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ABSTRACT

The Joint Video Expert Team (JVET) is currently developing the
next-generation MPEG/ITU video coding standard called Versatile
Video Coding (VVC) and their ultimate goal is to double the coding
efficiency over the state-of-the-art HEVC standard.The latest ver-
sion of the VVC reference encoder, VTM6.1, is able to improve the
intra coding efficiency by 24% over the HEVC reference encoder
HM16.20, but at the expense of 27 times the encoding time. The
complexity overhead of VVC primarily stems from its novel block
partitioning scheme that complements Quad-Tree (QT) split with
Multi-Type Tree (MTT) partitioning in order to better fit the local
variations of the video signal. This work reduces the block partition-
ing complexity of VTM6.1 through the use of Convolutional Neural
Networks (CNNs). For each 64×64 Coding Unit (CU), the CNN is
trained to predict a probability vector that speeds up coding block
partitioning in encoding. Our solution is shown to decrease the intra
encoding complexity of VTM6.1 by 51.5% with a bitrate increase of
only 1.45%.

Index Terms— Versatile Video Coding (VVC), Convolutional
Neural Network (CNN), Multi-Type Tree (MTT), Complexity

1. INTRODUCTION

The explosion of IP video traffic [1] alongside emerging video for-
mats like 4K/8K and 360-degree videos call for novel video codecs
whose coding efficiency goes beyond the limits of the current High
Efficiency Video Coding (HEVC) standard [2]. The International
Telecommunication Union (ITU) and ISO/IEC Moving Picture Ex-
perts Group (MPEG) formed the Joint Video Expert Team (JVET) to
address this new challenge by introducing a video coding standard
called Versatile Video Coding (VVC) [3]. JVET is also developing a
VVC reference software called VVC Test Model (VTM) that imple-
ments all normative VVC coding tools for practical rate-distortion-
complexity evaluation and conformance testing. The latest version
of VTM is VTM6.1.

This work addresses the All Intra (AI) coding configuration of
VTM6.1. It is shown to improve intra coding efficiency by 24% [4]
over that of the HEVC reference implementation HEVC test Model
(HM)16.20. According to [5], around one third of this coding gain
(8.5%) is obtained by extending a Quad-Tree (QT) block partition-
ing scheme of HEVC with a MTT partitioning, which also supports
Binary-Tree (BT) and Ternary-Tree (TT) splits.
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Fig. 1: Coding Tree Unit (CTU) partitioning in VVC. (a) VVC split
types. (b) Example.

Fig. 1(a) illustrates the split types specified in VVC. As in
HEVC, the QT split divides a Coding Unit (CU) into four square
sub-CUs of the same size. In addition, VVC specifies the BT and TT
split types that allow rectangular CU shapes. The BT split divides a
CU into two sub-CUs of equal size whereas the TT split yields three
sub-CUs with the ratio 1:2:1. The BT and TT splits are allowed in
both horizontal (BTH and TTH) and vertical directions (BTV and
TTV). However, the QT split is forbidden after either one BT or TT
split has been initiated in the partitioning. The VTM encoder relies
on the Rate-Distortion Optimization (RDO) process that calculates
Rate-Distortion (RD)-cost for each split and finally selects the block
partitioning with the lowest RD-cost. Fig. 1(b) shows a possible
CTU partitioning with the QT, BT, and TT splits.

In this paper, we propose an efficient, CNN-based complexity
reduction technique for VTM6.1 intra encoder. The CNN is fed with
a 64×64 pixels luminance CU and it creates a vector that gives prob-
abilities of having edges at the 4×4 boundaries of the block. This
probability vector is further exploited by the encoder to skip unlikely
splits. Our previous CNN based technique was already proposed
in [6] to reduce the encoding complexity of an earlier version of
VVC reference software with obsolete split types. This work ex-
tends our previous approach [6] to the latest VVC split types as well
as the newly introduced coding tools in VTM6.1. To the best of our
knowledge, no complexity reduction technique is currently based on
a CNN for complexity reduction of the VTM encoder.

The remainder of this paper is organized as follows. Section 2
briefly describes state-of-the-art techniques. Section 3 introduces the
proposed method and its integration into the VTM6.1 encoder. Sec-
tion 4 presents the experimental setup and assesses the complexity
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Fig. 2: The CNN structure with convolution layers in orange and yellow, max-pooling layers in red and fully connected layer in purple.

reduction under the VVC Common Test Conditions (CTC). Finally,
Section 5 concludes the paper.

2. RELATED WORKS

In recent years, several approaches have dealed with VVC complex-
ity reduction. The existing techniques reduce the MTT partitioning
search space of QT, BT and TT splits [7], [8]-[9] or evaluate a re-
duced set of intra prediction modes [10], [11]. Additionally, our pre-
vious study [12] presents the complexity reduction opportunities in
the VVC intra encoder of intra mode prediction, multiple transform
choice and MTT partitioning. It shows that the MTT partitioning has
the largest opportunities in term of complexity reduction.

Fu et al. [8] proposed two distinct fast block partition techniques
through Bayesian decision rule. The first one explores information
of previously tested BTH split to skip vertical split with a binary clas-
sification. The second technique intends to skip TTH split, depend-
ing on both sub-CUs partitioning and intra prediction mode. TTH
split can also be skipped based on RD-cost difference between BTH
and BTV. Yang et al. [10] focused first on MTT partitioning search
through several binary classification problems. They used global tex-
ture information, local texture information, and context information
for the classification. Secondly, they proposed a fast intra mode de-
cision using one-dimensional gradient descent search. Lei et al. [13]
proposed a technique to pre-process prediction information in order
to skip redundant partition modes. Hadamard cost determines first
the intra prediction mode for sub-CUs of the BT split. The opti-
mal intra mode is further evaluated by using accumulated RD-cost
of sub-CUs as an estimate of the RD-cost of their parent partition
in order to prune sub-optimal modes. Park et al. [9] used a proba-
bilistic approach and exploited the RD-cost of a previously encoded
CU with BT splits to skip TT splits The decision to skip the RDO
process of TT splits depends on the difference of RD-cost between
BTH and BTV.

Compared with prior-art, our solution takes a step forward and
reduces the complexity of VTM6.1. Unlike the others, it uses a CNN
to predict optimal coding partitions and reduce the complexity of
MTT partitioning search.

3. PROPOSED METHOD

In the VTM encoder, MTT partitioning has high complexity due to
its exhaustive RDO search process, which goes through all possible
splits to get the optimal partitioning. This section presents the CNN
structure, the CNN training, and its integration into VTM6.1.

3.1. CNN structure

The BT and TT splits introduced in the VTM push machine learning
techniques to multiply the number of classifiers [7], [10]. For in-
stance, in [10], the authors proposed a cascade decision framework
through 5 binary classifiers. This multiplication of classifiers can
be an issue with their high computational inference time. CNN is
computationally intensive that makes it necessary to limit the num-
ber of inferences as well as the CNN structure size. The objective of
our solution is to limit the access to the CNN by predicting output
probabilities for all recursive splits within 64×64 CU at a time.

The CNN illustrated in Fig. 2 is inspired by ResNet [14]. The
orange layers represent a convolution with 3x3 kernel (Conv 3x3),
whereas the yellow layers denote a convolution with 1x1 kernel
(Conv 1x1) that allows the addition (marked in green) between
layers with different dimensions. The red layers represent a max-
pooling with a window of 2x2 (Max Pool). Finally, the purple layer
is a fully connected layer (Dense) that predicts the vector of 480
probabilities which represents the 64×64 CU partitioning.

The CNN input is a 65×65 luminance block composed of a
64×64 CU plus one additional line on the top and left of the CU
for intra mode computation. The prediction is a probability vector
that corresponds to the 4×4 block boundaries of the 64×64 CU par-
titioning. The input and output sizes of the CNN correspond to the
maximum CU size of the luminance in AI configuration (64×64).
Fig. 3 presents the matching between the CU partitioning and the
probability vector. For instance, the first value of the vector corre-
sponds to the first bottom boundary of the top-left 4×4 block.
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Fig. 3: Correspondence between a predicted probability vector and
a partitioning of 64×64 CU.

3.2. Training process

The training process optimizes the CNN weights in order to mini-
mize the loss function, which is defined as

L = ||y − ỹ||22 + λ
∑
k

ck, (1)

where y is the ground truth probability vector, ỹ is the predicted
probability vector, || · ||2 stands for the l2 norm, and λ = 10−5. Reg-
ularizers are applied on the kernels of convolutional layer ck. These
penalties are incorporated in the loss function.

Optimization of the CNN is performed using Adam optimizer
with the default parameters provided in [15]. The training is carried
out under Python3.6 with the Keras framework [16] running on top
of Tensorflow [17]. The model is trained for 10 epochs with a batch
size of 256 on a GPU (RTX 2080 Ti).

An input dataset of 65×65 luminance blocks and its correspond-
ing ground truth vectors is conceived. The 65×65 luminance blocks
are extracted from Div2k [18] and 4K image [19] datasets. These
datasets are only composed of still images as our solution focuses
on AI configuration. This brings more diversity than a training with
video datasets only. No CTC [20] sequences are used for the train-
ing. The CNN takes as an input a 65×65 luminance block nor-
malized between [0 , 1]. The input dataset is encoded by VTM6.1
anchor under AI configuration in order to establish the correspond-
ing ground truth. The MTT partitioning information is gathered for
each 64×64 CU and converted to the output format of the CNN, i.e.
ground truth vectors of 480 probabilities composed of one (split) and
zero (not split).

3.3. Inference in VTM

The proposed solution is implemented in the VTM6.1. The CNN
inference is carried out in C++ through the frugally-deep library [21]
with a trained Python model. This framework offers a conversion
from the model trained in Python to a file interpretable in C++.

Fig. 3 illustrates the skip process for the horizontal splits, i.e.
BTH and TTH splits. Their probabilities are deduced as follows.
The mean probabilities are first computed on the segments S1, S2,

S3, and S4, denoted by P(S1), P(S2), P(S3), and P(S4), respec-
tively. The probability of the BTH split, denoted by P(BTH), is the
minimum between the probabilities of S2 and S3 as defined in

P(BTH) = min(P(S2),P(S3)). (2)

The probability of the TTH split is computed with its respective seg-
ments as (min(P(S1),P(S4)). The vertical splits, i.e. BTV and
TTV splits, follow the same procedure but with vertical segments.
Regarding the QT split probability, P(QT ) is calculated from the
probabilities of the BTH and BTV splits as

P(QT ) = min(P(BTH),P(BTV )). (3)

In all these cases, a split S ∈ {QT,BTH,BTV, TTH, TTV } is
skipped if P(S) is below a predefined threshold value β. By means
of this threshold, our solution is able to offer different rate-distortion-
complexity characteristics. The higher the threshold value β, the less
splits take place, which results in both higher complexity reduction
and coding loss. Our solution supports a threshold value range of
β ∈ {0, 100}.

4. EXPERIMENTAL RESULTS

This section details the experimental setup and analyses our results
over the state-of-the-art techniques. Several configurations of our
solution are assessed in order to propose different rate-distortion-
complexity trade-offs.

4.1. Experimental setup

All our experiments were conducted under AI configuration with
VTM version 6.1. Each encoding and CNN prediction was car-
ried out individually on Intel Xeon E5-2603 v4 processor running
at 1.70 GHz on Ubuntu 16.04.5 operating system. A test set was
composed of CTC sequences specified by JVET. The CTC test
set was selected because it is widely used and it contains a wide
range of resolutions, textures, bit depths, and motions. Altogether,
there are 26 sequences separated into six classes: A (3840x2160),
B (1920x1080), C (832x480), D (416x240), E (1280x720), and F
(832x480 to 1920x1080). They are encoded with four Quantization
Parameter (QP) values: 22, 27, 32, and 37.

The coding quality is measured with Bjøntegaard Delta Bit Rate
(BD-BR) [22] and complexity reduction with ∆ Encoding Time
(∆ET) that is determined as

∆ET =
1

4

∑
QPi∈{22,27,32,37}

TR(QPi)− TC(QPi)

TR(QPi)
, (4)

where TR is the reference encoding time of the VTM6.1 anchor and
TC encoding time of VTM6.1 with the proposed complexity reduc-
tion techniques. The execution time of the CNN is not included in
TC as it highly depends on the processor performance. However, for
the sake of comparison, the CNN is able to compute all inferences
for benchmarked 4K test sequences in less than 2% of the VTM en-
coding time. Furthermore, it can be done in parallel with the RDO
process.

4.2. Results and analysis

There are several existing techniques that seek to reduce the com-
plexity of MTT partitioning search in VTM. The most competitive
ones have been implemented by Lei et al. [13] in VTM3.0 and Park



Table 1: Performance of the proposed solution in VTM6.1 with different threshold values β in comparison with state-of-the-art techniques.

Class
Lei et al. [13], VTM3.0 Park et al. [9], VTM4.0 Proposed β = 10 Proposed β = 20 Proposed β = 30

BD-BR ∆ET BD-BR ∆ET BD-BR ∆ET BD-BR ∆ET BD-BR ∆ET
Class A1 0.79% 44.9% 0.67% 32.0% 0.35% 45.3% 0.87% 56.3% 1.55% 62.9%
Class A2 0.96% 39.5% 1.07% 33.0% 0.30% 40.1% 0.83% 52.6% 1.47% 60.0%
Class B 1.06% 45.1% 0.98% 33.0% 0.26% 36.9% 0.75% 51.5% 1.41% 61.1%
Class C 1.09% 48.3% 1.17% 35.0% 0.15% 13.9% 0.56% 26.4% 1.20% 37.9%
Class D 0.97% 44.2% 0.88% 35.0% 0.08% 13.0% 0.33% 22.7% 0.83% 32.5%
Class E 1.32% 47.9% 1.34% 34.0% 0.42% 29.5% 1.18% 43.8% 2.29% 54.4%

Mean 1.03% 45.0% 1.02% 33.7% 0.26% 29.8% 0.75% 42.2% 1.45% 51.5%

Class F Nan Nan Nan Nan 0.21% 15.2% 0.75% 25.4% 1.61% 36.3%

Fig. 4: Performance comparison between the proposed solution and
state-of-the-art techniques. Circles are results of Full Hd and 4K
sequences. Crosses are results of CTC classes without class F.

et al. [9] in VTM4.0. Thereafter, various new coding tools have
been adopted to VTM, such as low frequency non-separable trans-
forms [23], intra sub-partitioning [24], and joint chroma residual
coding [25]. However, the partitioning search is kept unchanged, so
the comparison between our technique in VTM6.1 and techniques
in [13], [9] remains still relevant and fair.

Tab. 1 presents our results with β = 10, 20, 30 over the tech-
niques in [13], [9]. The first proposed configuration with β = 10
limits the BD-BR increase to only 0.26% with 29.8% complexity re-
duction. The second configuration with β = 20 still features a neg-
ligible BD-BR increase of 0.75% and a high complexity reduction
of 42.2%. Our last configuration with β = 30 halves the complexity
for 1.45% BD-BR increase.

In VTM3.0, Lei et al. [13] achieved quite the same complexity
reduction but for an increase of 0.28% BD-BR compared to our sec-
ond configuration. Park et al. [9] obtained 33.7% complexity saving
for 1.02% BD-BR increase, so it lags behind our second solution
both in terms of complexity and BD-BR.

Our solution achieves better coding performance on high resolu-
tion sequences especially on classes A-B. For instance, our proposal
with β = 10 almost halved the complexity with only 0.35% BD-BR
increase for class A1. For β = 30, the complexity reduction reaches

62.9% with 1.55% BD-BR increase. For low-resolution C-D classes,
our solution is able to reduce the complexity by 35.2% with 1.01%
BD-BR increase. The training database is mainly composed of 4K
and Full HD images, so our CNN performs better with them.

Fig. 4 plots the relative complexity reduction (∆ET) versus BD-
BR increase over the CTC classes A-E (marked with crosses) for the
proposed four configurations (β = 10, 20, 30, 40) and related works
[13], [9]. Tackling the VVC coding complexity is of particular im-
portance to higher resolutions so the corresponding results are also
separately given for classes A-B (marked with circles).

With high-resolution sequences, the complexity saving of our
proposal ranges from 40.8% to 66.7% and BD-BR increase from
0.30% to 2.37%. With β = 20, the overall complexity reduction is
42.2% for only 0.75% BD-BR increase. For classes A-B, the respec-
tive metrics are 53.5% and 0.82%. Compared with previous config-
uration (β = 20), [13] achieves 10.3% lower complexity reduction
for a BD-BR increase of 0.12%. It also outperforms [9] in terms of
both BD-BR and complexity reduction.

To conclude, our solution is able to achieve higher complexity
reduction and BD-BR gain than [13], [9] with high-resolution se-
quences, comparable results with smaller resolutions, and averagely
better coding performance with the entire CTC test set. Multiple
threshold values also make our implementation more configurable
to various operating points, like practical video encoders with sev-
eral presets.

5. CONCLUSION

This paper presented a CNN-based complexity reduction technique
for a VVC reference encoder VTM6.1. The CNN is used to ana-
lyze the texture inside each 64×64 coding block and predict vector
probabilities for 4×4 boundaries inside these blocks. From the prob-
ability of boundaries, a split probability is deduced and compared
with a predefined threshold. The execution time of the CNN is neg-
ligible compared to the VTM encoding time. In VTM6.1 intra cod-
ing, the proposed solution enables 42.2% complexity reduction for
a slight BD-BR increase of 0.75%. With high-resolution sequences,
the speedup is even higher, up to 54.5% at a cost of 0.85% BD-BR
overhead. Our proposal allows several configurations and the major-
ity of them overcome the state-of-the-art techniques.

These promising results motivate us to push our approach a step
further and examine the database disparity and the CNN perfor-
mance. A statistical behaviour of threshold values will also be in-
vestigated through in-depth statistical analysis.
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