
Learning Term Discrimination
Jibril Frej

jibril.frej@univ-grenoble-alpes.fr
Univ. Grenoble Alpes, CNRS, Grenoble INP*, LIG
* Institute of Engineering Univ. Grenoble Alpes

Philippe Mulhem
philippe.mulhem@univ-grenoble-alpes.fr

Univ. Grenoble Alpes, CNRS, Grenoble INP*, LIG
* Institute of Engineering Univ. Grenoble Alpes

Didier Schwab
didier.schwab@univ-grenoble-alpes.fr

Univ. Grenoble Alpes, CNRS, Grenoble INP*, LIG
* Institute of Engineering Univ. Grenoble Alpes

Jean-Pierre Chevallet
jean-pierre.chevallet@univ-grenoble-alpes.fr

Univ. Grenoble Alpes, CNRS, Grenoble INP*, LIG
* Institute of Engineering Univ. Grenoble Alpes

ABSTRACT
Document indexing is a key component for efficient information
retrieval (IR). After preprocessing steps such as stemming and stop-
word removal, document indexes usually store term-frequencies
(tf). Along with tf (that only reflects the importance of a term in a
document), traditional IR models use term discrimination values
(TDVs) such as inverse document frequency (idf) to favor discrim-
inative terms during retrieval. In this work, we propose to learn
TDVs for document indexing with shallow neural networks that
approximate traditional IR ranking functions such as TF-IDF and
BM25. Our proposal outperforms, both in terms of nDCG and recall,
traditional approaches, even with few positively labelled query-
document pairs as learning data. Our learned TDVs, when used
to filter out terms of the vocabulary that have zero discrimination
value, allow to both significantly lower the memory footprint of
the inverted index and speed up the retrieval process (BM25 is up
to 3 times faster), without degrading retrieval quality.

KEYWORDS
Information Retrieval, Shallow Neural Networks, Document Index-
ing, Term Discrimination Value

1 INTRODUCTION
Document indexing for information retrieval (IR) usually consists
in associating each document of a collection with a set of weighted
terms reflecting its information content. To this end, a term dis-
crimination value (TDV) is used to represent the usefulness of a
term as a discriminator among documents [13]. However, tradi-
tional IR systems make little use of TDVs during indexing. The only
exception is stopword removal which considers that stop-words
have null discrimination value and removes them from document
representations. Stop-word removal also speeds up the retrieval
process when using an inverted index since it removes stop-words
that have long posting lists.
Related Work. Several methods have been proposed to compute
TDVs, such as using the density of the document vector space [14] or
the covering coefficient of documents [2]. Nowadays, the most com-
mon approaches in traditional IR models for computing TDVs are to

, 2020,
© 2020
"" .

use either the inverted document frequency (idf) [11] or a smooth-
ing method such as Bayesian smoothing using Dirichlet prior [16].
Recently, Roy et al. [12] proposed to select discriminative terms
to enhance query expansion methods based on pseudo-relevance
feedback. However, these approaches use TDVs only at retrieval
time and not during indexation. Inspired by stop-word removal, we
suggest that using supervised learning to remove non discrimina-
tive terms at indexation can speed up the retrieval process with no
deterioration of retrieval quality.
Our Contributions. In this work, we propose to learn TDVs in a
supervised setting using a shallow neural network and word em-
beddings. In order to have TDVs adapted to traditional IR ranking
functions, we propose to learn TDVs by optimizing the ranking
of traditional IR models. However, components of these models
such as term frequency (tf) or inverse document frequency (idf)
are not differentiable in the setting in which neural networks are
commonly used (sequences of word embeddings processed by CNN,
RNN or Transformer Layers). This non-differentiability makes im-
possible the use of gradient descent-based optimization methods
required by neural networks. Hence, we propose a setting that uses
bag of words (BoWs) as sparse vectors to have differentiable tf and
ℓ1-norm as an approximation to the ℓ0-norm to have a differen-
tiable approximation of the idf. Hence, we learn TDVs to optimize
differentiable approximations of traditional IR ranking functions.
Since we are using a shallow neural network with few parameters,
our models do not need large amounts of positively labelled query-
documents pairs to outperform traditional IR models. Additionally,
we remove posting lists associated with terms having zero TDV
from the inverted index in order to significantly enhance retrieval
speed.
In short, our contributions are :

• A new framework for differentiable traditional IR;
• Differentiable versions of IR functions to learn TDVs;
• A significant speed up retrieval obtained by removing post-
ing lists associated to terms with zero TDV;

2 LEARNING TERM DISCRIMINATION
To learn TDVs adapted to traditional IR ranking functions using
neural networks, we propose the following strategy:

(1) Make traditional IR ranking functions compatible with neu-
ral networks by using matrix operations that are differen-
tiable with respect to the inverted index (Section 2.1);

(2) Introduce a shallow neural network to compute TDVs and a
method to include TDVs into the inverted index (Section 2.2);

(3) Use the differentiable functions proposed in Section 2.1 to
learn TDVs adapted to traditional IR ranking functions using
a supervised shallow neural network (Section 2.3);

2.1 Differentiable traditional IR
All operations used by traditional IR ranking function can be derived
from the inverted index. Given a vocabulary 𝑉 and a collection
𝐶 , the inverted index can be represented as a sparse matrix 𝑆 ∈
R |𝑉 |× |𝐶 | . Each element of 𝑆 corresponds to the term frequency
(tf) of a term 𝑡 ∈ 𝑉 with respect to (w.r.t) a document 𝑑 ∈ 𝐶:
𝑆𝑡,𝑑 = tf𝑡𝑑 . Columns of 𝑆 (denoted as 𝑆:,𝑑) correspond to the BoW
representations of documents in 𝐶 and rows of 𝑆 (denoted as 𝑆𝑡,:)
correspond to the posting lists of terms in 𝑉 . Let 𝑄 ∈ N |𝑉 | denote
the BoW representation of a query 𝑞.

2.1.1 TF-IDF. Using matrix operations over 𝑆 , the TF-IDF ranking
function between a query 𝑞 and a document 𝑑 can be formulated
as:

TF-IDF(𝑞, 𝑑) =
∑
𝑡 ∈𝑞

tf𝑡𝑑 idf𝑡 = 𝑄⊺ ·
(
𝑆:,𝑑 ⊙ IDF

)
, (1)

where ⊙ denotes the element wise (or Hadamard) product and IDF ∈
R |𝑉 | denotes the vector containing inverse document frequencies
(idf) of all terms 𝑉 . idf can be derived from 𝑆 using the ℓ0-norm to
compute document frequencies (df):

idf𝑡 = log
|𝐶 | + 1
df𝑡

= log
|𝐶 | + 1
ℓ0 (𝑆𝑡,:)

. (2)

To be able to have TDVs adapted to traditional IR ranking func-
tions, we want such functions to be differentiable w.r.t elements
of 𝑆 . However, the ℓ0-norm is non differentiable. Consequently, we
propose to redefine idf using ℓ1 which is a good approximation to
ℓ0 [10]. If we replace ℓ0 with ℓ1, the obtained idf will be negative
for terms such that ℓ0 (𝑆𝑡,:) > |𝐶 | + 1 which would violate the Term
Frequency Constraint, a desirable property of retrieval formula [4].
To ensure positives idfs, we propose a maximum normalization:

ĩdf𝑡 = log
max{𝑡 ′∈𝑉 } ℓ1 (𝑆𝑡 ′,:) + 1

ℓ1 (𝑆𝑡,:)
. (3)

Using ĩdf𝑡 , we have the following differentiable approximation
of the TF-IDF formula, denoted as �TF-IDF:

�TF-IDF(𝑞, 𝑑) = 𝑄⊺ ·
(
𝑆:,𝑑 ⊙ ĨDF

)
=
∑
𝑡 ∈𝑞

𝑆𝑡,𝑑 ĩdf𝑡 . (4)

where ĨDF ∈ R |𝑉 | is the vector containing ĩdf𝑡 of all terms in 𝑉 .

2.1.2 BM25. We can also define a differentiable approximation of
the BM25 ranking formula using ĨDF:

�BM25(𝑞, 𝑑) = 𝑄⊺ · ĨDF ⊙
(
𝑆:,𝑑 (𝑘1 + 1)

)
./
(
𝑆:,𝑑 + 𝑘1

(
1 − 𝑏 + 𝑏 |𝑑 |

𝑎𝑣𝑔𝑑𝑙

)
1 |𝑉 |

)
, (5)

where 𝑘1 and𝑏 are parameters of BM25 and 𝑎𝑣𝑔𝑑𝑙 denotes the av-
erage length of documents in𝐶 . ./ is an element wise (or Hadamard)
division and 1 |𝑉 | is a vector of dimension |𝑉 | with all elements
equal to one. Both |𝑑 | and 𝑎𝑣𝑔𝑑𝑙 are differentiable w.r.t the elements
of 𝑆 : |𝑑 | = ℓ1 (𝑆:,𝑑) and 𝑎𝑣𝑔𝑑𝑙 =

∑
𝑑∈𝐶

ℓ1 (𝑆:,𝑑)/|𝐶 |.

2.1.3 Dirichlet Language Model. We also propose a differentiable
language model with Dirichlet prior smoothing [16]:

LM(𝑞, 𝑑) =
∑
𝑡 ∈𝑞

log
(
1 + tf𝑡𝑑

`𝑝 (𝑡 |𝐶)

)
+ |𝑞 | log𝛼𝑑

= 𝑄⊺ · [log
(
1 |𝑉 | +

(
𝑆:,𝑑 ./(`𝑃𝐶)

))
+ |𝑞 | log(𝛼𝑑)1 |𝑉 |], (6)

where ` is a parameter of LM, 𝛼𝑑 =
`

|𝑑 |+` is a document depen-

dent constant and 𝑃𝐶 ∈ R |𝑉 | is the vector containing the probabil-
ity of a term given the collection language models for all terms in
the vocabulary: ∀𝑡 ∈ 𝑉 , 𝑃𝐶𝑡

= 𝑝 (𝑡 |𝐶) = ∑
𝑑∈𝐶

𝑆𝑡,𝑑/
∑

𝑡 ′∈𝑉

∑
𝑑∈𝐶

𝑆𝑡 ′,𝑑 .

2.2 Shallow neural network for learning TDVs
To have a model that requires few training data, we propose to
compute the TDVs using a shallow neural network composed of a
single linear layer and the Rectified Linear Unit (ReLU) non linearity:
tdv𝑡 = ReLU(𝑤⊺𝑡 ·𝑤 +𝑏) = max(0,𝑤⊺𝑡 ·𝑤 +𝑏) where𝑤𝑡 is the word
embedding of term 𝑡 , and 𝑤 and 𝑏 are parameters of the neural
network. We employ ReLU activation function to ensure that the
TDV is positive (as negative TDVs can violate the Term Frequency
Constrain) and to be able to have terms with zero TDV that we can
remove from the inverted index. We redefine the inverted index 𝑆
using TDVs the following way:

𝑆 ′
𝑡,𝑑

= tf𝑡𝑑 tdv𝑡 = tf𝑡𝑑 ReLU(𝑤⊺𝑡 ·𝑤 + 𝑏) . (7)

With this definition, we ensure that if a term 𝑡 has zero discrimi-
nation value (tdv𝑡 = 0), the row in 𝑆 associated to 𝑡 is filled with
zeros, therefore it’s posting list is empty and can be removed from
the inverted index.

2.3 Learning TDVs with differentiable IR
To learn TDVs that optimize the score of traditional IR ranking
formulae, we simply replace 𝑆 in Equations (4), (5) and (6) by 𝑆 ′:

TDV-TF-IDF(𝑞, 𝑑) = 𝑄⊺ ·
(
𝑆 ′:,𝑑 ⊙ ĨDF′

)
; (8)

TDV-BM25(𝑞, 𝑑) = 𝑄⊺ · ĨDF′ ⊙
(
𝑆 ′:,𝑑 (𝑘1 + 1)

)
./
(
𝑆:,𝑑 + 𝑘1

(
1 − 𝑏 + 𝑏 |𝑑 |′

𝑎𝑣𝑔𝑑𝑙 ′

)
1 |𝑉 |

)
; (9)

TDV-LM(𝑞, 𝑑) = 𝑄⊺ · [log(1 |𝑉 | + (𝑆 ′:,𝑑 ./(`𝑃
′
𝐶)))

+ |𝑞 | log(𝛼 ′
𝑑
)1 |𝑉 |]; (10)

where ĨDF′, |𝑑 |′, 𝑎𝑣𝑔𝑑𝑙 ′ and 𝛼 ′
𝑑
denote respectively ĨDF, |𝑑 |, 𝑎𝑣𝑔𝑑𝑙

and 𝛼𝑑 computed with 𝑆 ′ instead of 𝑆 . Scores computed by these
ranking functions are differentiable w.r.t parameters𝑤 and 𝑏 (see

Figure 1). Consequently, we can use gradient descent-based opti-
mization methods to update 𝑤 and 𝑏 in order to compute TDVs
adapted to traditional IR ranking functions.

Embedding
Matrix

TDV-TF-IDF(q,d)

|V| tdv

S|V|

|C|

SˊSˊ = S tdvt,d t,d t

IDF́͠ Q

IDF = logt

ˊ
ˊ

max ℓ1(S)+1t,:
t ∊ Vˊ

ℓ1(S)t,:

S:́,d

Element wise product

Dot product

tdv
=

ReLU(w•w+b)

͠

t

t

Forward pass

Backward passT

Figure 1: Architecture of TDV-TF-IDF. All operations are dif-
ferentiable and gradients can be back-propagated from the
final score to𝑤 and 𝑏.

2.4 Training
We use the pairwise hinge loss function as our ranking objective:

LHinge (𝑓 , 𝑞, 𝑑+, 𝑑−) = max(0, 1 − 𝑓 (𝑞, 𝑑+) + 𝑓 (𝑞, 𝑑−)), (11)

where 𝑓 is a differentiable ranking function for IR and 𝑑+ is a docu-
mentmore relevant than𝑑− w.r.t query𝑞. To ensure that the ranking
functions produce terms with zero discrimination values, we also
use a sparsity objective during training. To do so, we minimize the
ℓ1-norm of the document BOWs representation as suggested by
Zamani et al. [15]. The final loss function is defined as follows:

(1 − _)LHinge (𝑓 , 𝑞, 𝑑+, 𝑑−) + _(ℓ1 (𝑆 𝑓 ′:,𝑑+) + ℓ1 (𝑆 𝑓 ′:,𝑑−)), (12)

where _ ∈ [0, 1] is the regularization hyper-parameter and 𝑆 𝑓 ′ is
the inverted index matrix computed by 𝑓 .

3 EXPERIMENTS
3.1 Collections
As mentioned previously, our models need few positively labelled
query-documents pairs (qrels). Consequently, we evaluated them
on 3 standard TREC collections :

• AP88-89 with topics 51-200 and 15 856 positive qrels
• FT91-94 with topics 251-450 and 6 486 positive qrels
• LA with topics 301-450 and 3 535 positive qrels

We use title of topics as queries. We lowercase, stem and remove
stop-words from collections.

3.2 Baselines
We compare our models with several traditional IR models using
a standard inverted index: TF-IDF, LM and BM25 and with neural
supervised approaches for IR: DRMM [5], DUET [9] and Conv-
KNRM [3]. DRMM performs matching based on a histogram of co-
sine similarities between word embeddings of query and document.
The DUET model is a deep architecture that uses both local (exact
matching signal) and distributed (word embeddings) representa-
tions to compute a relevance score. Conv-KNRM uses convolutions

to generate several query-document interaction matrices that are
processed by kernel pooling to produce learning-to-rank features.

3.3 Implementation
We implemented and trained our models with Tensorflow [1]. We
used MatchZoo [6] for training and evaluation of neural baselines.
We implemented traditional IR ranking functions in Python. We
used word embeddings pre-trained on Wikipedia with the fast-
Text [8] algorithm. Because of the limited amount of training data,
we did not fine-tune word embeddings. In order to ensure that
TDVs for all terms are non zero at the beginning of the training,
we initialized bias 𝑏 to 1. Weight vector 𝑤 is initialized with the
default Tensorflow initialization. To accelerate the training pro-
cess, collection-level measures such as idf and collection language
models were implemented batch wise and not collection wise. Pre-
liminary experiments showed that dropout does not allow for better
performance on the validations sets which is probably due to the
low number of parameters of our models. Therefore, we do not
use dropout in our experiments. 5-fold cross validation across the
queries of the collections is used to tune hyperparameters. We use
the Adam [7] algorithm to optimize models and early stopping on
the training nDCG@5.

Method AP88-89 LA FT91-94
Base. TDV Base. TDV Base. TDV

TF-IDF 147.4 29.2 26.3 4.6 56.6 15.1
LM 683.8 180.1 139.6 54.3 270.9 122.6
BM25 207.0 61.2 29.2 16.6 83.1 42.8
DRMM >104 \ >104 \ >104 \
DUET >105 \ >105 \ >105 \
Conv-KNRM >105 \ >105 \ >105 \

Table 1: Comparison of the average retrieval time per query
in milliseconds.

3.4 Evaluation
We assess three different evaluation measures: (1) standard IR met-
rics: nDCG@5 and Recall@1000; (2) inverted index’s memory foot-
print reduction after removing termswith zero discrimination value;
(3) average retrieval time per query. Statistically significant differ-
ences of nDCG@5 and Recall@1000 are computed with the two-
tailed paired t-test with Bonferroni correction.

4 RESULTS
Retrieval speed up. Table (1) reports the retrieval time of the dif-
ferent approaches. First, we notice that the neural baselines are
dramatically slower at retrieving documents than other models
that use inverted indexes. Second, by filtering out terms with zero
discrimination value from the inverted index, we are able to sig-
nificantly speed up the retrieval process of all ranking functions
on all collections. On LA and FT91-94, BM25 retrieval speed is
almost doubled and on AP88-89 BM25 retrieval speed is tripled.
Interestingly, we notice that LM consistently takes more time to
retrieve documents than other models. Indeed, the ranking formula

Method AP88-89 LA FT91-94
nDCG@5 Recall@1000 nDCG@5 Recall@1000 nDCG@5 Recall@1000

Baseline TDV Baseline TDV Baseline TDV Baseline TDV Baseline TDV Baseline TDV
TF-IDF 26.38 30.28∗ 53.08 58.42∗ 17.92 23.54∗ 60.05 65.09∗ 17.82 25.11∗ 50.98 55.55∗
LM 44.64 46.30∗ 67.26 67.98 34.50 36.16 69.15 70.29 35.15 37.78∗ 59.63 61.56
BM25 44.70 47.09∗ 67.09 66.78 34.98 40.04∗ 68.47 72.00∗ 35.31 36.98∗ 60.40 62.68
DRMM 44.05 \ 68.24 \ 36.22 \ 70.41 \ 35.95 \ 61.42 \
DUET 43.86 \ 67.86 \ 15.26 \ 58.65 \ 16.88 \ 45.25 \
Conv-KNRM 44.13 \ 67.36 \ 22.65 \ 60.41 \ 37.95 \ 51.42 \
Table 2: Performance comparison of the proposed models and baselines. Best results for each metric on each collection are
highlighted in bold. * indicates a statistically significant improvement (p<0.05) of TDV over baselines. DRMM, DUET and
Conv-KNRM do not outperform statistically significantly TDV-BM25 or TDV-LM.

Method AP88-89 LA FT91-94
TDV-TF-IDF -45.00% -39.67% -45.77%
TDV-LM -46.06% -34.03% -40.25%
TDV-BM25 -46.91% -32.35% -44.42%

Table 3: Inverted index memory footprint reduction.

of LM has to compute logarithms (that are computationally expen-
sive) at retrieval time whereas BM25 and TF-IDF can compute such
operations during indexation and use a lookup table at retrieval.
Effectiveness of proposed approaches. Table (2) shows the per-
formance comparison of baselines and our models. Our main ob-
servation is that in most cases, learning and incorporating TDVs
into IR ranking functions improves their performances despite the
small amount of training data. Indeed, by construction and as a re-
sults of the bias initialization described in Section (3.3), our models
performance are already close to the baselines at the start of the
training process. Moreover, since we are in a limited data scenario,
neural baselines perform poorly on the TREC collections compared
to the traditional ones. The exception being DRMM as it has few
parameters and does not require large amount of training data.
Memory footprint reduction. Table (3) describes the inverted
index memory footprint reduction obtained when removing terms
with zero discrimination value from the inverted index. For all col-
lections, we are able to remove a significant portion of the inverted
index and still outperform the original ranking functions.

5 CONCLUSION
In this paper, we proposed to learn TDVs using supervised learning.
In order to have TDVs specific to traditional IR ranking functions
and to be able to use neural networks, we developed a framework
to make such functions differentiable and compatible with matrix
operations. Moreover, our models can be trained with few positively
labelled data. Removing terms with zero TDV at indexation leads to
drastic retrieval speed up with a slight performance improvement
compared to BM25 on several TREC collections. As future work, we
are studying the correlation between the learned TDVs and count
based formulae such as idf. We also plan to evaluate our models on
collections with larger amount of labelled data.

REFERENCES
[1] M. Abadi, A. Agarwal, et al. 2016. TensorFlow: Large-Scale Machine Learn-

ing on Heterogeneous Distributed Systems. CoRR abs/1603.04467 (2016).
arXiv:1603.04467 http://arxiv.org/abs/1603.04467

[2] F. Can and E. A. Ozkarahan. 1987. Computation of term/document discrimination
values by use of the cover coefficient concept. JASIS 38, 3 (1987), 171–183.

[3] Z. Dai, C. Xiong, J. Callan, and Z. Liu. 2018. Convolutional Neural Networks for
Soft-Matching N-Grams in Ad-hoc Search. InWSDM 2018, Marina Del Rey, CA,
USA, February 5-9, 2018. 126–134.

[4] H. Fang, T. Tao, and C. Zhai. 2004. A formal study of information retrieval
heuristics. In SIGIR 2004: Sheffield, UK, July 25-29, 2004. 49–56.

[5] J. Guo, Y. Fan, Q. Ai, and W. B. Croft. 2016. A Deep Relevance Matching Model
for Ad-hoc Retrieval. In CIKM 2016, Indianapolis, IN, USA, October 24-28, 2016.
55–64.

[6] J. Guo, Y. Fan, X. Ji, and X. Cheng. 2019. MatchZoo: A Learning, Practicing, and
Developing System for Neural Text Matching. In SIGIR 2019, Paris, France, July
21-25, 2019. 1297–1300.

[7] D. P. Kingma and J. Ba. 2015. Adam: A Method for Stochastic Optimization.
In ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings.
http://arxiv.org/abs/1412.6980

[8] T. Mikolov, E. Grave, P. Bojanowski, C. Puhrsch, and A. Joulin. 2018. Advances in
Pre-Training Distributed Word Representations. In LREC 2018, Miyazaki, Japan,
May 7-12, 2018.

[9] B. Mitra, F. Diaz, and N. Craswell. 2017. Learning to Match using Local and Dis-
tributed Representations of Text for Web Search. In WWW 2017, Perth, Australia,
April 3-7, 2017. 1291–1299.

[10] C. Ramirez, V. Kreinovich, and M. Argaez. 2013. Why l1 is a good approximation
to l0: A geometric explanation. Journal of Uncertain Systems 7, 3 (2013), 203–207.

[11] S. E. Robertson and H. Zaragoza. 2009. The Probabilistic Relevance Framework:
BM25 and Beyond. Foundations and Trends in Information Retrieval 3, 4 (2009),
333–389.

[12] D. Roy, S. Bhatia, and M. Mitra. 2019. Selecting Discriminative Terms for Rele-
vance Model. In SIGIR 2019, Paris, France, July 21-25, 2019. 1253–1256.

[13] G. Salton. 1975. A theory of indexing. Regional conference series in applied
mathematics, Vol. 18. SIAM.

[14] G. Salton, A. Wong, and C.-S. Yang. 1975. A Vector Space Model for Automatic
Indexing. Commun. ACM 18, 11 (1975), 613–620.

[15] H. Zamani, M. Dehghani, W. B. Croft, E. G. Learned-Miller, and Jaap Kamps. 2018.
From Neural Re-Ranking to Neural Ranking: Learning a Sparse Representation
for Inverted Indexing. In CIKM 2018, Torino, Italy, October 22-26, 2018. 497–506.

[16] C. Zhai and J. D. Lafferty. 2001. A Study of Smoothing Methods for Language
Models Applied to Ad Hoc Information Retrieval. In SIGIR 2001: New Orleans,
Louisiana, USA, September 9-13, 2001. 334–342.

http://arxiv.org/abs/1603.04467
http://arxiv.org/abs/1603.04467
http://arxiv.org/abs/1412.6980

	Abstract
	1 Introduction
	2 Learning term discrimination
	2.1 Differentiable traditional IR
	2.2 Shallow neural network for learning TDVs
	2.3 Learning TDVs with differentiable IR
	2.4 Training

	3 Experiments
	3.1 Collections
	3.2 Baselines
	3.3 Implementation
	3.4 Evaluation

	4 Results
	5 Conclusion
	References

