

An inversion approach for analysing the physical properties of a seismic low-velocity layer in the upper mantle

Jie Xiao, Saswata Hier-Majumder, Benoit Tauzin, Dave Waltham

▶ To cite this version:

Jie Xiao, Saswata Hier-Majumder, Benoit Tauzin, Dave Waltham. An inversion approach for analysing the physical properties of a seismic low-velocity layer in the upper mantle. Physics of the Earth and Planetary Interiors, 2020, 304, pp.106502. 10.1016/j.pepi.2020.106502. hal-03025198

HAL Id: hal-03025198 https://hal.science/hal-03025198v1

Submitted on 7 Dec 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1	An inversion	approach	for analy	ysing the	physical	properties of a
---	--------------	----------	-----------	-----------	----------	-----------------

2 seismic low-velocity layer in the upper mantle

- 3
- 4 Jie Xiao^{a, b, c,*}, Saswata Hier-Majumder^b, Benoit Tauzin^{d, e}, Dave Waltham^b
- 5 (a) State Key Laboratory of Organic Geochemistry, Guangzhou Institute of
- 6 Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
- 7 (b) Department of Earth Sciences, Royal Holloway, University of London, Egham,
- 8 TW20 0EX, United Kingdom
- 9 (c) University of Chinese Academy of Sciences, Beijing 100049, China
- 10 (d) Université de Lyon, UCBL, ENS Lyon, CNRS, Laboratoire de Géologie de Lyon, Terre,
- 11 Planètes, Environnement, Villeurbanne, France
- 12 (e) Research School of Earth Sciences, Australian National University, Canberra,
- 13 Australian Capital Territory 0200, Australia
- 14 * Corresponding author (Jie.Xiao.2016@live.rhul.ac.uk)
- 15

16 Abstract

- 17 In this article, we propose a new inversion scheme to calculate the melt volume
- 18 fractions from observed seismic anomalies in a low-velocity layer (LVL) located atop
- 19 the mantle transition zone. Our method identifies the trade-offs in the seismic
- 20 signature caused by temperature, solid composition, melt volume fraction, and
- 21 dihedral angle at the solid-melt interface. Using the information derived from the
- 22 amplitude of *P*-to-*S* conversions beneath the western US, we show that the multiple

23	permissible solutions for melt volume fractions are correlated to each other. An
24	existing solution can be directly transformed into a different solution whilst leaving the
25	model output unaltered. Hence, the additional solutions can be rapidly derived given
26	an initial solution. The calculation of multiple solutions reveals the universal properties
27	to the whole range of solutions. A regional-averaged melt volume fraction of at least
28	0.5% exists in every solution. In addition, the mantle potential temperature in the
29	western US is broadly lower than 1550 K and the LVL in this region tends to be basaltic-
30	rich. Using these insights, it is possible to give firm statements on the LVL and the solid
31	mantle even though a unique interpretation does not exist.
32	
33	Keywords: Shear wave, low-velocity layer, partial melting, inverse problem, non-
34	uniqueness
35	
36	1 Introduction
37	The mantle transition zone (MTZ), marked by a drastic change in the physical
38	properties of the silicate mineral phases, plays a crucial role in the convective flow
39	within the mantle. Owing to the sharp changes in density and volatile storage capacity
40	across the boundaries of the MTZ, it can act as an impediment to mass transfer and
41	sights of partial melting (Bercovici and Karato, 2003; Morra et al., 2010). Indirect

43 obtained from the so-called 'superdeep diamonds' which bear geochemical signature

44 of oxygen and carbon isotopic ratios that can be generated by mixing between mantle

45	and subducting slabs at these depths. Seismic observations also support the evidence
46	of partial melting atop the MTZ. A low-velocity layer (LVL) located at 2350 km depth
47	has been identified just above the mantle transition zone in numerous regions around
48	the world, with lateral thickness from tens to over a few hundred kilometres (e.g. Song
49	et al., 2004; Gao et al., 2006; Courtier and Revenaugh, 2007; Schaeffer and Bostock,
50	2010; Huckfeldt et al., 2013). Characterized by 2 – 3% reductions in shear wave
51	velocities, the LVL is characterized by a sharp interface with the overlying mantle,
52	indicating the likely presence of a chemical anomaly, in particular partial melting.
53	However, quantifying the fraction of melt has remained challenging as the
54	environmental and chemical parameters, such as the mantle temperature, bulk solid
55	composition and melt geometry, are not clearly understood.
56	The 350-km LVL has been frequently interpreted as a seismic signature of a small
57	fraction of melt triggered by volatile elements released from subduction zones
58	(Revenaugh and Sipkin, 1994) or mantle plumes (Vinnik and Farra, 2007). Since melts,
59	characterized by zero shear modulus, disproportionately reduce shear wave velocities,
60	seismic anomalies with low velocities are often qualitatively attributed to melting.
61	Interpreting the origin of the seismic velocity anomalies in the LVL is complicated due
62	to the competing influence of several parameters. While an increase in the
63	temperature typically leads to seismic velocity reductions, the influence of bulk mantle
64	composition on seismic velocities varies with depth (Xu et al., 2008). The multiple
65	factors also likely affect each other. For instance, melting may leave a strong impact on
66	the bulk solid composition, in particular the amount of basalt. The residual anomaly,

67	defined as the difference between the observed shear velocity and the reference
68	velocity, can be attributed to the presence of melting, and used as a basis for
69	calculating the volume fraction of melt in the LVL. Hence, calculation of the melt
70	fraction requires accurate estimation of the reference seismic velocities, i.e. velocities
71	in the absence of melting for given temperature and solid composition.
72	In addition, the non-uniqueness in the LVL interpretations arises from the fact
73	that, in a partially molten layer, the seismic velocity reductions depend on both the
74	melting extent and the microstructure of the melt-bearing aggregates (Mavko, 1980;
75	von Bargen and Waff, 1986; Takei, 1998, 2002). The dihedral angle (also known as
76	wetting angle) at the solid-melt interface, controls the geometry of the load-bearing
77	framework of partially molten rocks (<u>Hier-Majumder and Abbott, 2010</u>), trading off
78	with inferred melt volume fraction . The chemical composition is also found to play a
79	moderate role in reducing the seismic speeds (Wimert and Hier-Majumder, 2012; Hier-
80	Majumder et al., 2014), and may alter the dihedral angle (Yoshino et al., 2005). The
81	numerical experiment of (Hier-Majumder et al., 2014) indicated the difficulties in
82	distinguishing different types of melt from the seismic observations as the fraction of
83	melt is very small. These therefore lead to extra non-uniqueness in the interpretation
84	of seismic anomalies.
85	A number of previous studies mitigated the issue of competing influences by
86	carrying out computationally expensive brute-force search to create lookup tables for
87	inferred melt volume fractions corresponding to different controlling factors (e.g. Hier-
88	Majumder and Courtier, 2011; Hier-Majumder et al., 2014; Hier-Majumder and Tauzin.

89	2017). While a brute-force search can produce a particular scenario of inversion,
90	application of the approach is unable to ascertain if alternative solutions exist in the
91	parameter space. Although, in principle, the entire range of solutions could be
92	discovered through repetitive use of the algorithm given different combinations of the
93	parameters, it fails to rigorously tackle the nature of variations in the inferred melt
94	volume fractions caused by changes in the other factors. Therefore, a new inversion
95	scheme is required to interpret these geophysical observations and to address the
96	theoretical drawback of previous studies.
97	Here we present a mathematical formulation that uses the implicit symmetry of a
98	petrologic model to understand the non-uniqueness in the melt fraction inference. The
99	results from our work provide a more reliable evaluation of the long-standing problem
100	in rock physics. The principle of symmetry has been successfully applied in a sequence
101	stratigraphic problem (Xiao and Waltham, 2019), showing that the whole set of
102	solutions are closely linked even when an inverse problem is non-linear. An existing
103	solution can be directly transformed into another solution that leaves modelling
104	products unchanged, in the same way that rotating a square by 90° can produce an
105	identical geometry. In this way, the search for all possible solutions can begin with an
106	initial solution generated through standard inversion techniques. The application of
107	the symmetry method can then allow the additional solutions to be calculated from
108	the initial solution.
109	Embedded with a predictive forward model of shear-velocities, our inversion

scheme is used to revisit the nature of the 350-km LVL beneath the western US. The

- seismically anomalous layer in this region has been reported underneath the Oregon-
- 112 Washington border (e.g. Song et al., 2004), the Yellowstone (e.g. Fee and Dueker,
- 113 2004; Jasbinsek and Dueker, 2007), the Northern Rocky Mountains (e.g. Jasbinsek and
- 114 <u>Dueker, 2007</u>; <u>Zhang et al., 2018</u>), the Colorado Plateau/Rio Grande Rift (e.g. Jasbinsek
- 115 <u>et al., 2010</u>), and California (<u>e.g. Vinnik et al., 2010</u>). Once the complete set of solutions
- 116 has been derived, the lowest and highest possible fractions of melt within the LVL can
- 117 be easily determined. As such, we can generate a robust statement on the partial
- 118 melting effect in the LVL that does not rely on assumed values of the other
- 119 parameters. The calculation can also offer more reliable information about the solid
- 120 mantle, such as the plausible ranges of temperature and basalt fraction. For example,
- 121 the estimates of melt content and associated parameters can be used to infer the
- 122 budget of volatile elements in the mantle and the excess temperature of the mantle
- 123 plumes beneath the region.
- 124

125 2 The 350-km LVL beneath the western US

- 126 2.1 Seismic observations
- 127 The seismic data used here are teleseismic *P*-to-*S* conversions recorded on
- 128 receiver functions from the Transportable Array of seismic stations in the western US
- 129 (fig. 1). The portion of the seismic network consists in 820 seismic stations. Shear wave
- 130 velocity contrasts at around 350 km have been derived for 583 sites over a 0.5° x 0.5°
- 131 grid in latitude and longitude. The seismically anomalous layer covers an area of 1.8 ×
- 132 10⁶ km², with lateral thickness from 25 to 90 km (<u>Hier-Majumder and Tauzin, 2017</u>).

133 2.2 Calculating shear wave velocities

134 To invert the shear wave speeds in the LVL from the seismic observations, we 135 follow the computational approach outlined in Hier-Majumder et al. (2014). We use 136 the results of conversion amplitudes at the top and the base of the LVL to estimate the 137 velocity variations. To eliminate systematic variations in the amplitude of converted arrivals caused by the acquisition geometry (seismic wave incidence), we normalize the 138 139 observed seismic amplitudes prior to computation. The normalized amplitude is 140 calculated from the ratio of amplitudes of arrivals converted at the top of the LVL over 141 arrivals converted at the olivine-wadsleyite mineralogical phase change at 410 km 142 depth:

$$R_{\rm norm} = \frac{A_{\rm LVL}}{A_{410}} < 0 \tag{1}$$

143 , where A_{LVL} is the frequency-averaged amplitude at the top of the LVL recorded at 144 each cell on the grid, and A_{410} is the frequency-averaged amplitude at the 410-km 145 discontinuity in the same cell. Using the normalized R_{norm} , we then calculate the shear 146 wave velocity (V_{S}^{obs}) at each location from the normalized contrast between the shear-147 velocity immediately above the 350-km LVL (V_{S}^{350}) and the velocity immediately below 148 the 410-km discontinuity (V_{S}^{410}):

$$V_{\rm S}^{\rm obs} = V_{\rm S}^{350} \left(1 + R_{\rm norm} \frac{V_{\rm S}^{410} - V_{\rm S}^{350}}{V_{\rm S}^{350}} \right)$$
(2)

149 We calculate $V_{\rm S}^{350}$ and $V_{\rm S}^{410}$ as the shear wave velocities at the depths of 350 km and 150 410 km, respectively, from the Preliminary Reference Earth Model (PREM, Dziewonski and Anderson, 1981). Compared to the global predictions from the PREM (~4735m/s at

152 350 km depth), the estimated shear-velocities yield an average reduction of 1.6%.

153

155 Figure 1 Seismic observations of the 350-km LVL below the western US. (a) A map of the dense

seismic array of 820 sites (black triangles, from Tauzin et al., 2013). The seismic cell (106.5°W,

157 38°N) discussed later in this paper is labelled 'A'. (b) The 350-km LVL with lateral thickness is

158 identified beneath 583 sites (from Hier-Majumder and Tauzin, 2017). (c) Normalized amplitudes of

159 P-to-S converted arrivals. (d) Shear wave velocities in the LVL estimated from the seismic data

160

161 2.3 Evaluating relative temperature variations

162 We then evaluate the thermal variations in the LVL using the method outlined in

- 163 <u>Tauzin and Ricard (2014)</u>. In this method, the relative temperature variations (ΔT) on
- boundary topography are correlated with the relative thickness of the MTZ (δh) and

178 MTZ thickness (after Tauzin and Ricard, 2014)

179

180 3 Forward modelling

181 The forward model of shear-velocities presented here incorporates four primary

182 controls, including the mantle potential temperature, bulk solid composition, melt

183 volume fraction and dihedral angle at the solid-melt interface. The simulation of shear

184 wave speeds in the LVL consists of two independent phases. Firstly, we estimate the

185 reference velocities from the properties of the solid mantle. Secondly, we calculate the

186 changes in velocities as waves travelling through a melt-bearing aggregate using a

187 micromechanical model that involves both the fraction and geometry of the melt.

188

189 3.1 Estimating reference velocities

We estimate the reference shear wave speeds in the solid mantle accounting for
the thermal and compositional properties of the mineral. The mantle temperature
below each site can be expressed as

$$T = T_0 + \frac{\mathrm{dT}}{\mathrm{dz}} z_{\mathrm{LVL}} + \Delta T \tag{3}$$

193 , where T_0 is the potential temperature of the reference mantle, dT/dz is the 194 adiabatic temperature gradient which is suggested as 0.4 – 0.5 K/km in the upper 195 mantle (Katsura et al., 2010), z_{LVL} is the depth of LVL and ΔT is the relative 196 temperature variation at a given location. We set z_{LVL} at the average depth of 352 km 197 as observed from the seismic profiles. To quantify the mantle composition, we follow 198 the definition from Xu et al. (2008) which parameterizes the solid bulk as a mechanical 199 mixture of mid-ocean ridge basalt and harzburgite. The composition of the solid 200 mantle can therefore be expressed as the volume fraction of basaltic component. We can then formulate the reference shear wave velocities as $V_{\rm S}^{\rm ref} = V_{\rm S}^{\rm ref}(T_0, C)$, where 201 T_0 and C are the potential temperature and basalt fraction of the mantle, respectively. 202

203	Reference shear wave speeds applied here are derived from the mineral physics
204	database of Xu et al. (2008), in which seismic velocities are tabulated with associated
205	combinations of potential temperatures and basalt fractions. In the database,
206	potential temperatures range from 1000 to 2000 K with increments of 100 K whereas
207	basalt fractions range from 0 to 100% with increments of 5%. While we can select a
208	given value of C for the calculation, the temperature at any point on the seismic grid is
209	determined from the MTZ thickness as discussed above. As a result, we interpolate the
210	value of seismic velocity for the temperature evaluated at each location using a
211	second-order polynomial interpolation between two tabulated values. Using this
212	interpolation, we are able to calculate the value of reference shear wave speed at each
213	point for a given bulk basalt volume fraction and a given reference potential
214	temperature. Figure 3 presents the predictions of regional-average shear wave speeds
215	for a range of potential temperatures and basalt fractions at a constant pressure of
216	11.7 GPa. The thermal and compositional effects can trade off with each other and
217	thus different combinations of the two variables may lead to the same velocities.
218	

220 Figure 3 A heatmap showing the predicted regional-averaged reference shear wave velocities at

221 11.7 GPa in response to different combinations of reference potential temperature and basalt

- 222 fraction in the LVL beneath the western US
- 223
- 224 3.2 Partial melting and velocity reductions

To simulate the influence of partial melting on seismic velocities, we employ the modelling scheme of Takei (2002), where the shear wave speed variation ξ is governed

227 by the effective elastic moduli of the aggregate:

$$\xi = \sqrt{\frac{N/\mu}{\bar{\rho}/\rho_{\rm s}}} \tag{4}$$

228 , where *N* is the elastic modulus of the intergranular skeletal framework that indicates 229 the strength of contact between the neighbouring grains; μ is the shear modulus; ρ_s is 230 the density of the solid bulk; and $\bar{\rho}$ is the volume-averaged density of the entire 231 aggregate which is calculated as:

$$\bar{\rho} = \rho_{\rm m} \varphi + \rho_{\rm s} (1 - \varphi) \tag{5}$$

232 , where ρ_m is the density of the melt; φ is the volume fraction of melt within the 233 aggregate.

234 In eq. 4, the elastic modulus *N* is determined by both the melt volume fraction φ 235 and the contiguity (ψ , i.e. the area fraction of the intergranular contact) of the melt:

$$N = \mu (1 - \varphi) [1 - (1 - \psi)^n]$$
(6)

236 The contiguity ψ depends on the melt volume fraction φ and the dihedral angle heta

237 between the solid grains and the melt; and n is an exponent also depending on ψ

238 (Takei, 2002). The simulations of contiguity applied here are based on the micro-

structural model of von Bargen and Waff (1986) which formulates the contiguity ψ as

the proportion that the contact area of grains occupy among the total contact area in a

241 partial molten aggregate:

$$\psi = \frac{2A_{\rm gg}}{2A_{\rm gg} + A_{\rm gm}} \tag{7}$$

, where A_{gg} and A_{gm} are the grain-grain contact area and grain-melt contact area per unit volume, respectively. The values of A_{gg} and A_{gm} are calculated from the given melt volume fraction and dihedral angle using polynomial functions:

$$\begin{cases} A_{gg} = \pi - b_{gg} \text{power}(\varphi, p_{gg}) \\ A_{gm} = b_{gm} \text{power}(\varphi, p_{gm}) \end{cases}$$
(8)

The required constants b_{gg} , b_{gm} , p_{gg} and p_{gm} are approximated from quadratic polynomials of the dihedral angle (in degree), of which the values are outlined in <u>von</u> <u>Bargen and Waff (1986)</u>. Wimert and Hier-Majumder (2012) indicated this approximation of contiguities can produce satisfactory fits with experimental measurements from partially molten aggregates with melt volume fractions below 5%. Combining equations 3—7 enables the contiguity to be expressed as a function of the melt volume fraction φ and dihedral angle θ , i.e. $\psi = \psi(\varphi, \theta)$. Moreover, shear wave speed anomalies ξ caused by partial melting can be formulated as a function with respect to melt volume fraction and dihedral angle:

$$\xi(\varphi,\theta) = \sqrt{\frac{(1-\varphi)[1-(1-\psi(\varphi,\theta))^{n}]}{1-\varphi(1-\rho_{\rm m}/\rho_{\rm s})}}$$
(9)

254 We estimate the densities of solid bulk $\rho_{\rm s}$ and melt $\rho_{\rm m}$ using the third-order Birch-255 Murnaghan equation of state (EOS), as Ghosh et al. (2007) suggested for carbonated 256 peridotite melt. We implement the mathematic approximations using a Python computational toolkit for microscale geodynamic study, named as Multiphase Material 257 258 Properties forward model (MuMaP, Hier-Majumder, 2017). The modelled shear wave 259 velocity reductions (in percentage) in response to a variety of melt volume fractions 260 and dihedral angles are illustrated in fig. 4. Each of the curves in the cross-plot 261 represents the shear wave velocity reductions caused by the melt with volume 262 fractions from 0 to 5% at a fixed dihedral angle, showing that the velocity in the 263 partially molten aggregates decreases rapidly as the fraction of melt increases. The 264 upward shifting of the curves indicates that, for the same melt volume fraction, a 265 smaller dihedral angle can result in greater reductions in the shear wave speed. 266 However, different combinations of dihedral angles and melt volume fractions may 267 produce the same extent of shear-velocity reduction.

Figure 4 Predicted shear wave velocity reductions for different melt volume fractions and dihedral
angles. The corresponding dihedral angles to the curves are annotated on the plot. Each curve
shows the velocity reductions caused by changes in melt volume fraction at a fixed dihedral angle

273 4 Model inversion

The forward modelling approach described in the preceding section predicts the shear wave velocity reductions in response to associated parameters. Alternatively, if seismic data of the LVL are available, it is possible to calculate the velocity reductions as a ratio of the observed velocity over the reference velocities:

$$\xi = \frac{V_{\rm S}^{\rm obs}}{V_{\rm S}^{\rm ref}(T_0, C)} \tag{10}$$

When embedded with an inversion scheme, the numerical model can be used to
deduce the multiple controls on seismic velocities. The inversion procedure can begin
with an initial solution that is built upon petrologic and seismological constraints. We
then investigate how to exploit and utilize the symmetry of the model, which can allow
us to alter the initial solution directly into another solution whilst giving the same

observations. In this way, the additional solutions to the inverse problem can be

rapidly derived by repetitively use of the transformation.

285

286 4.1 An initial solution based on a priori knowledge

To incorporate the forward model and the observed data in a single framework,
we firstly combine eq. 9 and 10:

$$\sqrt{\frac{(1-\varphi)\cdot\left[1-\left(1-\psi(\varphi,\theta)\right)^{n}\right]}{1-\varphi(1-\rho_{\rm m}/\rho_{\rm S})}} = \frac{V_{\rm S}^{\rm obs}}{V_{\rm S}^{\rm ref}(T_{0},C)}$$
(11)

289 , which gives four unknowns (i.e. T_0 , C, θ and φ) in one equation. To solve melt volume fraction φ from the eq. 11, the reference potential temperature T_0 , basalt fraction C 290 291 and dihedral angle θ need to be specified. We initially assume the reference potential 292 temperature to be 1500 K in the region. We set the basalt fraction at 18%, as 293 suggested in Xu et al. (2008) for common peridotite. The dihedral angle at the grain-294 melt interface varies with the chemical composition of the melt. For example, Minarik 295 and Watson (1995) proposed dihedral angles varying from 25 to 30° at the interface 296 between carbonate melt and molten aggregates; Mei et al. (2002) suggested a dihedral 297 angle of 28° for molten aggregates with hydrous basalt melt. Here we initially assume a dihedral angle of θ = 25°. Given these *a priori* assumptions, T_0 , C and θ are specified, 298 299 and hence the melt volume fraction can be solved from eq. 11. 300 We then calculate the corresponding melt volume fraction φ using a modified 301 Newton-Raphson root-search algorithm (Press et al., 2007, chap. 9.1), same as the 302 calculation in Hier-Majumder and Tauzin (2017). The algorithm begins with a bracket

for the melt volume fraction between 1×10^{-4} % and 10% and iterates the searching process until a convergence of 10^{-4} % is achieved in the inferred fraction. Figure 5 shows the initial solution derived from the inversion using the seismic observations and the constraints on T_0 , C and θ . The melt fractions in the region vary spatially and yields an average of 0.72%. The synthetic velocities reproduced from the forward model (fig. 5c) proves a good match to the real observations (fig. 1d).

311 Figure 5 An initial solution found from the inverse problem. The observed shear wave velocities (a)

317 4.2 Symmetric transformation

318 The above calculation generates a single solution to the inverse problem. Since the 319 inverse problem is non-unique with respect to the input parameters T_0 , C and θ , there 320 are, in principle, an infinite number of alternative solutions that can reproduce 321 identical seismic observations. Here we develop a quantitative approach to prove the 322 non-uniqueness and, more crucially, the transformation from an existing solution to an alternative solution. The symmetry of the numerical model is found by properly 323 324 modifying the input parameters to obtain an unchanged output model. To start with, 325 we formulate the forward model of shear wave speed as:

$$\boldsymbol{V}_{\mathrm{S}} = F(T_0, C, \theta, \boldsymbol{\varphi}) \tag{12}$$

326 , where V_S is the shear wave speeds in the LVL beneath the seismic sites; F denotes a 327 general, non-linear function (in this work, F is the forward model from the code 328 MuMaP_fwd) and φ is a vector of melt volume fractions in the LVL. Note that 583 329 seismic sites are analysed in this study, and hence the vector lengths are 583 for both 330 V_S and φ . We then generate three perturbations δT_0 , δC and $\delta \theta$ respectively into the 331 three variables T_0 , C and θ . These small changes in the model inputs thus give rise to 332 residuals in the modelled velocities, i.e. ΔV_s . This can be written as:

$$\Delta \boldsymbol{V}_{\mathrm{S}} = F(T_0 + \delta T_0, \mathcal{C} + \delta \mathcal{C}, \theta + \delta \theta, \boldsymbol{\varphi}) - F(T_0, \mathcal{C}, \theta, \boldsymbol{\varphi})$$
(13)

333 , which may be approximated in a linear form using the first-order Taylor's series:

$$\frac{\partial F}{\partial T_0} \delta T_0 + \frac{\partial F}{\partial C} \delta C + \frac{\partial F}{\partial \theta} \delta \theta = \Delta V_{\rm S}$$
(14)

- 334 , where $\partial F/\partial T_0$, $\partial F/\partial C$ and $\partial F/\partial \theta$ are finite derivatives of the function F with
- respect to T_0 , C and θ . We then calculate changes required in the melt volume
- fractions (i.e. $\delta \phi$) to compensate the changes in velocities resulting from the
- 337 perturbations. This can be expressed as:

$$F(T_0 + \delta T_0, C + \delta C, \theta + \delta \theta, \varphi + \delta \varphi) - F(T_0, C, \theta, \varphi) = \mathbf{0}$$
(15)

338 Approximation based on the Taylor's series gives:

$$\frac{\partial F}{\partial T_0} \delta T_0 + \frac{\partial F}{\partial C} \delta C + \frac{\partial F}{\partial \theta} \delta \theta + \frac{\partial F}{\partial \boldsymbol{\varphi}} \delta \boldsymbol{\varphi} = \mathbf{0}$$
(16)

339 , where $\partial F / \partial \varphi$ is the finite derivative of the function *F* with respect to φ . We then 340 solve $\delta \varphi$ by combining eq. 14 and 16:

$$\delta \boldsymbol{\varphi} = -\frac{\Delta \boldsymbol{V}_{\mathbf{S}}}{\partial F / \partial \boldsymbol{\varphi}} \tag{17}$$

In this equation, $\partial F / \partial \phi$ can be calculated from the forward model. We make small 341 342 changes in $\boldsymbol{\varphi}$ and then run the model to predict the corresponding velocities. The 343 values of $\partial F / \partial \phi$ are given by the difference in the modelling outputs divided by the small changes in φ . Note that $\delta \varphi$, $\partial F / \partial \varphi$ and $\Delta V_{\rm S}$ are all vectors with a length of 583 344 345 as there are 583 locations in total. Given the perturbations δT_0 , δC and $\delta \theta$ and the required adjustments in melt volume fractions $\delta \varphi$, the model $F(T_0 + \delta T_0, C + \delta C, \theta + \delta C)$ 346 347 $\delta\theta$, $\phi + \delta\phi$) can produce the same shear wave speeds as given by the initial solution. 348 The new solution can then be used as a basis for another transformation. Iterative 349 transformation can therefore derive all the additional solutions to the inverse problem. 350

4.3 Calculating multiple solutions

352	Using the forward model and symmetric transformation, we then examine the
353	entire parameter space and calculate alternative solutions. The parameter space can
354	be considered as a 3-D volume of which the three dimensions are potential
355	temperature (T_0), basalt fraction (C) and dihedral angle (θ). We define the ranges of
356	the parameters as 1400 to 1800 K in potential temperature, 10 to 40 $\%$ in basalt
357	fraction and 10° to 40° in dihedral angle. We also set the increments at 10 K in
358	potential temperature, 1% in basalt fraction and 1 $^\circ$ in dihedral angle. Therefore, the
359	parameter space is finely sampled and thus the transformation approach can apply.
360	Each position in the parameter space can be described using the coordinates in the
361	three dimensions. If a solution exists in position (T_0, C, θ) , then the corresponding melt
362	volume fraction vector can be written as $oldsymbol{arphi}(T_0, \mathcal{C}, oldsymbol{ heta}).$ Once a solution is found, the
363	solutions in neighbouring positions can also be determined. Because the
364	transformation can be applied both forward and backward, six neighbouring solutions
365	should be examined, including $\boldsymbol{\varphi}(T_0 + \delta T_0, \mathcal{C}, \theta)$, $\boldsymbol{\varphi}(T_0 - \delta T_0, \mathcal{C}, \theta)$, $\boldsymbol{\varphi}(T_0, \mathcal{C} + \delta \mathcal{C}, \theta)$,
366	$\boldsymbol{\varphi}(T_0, \mathcal{C} - \delta \mathcal{C}, \theta), \boldsymbol{\varphi}(T_0, \mathcal{C}, \theta + \delta \theta)$ and $\boldsymbol{\varphi}(T_0, \mathcal{C}, \theta - \delta \theta)$. We calculate the additional
367	solutions through the following procedure:
368	(1) Create an empty list. Add the coordinate of the initial solution into the list.
369	(2) For each solution in the list, calculate the solutions in the neighbouring
370	positions that are inside of the parameter space but not existing in the list.
371	(3) Add the solutions found in step (2) into the list.
372	(4) Return to step (2) and repeat the workflow until no new solution can be

added into the list.

374	Note that this is different from a brute-force search which involves a root-
375	searching approach for calculating the melt volume fraction beneath every location
376	given different combinations of T_0 , C and θ . In contrast, the symmetric transformation
377	is straightforward as it can simultaneously derive the melt volume fraction beneath the
378	whole area. Since this method works directly on the behaviour of the solution with
379	respect to perturbations, it also allows us to predict regions where solution does not
380	exist and the solution containing the lowest possible average melt fractions, which was
381	intractable with the method described by <u>Hier-Majumder et al. (2014)</u> .
382	
383	4.4 Complete solutions to the inverse problem
384	Using the above computational procedure, we derive all the solutions in the
385	parameter space. All the possible solutions can reproduce the same synthetic shear
386	wave velocities from the forward model. Significant spatial variations in the inverted
387	melt volume are found in every solution. Because the melt volume fraction should
388	always be non-negative, the calculated vectors of $oldsymbol{arphi}$ where one or more negative
389	values exist should be removed. Given this requirement, limits can be placed to bound
390	the symmetric transformation, i.e. not every combination of potential temperatures,
391	basalt fractions and dihedral angles in the parameter space is compatible with the
392	seismic observations, though not a unique solution to the inverse problem can be
393	found. Example of the variations in calculated melt volume fractions and the
394	transformation limits in the multiple controlling factors are demonstrated in fig. 6.

396 Figure 6 Series of box-plots showing the estimated melt vol.% beneath all locations with median 397 indicated by the horizontal line within each box, upper/lower quartiles indicated by the 398 upper/lower edges of the box and maximum/minimum indicated by whiskers of the boxes. (a) & (b) 399 Inferred melt vol.% as a function of reference potential temperature with fixed basalt fraction and 400 dihedral angles. (c) & (d) Inferred melt vol.% as a function of basalt fractions with fixed reference 401 potential temperature and dihedral angle. (e) & (f) Inferred melt vol.% as a function of dihedral 402 angle with fixed reference potential temperature and basalt fractions. Note that no solution can be 403 found given $T_0 \geqslant$ 1500 in (a), $T_0 \geqslant$ 1550 K in (b) and $C \leqslant$ 30% in (d)

405	The model output illustrated in fig. 7 is an end-member solution showing that the
406	lowest possible averaged melt volume fraction is 0.51%, associated with $T_{\rm 0}$ = 1550 K, C
407	= 40% and θ = 10°. In this solution, the melting is not predicted beneath some regions,
408	for instance at the triple border between Idaho, Montana and Wyoming. Considering
409	the sharp boundary atop the LVL, this may just be an artefact because the variations in
410	solid bulk are unlikely to produce the rapid velocity reductions. However, this solution
411	is still meaningful since it places a lower-bound below the regional-averaged melt
412	volume fraction within the observed LVL. In contrast, the highest possible averaged
413	melt volume fraction that exists in the parameter space yields 1.47%, associated with
414	T_0 = 1400 K, basalt fraction C = 10% and dihedral angel θ = 10°, as shown in fig. 8.
415	Examples of the trade-offs between the estimated melt volume fraction below a given
416	location and the multiple controls are displayed in fig. 9 by cross-plotting the estimates
417	and the corresponding controlling factors. Whilst the forward model used here is non-
418	linear, application of the proposed method has indicated the trajectories that link
419	together the multiple solutions in the parameter space.

422 **Figure 7** The end-member solution with the minimum melt vol. % within the LVL beneath the w.

423 The regional averaged melt vol. % is 0.51% given T_0 = 1550 K, C = 40% and θ = 10°. Note that this

424 solution is directly derived from the initial solution, rather than from a brute-force search

425

427 Figure 8 The end-member solution with the maximum melt vol. % within the LVL beneath the

428 region. The regional averaged melt vol. % is 1.47% given T_0 = 1400 K, C = 10% and θ = 40°. Note

431 Figure 9 Cross-plots of inferred melt volume fraction beneath 106°W, 35°N (label A in fig. 1a) 432 versus (a) the reference potential temperature for different dihedral angles ranging from 10° to 40° 433 (annotated on the plot) with constant intervals of 5° given a fixed basalt composition and (b) the 434 basalt fraction in the bulk composition for a range of different dihedral angles given a fixed 435 potential temperature 436 437 **5** Discussion 438 Using a numerical inversion approach, we have examined the LVL at 350 km 439 underneath the western US. The shear-velocity anomalies and impedance contrasts in 440 this zone have been thought to indicate a small fraction of volatile-rich melt (Hier-441 Majumder and Tauzin, 2017) released either by the decarbonation during the Farallon

- 442 slab subduction (Thomson et al., 2016) or by the dehydration from the upwelling of
- 443 the Yellowstone mantle plume or small-scale convection within the MTZ (Bercovici and
- 444 <u>Karato, 2003; Richard and Bercovici, 2009; Zhang et al., 2018</u>). Despite the presence of
- 445 petrological and geochemical evidences of melting near the MTZ, determination of the
- 446 quantity of melting from seismic signatures remains hard work owing to the trade-offs
- that exist between various controlling factors. Due to the lack of geophysical and
- geochemical constraints, it is difficult, if not impossible, to distinguish the individual

449	effects of temperature, composition and partial melting. A recent study has further
450	suggested that these multiple controls are strongly correlated, leading to a
451	disagreement between the experimental measurements and theoretical estimates
452	(Freitas et al., 2019).
453	Our numerical scheme based on a symmetry is able to cover all solutions. Using a
454	forward model, we firstly generate an arbitrary solution assuming T_0 = 1500 K, C = 18%
455	and θ = 25°. This is a successful solution as the shear wave velocities it predicts are
456	consistent with the observations. The inverse problem is then linearized to find
457	neighbouring solutions to the initial solution. As the controlling parameters have only a
458	limited range of plausible values (in this work $1400 \le T_0 \le 1800$ K, $10\% \le C \le 40\%$ and
459	10° $\leq \theta \leq$ 40°), the symmetry gives a quasi-complete set of solutions subject to the
460	necessary constraint that the melt volume fraction in the upper mantle must always be
461	non-negative. This constraint can be justified as the effects of temperature and
462	composition are already taken into account. Given the above treatment, it is then a
463	simple matter to find the combinations of parameters that reveals the end-member
464	possibilities (e.g. maximum and minimum degrees of partial melting).
465	The modelling results show that a regional-averaged melt volume fraction of
466	approximately 0.51% is necessary to explain the sharp shear-velocity reductions at 350
467	km beneath the western US. This is the minimum extent of melting required to
468	produce the observed LVL, whatever the solid mantle conditions and the geometry of
469	the melt are. As <u>Hier-Majumder and Courtier (2011)</u> suggested, at such a small level of
470	melting, a near neutrally buoyant melt can migrate over the LVL due to surface

471 tension, whereas the drainage efficiency of both buoyant and dense melts is likely472 insignificant.

473	As no solution has been found to be associated with a reference potential
474	temperature higher than 1550 K, we can place an upper-bound on the variations in the
475	reference potential temperature. The modelling output also shows that the range of
476	variations in basalt fraction depends on the assumed reference potential temperature.
477	At a low reference potential temperature (e.g. 1400 K), the basalt fraction may vary
478	from 10% to 40%. In contrast, at a higher reference potential temperature, solutions
479	can only be in the basaltic-rich zone (e.g. fig. 6d). For instance, <u>Hier-Majumder and</u>
480	Tauzin (2017) estimated the reference potential temperature as approximately 1550 K.
481	If this is the case, then we can make a statement that the basalt fraction in the LVL
482	beneath the western US is no less than 40%. Hence, whilst the thermal and
483	compositional conditions are still under-constrained, our model work offers more
484	reliable information about the mantle physical properties.
485	In addition, our inverse method unravels trade-offs between parameters. As the
486	forward model is non-linear, there is no simple analytical tool for determining these
487	competing effects. The numerical approach proposed here allows estimating the rates
488	of change in the inferred melt volume fraction caused by changes in other parameters.
489	According to the modelling outputs, the significance of the trade-offs between inferred
490	melt volume fractions and other parameters can be summarized as:
491	(1) For a given dihedral angle and a given basalt fraction, the inferred melt
492	volume fractions present a strong negative correlation with the assumed

493	reference potential temperatures (fig. 6a & b).	
-----	---	--

- 494 (2) For a given reference potential temperature and a given dihedral angle, the
- 495 inferred melt volume fractions are insensitive to the assumed basalt fractions496 (fig. 6c & d).
- 497 (3) For a given reference potential temperature and a given basalt fraction, the
 498 inferred melt volume fractions present a modest positive correlation with the
- 499 assumed dihedral angles (fig. 6e & f).
- 500 In this analysis, a number of assumptions are made about the mantle: it is in a
- 501 state of chemical disequilibrium (described as a mechanical mixture of basalt and
- 502 harzburgite), melt films are not playing a role in velocity reduction, the transition zone
- 503 thickness reflects temperature variations, the Clapyron slope is known, and receiver
- 504 function estimates of MTZ thickness are accurate.
- 505 This study calculates the temperature variations from the thickness of the MTZ
- 506 using the empirical correlation proposed by <u>Tauzin and Ricard (2014)</u>. The empirical
- 507 model relies on several assumptions, for example that only temperature varies MTZ
- 508 thickness and that no vertical variation occurs in temperature from the MTZ to the LVL.
- 509 As observed from tomographic models (with low vertical resolution), the MTZ has
- 510 consistent structures over the whole range of depth, in particular the stalled Juan de
- 511 Fuca/Farallon slab (Burdick et al., 2008; Schmandt et al., 2011; Hier-Majumder and
- 512 <u>Tauzin, 2017</u>). Although an entirely consistent MTZ should not be expected, dealing
- 513 with the absolute topography of discontinuities to infer the temperatures would likely
- 514 introduce more uncertainties, as would require a precise correction of the effect of

515 shallow velocity heterogeneities from 3-D tomographic models, which have their own516 limitations.

517	Another assumption involved here is that one can extract reliable MTZ thickness
518	from receiver functions, while interference effects from seismic phases that do not
519	interact with MTZ boundaries can be neglected. It has indeed been shown through
520	modeling that the effect of interfering phases is small (Tauzin et al., 2013). The move-
521	out of these phases is different from the one from direct conversions (Guan and Niu,
522	2017) and stacking along move-out curves for direct conversions is efficient in
523	removing their effect. Besides, slant-stack diagrams and slowness weighted stacking
524	(e.g. Guan and Niu, 2017; Hier-Majumder and Tauzin, 2017) show no evidence for
525	interference effects in several locations of the western US.
526	Apart from the primary controls on the seismic velocities we have investigated,
527	there are other factors that can influence the seismic wave speeds. In this work, the
528	Clapeyron slopes γ are set to values from a compilation of experimentally obtained
529	values (Tauzin and Ricard, 2014). The values of matrix density $ ho_{ m s}$ and melt density $ ho_{ m m}$
530	are set to constants as suggested in previous studies. The thickness of MTZ applied
531	here are also from supplementary dataset whereas alternative empirical models (e.g.
532	Keifer and Dueker, 2019) would produce different scenarios. These additional
533	complications can lead to substantial uncertainties in estimated melt volume fractions.
534	However, the inversion technique presented here is independent from the forward
535	model and can easily be adapted to include these factors. While in this paper the
536	application of the inversion has been demonstrated using 1-D column simulation, the

technique could be applied to more sophisticated models that are spatially 2-D or 3-D.
For future work, we intend to apply our modelling approach to investigating the LVL
identified in other regions that differ in tectonic settings, for example, the Hawaii
Islands (Huckfeldt et al., 2013) which are dominated by mantle plumes. An effort will
be done for accounting for uncertainties from seismic data and propagate it into
mantle melting estimates.

543

544 6 Conclusions

545 The interpretation of the observed seismic structures in the upper mantle, like

546 many other geophysical inverse problems, is hampered by the fundamental challenge

547 of non-uniqueness. In this work, we investigate the influence of thermal,

548 compositional and melting effects on the pervasive LVL at 350 km beneath the western

549 US. We develop an inversion scheme, based on the principle of symmetry, for

generating the full range of solutions in the parameter space. Although a unique

solution is not available, the calculation of an ensemble of solutions allows extracting

the properties that are common to all solutions. A key result of our inversion is that a

553 minimum fraction of ~0.5% melt by volume is necessary to explain the seismically

anomalous layer in the region. The scheme also encapsulates the ranges of variations

- in the thermal and compositional factors. Consequently, the application of the
- 556 proposed inversion technique can provide more robust interpretation of seismic

557 velocity reductions within the mantle.

558

559 Acknowledgement

560	The authors would like to thank Editor Mark Jellinek and two anonymous reviewers for
561	their constructive comments. Jie Xiao acknowledges support from the Strategic Priority
562	Research Program of the Chinese Academy of Sciences (XDA14010103) and China
563	National Major S&T Program (2017ZX05008-002-030). Jie Xiao also wishes to thank
564	China Scholarship Council (CSC) for funding his PhD research. This research is also
565	supported by the European Union's Horizon 2020 research and innovation programme
566	under Benoit Tauzin's Marie Sklodowska-Curie grant agreement 793824.
567	
568	References
569	Bercovici, D., and Karato, Si., 2003, Whole-mantle convection and the transition-zone
570	water filter: Nature, v. 425, no. 6953, p. 39.
571	Burdick, S., Li, C., Martynov, V., Cox, T., Eakins, J., Mulder, T., Astiz, L., Vernon, F. L.,
572	Pavlis, G. L., and van der Hilst, R. D., 2008, Upper mantle heterogeneity beneath
573	North America from travel time tomography with global and USArray
574	transportable array data: Seismological Research Letters, v. 79, no. 3, p. 384-
575	392.
576	Courtier, A. M., and Revenaugh, J., 2007, Deep upper-mantle melting beneath the
577	Tasman and Coral Seas detected with multiple ScS reverberations: Earth and
578	Planetary Science Letters, v. 259, no. 1-2, p. 66-76.
579	Fee, D., and Dueker, K., 2004, Mantle transition zone topography and structure
580	beneath the Yellowstone hotspot: Geophysical Research Letters, v. 31, no. 18.

581	Freitas, D., Manthilake, G., Chantel, J., Bouhifd, M., and Andrault, D., 2019,
582	Simultaneous measurements of electrical conductivity and seismic wave
583	velocity of partially molten geological materials: effect of evolving melt texture:
584	Physics and Chemistry of Minerals, p. 1-17.
585	Gao, W., Matzel, E., and Grand, S. P., 2006, Upper mantle seismic structure beneath
586	eastern Mexico determined from P and S waveform inversion and its
587	implications: Journal of Geophysical Research: Solid Earth, v. 111, no. B8.
588	Ghosh, S., Ohtani, E., Litasov, K., Suzuki, A., and Sakamaki, T., 2007, Stability of
589	carbonated magmas at the base of the Earth's upper mantle: Geophysical
590	research letters, v. 34, no. 22.
591	Guan, Z., and Niu, F., 2017, An investigation on slowness-weighted CCP stacking and its
592	application to receiver function imaging: Geophysical Research Letters, v. 44,
593	no. 12, p. 6030-6038.
594	Hier-Majumder, S., 2017, MuMaP_fwd, Version: 1.0, Zenodo,
595	http://doi.org/10.5281/zenodo.1040971.
596	Hier-Majumder, S., and Abbott, M. E., 2010, Influence of dihedral angle on the seismic
597	velocities in partially molten rocks: Earth and Planetary Science Letters, v. 299,
598	no. 1-2, p. 23-32.

- 599 Hier-Majumder, S., and Courtier, A., 2011, Seismic signature of small melt fraction atop
- 600 the transition zone: Earth and Planetary Science Letters, v. 308, no. 3-4, p. 334-
- 601 342.

- Hier-Majumder, S., Keel, E. B., and Courtier, A. M., 2014, The influence of temperature,
- 603 bulk composition, and melting on the seismic signature of the low-velocity layer
- above the transition zone: Journal of Geophysical Research: Solid Earth, v. 119,
 no. 2, p. 971-983.
- Hier-Majumder, S., and Tauzin, B., 2017, Pervasive upper mantle melting beneath the
 western US: Earth and Planetary Science Letters, v. 463, p. 25-35.
- Huckfeldt, M., Courtier, A. M., and Leahy, G. M., 2013, Implications for the origin of
- 609 Hawaiian volcanism from a converted wave analysis of the mantle transition

510 zone: Earth and Planetary Science Letters, v. 373, p. 194-204.

- Jasbinsek, J., and Dueker, K., 2007, Ubiquitous low-velocity layer atop the 410-km
- 612 discontinuity in the northern Rocky Mountains: Geochemistry, Geophysics,
- 613 Geosystems, v. 8, no. 10.
- Jasbinsek, J. J., Dueker, K. G., and Hansen, S. M., 2010, Characterizing the 410 km
- discontinuity low-velocity layer beneath the LA RISTRA array in the North
- 616 American Southwest: Geochemistry, Geophysics, Geosystems, v. 11, no. 3.
- 617 Katsura, T., Yoneda, A., Yamazaki, D., Yoshino, T., and Ito, E., 2010, Adiabatic
- 618 temperature profile in the mantle: Physics of the Earth and Planetary Interiors,
- 619 v. 183, no. 1-2, p. 212-218.
- 620 Keifer, I., and Dueker, K., 2019, Testing the hypothesis that temperature modulates
- 621 410 and 660 discontinuity topography beneath the eastern United States: Earth

and Planetary Science Letters, v. 524, p. 115723.

623	Kennett, B., and Engdahl, E., 1991, Traveltimes for global earthquake location and
624	phase identification: Geophysical Journal International, v. 105, no. 2, p. 429-
625	465.
626	Mavko, G. M., 1980, Velocity and attenuation in partially molten rocks: Journal of
627	Geophysical Research: Solid Earth, v. 85, no. B10, p. 5173-5189.
628	Mei, S., Bai, W., Hiraga, T., and Kohlstedt, D., 2002, Influence of melt on the creep
629	behavior of olivine-basalt aggregates under hydrous conditions: Earth and
630	Planetary Science Letters, v. 201, no. 3-4, p. 491-507.
631	Minarik, W. G., and Watson, E. B., 1995, Interconnectivity of carbonate melt at low
632	melt fraction: Earth and Planetary Science Letters, v. 133, no. 3-4, p. 423-437.
633	Morra, G., Yuen, D. A., Boschi, L., Chatelain, P., Koumoutsakos, P., and Tackley, P.,
634	2010, The fate of the slabs interacting with a density/viscosity hill in the mid-
635	mantle: Physics of the Earth and Planetary Interiors, v. 180, no. 3-4, p. 271-282.
636	Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P., 2007, Numerical
637	recipes 3rd edition: The art of scientific computing, Cambridge university press,
638	p. 445.
639	Revenaugh, J., and Sipkin, S., 1994, Seismic evidence for silicate melt atop the 410-km

640 mantle discontinuity: Nature, v. 369, no. 6480, p. 474.

- 641 Richard, G. C., and Bercovici, D., 2009, Water-induced convection in the Earth's mantle
- transition zone: Journal of Geophysical Research: Solid Earth, v. 114, no. B1.

643	Schaeffer, A., and Bostock, M., 2010, A low-velocity zone atop the transition zone in
644	northwestern Canada: Journal of Geophysical Research: Solid Earth, v. 115, no.
645	B6.
646	Schmandt, B., Dueker, K., Hansen, S., Jasbinsek, J. J., and Zhang, Z., 2011, A sporadic
647	low-velocity layer atop the western US mantle transition zone and short-
648	wavelength variations in transition zone discontinuities: Geochemistry,
649	Geophysics, Geosystems, v. 12, no. 8.
650	Song, TR. A., Helmberger, D. V., and Grand, S. P., 2004, Low-velocity zone atop the
651	410-km seismic discontinuity in the northwestern United States: Nature, v. 427,
652	no. 6974, p. 530.
653	Takei, Y., 1998, Constitutive mechanical relations of solid-liquid composites in terms of
654	grain-boundary contiguity: Journal of Geophysical Research: Solid Earth, v. 103,
655	no. B8, p. 18183-18203.
656	Takei, Y., 2002, Effect of pore geometry on Vp/Vs: From equilibrium geometry to crack:
657	Journal of Geophysical Research: Solid Earth, v. 107, p. 2043.
658	Tauzin, B., and Ricard, Y., 2014, Seismically deduced thermodynamics phase diagrams
659	for the mantle transition zone: Earth and Planetary Science Letters, v. 401, p.
660	337-346.
661	Tauzin, B., Van Der Hilst, R. D., Wittlinger, G., and Ricard, Y., 2013, Multiple transition
662	zone seismic discontinuities and low velocity layers below western United
663	States: Journal of Geophysical Research: Solid Earth, v. 118, no. 5, p. 2307-
664	2322.

665	Thomson, A. R., Walter, M. J., Kohn, S. C., and Brooker, R. A., 2016, Slab melting as a
666	barrier to deep carbon subduction: Nature, v. 529, no. 7584, p. 76.
667	Vinnik, L., and Farra, V., 2007, Low S velocity atop the 410-km discontinuity and mantle
668	plumes: Earth and Planetary Science Letters, v. 262, no. 3-4, p. 398-412.
669	Vinnik, L., Ren, Y., Stutzmann, E., Farra, V., and Kiselev, S., 2010, Observations of S410p
670	and S350p phases at seismograph stations in California: Journal of Geophysical
671	Research: Solid Earth, v. 115, no. B5.
672	von Bargen, N., and Waff, H. S., 1986, Permeabilities, interfacial areas and curvatures
673	of partially molten systems: results of numerical computations of equilibrium
674	microstructures: Journal of Geophysical Research: Solid Earth, v. 91, no. B9, p.
675	9261-9276.
676	Wimert, J., and Hier-Majumder, S., 2012, A three-dimensional microgeodynamic model
677	of melt geometry in the Earth's deep interior: Journal of Geophysical Research:
678	Solid Earth, v. 117, no. B4.
679	Xiao, J., and Waltham, D., 2019, Non-uniqueness and symmetry in stratigraphic
680	interpretations: A quantitative approach for determining stratal controls:

681 Sedimentology, v. 66, no. 5, p. 1700-1715.

- Ku, W., Lithgow-Bertelloni, C., Stixrude, L., and Ritsema, J., 2008, The effect of bulk
- 683 composition and temperature on mantle seismic structure: Earth and Planetary
- 684 Science Letters, v. 275, no. 1-2, p. 70-79.

685	Yoshino, T., Takei, Y., Wark, D. A., and Watson, E. B., 2005, Grain boundary wetness of
686	texturally equilibrated rocks, with implications for seismic properties of the
687	upper mantle: Journal of Geophysical Research: Solid Earth, v. 110, no. B8.
688	Zhang, Z., Dueker, K. G., and Huang, HH., 2018, Ps mantle transition zone imaging
689	beneath the Colorado Rocky Mountains: Evidence for an upwelling hydrous
690	mantle: Earth and Planetary Science Letters, v. 492, p. 197-205.
691	