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The packing of elastic objects is increasingly studied in the framework of out-of-equilibrium statistical
mechanics and thus these appear to be similar to glassy systems. Here, we present a two-dimensional experiment
whereby a rod is confined by a parabolic potential. The setup enables spanning a wide range of folded
configurations of the rod. Measurements of the distributions of length and curvature in the system reveal the
importance of a stacking process whereby many layers of the rod are grouped into branches. The geometrical
order of patterns increases with the confinement strength. Measurements of the distributions of energies lead to
the definition of an energy scale that is correlated with the elastic energy of the stacked parts of the rod. This
scale imposes energy partition in the system and might be relevant to the framework of the thermodynamics of
disordered systems. Following these observations, we describe the patterns as excited states of a ground state
corresponding to the most ordered geometry. Eventually, we provide evidence that the disordered state of a folded
rod becomes spontaneously closer to the ground state as confinement is increased.

DOI: 10.1103/PhysRevE.89.012407 PACS number(s): 46.32.+x, 46.70.Hg, 61.43.−j

I. INTRODUCTION

Confined elastic structures such as plates and rods are
ubiquitous in natural phenomena and man-made systems.
The length scales associated with the underlying folding,
wrinkling, and crumpling processes range from microscopic
to macroscopic sizes. One influential example concerns the
behavior of balls of polymer chains and their complex geom-
etry in the case of poor-solvent interactions [1]. In biological
systems, how elastic structures adapt themselves to fit in a
small container is of paramount importance concerning nucleic
polymers (DNA, RNA). In the cell nucleus, DNA is embedded
within a fiberlike structure known as chromatin, which seems
to be packed in disordered patterns with multiscale features
that might be relevant to transcriptional regulation. In contrast,
in viruses, DNA or RNA filaments are perfectly ordered when
confined into the viral capsid by a molecular motor which
is essential for proper function [2,3]. At larger scales, it is
common for living tissues to grow within the walls of a
protective, stiffer, surrounding medium. A salient example
is the growth of tree leaves inside a bud; the geometrical
frustration resulting from such a constrained development
affects the final shape of the leaves and the organization of their
veins [4,5]. This raises the question of interaction between
mechanical stress and molecular biology in the context of
biological growth. Finally, the confinement of elastic objects is
also linked to technological challenges. A better understanding
of the fundamental physical principles governing the wrinkling
of elastic plates would lead to smarter stretchable electronic
devices [6], which, for instance, would be mounted on living
tissues so as to prevent body rejection. Another aim concerns
the production of self-deployable devices such as solar wings
[7] through the reversible folding of ordered and disordered
patterns without the risk of tearing the structure.

The few examples mentioned above make it clear that a
plethora of complex fold patterns are displayed by tightly
packed elastic structures across a wide spectrum of natural
phenomena as well as in many man-made systems. Questions

about the configurations and physical properties of folded and
packed elastic structures have recently begun to catch the
attention of a growing number of groups across the soft-matter
community. An important reason for this development is
that packings, like frustrated and disordered systems such as
glasses, are increasingly being looked at through the prism
of “out-of-equilibrium” statistical mechanics. Because of the
macroscopic size of the physical systems typically under study
(ranging from granular packings to elastic plates and even
liquid foams), thermal fluctuations are completely negligible
with respect to other forces, such as gravity, and play no role
in the respective phase space exploration of these athermal
systems. Rather, one must resort to mechanical excitations
(for example the so-called tapping in the case of granular
matter) in order to drive the system from one local energy
minimum to another one. One of the most interesting questions
that has emerged in recent years concerns the possibility of
defining a new form of thermodynamics that would describe
such disordered athermal systems.

Despite its mundane appearance and usually undistin-
guished presence, we propose that a piece of crumpled
paper actually represents a prototype in which this new
thermodynamics of disordered systems can be studied. When
a sheet of paper is crushed into a small ball, the manual
energy (injected at scales comparable to the size of the sheet
itself) localizes into a complex network of linear singular
folds connected to each other via pointlike singular structures.
Although the mechanical and geometrical properties of these
two individual singular components have been the subject of
intense study in the past few years [8–14], the dynamical
formation of the network connecting them (the skeleton of
a fully developed piece of crumpled paper) remains only very
partially understood [15]. Besides the very first stages of the
folding dynamics which can be followed with some accuracy
using the equations of elasticity, the crumpled pattern rapidly
becomes too complex and it is impossible to describe the
whole evolution even through numerical methods [16,17]. One
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major hurdle comes from the nonlocal hard-core interactions
due to the physical constraint of self-avoidance. Therefore,
most studies have focused on the statistical properties and on
the global mechanical response of balls of crumpled paper.
Until recently, the usual technique to study crumpled paper
was by unfolding the ball in order to measure some statis-
tical distributions of its geometrical properties post mortem
[18–20]. In this way a lot of information has been gained
about the fractal coefficients of the resulting self-affine surface
such as its roughness exponent [18]. However, it has now been
demonstrated that one can gain full and nonintrusive access
to the geometry of a folded ball by x-ray tomography or
numerical models, opening the door for even more precise
measurement of the statistical geometry of crumpled paper
[21–24]. Of principal interest is whether the hierarchical
appearance of ridges and d cones can be viewed as some
form of energy cascade from large to small length scales re-
sembling the scenario responsible for three-dimensional (3D)
fluid turbulence [15].

In addition to its geometrical and mechanical properties,
crumpled paper appears as an attractive system because it
might be relevant to the framework of glassy systems. In
this sense, the situation of crumpled paper mirrors that of
early studies pointing towards a thermodynamic theory of
granular matter. Just as in a regular granular pile, one can
define a crystalline state for a confined sheet of paper where
all the ridges are parallel to each other and large portions of
the material are in self-contact [15]. However, without any
special care during the folding process, one would expect to
find the confined sheet in a rather disordered state. This can
be viewed as a form of quenching [15]. In general, the folding
pattern which is held in place by friction and self-avoidance
cannot be changed by thermal fluctuations alone, and some
sort of external forcing must be provided to relax this jammed
system towards states of lower energy. In addition to this, it
has been experimentally observed that the size of a crumpled
ball of paper under a weight decreases logarithmically in time
[25]. Even though the riddle about the exact reason (geometric
rearrangements of the fold configuration or plastic creep in the
ridges [26]) for this behavior is not yet fully resolved, the slow
relaxation by itself is strikingly reminiscent of aging, thereby
drawing further analogies to the framework of glassy systems.

All of the experimental features mentioned above make it
very tempting to try to define a new form of thermodynamics
essentially inspired by the early efforts of Edwards and
Oakeshott in the context of granular matter [27]. In particular,
concepts such as configurational entropy and effective tem-
peratures are expected to play a prominent role [3]. Attempts
to define such quantities have been made in the context
of crumpled sheets [28–30]. However, the complexity of
geometries and the difficulty of dealing with plastic deforma-
tions prevent grasping the essential features of such systems.
Self-avoidance and internal friction are two main ingredients
allowing the appearance of complexity as the available energy
increases. Emergence of plastic deformations along ridges
and d cones are consequences of the pattern selection but
do not take part in the primary process of selection. In this
context, the confinement of a rod (1D) might a relevant
model for the confinement of a sheet (2D). Investigations
have been carried out in the context of an elastic rod in a

2D [16,28–30] or 3D container [31,32]. Despite promising
results (the discovery of robust statistical distributions for
example) and auspicious hints (the possible existence of a
“thermalization” process between subsystems), the hunt for
the underlying out-of-equilibrium theory of confined elastic
rods remains embryonic [16,28–30]. In fact, those previous
studies have so far been unable to draw conclusions about
the precise mechanism(s) responsible for pattern selection in
the folding process. Mainly, this is due to an inextricable
experimental dilemma which has made it nearly impossible
to study simultaneously the geometry and the mechanics of
confined elastic rods without introducing some experimental
biases such as friction with a rigid container, anisotropy of
material injection, or material plasticity. These biases amount
to an uncontrolled external forcing on the rod that might hide
the elementary physics that we wish to uncover.

Recently, we set out to remove these limitations by
designing an experimental system which allows isotropic and
reversible confinement of an elastic rod without using any
contact between the container and the periphery of the folded
configuration [33]. The idea was to use a rotating Hele-Shaw
cell in order to drive the rod inwards via the centripetal force
and control the resulting confinement intensity by varying
the stiffness of the underlying isotropic radial potential. This
previous study enabled the characterization of the order of a
folded rod, while the present study focuses on the dynamics
of the emergence of order, and aims at proposing quantities
that would be relevant for a thermodynamical theory. In
our previous work, we were able to define the density of
“geometrical order” of the folded configurations by measuring
the number of parallel layers. Those results led us to speculate
that a spiral-like pattern, where large portions of the rod are
superposed on each other, constitutes the ground state of a
confined rod in a plane. We proposed that this configuration
is analogous to the crystalline state of minimal energy. In
this article, we provide evidence suggesting not only that this
conjecture is true but that the thermodynamical framework
does in fact go beyond what has been anticipated so far.
In particular, we demonstrate that typical disordered fold
configurations can be understood as excited states with respect
to the spiral ground state and that those states can relax towards
their crystalline state. In order to establish this conclusion,
the paper is organized as follows. First, we present the
experimental setup. Then we provide statistical measurements
of geometrical and mechanical quantities. Then we observe the
existence of a stacking process, i.e., the superposition of layers
of rods. Finally, we demonstrate the existence of an energy
scale, imposed by the stacking process, which we believe to
be a solid starting point upon which an out-of-equilibrium
thermodynamical theory could be built.

II. EXPERIMENTS

The principle of the experiment has been explained in
[33] and is reproduced in this section for completeness. An
elastic rod is inserted into a circular Hele-Shaw cell that is
filled with a liquid and entrained by a motor. The cell is
slightly thicker than the rod, so that the rod cannot cross itself,
constraining a two-dimensional folding. The liquid is denser
than the rod. As a consequence, when the cell is rotated, the
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rod is subjected to a centripetal force and thus confined in a
radial, parabolic pressure field P (r) = P0 + ρ�ω

2r2/2, where
r is the distance from the center of the cell, ρ� is the fluid
mass density, ω is the angular velocity, and P0 is the pressure
at the center of the cell. We have checked that at the rotational
velocities used, gravitational effects are negligible. The cell
was fixed in a vertical position on the axis of a 2 g cm−3 kW
motor, through a double ball bearing to avoid vibration
transmission from the motor to the cell. The frequency
of rotation f = ω/2π was controlled using an electronic
frequency variator. The flexible rod used in all experiments
is made of polydimethylsiloxane (Goodfellow) and has the
following characteristics: diameter d = (2 ± 0.2) mm, total
length L = (3 ± 0.01) m, mass density ρr = 1 g/cm3, and
Young’s modulus E = (1.0 ± 0.1) MPa (measured using a
tensile testing method) leading to a bending stiffness B =
(π/32)Ed4 ≈ 2.3 × 10−6 J m. The liquid is a salt-saturated
degassed water of mass density ρ� = 1.16 g/cm3 at ambient
temperature. The cell is made of three disks of 50 cm in
diameter: a stiff one in 10-mm-thick Duralumin (i), and two
successive 15-mm-thick transparent polycarbonate disks (ii)
and (iii), allowing observation of the confined rod [Figs. 1(a)
and 1(b)]. The two chambers communicate through two holes
pierced in disk (ii) and were filled with the liquid through
holes pierced in the edges of disks (i) and (iii) in order to
equilibrate the pressure in the fluid into the cell. Chamber 2
is sacrificial: when the cell is rotated, the resulting pressure
gradient in the liquid bends inwards disk (iii) but the gap is
thick enough that it does not close at the maximal frequency
of 14 Hz. The pressure is equilibrated between the two faces
of disk (ii), allowing the gap to be fixed throughout the whole
spacing of chamber 1. The rod was gently inserted using a
hole in the back of disk (i); the thickness of chamber 1 was
fixed at 2.5 mm by a ring of Plexiglas inserted between disks
(i) and (ii). The whole setup was placed in a dark room and lit
with three stroboscopic lamps with diffusing screens. Movies
were taken with a CCD camera. The duration of a flash was
short enough (10−3 s) to get sharp images of the rod, even
at higher velocities. Using a computer interface, the camera
and stroboscopes were triggered with the same square periodic
signal, while the variator was controlled using a dc voltage. To
enhance contrast, we used a white rod on a dark background: an
adhesive sheet of black plastic was laid on the Duralumin disk
(i). Binary images of the rod were obtained by thresholding.
The initial configuration of the rod (Fig. 2) is prepared using
eight magnetic beads of diameter 1.8 mm inserted into the
first chamber and moved from outside with a magnet. The cell
is then set in rotation; the time taken to reach the desired
frequency is approximately 3 s. For each given frequency,
a large number of folded configurations is accessible from
the same initial configuration (Fig. 2). Indeed, the folding
process is nondeterministic and the folded configuration is
selected by the experimental noise at the very beginning of the
experiment. This experimental noise originates mainly from
friction between the rod and the disks and from fluid flow in
the cell. During an experiment, the fluid is in solid rotation; the
time scale of the transient flow reaching the solid rotation is of
the order of 10−1 s which is much smaller than the time needed
for the rod to reach equilibrium, as stated below. The second
time scale to consider is the lubrication time scale needed to

FIG. 1. (Color online) The experiment. (a) A rod of density
1 g/cm3 is confined in a circular Hele-Shaw cell, filled with salt-
saturated water of density 1.16 g/cm3. (b) The cell is made of a
superposition of three disks; the intermediate one (ii) is pierced with
two holes to enable equilibration of pressure into the liquid. This
setup enables the fixing of the thickness of chamber 1 where the
rod is placed, chamber 2 being a sacrificial room. The chambers
are made watertight with flat and toric joints shown in black. (c)
Example of an equilibrium configuration obtained when a centripetal
force is generated by the rotation of the cell around its axis. (d)
Corresponding skeletonized image in which the number of layers per
branch is defined. Figure reproduced from [33].

expel fluid between two segments of rod, which is of the order
of 1 s, again much smaller than the rod equilibration time
scale.

First, the resulting configurations can be characterized
using their radius of gyration,

Rg =
√

1

L

∫ L

0
r2(s) ds, (1)

where s is the curvilinear coordinate along the rod and r(s) the
distance to the cell axis of rotation. This quantity is directly
calculated using the binary image of the confined rod. The
radius of gyration decreases with time (Fig. 3), rapidly when
the rotation is started and then more slowly, reaching a plateau
after a time lapse of the order of 103 s. This final value is
not unique and differs according to the realizations at a given
frequency. As we investigated only equilibrium configurations,
we waited 1800 s for each value of the frequency before taking
measurements, to ensure that equilibrium is reached. When
averaging over realizations, the mean radius of gyration R

is found to be a decreasing function of confinement strength
(inset in Fig. 3). To assess this result, we compare the observed
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FIG. 2. (Color online) Top picture: the initial configuration of the
rod. Bottom pictures: three different folded configurations resulting
from experiments with the same parameters, where the initially still
cell is set into rotation to a velocity of 14 Hz. A wide variety of
geometries are obtained from the same initial configuration: the
folding process is nondeterministic.

configuration with the optimal configuration, namely, the
Archimedean spiral that is the more compact configuration
(see Fig. 9). By minimizing the energy of the spiral versus the
radius of its empty core, we find that its radius of gyration R(s)

g

is given by Eqs. (A11) and (A12) in the Appendix. Values are
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FIG. 3. (Color online) The radius of gyration Rg as a function of
time for three realizations in which the cell was set into rotation from
0 to 14 Hz in 3 s. Radii reach a plateau value in about 103 s. The final
radius differs according to the realization. On average (inset), the
radius of gyration R (◦) decreases with the strength of confinement
(quantified by the rotation frequency f of the disk). The bars represent
the widths of the distribution for each frequency of rotation, measured
on the whole set of experiments run for this frequency. Measurements
are compared to the radius of gyration of a spiral (—) obtained for
the same confinement intensity [Eqs. (A11) and (A12)].

reported in Fig. 3 as a function of the rotation velocity. For
each confinement intensity, R(s)

g gives a lower bound for the

measured R because experimental geometries rarely reach the
optimal folding state. Indeed, when the experiment is repeated
with the same control parameters, a large diversity of sizes and
geometries is observed, all of which are always less compact
than the optimal spiral.

To go beyond this statement, we need measures of the
geometrical and mechanical properties of equilibrium patterns.
To do this, the skeleton of folded configurations is extracted
from binary images. Voids of area smaller than a given
threshold have been filled, but this thresholding process did
not influence final results. Vertices are detected as self-contact
points, i.e., points of the skeleton having three neighbors
[Figs. 1(c) and 1(d)]. We define branches as portions delimited
by two vertices. A given branch may contain several layers of
the rod: the thickness of the branch on the binary image directly
yields the number of layers. The analysis of the experimental
patterns was automated in MATLAB, allowing us to treat a
large amount of data. Having access to the geometry of the
confined rod, we are able to quantify the curvature, length, and
energy of branches and to perform statistics over experimental
realizations. As we provide the same measurements as in
Ref. [29], we will compare the results of the two experimental
situations.

III. STATISTICAL DISTRIBUTIONS

In this section, we report on the probability distribution
functions (PDFs) of the geometrical and mechanical properties
of the folded configurations. The PDFs ρ(x) associated with
the variable x are grouped using two types of representation.
For the geometrical quantities (curvature and length), the
PDFs are performed over realizations whose radii of gyration
satisfy Rg = R ± �Rg with a value of �Rg = 5 mm chosen
to ensure convergence of the statistics. For the mechanical
quantities (bending and total energies), each PDF contains
configurations with the same strength of confinement, i.e.,
the same rotation frequency f . Indeed, the radius of gyration
characterizes the geometry while the confinement strength
sets the energy scale. The error bars δρ of the experimental
PDFs are estimated using the standard deviation δρ = ρ/

√
n

of the corresponding histograms n(x). In order to increase
the set of data, we considered two types of experimental
configuration. The first type of configuration is obtained
following the same protocol as described above: the cell is
set into rotation from 0 Hz until the desired frequency f and
the equilibrium configuration is assumed to be reached after
1800 s. Configurations of the second type are obtained from
an initially folded configuration, by increasing or decreasing
the frequency to the desired frequency of rotation. The delay
of 1800 s between two observations is always respected. We
checked that the resulting PDFs are not affected by the choice
of the initial configuration. The statistical data analysis has
been performed over 186 configurations obtained from 56
experimental realizations. The number of branches for each
configuration varied from 12 to 67, with an average of 32
branches. The total number of branches for each set is of the
order of 103, which allows for accurate statistics.
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FIG. 4. (Color online) Statistics of the geometrical properties
for six different sets; each set includes measurements of folded
configurations that have a given interval of radii of gyration indicated
in the legend. (a) Experimental PDFs ρ(κR) of the mean curvature
of branches κ normalized by the average radius of gyration of the
group R. (b) Experimental PDFs ρ(l/〈l〉) of the length of branches
l normalized by the mean branch length 〈l〉 of each set. Gamma
distributions f

α,χ

� (l), Eq. (2), with the same mean and variance as
experimental data are represented. Inset: zoom on the smallest lengths
of branches.

Curvature. Figure 4(a) shows the PDFs of the mean curva-
ture of branches normalized by the radius of gyration of the
configurations. The mean curvature is defined as the average of
the absolute value of the curvature at each point of the branch.
The distributions have the same shape independently of the
intensity of confinement. They are peaked around the radius
of gyration and show a decreasing exponential tail. In other
words, the most probable radius of curvature of branches is the
radius of gyration. Compared to the results of Refs. [29,30],
Fig. 4(a) is similar to the PDF of branches that have a curvature
partially imposed by the confining solid walls. This property
will be discussed below.

Length. PDFs of the lengths of branches are plotted in
Fig. 4(b) and are rather well described by a Gamma distribution
function defined by

f
α,χ

� (x) = (x/χ )α

�(α) x
exp(−x/χ ), (2)

where � is Euler’s Gamma function and

α = 〈x〉2

〈x2〉 − 〈x〉2
, χ = α−1〈x〉, (3)

allowing for a fit without any adjustable parameters.
Figure 4(b) also shows that the width of the distribution
decreases when the confinement is increased. In Sec. IV A,
the behavior of the exponent α as function of the strength of
the confinement will be detailed. Note that in the experimental
configuration of Refs. [29,30], PDFs of the branch lengths were
described by a decreasing exponential only. Such exponential
distributions have also been observed for fold lengths in
numerical simulations of crumpled sheets [21]. We believe
that the difference between the present study and previous
ones is due to plastic and friction effects that are inherent in
the experiments of Refs. [29,30] and that induce lower cutoffs
in the lengths of the branches, preventing their division into
smaller ones, whereas the folds in [21] also seem to be longer
than a cutoff.

Energy. The geometrical characterization of the folded
configuration allows measurement of its mechanical properties
through the computation of the energies involved. The total
energy of a branch is the sum of two terms, Etot = Eb + Econf ,
with Eb the elastic bending energy:

Eb = N
B

2

∫ l

0
κ2(s)ds, (4)

where κ(s) is the local curvature of the branch, l its length,
and N the number of layers of the corresponding branch. The
second term Econf is the confinement energy induced by the
rotation of the cell and is given by

Econf = N
π

8
(ρl − ρr ) d2ω2

∫ l

0
r2(s)ds. (5)

Figure 5 shows that the PDFs are weakly dependent on the
strength of confinement and can be described by two power
laws, valid for both bending and total energy distributions, of
exponents −0.3 ± 0.1 (over four decades) for small energies
and −2.3 ± 0.3 (over two decades) for higher energies. For
both bending and total energies, the transition between these
two scaling behaviours is sharp and yields characteristic ener-
gies Et

b and Et
tot that suggest the existence of an energy scale

for the folding process. This will be discussed in Sec. IV B.
At this stage, a question that arises naturally is how the

present results compare with those of the experiments reported
in [29,30] where the energy distributions were described by
Gamma laws. We argue that the results of the two experimental
configurations agree qualitatively. The difference in the distri-
butions could be related to the experimental setups generating
different stacking process. Nevertheless, the advantage of the
present experiment is that it allows a wide range of energy
scales to be spanned (six decades) and higher energies to be
reached. This is not the case of the previous experimental setup:
the narrow range of the exponential tail in the results of the
energy distribution might be ascribed to a crossover between
two power law behaviors. Another possible reason might be
the difference in the dissipation mechanisms, friction between
layers in the previous experiment and viscous dissipation
through the fluid motion in the current one, leading the two
systems to scan differently available possible configurations.

In the following and on the basis of the results presented
above, we show how configurations become relatively more
ordered upon increasing the confinement and highlight the
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FIG. 5. (Color online) Statistics of the energy for sets of data
obtained at six different frequencies f . (a) Experimental PDFs ρ(Eb)
of the bending energy of branches Eb [see Eq. (4)]. (b) Experimental
PDFs ρ(Etot) of the total energy of branches Etot, including bending
and confinement terms [see Eq. (5)]. Note that the distributions are
not normalized and energies are given in joules.

existence of an energy scale that could be a relevant quantity
for a thermodynamic description of folded elastic objects.

IV. DISCUSSION

A. Stacking process

The stacking process is the mechanism by which a nematic
order occurs [22,30,34]. In the present experiment, it refers
to the collapse of different parts of the rod in the same state
defined by the same geometrical and mechanical properties.
In other words, when the confinement increases, new layers
are added to existing branches, or different branches can
even merge to form a thicker one. The Gamma distribution
of branch lengths shown in Fig. 4(b) can be explained in
the framework of this stacking process [17]. If the sizes of
layers are independent, their length distributions result from a
random splitting of the rod. This would lead to an exponential
distribution of sizes [35]. In the present experiment, both the
number of layers included in the same branch, Nl/b, and the
lengths of the branches are distributed. The length of branches
is determined effectively by the averaging of all the lengths
of layers included in this branch. Accordingly, we expect a
Gamma distribution of parameter α [defined in (2)] equal to
the number of averaged random variables with exponential
distributions, that is, α = 〈Nl/b〉.

0 0.5 1 1.5 2 2.5 3
0
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1
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�N
l/b
�
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FIG. 6. The parameter α of the Gamma distribution ρ(l/〈l〉) as
defined by Eq. (2), as a function of the average number of superposed
layers per branch 〈Nl/b〉. Inset: 〈Nl/b〉 as a function of the frequency
of rotation.

The parameter α can be determined from experimental
Gamma distributions using the average and standard deviation
of the data. It is found that it increases with the frequency
of rotation f . On the other hand, image analysis allows
measurement of the mean number of layers per branch, 〈Nl/b〉.
For a given frequency, it is determined by counting the mean
number of layers per branch averaged over all branches of a
given configuration and then by averaging the results over all
the configurations. Figure 6 shows that 〈Nl/b〉 increases with
confinement and is related to α through

α = a〈Nl/b〉, (6)

where a = 0.6 ± 0.06. This linear behavior with a proportion-
ality constant of order 1 confirms the scenario of a stacking
process with an order parameter given by the average number
of layers or equivalently by the mean length of branches.

Using a different approach, the mean number of layers in
the same geometrical state, 〈Nl/b〉, was identified as an order
parameter and the spiral, for which all layers are superposed,
was shown to be the ideally stacked configuration [33].
Figure 6 shows that 〈Nl/b〉 increases with f and thus the folded
rod becomes more ordered, through a stacking process, when
confinement is increased. The behavior shown in Fig. 4(a)
can be explained using these results. Stacking results in the
formation of thicker branches that stiffen the structure. As a
result, the folded rod is localized around the radius of gyration
of the configuration and the remaining branches behave as
if they were in contact with a virtual container of radius Rg .
Consequently, the PDFs of branch curvature are always peaked
around Rg . Whereas the present setup was built in order to fold
a rod in the absence of a rigid container and to avoid sampling
problems encountered in [29,30], the stacking mechanism is
found to impose geometrical constraints on the folding pro-
cess. We note that the authors of [29] had to consider two sub-
systems in thermal equilibrium, while the present setup allows
us to consider only a single system, which is simpler to analyze.

B. An energy scale

The PDFs of bending and total energies show similar
behaviors characterized by two quasi-power-laws at small
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FIG. 7. (Color online) The energy scales Et
b (�) and Et

tot (◦) as
functions of the rotation frequency f (top) and as functions of the
bending energy of a ring of radius R(f ) given by Eq. (7) (bottom).

and high energies. The energy scales Et
b and Et

tot at the
transition between the two behaviors can be determined from
the experimental PDFs of the bending and total energies. The
bending (Et

b) and total (Et
tot) energies at which the transition

occurs as a function of the confinement strength are shown
in Fig. 7. Despite large error bars, the dependence on the
frequency of rotation shows that both Et

b and Et
tot increase with

the confinement. The analysis of the geometrical properties of
the folded configurations reveals a stacking process around a
virtual container of radius R(f ) that is larger than the radius of
gyration of the spiral with the same confinement intensity (see
Sec. II). Therefore, a natural choice of energy scale to compare
with is the bending energy of a rod spooled around the position
given by the mean radius of gyration of the corresponding
configuration. As a first approximation, this virtual container
can be modeled by a ring of radius R(f ) with bending energy
given by

Eb(R) = πB

R
. (7)

Figure 7 shows that Et
b and Et

tot are of the same order of
magnitude as Eb(R), although they are slightly smaller, and
behave similarly: they increase when the confinement strength
is increased. This suggests the existence of a scale of energy
that is imposed by the stacking process. It is reflected in the
two different behaviors (Fig. 5), depending on whether the
energies are smaller or larger than the energy scale.

V. SUMMARY AND CONCLUSION

To summarize, the PDFs of the geometrical quantities of
configuration, length, and curvature support the existence of
a stacking process. This process has also been evidenced in
the analysis of energy distributions. Moreover, the stacking is

reinforced when the confinement is increased, which enhances
the geometrical order of patterns formed by the folded rod.
Although it is not achieved in experiments, the most ordered
configuration is the spiral; it is also the ground state in terms
of energy, while it allows minimization of both the curvature
and the size of the system. If layers are stacked together when
confined, the configurations become closer to the spiral, even
though geometrical constraints prevent it. Therefore, our first
main result is that, when confined, the system tends to become
closer to the ground state. Our second result comes from the
observation of energy PDFs. The stacking process governs the
distribution of the branchs energy, imposing a scale which is
linked to the bending energy of the spiral. The size of the spiral
depends on the confinement intensity, and thus the energy scale
follows the same dependance.

We interpret these two results as follows: selected patterns
of the folded rod are excited states of a unique ground state, the
spiral. For a given confinement strength, a ring having the mean
size R at this confinement imposes the energy distribution
throughout the system. This can be interpreted as that, for
a given injected energy, all available configurations of the
phase space are excited states of the ground state. Because the
stacking of layers increases with the confinement, we claim
that the system tends to become closer to the ground state
when the available energy is increased. However, because
of self-avoidance, the system is topologically frustrated and
reaches only local minimal energy states, rarely finding
its route through the spiral configuration. This scenario is
schematically summarized in Fig. 8.

To conclude, we built an experiment allowing the two-
dimensional confinement of a rod in a parabolic potential.
This parabolic confinement differs from the rigid confinement
of [16,28–30], allowing us to explore the role of the type
of confinement and to address more comprehensively our
initial questions. What governs the pattern geometry? A
stacking process promotes the formation of thick branches
and imposes the geometrical characteristics of the patterns:

FIG. 8. (Color online) Phase space of folded configurations ac-
cessible by the experimental setup shown in Fig. 1. The lower
limit corresponds to the energy of the spiral, which is the most
ordered and least energetic configuration. The upper limit of the
accessible configurations is not clearly defined. The arrow represents
the selected configurations as observed during the experiments.
Increasing confinement strength makes the pattern more ordered,
and while the global energy of the available configurations increases,
the energy scale selected becomes closer to the ground state.
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the curvature and length distributions. Our second goal was
to propose a description of the confined states as an ensemble
of excited states of the spiral, the ground state in terms of
order and energy. The ground state imposes an energy scale,
which governs the partition of energy throughout the system.
When the whole available energy is increased by external
injection, a relaxation of the system towards the fundamental
state occurs through a stacking process. However, this global
energy minimum is rarely achieved, because of the topological
frustration induced by the constraint of self-avoidance. Finally,
the energy scale extracted from our experimental results could
be a useful tool to define an effective temperature that measures
the internal order and from which a thermodynamical theory
of these confined objects can be built.
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APPENDIX: THE RADIUS OF GYRATION
OF A CONFINED SPIRAL

The spiral configuration of Fig. 9 minimizes the curvature,
stacking all the parts of the rod together, and minimizes the
size. In the case of an opened rod, of diameter d, length L, and
bending stiffness B, the spiral presents a central void, with a
radius Rc which evolves with the confinement intensity. In the
case of a rod of mass density ρr , placed in a liquid of mass
density ρl > ρr , and confined by a centripetal force generated
by a rotation of angular velocity ω = 2πf , we calculate the
internal radius Rc and then the radius of gyration R(s)

g of
the spiral as a function of the confinement intensity, i.e., the
rotation frequency of the cell. The spiral radius parametrized
by the angle θ is

ρ(θ ) = d

2π
θ + Rc. (A1)

FIG. 9. (Color online) Sketch of an Archimedean spiral of inter-
nal radius Rc and separation distance d .

The arc length coordinate of the spiral s(θ ) is defined by ds =
ρdθ , with s(0) = 0 and s(θmax) = L. Therefore, the maximal
angle θmax depends on the total length of the rod L through

L =
∫ θmax

0
ρ dθ. (A2)

Using (A1) and (A2), the maximal angle θmax is given by

θmax = 2πRc

d
(
√

1 + κ − 1), (A3)

where

κ = dL

πR2
c

(A4)

is a geometrical parameter that compares the total area of the
spiral and the central void area. The maximal radius of the
spiral is then

ρmax = Rc

√
1 + κ. (A5)

The confinement energy Econf and the bending energy Eb

are given by

Econf = 1

2
ω2(ρl − ρr )π

(
d

2

)2 ∫ θmax

0
ρ3 dθ, (A6)

Eb = B

2

∫ θmax

0

dθ

ρ
, (A7)

or, after integration,

Econf = −ω2 (ρl − ρr )
π2d

16
R4

c [(1 + κ)2 − 1], (A8)

Eb = πB

2d
ln(1 + κ). (A9)

The internal radius Rc minimizes the total energy of the spiral.
Solving the equation d(Eb + Econf)/dRc = 0, one finds that
Rc is a solution of the polynomial equation

R4
c + dL

π
R2

c − B

ω2(ρl − ρr )π
(

d
2

)2 = 0. (A10)

The positive root of this equation gives

R2
c = dL

2π

⎡
⎣

√
1 + π2E

2ω2(ρl − ρr )L2
− 1

⎤
⎦ , (A11)

where the definition of the bending rigidity B = (π/32)Ed4

has been used. Finally, the radius of gyration of the spiral,

R(s)
g =

√
1/L

∫ L

0 ρ2(s)ds, is given by

R(s)
g = Rc

√
1 + dL

2πR2
c

. (A12)
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