala et al. 2017). 69 

Moreover, a low level of disturbance may prevent remobilization of coarse-grained alluvial sediments but 70 
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promote the deposition of the solid suspended load by gravitation, i.e. fine-grained alluvial sediments (Wilkes 71 

et al. 2019). Accretion of fine sediments increases the water-holding capacity and nutrient availability (Steiger 72 

& Gurnell 2003; Asaeda & Sanjaya 2017), thereby reducing the intensity of stress along local environmental 73 

gradients and promoting an increase in net primary production of vegetation (Asaeda & Rashid 2012). 74 

Beyond the direct influence of human activity on local-scale environmental gradients, climate change has been 75 

emphasized as a major threat to riparian communities (Perry et al. 2012; Garssen et al. 2017). Temperature 76 

increase are expected to increase the intensity of stress along flood gradients, inducing growth reductions and 77 

dieback of riparian vegetation (Ström et al. 2012; Rivaes et al. 2013; Stella, Riddle, et al. 2013). Moreover, 78 

changes in precipitation may increase the magnitude and frequency of flood events, amplifying the alteration 79 

of the disturbance regime in rivers, eventually leading to shifts in plant species composition (Garssen et al. 80 

2015; Garssen et al. 2017). These modifications to disturbance and stress intensities over a large scale may 81 

further interact with local-scale gradients and exacerbate the related environmental changes, for example, by 82 

increasing the intensity of stress along the elevation gradient in riparian zones located in warm climates. As 83 

such, it has been shown that riparian plant communities respond consistently to local-scale hydrologic changes 84 

and broad-scale climatic changes (Butterfield et al. 2018). This finding suggests that environmental changes 85 

related to human activity at different scales may have cumulative effects on the structure and dynamics of 86 

plant communities. However, despite the importance of understanding plant responses to human-induced 87 

changes in shaping future vegetation, to the best of our knowledge, no empirical studies have yet investigated 88 

the relationship between plant CSR strategies and multiple environmental gradients in riparian zones. 89 

We aimed to study the effects of elevation and fine-grained deposition gradients on riparian plant CSR 90 

strategies along the highly regulated Rhône River. By focusing on gravel bars that are more or less subjected to 91 

overbank fine sedimentation along a 250 km north-south river corridor, we further aimed to understand 92 

whether the response of riparian plant strategies to local environmental gradients is mediated by a broad 93 

climatic gradient. Specifically, we tested whether and how the community-weighted mean values (CCWM, SCWM 94 

and RCWM) and the functional dispersion values (CFDis, SFDis and RFDis) were influenced by elevation level, the 95 

proportion of fine sediments and the mean annual temperature. The mean value (i.e., average CSR values of all 96 

species co-occurring in the community) expresses the dominant value of CSR strategy along environmental 97 

gradients, while the dispersion value (i.e., the range of CSR values exhibited by species in the community) 98 

expresses the extent of CSR differences among co-occurring species. Analytical strategies that combine both 99 
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measures have been showed to describe two complementary aspects of the relationship between community 100 

structure and ecosystem functioning: (i) shifts in trait values due to environmental selection and (ii) patterns of 101 

trait convergence or divergence due to niche differentiation (Ricotta & Moretti 2011; de Bello et al. 2013). 102 

Within this framework, we explored the following three hypotheses based on Grime’s CSR theory: 103 

(1) Competitors increase from low to high proportions of subsoil fine sediments at middle to high 104 

elevations along the northern gravel bars in the Rhône corridor (i.e., low disturbance with low stress); 105 

(2) Stress-tolerators increase from high to low proportions of subsoil fine sediments at middle to high 106 

elevations along the southern gravel bars of the Rhône corridor (i.e., low disturbance with high stress);  107 

(3) Ruderals increase from high to low elevations, regardless of the proportion of subsoil fine sediments 108 

and the mean annual temperature (i.e., high disturbance with low stress). 109 

 110 

MATERIALS & METHODS 111 

Study area and experimental design 112 

The study was carried out along the Rhône River (total length = 810 km, catchment area = 96,500 km², mean 113 

annual discharge = 1,700 m3/s) in its middle reach (Figure 1). This area is characterized by a temperate climate 114 

with mean annual temperatures and precipitation of 13.6°C and 755 mm in the southern part and 11.6°C and 115 

815 mm in the northern part of the study area. Two historical development phases have greatly altered the 116 

functioning of this large river: (i) during the 19
th

 century, a rectification phase, characterized by the building of 117 

a vast system of longitudinal submersible and transversal dikes in the main channel, was carried out to 118 

facilitate navigation; (ii) in the second half of the 20
th

 century, a derivation phase, characterized by the 119 

construction of a series of lateral canals, running parallel to the natural Rhône River channel, was carried out to 120 

produce hydropower and facilitate irrigation and navigation (for details see, Bravard and Gaydou 2015). These 121 

two development phases induced significant impacts in the bypassed sections (i.e., part of the historical Rhône 122 

River channel), including changes to the hydrological regime (i.e., a reduction in the frequency and magnitude 123 

of the peak flows, Vázquez-Tarrío et al. 2019), channel dewatering, incision and lateral stabilization. These 124 

reaches also underwent a bedload supply interruption, with gravel winnowing and bed armoring; thus, 125 

present-day bedload transport is limited to fine-grained sediments (Vázquez-Tarrío et al. 2019). Currently, the 126 

bypassed sections are characterized by a minimum flow that is observed most of the year until the hydropower 127 

plant capacity is reached. 128 



6 
 

In the summers of 2017 and 2018, we sampled 15 gravel bars in 8 different bypassed sections of the Rhône 129 

River, along an approximately 250 km north-south reach (Figure 1). The studied gravel bars are fixed in the 130 

bypassed sections of the Rhône riverbed, i.e., coarse sediments are no longer remobilized during flood events 131 

and are subject to fine-grained overbank sedimentation and colonization by trees. To prevent encroachment of 132 

these surfaces by trees and shrubs and the associated channel narrowing, maintenance measures are 133 

implemented by river managers to scrap woody vegetation by either brush clearing (n = 7, in the north) or 134 

plowing (n = 8, in the south). 135 

Vegetation data 136 

On each gravel bar, the vegetation was surveyed along three transects spaced at a distance of approximately 137 

100 m from each other (Figure 1). Transects were positioned perpendicular to the river in areas with clear 138 

elevation gradients relative to the water surface (means ±SD = 1.16 ±0.85 m; range = 0.04-3.84 m). Transect 139 

length varied from 30 m to 105 m, depending on the width of the gravel bar. The gradients started at the water 140 

line and ended before the alluvial floodplain, which was mostly occupied by riparian forest. Along each 141 

transect, four 5 x 5 m quadrats (25 m²) were positioned for a total of 12 quadrats per gravel bar. The quadrats 142 

were positioned in visually homogenous areas while avoiding the aquatic parts of the river margin. Within each 143 

quadrat (n = 180), all vascular plants were surveyed following Braun-Blanquet abundance/dominance 144 

methodology. Because gravel bars along the Rhône River were repeatedly cleared, tree and shrub layers were 145 

systematically absent and vegetation surveys were conducted by considering the herbaceous layer only. To 146 

characterize the entire plant community and account for plant phenology, two complete surveys were 147 

conducted each year (June and July), and to limit observer biases, all surveys were performed by the first 148 

author (PJ). 149 

Riparian plant ecological strategies 150 

For each plant species, the ternary coordinates, i.e., C-dimension, S-dimension and R-dimension values within 151 

the triangular CSR ordination, were extracted from the list of plant species (n = 3 068) available in Pierce et al. 152 

(2017, Appendix S1). The ternary coordinates were originally calculated using a global CSR analysis tool that 153 

necessitates the use of only three representative and easily measured leaf traits: leaf area, leaf dry matter 154 

content and specific leaf area (for details see, Pierce et al. 2017). Among the 233 plant species assessed in our 155 

study, the ternary coordinates of 179 species were documented in Pierce et al. (2017). For the missing values, 156 

data were either completed by using ecological information on closely related species, i.e., the same genus (n 157 
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species = 38), or discarded (n species = 16). Most of the discarded species were rare (i.e., 11 species were 158 

singletons) and/or exhibited low vegetation cover. Within each quadrat, we then computed (i) the community-159 

weighted means (CWMs) of the CSR values (hereafter, CCWM, SCWM, RCWM) and (ii) the functional dispersion 160 

(FDis) of the CSR values (hereafter, CFDis, SFDis, RFDis) (FD package, Laliberté et al. 2014). CWM is defined as the 161 

mean of the CSR values weighted by the relative cover of each species bearing each value (Lavorel et al. 2008). 162 

FDis is defined as the mean distance of individual species to the weighted centroid of all species in the 163 

assemblage (Laliberté & Legendre 2010). 164 

Environmental gradients 165 

The elevation and fine-grained deposition gradients were assessed in the field at the center of each quadrat. 166 

The relative elevation above the water line was characterized using topographical surveys. Topographical 167 

measurements were conducted using a laser rangefinder (TruPulse 200X) positioned on a tripod at a constant 168 

height of 1.20 m and a target at a height of 2 m. The horizontal distance between the tripod and the target was 169 

measured between the water line at the beginning of each transect and the center of four successive quadrats.  170 

The fine-grained deposition was derived from two soil core samples (30-cm depth) collected in two 171 

representative areas within each quadrat and pooled together. Each composite soil sample was then dried, 172 

weighed and sieved in the laboratory to estimate the proportion of fine sediments (i.e., <250-µm mesh). The 173 

temperature gradient was derived from the WorldClim climatic model (Hijmans et al. 2005). The mean annual 174 

temperature was averaged for each plot over the period 1970-2000 and adjusted for the effect of altitude 175 

following Zimmermann and Kienast (1999). 176 

Statistical analysis 177 

The continuous independent variables (Appendix S2) were the elevation difference (denoted “Elevation” in 178 

tables and figures), the proportion of fine sediments (denoted “Sediments”) and the mean annual temperature 179 

(denoted “Temperature”). Because the independent variables were measured on different units and because 180 

we were interested in interpreting the main effects of the continuous variables in the presence of interactions, 181 

the elevation and temperature variables were scaled (Schielzeth 2010), and the sediment variable (i.e., 182 

proportional data) was logit transformed prior to the analyses. The dependent variables were the community 183 

mean values (i.e., CWM) and the functional dispersion values (i.e., FDis) of the plant ecological strategies in 184 

each quadrat. 185 
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We used a modeling approach to determine whether elevation and fine-grained deposition gradients shape 186 

riparian plant strategies and to what extent the changes in temperature induced changes in the responses of 187 

plants to the local environmental gradients along the Rhône River. We considered a set of 13 a priori models, 188 

testing the main and interaction effects between elevation, sediments and temperature variables, plus a null 189 

model. Because the quadrats located on the same gravel bar may have a high chance of sharing similar plant 190 

species, we used linear mixed models (LMMs) in with “transect” was nested in “gravel bar” (n = 15) and 191 

included as a random effects (lme4 package, Bates et al. 2015). Also, because maintenance measures on 192 

gravels bars is confounded with the temperature variable, i.e., bars in the north were maintained by brush 193 

clearing while bars in the south were maintained by plowing, we included “management” factor as a covariate 194 

in all the a priori models. We then fitted normal LMMs for CCWM, SCWM, RCWM and CFDis, SFDis, RFDis dependent 195 

variables. In all candidate models, the variance inflation factor among elevation, sediments and temperature 196 

variables was below three, indicating a lack of collinearity. The variance explained by the models was estimated 197 

using the marginal coefficient of determination for the fixed effect parameters alone (Nakagawa & Schielzeth 198 

2013). To identify the most parsimonious regression model, we used Akaike’s information criterion corrected 199 

for small sample sizes (Burnham & Anderson 2002). Moreover, we used model averaging to estimate the 200 

parameters and associated unconditional standard errors based on the subset of the top-ranking models for 201 

which the sum of the AICc weights reached ≥0.95 (MuMIn package, Barton 2015).  202 

Analyses were performed with R version 3.5.1 (R Core Team 2019). 203 

 204 

RESULTS 205 

Overall, 233 plant species (mean ±SD = 25.3 ±10.7) were recorded in the 180 quadrats along the Rhône River: 206 

32 species (3.5 ±1.9) were competitors (i.e., species C-dimensions > 50 %), 39 species (4.1 ±2.4) were stress-207 

tolerators (i.e., species S-dimensions > 50 %), 84 species (6.8 ±4.2) were ruderals (i.e., species R-dimensions > 208 

50 %), 62 species were not related to a dominant strategies (10.5 ±4.5), while 17 species were discarded 209 

(Appendix S1). 210 

Influence of environmental gradients on the community-weighted mean values of CSR plant strategies  211 

For the CWM values, CCWM was best predicted by the “Sediments” model only, SCWM was best predicted by the 212 

interaction model “Elevation + Temperature*Sediments” while RCWM was best predicted by the interaction 213 

model “Temperature + Elevation*Sediments”. The goodness of fit of these models ranged from 4.1 % to 13.2 % 214 
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(Table 1), and model selection uncertainty remained since none of the top-ranking models showed strong 215 

support to explain the community mean values. We therefore used model averaging to draw inferences about 216 

the variables influencing CCWM (Nmodels = 11), SCWM (Nmodels = 11) and RCWM (Nmodels = 10) (i.e., based on sum of the 217 

AICc weights, see Appendix 3). The estimated parameters and related confidence intervals (Table 2) showed 218 

that an increase in temperature induced a significant increase in RCWM values. The interaction between 219 

elevation and sediments significantly influenced the values of SCWM and RCWM, while the interaction between 220 

sediments and temperature significantly influenced the value of SCWM. A graphical interpretation revealed that 221 

SCWM increased with elevation when the proportion of fine sediments was low but decreased when the 222 

proportion of fine sediments was high; the value of RCWM decreased with elevation when the proportion of fine 223 

sediments was low but increased when the proportion of fine sediments was high (Figure 2). Additionally, SCWM 224 

increased with the proportion of fine sediments when the temperature was high but decreased when the 225 

temperature was low (Figure 4). 226 

Influence of environmental gradients on the functional dispersion values of CSR plant strategies 227 

For the FDis values, CFDis was best predicted by the “Sediments” model only, SFDis was best predicted by the 228 

interaction model “Elevation + Temperature*Sediments” while RFDis was best predicted by the interaction 229 

model “Elevation*Sediments”. The goodness of fit of these models ranged from 10.4 % to 14.8 % (Table 1), and 230 

model selection uncertainty remained since none of the top-ranking models showed strong support to explain 231 

the functional dispersion values. We therefore used model averaging to draw inferences about the variables 232 

influencing CFDis (Nmodels = 8), SFDis (Nmodels = 6) and RFDis (Nmodels = 4) (see Appendix 3). The estimated parameters 233 

and related confidence intervals (Table 2) showed that an increase in the proportion of fine sediments induced 234 

a significant decrease in CFDis values. The interaction between elevation and sediments significantly influenced 235 

the values of SFDis and RFDis, the interaction between elevation and temperature significantly influenced the 236 

value of RFDis, while the interaction between sediments and temperature significantly influenced the value of 237 

SFDis. A graphical interpretation revealed that SFDis and RFDis values increased with elevation when the proportion 238 

of fine sediments was high but decreased when the proportion of fine sediments was low (Figure 2). 239 

Additionally, RFDis increased with elevation when the temperature was high but slightly decreased when the 240 

temperature was low (Figure 3), while SFDis decreased more rapidly with the proportion of fine sediments when 241 

the temperature was low (Figure 4). 242 

 243 
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DISCUSSION 244 

We determined whether riparian plant strategies responded to both local- and broad-scale environmental 245 

gradients in a large, regulated river, using the quantitative values of the CSR triangle dimensions (Pierce et al. 246 

2017). We showed that elevation differences and the proportion of fine sediments had non-independent 247 

effects on the plant strategies and specifically that fine-grained sediment deposition induced shifts in the 248 

responses of stress-tolerant and ruderal communities to the flood gradient on the gravel bars. At a broad scale, 249 

variations in climatic conditions along the studied north-south reach induced an increase in the ruderal 250 

dimension of the plant communities along the southern gravel bars. However, overbank sedimentation 251 

mitigated the effect of the climatic gradient by promoting a less stressful environment (i.e., increasing water-252 

holding capacity and nutrient availability), thus homogenizing the functional composition of the plant 253 

communities on bars with high proportions of fine sediments. Overall, this shows that fine-grained sediment 254 

deposition alleviates the intensity of stress along not only local flood gradients but also broad climatic 255 

gradients, with potential detrimental consequences for riparian biodiversity conservation. 256 

Fine-grained sediment deposition induces a shift in plant strategies along the flood gradient 257 

Contrary to the hypothesis, CSR plant strategies were not structured in a predictable manner at the local scale. 258 

Indeed, the dispersion values for stress-tolerant species increased at low elevations (i.e., co-occurring species 259 

in low elevation communities exhibited a larger range of S-values), while the mean and dispersion values for 260 

ruderal species increased at high elevations (i.e., co-occurring species in high elevation communities exhibited 261 

a larger range of R-values and the average R value was higher). Given that CSR theory predicts that severely 262 

disturbed environments favor rapidly growing plant species that are capable of rapidly producing seeds (Grime 263 

1977), we expected to find the opposite pattern. However, our results also showed that plant strategies were 264 

significantly influenced by fine-grained deposition, i.e. that an increase in the proportion of fine sediments 265 

induced decreases in the co-occurrence of competitive, stress-tolerant and ruderal species (i.e. in the 266 

dispersion values, Table 2). This means that species with contrasting ecological strategies co-occurred less on 267 

bars subject to overbank fine sedimentation and thus that this process leads to patterns of biotic 268 

homogenization along local environmental gradients (Olden & Rooney 2006). Specifically, our results 269 

highlighted that plant strategies were significantly influenced by the interaction between the fine-grained 270 

deposition and elevation level gradients. Indeed, by considering the differences in proportions of fine 271 

sediments, we highlighted that the mean and dispersion values for stress-tolerant and ruderal plant species 272 
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changed in opposite direction along the flood gradient. This shift in CSR plant strategies from low to high 273 

elevation levels revealed a restructuring of the local communities in gravel bars subject to fine-grained 274 

sediment deposition. Thus, in highly disturbed environments (i.e., at low elevation), gravel bars supported 275 

riparian plant communities dominated by ruderal species, while allowing for broader co-occurrence of species 276 

with different stress-tolerant and ruderal strategies (i.e., niche differentiation was high). Reversely, on gravel 277 

bars where large deposits of fine sediment occur, riparian plant communities at low elevation were dominated 278 

by stress-tolerant species and the co-occurrence of species with different stress-tolerant and ruderal strategies 279 

was low. Overall, these results demonstrated that, at least along the regulated Rhône River, the intensities of 280 

disturbance and stress may significantly vary among gravel bars according to overbank sedimentation, which 281 

will strongly change the strategy-environment relationships of the riparian plant communities. 282 

The alterations to flow and sediment regimes by human activities have been shown to substantially degrade 283 

the functionality of river ecosystems. Flow regulation by dams is well known to directly reduce the downstream 284 

intensity of disturbance, lowering the flood peak and bedload transport (Nilsson & Berggren 2000; Poff et al. 285 

2007) and limiting the destruction of plant biomass by coarse bed scour and burial disturbances (e.g., Polzin & 286 

Rood 2006; Kui & Stella 2016). Moreover, a fairly constant minimum flow, as is the case in the bypassed 287 

sections of the Rhône River, provides longer periods of growth for plant species (Poff et al. 2007). 288 

Simultaneously, a low level of disturbance and an increase in vegetation roughness following encroachment 289 

favor the deposition of fine sediments (Wilkes et al. 2019), which indirectly reduces the intensity of stress by 290 

increasing the soil water-holding capacity and nutrient availability (Steiger & Gurnell 2003; Asaeda & Sanjaya 291 

2017). Altogether, these changes promote environmental homogenization along the flood gradient, which 292 

fosters the spread of competitive and stress-tolerant communities made up of perennial species and including 293 

few dominant clonal species at low elevations. In turn, perennial vegetation traps and stabilizes fine sediments 294 

(Corenblit et al. 2009), further lowering the intensity of stress. Additionally, clonal species such as Phragmites 295 

australis and Phalaris arundinacea are known to impede the development of other species by shading and 296 

inhibiting their germination through the production of a thick litter layer (Craft 2016), which may lead to 297 

changes in biotic interactions at the expense of ruderal species. Thus, despite numerous studies have shown 298 

that flow regulation benefits species that allocate resources to vegetative growth or the maintenance of 299 

resources, at the expense of species that allocate resources to propagules (e.g., Merritt & Poff 2010; González 300 

et al. 2010; Tonkin et al. 2018; Aguiar et al. 2018), we demonstrated here that this effect was primarily driven 301 
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by fine-grained sediment deposition. We therefore inferred that the shift in CSR strategies we documented on 302 

the Rhône River is due to a decrease in the intensity of disturbances, in relation to flow regulation and 303 

diversion (Vázquez-Tarrío et al. 2019), and a decrease in the intensity of stress, in relation to the deposition of 304 

fine sediments, which deeply altered the successional pathways usually observed in riparian zones. 305 

Nevertheless, it must be kept in mind that the studied riparian communities were moderately explained by the 306 

models (i.e., the goodness of fit was always lower than 15 %). This may indicate not only that other important 307 

factors were not accounted for in the analysis but also that environmental homogenization may promote a 308 

greater stochastic distribution of species along degraded riparian zones.  309 

Fine-grained sediment deposition mitigates the effect of the climatic gradient 310 

The climatic gradient directly influenced CSR plant strategies. Indeed, along the north-south Rhône River 311 

corridor, we found that an increase in temperature induced an increase in the mean values for ruderal plant 312 

species. Given that ruderals are predominantly fast-growing species with an annual life cycle (Grime 1977; 313 

Pierce et al. 2017), this result suggests that a warmer climate benefits species better adapted to exploit 314 

environments that become intermittently favorable. Accordingly, in semiarid conditions, it has been shown 315 

that the richness and cover of annual species increased at drier sites (Stromberg et al. 2009; Reynolds & 316 

Shafroth 2017). This may indicate the vulnerability of riparian communities to climate changes (Perry et al. 317 

2012) through direct changes in temperature and precipitation and indirect modifications to streamflow, i.e., 318 

by increasing low-flow events and peak flow magnitudes (Poff et al. 1997). However, related changes in the 319 

streamflow components are expected to have greater consequences for riparian vegetation in arid and 320 

semiarid areas (Garssen et al. 2014), especially in ephemeral streams (Friedman & Lee 2002; Stromberg et al. 321 

2017). Indeed, along the regulated Rhône River, a fairly constant minimum flow is ensured all year round. This 322 

may temper the effects of climatic variations and explain the absence of an interaction effect between 323 

elevation and temperature on the mean value of ruderal communities. Instead, we found that the dispersion 324 

values for ruderal species was influenced by the interaction between temperature and elevation, specifically 325 

that the co-occurrence of species with different ruderal strategies increases along the elevation gradient with 326 

increasing temperatures but tended to decrease with decreasing temperatures. This means that riparian 327 

communities on the southern gravel bars harbor a greater diversity of plant strategies, i.e., including both 328 

species with a primary ruderal strategy and species with a secondary ruderal strategy. Given that riparian plant 329 

species richness is known to increase with drainage size (Kuglerová et al. 2015), we inferred that the interaction 330 
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effect reported herein simply reflects the arrival of new species that progressively increase the species pool 331 

with downstream position of gravel bars in the river network. This reveals the difficulty to disentangle the 332 

climatic gradient from the longitudinal gradient in riverine ecosystems. 333 

In addition to the ruderal dimension of plant communities, we found that both the mean and dispersion values 334 

of stress-tolerant plant species were significantly influenced by the interaction between temperature and the 335 

proportion of fine sediments. Specifically, our results show that the dominant value of the stress-tolerant 336 

dimension of plant communities diverged between the north and south gravel bars when the proportion of fine 337 

sediments was low and tended to converge when the proportion of fine sediments was high. Interestingly, 338 

although not significant, the same pattern was observed for the dominant value of the ruderal dimension. This 339 

may indicate that in highly regulated rivers, fine-grained sediment deposition mitigates the effect of the 340 

climatic gradient, e.g., by promoting less stressful environmental conditions (Steiger & Gurnell 2003; Asaeda & 341 

Rashid 2012; Asaeda & Sanjaya 2017). Moreover, we found that the co-occurrence of species with different 342 

stress-tolerant strategies decreased with increasing proportion of fine sediments, and that this effect was more 343 

pronounced along the northern gravel bars. This shows that fine-grained sediment deposition increases the 344 

functional similarity of plant communities across gravel bars, which reduces the species pool. In a context of 345 

widespread degradation of riparian zones, overbank fine sedimentation may thus further reduce the 346 

adaptability of riparian communities by inducing a selection in plant strategies toward a limited range of values. 347 

This is especially true in temperate climates where species are less well-adapted to high levels of stress (e.g. 348 

Singer et al. 2013; Stella, Rodríguez-González, et al. 2013) and where this absence of adaptation may render 349 

riparian ecosystems highly vulnerable to climate change impacts (Capon et al. 2013). Nevertheless, given that 350 

the climatic gradient in this study is unreplicated, caution must be exerted when drawing conclusions about the 351 

drivers behind the patterns observed, as they may be confounded with the upstream-downstream axis of the 352 

river.  353 

 354 

CONCLUSION 355 

In a recent review, Solari et al. (2016) noted the need to better account for soil properties in models that 356 

incorporate the processes that relate riparian vegetation to hydromorphology. By quantitatively comparing the 357 

strategy-environment relationships of riparian plants and by considering the individual and interactive effects 358 

of elevation and fine-grained deposition along a north-south river corridor depicting a climatic gradient, we 359 
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were able to better explain the processes that shape the distribution of CSR plant strategies on gravel bars. Our 360 

results thus confirm the importance of considering processes that are both directly (i.e., disturbance-related 361 

processes) and indirectly (i.e., stress-related processes) linked to the flow regime to better understand the 362 

structure and dynamic of riparian communities. More generally, our results lend weight to the idea that fine-363 

grained sediment deposition is a fundamental component of the hydrogeomorphic processes that create and 364 

maintain riparian habitats (Steiger et al. 2005; Corenblit et al. 2009). Since we used a unified framework to 365 

quantitatively compare the strategy-environment relationships of plants (Pierce et al. 2017), it will be 366 

interesting to see whether the functional structure of riparian communities responds similarly to 367 

environmental gradients in other systems. From a conservation or restoration perspective, riparian 368 

communities in highly regulated rivers should benefit from (i) an increase in the intensity of disturbance 369 

through the reactivation of bedload supply and transport (Bravard et al. 1999; Beechie et al. 2010), and (ii) an 370 

increase in the intensity of stress through an increase in flow variability (e.g., increase flood events and favor 371 

instable base-flow) (Greet et al. 2011; Tonkin et al. 2018). These actions would especially benefit the 372 

development of ruderal pioneer communities in the tidal zone, which are the most threatened by the 373 

overgrowth of competitive and stress-tolerant perennial species. 374 
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Table 1. Top-ranking models predicting the community-weighted mean values (CWM) and the functional 537 

dispersion values (FDis) of CSR plant strategies along the Rhône River (France), as assessed with Akaike’s 538 

information criterion corrected for small sample size (AICc). Number of parameters (k), AICc, AICc weight (W) 539 

and adjusted marginal coefficient of determination (R²) are provided. 540 

Measure Variable Top-ranked model (fixed effects) k AICc W R²marginal 

CWM 

Competitive Sediments 5 1044.7 0.267 0.041 

Stress-tolerant Elevation + Temperature*Sediments 8 1243.6 0.238 0.097 

Ruderal Temperature + Elevation*Sediments 8 1249.1 0.490 0.132 

FDis 

Competitive Sediments 5 -184.2 0.296 0.104 

Stress-tolerant Elevation + Temperature*Sediments 8 -66.6 0.415 0.148 

Ruderal Elevation*Sediments 7 -8.7 0.413 0.138 

  541 
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Table 2. Relative importance (Imp.), average coefficients (Estimate (±SE)) and confidence intervals (95% CI) for fixed effects used to predict the variation in the community-542 

weighted mean values (CWM) and the functional dispersion values (FDis) of CSR plant strategies along the Rhône River (France). The 95% confidence intervals of 543 

coefficients in bold excluded 0 (NA = Not Available, i.e., AICc parameters and associated unconditional standard errors were not part of the top-ranked model).  544 

Measure Variable 
Elevation Sediments Temperature 

Imp. Estimate (±SE) (95% CI) Imp. Estimate (±SE) (95% CI) Imp. Estimate (±SE) (95% CI) 

CWM 

Competitive 0.42 -0.387 (±0.371) (-1.114; 0.340) 0.67 -0.272 (±0.154) (-0.575; 0.031) 0.30 -0.055 (±0.874) (-1.768; 1.658) 

Stress-tolerant 0.70 -1.187 (±0.670) (-2.500; 0.126) 0.79 0.430 (±0.313) (-0.183; 1.043) 0.81 -2.325 (±1.800) (-5.852; 1.202) 

Ruderal 0.95 1.562 (±0.660) (0.268; 2.855) 0.78 -0.202 (±0.284) (-0.758; 0.355) 0.87 3.119 (±1.425) (0.325; 5.912) 

FDis 

Competitive 0.33 -0.005 (±0.012) (-0.028; 0.019) 1.00 -0.017 (±0.006) (-0.028; -0.005) 0.50 0.029 (±0.028) (-0.027; 0.084) 

Stress-tolerant 0.92 0.040 (±0.017) (0.007; 0.072) 1.00 -0.034 (±0.009) (-0.051; -0.016) 0.76 0.080 (±0.042) (-0.002; 0.163) 

Ruderal 1.00 0.052 (±0.020) (0.013; 0.091) 1.00 -0.049 (±0.010) (-0.069; -0.029) 0.54 0.054 (±0.039) (-0.022; 0.129) 

           
Measure Variable 

Elevation*Sediments Elevation*Temperature Sediments*Temperature 

Imp. Estimate (±SE) (95% CI) Imp. Estimate (±SE) (95% CI) Imp. Estimate (±SE) (95% CI) 

CWM 

Competitive 0.06 -0.096 (±0.133) (-0.356; 0.164) NA NA NA 0.07 -0.136 (±0.154) (-0.438; 0.165) 

Stress-tolerant 0.30 -0.513 (±0.227) (-0.959; -0.068) NA NA NA 0.39 0.622 (±0.269) (0.096; 1.148) 

Ruderal 0.61 0.604 (±0.232) (0.150; 1.058) 0.07 0.299 (±0.601) (-0.878; 1.477) 0.09 -0.468 (±0.268) (-0.993; 0.058) 

FDis 

Competitive 0.10 -0.006 (±0.006) (-0.016; 0.005) NA NA NA 0.29 0.011 (±0.006) (-0.001; 0.023) 

Stress-tolerant 0.38 0.017 (±0.008) (0.002; 0.032) NA NA NA 0.52 0.022 (±0.009) (0.005; 0.038) 

Ruderal 0.80 0.025 (±0.009) (0.007; 0.042) 0.18 0.046 (±0.018) (0.010; 0.081) NA NA NA 
  545 



23 
 

Figure 1. Location of the study area within the Rhône River watershed, distribution of sampled gravel bars 546 

along the Rhône River and form of the sampling design used to survey riparian plant communities.  547 
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Figure 2. Interaction effect between elevation and sediments in relation to the community-weighted mean 548 

values (CWM) and the functional dispersion values (FDis) of CSR plant strategies along the Rhône River 549 

(France). To provide representation, the proportion of fine sediments has been divided into two equally sized 550 

groups (see Table 2 for statistical significance, n.s. interaction = non-significant interaction).  551 
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Figure 3. Interaction effect between elevation and temperature in relation to the community-weighted mean 552 

values (CWM) and the functional dispersion values (FDis) of CSR plant strategies along the Rhône River 553 

(France). To provide representation, the mean annual temperature has been divided into two equally sized 554 

groups (see Table 2 for statistical significance, n.s. interaction = non-significant interaction).  555 
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Figure 4. Interaction effect between sediments and temperature in relation to the community-weighted mean 556 

values (CWM) and the functional dispersion values (FDis) of CSR plant strategies along the Rhône River 557 

(France). To provide representation, the mean annual temperature has been divided into two equally sized 558 

groups (see Table 2 for statistical significance, n.s. interaction = non-significant interaction). 559 


