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In this paper, an adaptive observer-based fault-tolerant control (FTC) strategy is proposed for a class of Takagi-Sugeno (T-S) fuzzy systems with both actuator and sensor faults under external disturbances. FTC approach is developed to compensate the actuator faults and to stabilize the faulty system. Furthermore, using H ∞ optimization technique, an adaptive fuzzy observer is developed, not only to achieve a simultaneous estimation of system states, sensor and actuator faults, but also to attenuate the influence of disturbances. In terms of linear matrices inequalities (LMIs), sufficient conditions of the existence of observer and controller are derived. We overcome the drawback of two-step algorithm by proposing a single-step one which allows to solve only the strict LMIs. Therefore, the obtained results present an acceptable compromise between conservatism reduction and computational complexity. Finally, two numerical examples which one of them is an application to a cart motion model are presented to demonstrate the usefulness of the proposed method.

Introduction

With the development of practical engineering, industrial systems are more and more dependent on actuators and sensors which could represent faulty behavior. Sensor and/or actuator faults may not only affect system performances and system stability but may even cause catastrophic accidents. Many researchers have been already interested to fault detection and isolation (FDI), fault estimation (FE) and fault-tolerant control (FTC) problems for nonlinear systems. However, most of them have focused separately on either actuator faults Gassara et al. (2014b); [START_REF] Kharrat | Adaptive fuzzy observer-based fault-tolerant control for Takagi-Sugeno descriptor nonlinear systems with time delay[END_REF]; Gao and Ding (2007a); Jia et al. (2016b) or sensor faults [START_REF] Bouattour | Design of robust fault detection observer for Takagi-Sugeno models using the descriptor approach[END_REF]; Gao and Ding (2007b); [START_REF] Estrada | Robust H_/H ∞ fault detection observer design for descriptor-LPV systems with unmeasurable gain scheduling functions[END_REF]; [START_REF] Qiao | Fault-tolerant control for T-S fuzzy systems with sensor faults: Application to a ship propulsion system[END_REF]. It is well known that FE is more general than FDI because it can not only detect and isolate the faults but also provide more detailed information such as location, magnitude and shape. Several works have used different kinds of observers to achieve FE. For instance, sliding mode observers have been used in Gao and Ding (2007a); Liu et al. (2013); [START_REF] Yin | Sliding mode observer-based FTC for markovian jump systems with actuator and sensor faults[END_REF]; [START_REF] Liu | Fault-tolerant control for nonlinear markovian jump systems via proportional and derivative sliding mode observer technique[END_REF], unknown input proportional multiple-integral observers have been proposed in [START_REF] Hamdi | Observer based fault tolerant control for Takagi-Sugeno nonlinear descriptor systems[END_REF]; [START_REF] Koenig | Unknown input proportional multiple-integral observer design for linear descriptor systems: application to state and fault estimation[END_REF] and both proportional multiple-integral observer and proportional derivative observer have been designed in [START_REF] Challoo | Simultaneous state and actuator fault estimation with fuzzy descriptor PMID and PD observers for satellite control systems[END_REF], to achieve a simultaneous estimation of system states and actuator faults. In [START_REF] Jia | Robust fault reconstruction via learning observers in linear parameter-varying systems subject to loss of actuator effectiveness[END_REF][START_REF] Jia | Fault reconstruction and fault-tolerant control via learning observers in Takagi-Sugeno fuzzy descriptor systems with time delays[END_REF]Jia et al. ( , 2016a)); [START_REF] Kharrat | Learning Observer-Based Robust H ∞ Fault-Tolerant Control for Takagi-Sugeno Descriptor Systems with Time-Delay[END_REF], the reconstruction of actuator faults and system states has been carried out by developing some approaches based on learning observer. Nevertheless, the main disadvantage of the latter observers is that they are not effective when dealing with simultaneous sensor and actuator faults. Recently, several researchers have been paid much attention to adaptive observers (such in Gassara et al. (2014b); [START_REF] Kharrat | Adaptive fuzzy observer-based fault-tolerant control for Takagi-Sugeno descriptor nonlinear systems with time delay[END_REF]; [START_REF] Zhang | Adaptive observer-based fast fault estimation[END_REF]) to achieve a simultaneous estimation of system states and actuator faults. Noting that adaptive observers are able to estimate actuator faults as well as sensor faults Zhang et al. (2016a). However, most of papers that have dealt with the estimation of both sensor and actuator faults, have not considered the control problem such as in [START_REF] Zhang | Robust H ∞ adaptive descriptor observer design for fault estimation of uncertain nonlinear systems[END_REF]; [START_REF] Li | Simultaneous actuator and sensor fault estimation for descriptor LPV system based on H ∞ reduced-order observer[END_REF]; [START_REF] Youssef | Actuator and sensor faults estimation based on proportional integral observer for TS fuzzy model[END_REF]; Kharrat et al. (2018b). However, in the presence of a potentiel actuator or sensor faults, it is impossible to maintain the damaged system at an acceptable level of performance. Thus, it becomes of prime importance to apply the FTC design to guarantee the stability of the closed-loop faulty system. The basic idea of the FTC approach in addition to the maintain of system stability, is to take into account the fault occurrence into a new control which will become tolerant to this fault by canceling its undesirable effects. It is worth noting that the design of FTC requires obviously FE schema to make adequate decision. In fact, the FE step can provide information to achieve the reliability of controlled systems. Generally speaking, FTC is an effective way to improve system performances and to preserve the safety and productivity of the manufacturing processes especially for systems affected by sensor and/or actuator faults (see for example [START_REF] Han | Robust state/fault estimation and fault tolerant control for T-S fuzzy systems with sensor and actuator faults[END_REF]; [START_REF] Li | Simultaneous time-varying actuator and sensor fault reconstruction based on PI observer for LPV systems[END_REF]; [START_REF] Shen | Active fault-tolerant control against actuator fault and performance analysis of the effect of time delay due to fault diagnosis[END_REF]; [START_REF] Liu | Integrated fault estimation and fault-tolerant control for stochastic systems with brownian motions[END_REF] and references therein). Since the development of technology and the complexity of modern systems, it is quite common that nonlinear behaviors and faults in actuators and sensors are inevitable to exist simultaneously in normal system operations. Takagi-Sugeno (T-S) fuzzy modeling technique is an effective approach used to approximate nonlinear models by mixing some local linear representation models with the help of IF-THEN fuzzy rules and fuzzy membership functions (see for examlpe [START_REF] Feng | Admissibilization of singular interval-valued fuzzy systems[END_REF]; [START_REF] Zhang | New results on sliding-mode control for takagi-sugeno fuzzy multiagent systems[END_REF][START_REF] Zhang | Network-based fuzzy control for nonlinear markov jump systems subject to quantization and dropout compensation[END_REF]; [START_REF] Dong | Dissipativity-based control for fuzzy systems with asynchronous modes and intermittent measurements[END_REF]; [START_REF] Wu | Reliable filter design of takagi-sugeno fuzzy switched systems with imprecise modes[END_REF]). Considerable efforts have been devoted to the issue of FTC and FE for T-S fuzzy systems Liu et al. (2013); [START_REF] Han | Robust state/fault estimation and fault tolerant control for T-S fuzzy systems with sensor and actuator faults[END_REF]; [START_REF] Chen | Improved adaptive fault-tolerant control design for hypersonic vehicle based on interval type-2 T-S model[END_REF]; Kharrat et al. (2018a); Li et al. (2017), for Markovian jump systems [START_REF] Liu | Fault-tolerant control for nonlinear markovian jump systems via proportional and derivative sliding mode observer technique[END_REF]; [START_REF] Li | Fault-tolerant control for markovian jump systems with general uncertain transition rates against simultaneous actuator and sensor faults[END_REF]; [START_REF] Chen | Fault-tolerant control for markovian jump delay systems with an adaptive observer approach[END_REF] and Itô stochastic systems Liu and Shi (2013), subject to sensor and/or actuators faults. However in all the papers mentioned above, the observer and FTC design have been given separately and solved using a two-step algorithm. Actually, the present paper improves the previous works in terms of conservatism reduction since the design conditions of the observer and FTC are formulated in a set of Linear matrices Inequalities (LMIs) that can be solved on a single step. To the best of our knowledge, for T-S nonlinear systems subject to simultaneously actuator, sensor faults and external disturbances, there is no work in the literature that gives both the gains of the robust H ∞ observer and those of the FTC by solving all LMIs in only one step. In this paper, we contribute to the further development of the stability and stabilization analysis for T-S fuzzy systems with establishing new results for this problem. Indeed, we were inspired by the observer proposed in Zhang et al. (2016a) and [START_REF] Gao | Descriptor observer approaches for multivariable systems with measurement noises and application in fault detection and diagnosis[END_REF] to establish an adaptive fuzzy observer allowing a simultaneous estimation of system states, sensor and actuator faults. Therefore, an observer-based FTC is developed for T-S fuzzy systems to guarantee the stability of overall system. The observer and controller design is formulated in a set of LMIs which can be solved in only one step using YALMIP toolbox of MATLAB software. The proposed findings ameliorate those existing in the literature on the following points:

1. First, we have proposed an adaptive observer-based FTC strategy in the presence of time-varying sensor/actuator faults and disturbances at the same time outperforming some previous works, which have dealt with FE and FTC by considering either sensor faults [START_REF] Qiao | Fault-tolerant control for T-S fuzzy systems with sensor faults: Application to a ship propulsion system[END_REF]; [START_REF] Ichalal | Sensor fault tolerant control of nonlinear Takagi-Sugeno systems. Application to vehicle lateral dynamics[END_REF] or actuator faults [START_REF] Kharrat | Adaptive fuzzy observer-based fault-tolerant control for Takagi-Sugeno descriptor nonlinear systems with time delay[END_REF]; Gao and Ding (2007a); Jia et al. (2016b). 2. Second, in contrast to [START_REF] Jia | Fault reconstruction and fault-tolerant control via learning observers in Takagi-Sugeno fuzzy descriptor systems with time delays[END_REF]; [START_REF] Shen | Active fault-tolerant control against actuator fault and performance analysis of the effect of time delay due to fault diagnosis[END_REF] which didn't take into account the disturbances when analyzing control systems, the proposed FTC is robust to external disturbances. Thus, H ∞ optimization technique is developed to minimize the effect of disturbances not only on the controlled output but also on state estimation error e x(t) and fault estimation error e fa (t). 3. Third, advanced techniques, aimed at reducing the conservatism, have been proposed. The design conditions of the observer and the FTC for T-S fuzzy systems are formulated under LMI constraints that can be solved in only one step. As it is known, the single step algorithm requires to solve only the strict LMIs which reduce the complexity and computational analyses.

To show the effectiveness of one step algorithm, a comparison with the paper of [START_REF] Han | Robust state/fault estimation and fault tolerant control for T-S fuzzy systems with sensor and actuator faults[END_REF] in terms of the minimization of H ∞ performance level has been given. The remainder of this paper is organized as follows. An overview of the T-S fuzzy systems is presented in the second section. Section 3 contains the main results. Besides the augmented system, an adaptive fuzzy observer and observer-based FTC are proposed. Then sufficient design conditions are expressed in the form of LMIs. Thereafter, two examples are proposed in section 4 to validate our theoretical results. A comparison study has been considered to show the performance of the proposed FTC strategy. Finally, a conclusion is given in section 5. Notations. The notations throughout the paper are standard. For a matrix A ∈ R n×n , A > 0 (respectively, A < 0) represents a real symmetric positive definite matrix (respectively, negative definite matrix). Superscripts "T " and " -1" stand for matrix or vector transposition and matrix inverse, respectively. sym(A) signifies A + A T . In LMIs, symbol ( * ) is used to represent the transposed element in a symmetric position. λ max (.) and λ min (.) represent the maximum and minimum eigenvalues of A, respectively.

Problem formulation

In this section we introduce the T-S fuzzy systems described by a set of If-Then rules where each rule is a local linear representation of the nonlinear system. The i th rule of the system is of the following form. Plant Rule i(i = 1, 2, .., r): If ν 1 is µ i1 and, • • • , and ν p is µ ip , Then

ẋ(t) = A i x(t) + B i (u(t) + f a (t)) + D i d(t) (1) y(t) = Cx(t) + F f s (t) (2) z(t) = C Li x(t)
(3) 

x(t) ∈ R nx is the state vector, u(t) ∈ R nu is the control input, y(t) ∈ R ny is the measured output, d(t) ∈ R n d is the external disturbance, f a (t) ∈ R nu and f s (t) ∈ R n f represent
≥ n u + n f , pairs (A i , B i ) are controllable, rank(B i ) = n u , rank(F ) = n f , and rank([C, F ]) = n y . ν j (x(t))(j = 1, • • • , p)
are the premise variables which are supposed to be measurable,

µ ij (i = 1, • • • , r, j = 1, • • • , p)
are the fuzzy sets which are characterized by the membership functions. r and p are the total numbers of If-Then rules and the premise variables, respectively. The overall fuzzy system inferred by fuzzy blending of each individual plant rule is given by

ẋ(t) = r i=1 h i (ν(x(t)))[A i x(t) + B i (u(t) + f a (t)) + D i d(t)] (4) 
y(t) = Cx(t) + F f s (t) (5) z(t) = r i=1 h i (ν(x(t)))[C Li x(t)] (6) in which ν(x(t)) = [ν 1 (x(t)), ..., ν p (x(t))] h i (ν(x(t))) = σ i (ν(x(t))) r i=1 σ i (ν(x(t))) ; σ i (ν(x(t))) = p j=1 µ ij (ν i (x(t))) and µ ij (ν i (x(t)) is the grade of the membership of ν i (x(t)) in µ ij . h i (ν(x(t)))
is the weighting function which is in general nonlinear and satisfies 0 ≤

h i (ν(x(t))) ≤ 1 and r i=1 h i (ν(x(t))) = 1.
For simplicity, we introduce h i to denote h i (ν(x(t))).

Then the T-S fuzzy model can be rewritten as follows

ẋ(t) = r i=1 h i [A i x(t) + B i (u(t) + f a (t)) + D i d(t)] (7) 
y(t) = Cx(t) + F f s (t) (8) z(t) = r i=1 h i [C Li x(t)] (9) 
Prior to presenting the main results, the following two assumptions are assumed.

Assumption 1. [START_REF] Koenig | Observer design for unknown input nonlinear descriptor systems via convex optimization[END_REF] System ( Ē, Āi , C) is observable,

rank Ē C = n x + n f (10) and rank s Ē -Āi C = n x + n f , ∀s ∈ C, Re(s) ≥ 0, ∀i = [1, • • • , r] (11) 
Assumption 2. Zhang et al. (2016b) Both actuator fault f a (t) and sensor fault f s (t) are differentiable after their occurrence (note that the faults don't need to be differentiable at the time of their occurrence).

Both ḟa (t) and ḟs (t) satisfy the following norm bounded constraints:

f a (t) ≤ α a , ḟa (t) ≤ f amax with 0 ≤ α a , f amax < ∞ f s (t) ≤ α s , ḟs (t) ≤ f smax with 0 ≤ α s , f smax < ∞

Main results

Augmented system

Inspired by the descriptor approach used in Gao and Ding (2007b) and [START_REF] Du | Sensor fault estimation and compensation for time-delay switched systems[END_REF], we take the sensor fault f s (t) as an auxiliary state, so we obtain a descriptor system. The faulty system given by (7-9) can be rewritten as follows:

Ē ẋ(t) = r i=1 h i [ Āi x(t) + Bi (u(t) + f a (t)) + Di d(t)] (12) 
y(t) = C x(t) (13) 
z(t) = r i=1 h i [C Li x(t)] (14) 
where

x(t) = x(t) f s (t) , Ē = I nx×nx 0 nx×n f 0 n f ×nx 0 n f ×n f , Āi = A i 0 nx×n f 0 n f ×nx 0 n f ×n f , Bi = B i 0 n f ×nx , Di = D i 0 n f ×nx and C = C F

Design of Adaptive Fuzzy Observer-based Fault Tolerant Control

In this section, an adaptive fuzzy observer is designed to simultaneously estimate system states, actuator and sensor faults for system (12)(13)(14).

                         ξ(t) = r i=1 h i [( Āi -L P i C) x(t) + Bi (u(t) + fa (t)) + L P i y(t)] x(t) = ( Ē + L D C) -1 (ξ(t) + L D y(t)) e y (t) = y(t) -ŷ(t) ŷ(t) = C x(t) ḟa (t) = Γ r i=1 h i N i ( ėy (t) + σe y (t)) (15) 
and the active FTC is:

u(t) = - r i=1 h i K i x(t) -fa (t) (16) 
where ξ(t) ∈ R nx+n f is the middle variable, x(t) ∈ R nx+n f is the estimation of augmented descriptor state vector x(t) ∈ R nx+n f . ŷ(t) ∈ R ny is the estimation of the output vector. e y (t) ∈ R ny is the output estimation error and fa (t) ∈ R nu is the estimated of actuator fault f a (t). L P i ∈ R (nx+n f )×ny and L D ∈ R (nx+n f )×ny are, respectively the proportional gains and derivative gain to be designed. σ ∈ R is a positive scalar. Γ ∈ R nu×nu is a symmetric positive definite matrix representing the learning rate which is set to produce a faster convergence speed of the states and actuator faults. N i ∈ R nu×ny are matrices to be determined. By some manipulations and by posing S = Ē + L D C, the proposed observer (15) can be transformed into the following form

S ẋ(t) = r i=1 h i [( Āi -L P i C) x(t) + Bi (u(t) + fa (t)) + L P i y(t)] + L D ẏ(t)(17)
By adding L D ẏ(t) on both sides of equation ( 12) we obtain

S ẋ(t) = r i=1 h i [ Āi x(t) + Bi (u(t) + f a (t)) + D i d(t)] + L D ẏ(t) (18) S ẋ(t) = r i=1 h i [( Āi -L P i C)x(t) + Bi (u(t) + f a (t)) + D i d(t) + L P i y(t)] + L D ẏ(t) (19) 
Define the state estimation errors as follows :

e x (t) = x(t) -x(t) , ēx (t) = x(t) -x(t)
By taking into account ( 17), ( 19) and ( 15) the error dynamics and the output estimation error are obtained as

ėx (t) = r i=1 h i [ S-1 ( Āi -L p i C)ē x (t) + S-1 Bi e fa (t) + S-1 Di d(t)] (20) e y (t) = C ēx (t) (21) 
where e fa (t) = f a (t) -fa (t) depicts for the actuator fault estimation error. Note that in this framework, both time-varying actuator and sensor faults are considered, then it follows that ḟ (t) = 0.

Consequently, the dynamic of actuator fault estimation error is given by the following expression:

ėfa (t) = ḟa (t) -ḟa (t) (22) 
Then

ėfa (t) = ḟa (t) -Γ r i=1 h i N i ( ėy (t) + σe y (t)) (23) 
By taking into consideration ( 20) and ( 21), one can obtain

ėfa (t) = ḟa (t) -σΓ r i=1 h i N i C ēx (t) -Γ r i=1 r j=1 h i h j N i C S-1 ( Āj -L p j C) × ēx (t) + Bj e fa (t) + Dj d(t) (24) 
Considering equation ( 16), the closed-loop of the T-S fuzzy system becomes

ẋ(t) = r i=1 r j=1 h i h j [(A i -B i K j )x(t) + B i K j e x (t) + B i e fa (t) + D i d(t)] (25) z(t) = r i=1 h i [C Li x(t)] (26) 

Analysis and design conditions

Theorem 1. Considering system (7-9) under assumptions 1 and 2. Given a real positive scalar γ > 0, two scalar tuning parameters σ, µ > 0 and definite positive matrices M 1 , M 2 , M 3 and M 4 , the adaptive fuzzy observer proposed in (15) and the FTC designed in (16) ensure, under H ∞ performance level γ, the stability of closed-loop system (25-26) and the convergence of state estimation error ēx (t) and fault estimation error e fa (t) in a uniformly bounded compact, which means

∞ 0 (z T (t)M 1 z(t) + ēT x (t)M 2 ēx (t) + e T fa (t)M 3 e fa (t)) dt ≤ γ 2 ∞ 0 d T (t)M 4 d(t) dt (27) 
if there exist symmetric positive definite matrices P 1 and P 2 and positive definite matrix G as well as matrices N i , L P i and

K i such that ∀i ∈ [1, • • • , r]
the following conditions hold:

(P 2 S-1 Bi ) T = N i C, i = 1, 2, • • • , r (28) 
Φ ij + Φ ji < 0, i, j = 1, 2, • • • , r, i ≤ j (29) 
where

Φ ij =     ϕ 11 ij ϕ 12 ij P 1 B i P 1 D i * ϕ 22 i ϕ 23 ij P 2 S-1 Di * * ϕ 33 ij ϕ 34 ij * * * -γ 2 M 4     (30) 
in which

ϕ 11 ij = sym(P 1 (A i -B i K j )) + C T Li M 1 C Li ϕ 12 ij = P 1 B i K * j ϕ 22 i = sym(P 2 S-1 ( Āi -L P i C)) + M 2 ϕ 23 ij = - 1 σ ( Āj -L P i C) T S-T P 2 S-1 Bi ϕ 33 ij = G σµ + M 3 - 1 σ sym( BT i S-T P T 2 S-1 Bj ) ϕ 34 ij = - 1 σ ( BT i S-T P T 2 S-1 Dj )
Proof. Choose the following Lyapunov function

V (t) = x T (t)P 1 x(t) + ēT x (t)P 2 ēx (t) + 1 σ e T fa (t)Γ -1 e fa (t) (31) 
The time derivative of V (t) can be shown to be

V (t) = ẋT (t)P 1 x(t) + x T (t)P 1 ẋ(t) + ėT x (t)P 2 ēx (t) + ēT x (t)P 2 ėx (t) + 2 σ e T fa (t)Γ -1 ėfa (t) (32) 
Since for any given vectors x, y ∈ R n , a scalar µ ∈ R + and a symmetric positive definite matrix Q, the following inequality 2x y ≤ 1 µ x Qx+µy Q -1 y holds Gassara et al. (2014b) then we have, if there exist G = G T > 0 and µ > 0, the following inequality:

2 σ e T fa (t)Γ -1 ḟa (t) 1 σµ e T fa (t)Ge fa (t) + µ σ ḟ T a (t)Γ -1 G -1 Γ -1 ḟa (t) 2 σ e T fa (t)Γ -1 ḟa (t) 1 σµ e T fa (t)Ge fa (t) + δ (33) 
where δ = µ σ f 2 1max λ max (Γ -1 G -1 Γ -1 ) By substituting (20), ( 24) and (25) into equation ( 32) and by considering (33), one can obtain:

V (t) ≤ r i=1 r j=1 h i h j {x(t) T [sym(P T 1 (A i -B i K j ))]x(t) + 2x(t) T P 1 B i K j e x (t) + 2x(t) T P 1 B i e fa (t) + 2x(t) T P 1 D i d(t) + ēT x (t)[sym(P 2 S-1 ( Āi -L P i C))] × ēx (t) + 2ē T x (t)P 2 S-1 Bi e fa (t) + 2ē T x (t)P 2 S-1 Di d(t) -2e T fa (t)N i C ēx (t) - 2 σ e T fa (t)N i C S-1 ( Āj -L p i C)ē x (t) - 1 σ e T fa (t)sym(N i C S-1 Bj )e fa (t) + 1 σµ e T fa (t)Ge fa (t) - 2 σ e T fa (t)N i C S-1 Dj d(t) + δ} (34) 
Taking into account equation ( 28), one can obtain

V (t) ≤ r i=1 r j=1 h i h j {x(t) T [sym(P T 1 (A i -B i K j ))]x(t) + 2x(t) T P 1 B i K j e x (t) + 2x(t) T P 1 B i e fa (t) + 2x(t) T P 1 D i d(t) + ēT x (t)[sym(P 2 S-1 ( Āi -L P i C))] × ēx (t) + 2ē T x (t)P 2 S-1 Di d(t) - 2 σ e T fa (t)(P 2 S-1 Bi ) T S-1 ( Āj -L P i C)ē x (t) - 1 σ e T fa (t)sym((P 2 S-1 Bi ) T S-1 Bj )e fa (t) 1 σµ e T fa (t)Ge fa (t) - 2 σ e T fa (t)(P 2 S-1 Bi ) T S-1 Dj d(t) + δ} (35) 
Besides above analyses, to satisfy the attenuation level in ( 27) under H ∞ sense, we consider the following performance index:

J(t) = V (t) + z T (t)M 1 z(t) + ēT x (t)M 2 ēx (t) + e T fa (t)M 3 e fa -γ 2 d T (t)M 4 d(t) (36) 
J(t) ≤ r i=1 r j=1 h i h j {x(t) T [sym(P T 1 (A i -B i K j )) + C T Li M 1 C Li ]x(t) + 2x(t) T P 1 B i K j e x (t) + 2x(t) T P 1 B i e fa (t) + 2x(t) T P 1 D i d(t) + ēT x (t)[sym(P 2 S-1 ( Āi -L P i C)) + M 2 ]ē x (t) + 2ē T x (t)P 2 S-1 Di d(t) - 2 σ e T fa (t)(P 2 S-1 Bi ) T S-1 ( Āj -L P i C)ē x (t) + 1 σµ e T fa (t)Ge fa (t) - 1 σ e T fa (t)[sym((P 2 S-1 Bi ) T S-1 Bj ) + M 3 ]e fa (t) - 2 σ e T fa (t)(P 2 S-1 Bi ) T S-1 Dj d(t) -γ 2 d T (t)M 4 d(t) + δ } (37) 
Noting extended state vector ξ(t) = x T (t) ēT x (t) e T fa (t) d T (t) T and defining K * j = K j I nx 0 nx×n f , inequality (37) can be reformulated as follows

J(t) ≤ r i=1 r j=1 h i h j {ξ T (t)Φ ij ξ(t) + δ} (38) 
If condition (29) holds, then

1 2 r i=1 r j=1 h i h j (Φ ij +Φ ji ) < 0 and we can note that r i=1 r j=1 h i h j Φ ij < 0.
Pre-and post-multiplying the previous inequality by ξ T (t) and ξ T (t) we get

r i=1 r j=1 h i h j ξ T (t)Φ ij ξ(t) ≤ 0
For ϑ = λ min (-Φ ij ), we can obtain:

J(t) ≤ -ϑ ξ(t) 2 + δ (39) 
It follows that

V (t) + z T (t)M 1 z(t) + ēT x (t)M 2 ēx (t) + e T fa (t)M 3 e fa -γ 2 d T (t)M 4 d(t) ≤ 0 f or ϑ ξ(t) 2 > δ (40) 
• when d(t) = 0, (40) means V (t) ≤ 0 for ϑ ξ(t) 2 > δ and under the Lyapunov stability theory, ξ(t) will converge to a small set Ψ = {ξ(t)/ ξ(t) 2 ≤ δ ϑ } ; thus ξ(t) is uniformly bounded in the case of d(t) = 0.

• when d(t) = 0, integrating both sides of (40) with respect to t over time period

[0 ∞] yields ∞ 0 V1 (s) ds + ∞ 0 z T (s)M 1 z(s) ds + ∞ 0 ēT x (s)M 2 ēx (s) ds + ∞ 0 e T fa (s)M 3 e fa (s) ds -γ 2 ∞ 0 d T (s)M 4 d(s) ds ≤ 0 f or ϑ ξ(t) 2 > δ (41) As V 1 (∞) ≥ 0, and with zero initial condition V 1 (0) = 0, one obtains ∞ 0 z T (s)M 1 z(s) ds + ∞ 0 ēT x (s)M 2 ēx (s) ds + ∞ 0 e T fa (s)M 3 e fa (s) ds ≤ γ 2 ∞ 0 d T (s)M 4 d(s) ds f or ϑ ξ(t) 2 > δ (42) therefore, J < 0 for ϑ ξ(t) 2 > δ
Remark 1. We should point out that the main advantage of the proposed Lyapunov function is that observer and controller gains are computed in only one step. Also notice that other Lyapunov functions, such as parameterdependent Lyapunov function, may be used to further reduce the conservatism [START_REF] Rodrigues | Observer-based fault tolerant control design for a class of lpv descriptor systems[END_REF]. However, this can significantly increase the computational load. Furthermore, adopting such a technique to establish LMI conditions based on parameter-dependent Lyapunov function, remains unexplored subject.

Remark 2. Noting that conditions in theorem 1 are given in bilinear matrix inequality (BMI) form, which can not be solved using existing solvers such as LMI Toolbox or Yalmip in the MATLAB software. Accordingly we need to make further development to convert the bilinear conditions in theorem 1 in LMIs.

Theorem 2. Consider system (7-9) under assumptions 1 and 2. Given a real positive scalar ρ = γ 2 , two scalar tuning parameters σ, µ > 0 and definite positive matrices M 11 , M 2 , M 3 and M 4 , if there exist symmetric definite positive matrices X 1 and P 2 and positive definite matrix G as well as matrices N i , Y i and W i such that ∀i ∈ [1, • • • , r] the following conditions hold:

(P 2 S-1 Bi ) T = N i C, i = 1, 2, • • • , r (43) 
Ψ ij + Ψ ji < 0, i, j = 1, 2, • • • , r, i ≤ j ( 44 
)
where

Ψ ij =   Ω 11 ij Ω 12 ij 0 * Ω 22 λI * * Ω 33 ij   (45)
in which

Ω 11 ij = sym(A i X 1 -B i W j ) , Ω 12 ij = B i W j 0 B i D i X 1 C T Li Ω 22 = -2λX 1 0 * -2λI , Ω 33 ij =     ω 11 i ω 12 ij P 2 S-1 Di 0 * ω 22 ij ω 23 ij 0 * * -ρM 4 0 * * * -M 11    
in which

ω 11 i = sym(P 2 S-1 Āi -Y i C) + M 2 ω 12 ij = - 1 σ ĀT j S-T P 2 S-1 Bi + 1 σ CT Y T i S-1 Bi ω 22 ij = G σµ + M 3 - 1 σ sym( BT i S-T P T 2 S-1 Bj ) ω 23 ij = - 1 σ ( BT i S-T P T 2 S-1 Dj )
then the adaptive fuzzy observer proposed in (15) and the FTC designed in ( 16) ensure, under H ∞ performance level γ, the stability of closed-loop system (25-26) and the convergence of state estimation error ēx (t) and fault estimation error e fa (t) in a uniformly bounded compact. In this case, the gains of the adaptive fuzzy observer and controller are respectively given by

L P i = SP -1 2 Y i and K i = W i X -1 . Proof.
Using Schur complement, (30) can further be written as

Υ ij =       sym(P 1 (A i -B i K j )) P 1 B i K * j P 1 B i P 1 D i C T Li * ϕ 22 i ϕ 23 i P 2 S-1 Di 0 * * ϕ 33 ij ϕ 34 ij 0 * * * -γ 2 M 4 0 * * * * -M -1 1       (46)
We can write the previous equality in this form

Υ ij = Υ 11 ij Υ 12 ij * Υ 22 ij < 0 (47)
where

Υ 11 ij = sym(P 1 (A i -B i K j ) , Υ 12 ij = P 1 B i K * j P 1 B i P 1 D i C T Li ( 48 
)
Υ 22 ij =     ϕ 22 i ϕ 23 i P 2 S-1 Di 0 * ϕ 33 ij ϕ 34 ij 0 * * -γ 2 M 4 0 * * * -M -1 1    
Letting the following symmetric matrix

Y = Y 11 0 0 Y 22
where Y 11 = P -1 1 , Y 22 = diag(P -1 1 , I, I, I) Pre-and post-multiplying inequality ( 47) by Y, one can obtain

Y 11 Υ 11 i Y T 11 Y 11 Υ 12 ij Y T 22 * Y 22 Υ 22 ij Y T 22 < 0 (49)
Since for a given negative definite matrix Π < 0 and a matrix X of appropriate dimension such that X T ΠX < 0, then ∃ λ > 0 such that X T ΠX ≤ -2λX -λ 2 Π -1 holds Gassara et al. (2014a), it follows

Y 22 Υ 22 ij Y T 22 ≤ -2λY 22 -λ 2 (Υ 22 ij ) -1 (50)
Using Schur complement, the previous inequality can further be written as

  Y 11 Υ 11 ij Y T 11 Y 11 Υ 12 ij Y T 22 0 * -2λY 22 λI * * Υ 22 ij   < 0 (51) By posing X 1 = P -1 1 , Y i = P 2 S-1 L P i , W i = K i P -1 1 , M 11 = M -1
1 and ρ = γ 2 we obtain inequality (45).

Remark 3. It is noticed that the equality constraint (43) can be easily solved by using a transformation into the following optimization problem [START_REF] Zhang | A new approach to observer-based fault-tolerant controller design for takagi-sugeno fuzzy systems with state delay[END_REF]: Minimize η > 0 subject to:

ηI (P 2 S-1 Bi ) T -N i C * ηI < 0, i = 1, 2, • • • , r (52) 
Remark 4. Derivative gain L D can be chosen so that new defined matrix S = Ē+L D C be nonsingular and the conditions given in (44) be linear. Thus, for an arbitrary L D , by solving conditions in theorem 2, if we find feasible solutions of X 1 , P 2 , N i and G and then by computing the proportional gains L P i of the observer and the controller gains K i we can estimate the system states, sensor and actuator faults, else we select another L D until a feasible solution be found.

Remark 5. x(t) is the estimation of the augmented descriptor state vector which can be estimated reliably. So it is easy to have the estimation of states and sensor faults, they can be absolutely formulated as follows :

x(t) = I nx 0 n f x(t) and fs (t) = 0 nx I n f x(t).

The estimation of the actuator faults can be provided by the adaptive observer proposed in (15). More precisely, based on the proposed adaptive fault estimation scheme, the learning rate Γ should be adjusted such that the FTC can rapidly recover the performance of the system even in the presence of sensor/actuator faults and external disturbances simultaneously. Increasing or decreasing this parameter may lead to an unsatisfactory convergence speed of system states and actuator faults estimation.

NUMERICAL EXAMPLE

In this section, to validate the proposed analytical results in the previous section, two examples will be given.

Example 1:

Consider fuzzy system of form (7-9) with

A 1 =   0.5 1 0 0.2 -1.5 0 2 0.1 0.3   ; A 2 =   0.5 1 0.1 0 -1 0 0.5 0 0.1   ; B 1 =   0 1.5 0   ; B 2 =   0 0.9 0   ; C = 1 1 0 1 0 0.5 ; D 1 =   0 0.1 0   ; D 2 =   0 0.2 0   ; F = -1 1 ; C L1 = 0.1 0 0 , C L2 = 0 0.2 0
The membership functions for rules 1 and 2 are choosing as follows :

h 1 (y 1 (t)) = e -y 2 1 (t) , h 2 (y 1 (t)) = 1 -h 1 (y 1 (t)) (53) 
By solving LMI conditions in theorem 2, by selecting

L D = 0 0.6 8 4 1 0 5 6 T
and by choosing the tuning parameters as follows : λ = 2, σ = 0.2, µ = 0.1 and the index performance ρ = 0.4 (γ = 0.6325), we can get a set of feasible solutions. Equality (43) and inequality (44) were implemented with Yalmip toolbox and SDPT3-4 solver to obtain the corresponding observer gains and FTC gains respectively:

L P 1 =    
1, 966 -0, 244 -1, 397 0, 851 2, 734 3, 862 1, 865 2, 081

    , L P 2 =    
1, 332 0, 169 -0, 281 0, 304 2, 207 3, 161 1, 698 2, 145

   
and

K 1 = 4, 775 1, 655 1, 453 , K 2 = 5, 532 2, 391 1, 790
The external disturbance is given by d(t) = 0.01(0.015πt) -0.01x.

The system mentioned in this example is affected by an actuator and sensor faults which satisfy assumption A2 and are described by f s (t) as a squarewave signal between 10s and 30s: x: is a random value between 0 and 1. and the actuator fault as f a (t) = 0 t ≤ 6 0.55(1 -e -3(t-6) ) + 0.01x 6 < t ≤ 30 (55) The simulation initial conditions are x 0 = 0.05 0.1 0.2 T and ξ 0 = 0.1 0.2 0.1 0 T , respectively.

f s (t) =                            0 t ≤ 10 -0.
The learning rate is set to Γ = 0.9, so it can provide a convergence speed of system states and actuator faults estimation.

Example 2:

In this example, as shown in Figure 6, we consider a cart motion model from [START_REF] Han | Robust state/fault estimation and fault tolerant control for T-S fuzzy systems with sensor and actuator faults[END_REF]; [START_REF] Qiu | Observer-based piecewise affine output feedback controller synthesis of continuous-time T-S fuzzy affine dynamic systems using quantized measurements[END_REF] which is simulated to illustrate the effectiveness of the proposed observer for estimating system states, sensor and actuator faults and the performance of the FTC to force a cart on the xy plane to follow the straight line y = 0 with a constant velocity ν 0 = 1m/s. It is supposed that a controller is designed previously to maintain a constant forward velocity. The cart's path is then controlled by the torque u about the z-axis according to the following dynamic model:

  θ(t) ψ(t) ẏ(t)   =   0 1 0 0 -k/I 0 0 0 0     θ(t) ψ(t) y(t)   +   0 0 ν 0 sin(θ(t))   +   0 1/I 0   u(t) +   0 0.1 0   d(t) (56) 
θ(t) is the heading angle with time derivative ψ(t), I = 1kgm 2 is the moment of inertia of the cart with respect to the center of mass, k = 0.01 is the damping coefficient, the initial angle is in the range ( -3π 5 , 3π 5 ), u(t) is the control torque and d(t) is the external disturbance. Define the states of the system as x = [x T 1 (t), x T 2 (t), x T 3 (t)] = [θ T (t), ψ T (t), y T (t)]. The measured output and controlled output are given, respectively, by

y(t) = Cx(t) + F f s (t) = [y T 1 (t), y T 2 (t), y T 3 (t)] z(t) = r i=1 h i [C Li x(t)]
where

C = 1 0 0 0 1 0.5 , F = 2 -2 , C L1 = 0.3 0 0 , C L2 = 0 0 0.2
Refering to the local sector non linearity method [START_REF] Tanaka | Fuzzy control systems design and analysis: a linear matrix inequality approach[END_REF], the system can be approximated by the following T-S and the following fuzzy rules can be employed:

Plant Rule i: If x 1 (t) is about h i , Then ẋ(t) = A i x(t) + B i u(t) + D i d(t)
where

A 1 =   0 1 0 0 -k/I 0 1 0 0   ; A 2 =   0 1 0 0 -k/I 0 sin(3π/5) 3π/5 0 0   ; B 1 = B 2 =   0 1 0   ; D 1 = D 2 =   0 0.1 0   Define x 1 (t) ∈ ( -3π 5 , 3π 5 
) and z(t) = sin(x 1 (t)) The mumbership functions h 1 (z(t)) and h 2 (z(t)) are obtained from the property h 1 (z(t)) + h 2 (z(t)) = 1 Following the membership functions used in [START_REF] Han | Robust state/fault estimation and fault tolerant control for T-S fuzzy systems with sensor and actuator faults[END_REF], their expressions are given as follows:

h 1 (z(t)) = sin(x 1 (t)) -5 3π x 1 (t) x 1 (t)(1 -5 3π ) , h 2 (z(t)) = 1 -h 1 (z(t)) (57) 
Considering the overall fuzzy model given in (7-9).

Comparison: To show the effectiveness of our results, we compare the approach proposed in this paper to the one proposed in the paper of [START_REF] Han | Robust state/fault estimation and fault tolerant control for T-S fuzzy systems with sensor and actuator faults[END_REF]. Theorems 1 and 2 in [START_REF] Han | Robust state/fault estimation and fault tolerant control for T-S fuzzy systems with sensor and actuator faults[END_REF] work well with γ 1 = 1, γ 2 = 2 as performances indexes. However, from γ 1 = 0.0995 and γ 2 = 0.8367 downwards theorems 1 and 2 does not lead to a conclusion since the two-step LMI conditions cannot produce a set of feasible solutions. Now, by applying theorem 2 to solve the corresponding LMIs, by selecting L D = 0 0.6 8 4 1 0 5 6 T and by choosing the tuning parameters as follows : λ = 3, σ = 3, µ = 0.5 and the index performance ρ = 0.0099 (and even for lower values) we can obtain a set of feasible solutions. Equality (43) and inequality (44) were implemented with Yalmip toolbox and SDPT3-4 solver to obtain:

The gains of the adaptive fuzzy observer The external disturbance is given by d(t) = 0.1sin(y 1 (t)) -y 1 (t).

L P 1 =     3 
The system mentioned in this example is affected by an actuator and sensor faults which satisfy assumption A2 and are described by f s (t) as a squarewave signal between 15s and 30s and the actuator fault as The simulation initial conditions are x 0 = 0.2 0.3 0.3 T and ξ 0 = 0.3 0.2 0.3 0 T , respectively.

f a (t) =      0 t ≤ 6 0.2(t -
By choosing Γ = 0.7, the derivative of f a (t) over time is norm bounded by f amax = 0.1257. The term δ = µ σ f 2 amax λ max (Γ -1 G -1 Γ -1 ) = 1.5653.10 -4 , which reduces the radius of the ball in which the estimation errors converge.

The simulation results of both examples are given in Figures 1 -2 and 4 -8. On the basis of these figures, it can be seen that the adaptive fuzzy observer proposed in this work can estimate system states, actuator and sensor faults under the FTC law. The simulation results verify that the adaptive fuzzy observer-based FTC used in this paper can guarantee the performance and the stability of the fuzzy closed-loop system despite the presence of external disturbances, sensor and actuator faults.

Results with FTC strategy versus results with nominal control:

In order to illustrate the effectiveness of the FTC strategy, we proceed to compare the evolution of system states in presence of actuator faults under FTC law and nominal control which is given in (59). Nominal control: We notice from Figures 9 -11 that when the actuator faults occur, the system states under FTC law converge to zero, which isn't the case under the nominal control. That means that the FTC strategy is essential in a faulty system to maintain the stability of the closed-loop system.

u(t) = - r i=1 h i K i x(t) (59 

Conclusion

In this paper, an adaptive fuzzy observer-based FTC design has been developed to establish FE and to maintain the robust stability of the closedloop T-S fuzzy systems in presence of sensor and actuator faults. Using the H ∞ optimization technique, an augmented adaptive fuzzy observer has been developed to estimate both sensor/actuator faults and the system states. Sufficient conditions of stability and stabilization have been expressed in LMI form which can be easily solved in one step with existing solvers. The effectiveness and the advantages of the proposed approach have been illustrated by two numerical examples which one of them concerns the cart motion nonlinear model. Moreover, the efficiency of the FTC law compared with the nominal one is illustrated by simulating system states with both controllers.
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 1 Figure1: System states and their estimations under FTC law for example 1.
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 2 Figure 2: Actuator and sensor fault and their estimations.

Figure 3 :

 3 Figure 3: Autonomous land vehicle.
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 7 Figure 7: Actuator fault f a (t) and its estimation fa (t) under FTC law.
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 8 Figure 8: Sensor fault f s (t) and its estimation fs (t) under FTC law.
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 910 Figure 9: System state x 1 (t) with FTC and nominal control law.

Figure 11 :

 11 Figure 11: System state x 3 (t) with FTC and nominal control law.
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  Figure 5: System state x 2 (t) and its estimation x2 (t) under FTC law with a time-varying fault f a (t).
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