I. INTRODUCTION

In this paper, we consider the derivative nonlinear Schrödinger equation on [0, +∞) with Robin boundary condition at 0:

           iv t + v xx = i 2 |v| 2 v x -i 2 v 2 v x -3 16 |v| 4 v for x ∈ R + , v(0, x) = v 0 (x), ∂ x v(t, 0) = αv(t, 0) ∀t ∈ R, (1.1) 
where α ∈ R is a given constant. The particular choice for the nonlinearity will become clear after Remark I.1.

The linear parts of (1.1) can be rewritten in the following forms:

     iv t + H α v = 0 for x ∈ R + , v(0) = v 0 , (1.2) 
where H α are self-adjoint operators defined by

H α : D( H α ) ⊂ L 2 (R + ) → L 2 (R + ),
H α u = u xx , D( H α ) = u ∈ H 2 (R + ) : u x (0 + ) = αu(0 + )) .

We recall that e i H α t : R → L (L 2 (R + )) is a group which defines the solution of (1.2).

The derivative nonlinear Schrödinger equation was originally introduced in Plasma Physics as a simplified model for Alfvén wave propagation. Since then, it has attracted a lot of attention from the mathematical community (see Refs. [START_REF] Hayashi | On the derivative nonlinear Schrödinger equation[END_REF][START_REF] Herr | On the Cauchy problem for the derivative nonlinear Schrödinger equation with periodic boundary condition[END_REF][START_REF] Kaup | An exact solution for a derivative nonlinear Schrödinger equation[END_REF].

Robin boundary conditions are a weighted combination of Dirichlet boundary conditions and Neumann boundary conditions. Robin boundary conditions are also called impedance boundary conditions, from their application in electromagnetic problems, or convective boundary conditions, from their application in heat transfer problems. In mathematics, there are many works studying equations under the Robin boundary condition (see e.g Ref. 4 and 5).

Consider the equation (1.1), and set u(t, x) = exp 3i 4

x ∞ |v(t, y)| 2 dy v(t, x).

Using the Gauge transformation, we see that u solves

iu t + u xx = i∂ x (|u| 2 u), t ∈ R, x ∈ (0, ∞), (1.3) 
under a boundary condition ∂ x u(t, 0) = αu(t, 0) + 3i 4 |u(t, 0)| 2 u(t, 0). In the case on all line, there are many papers dealing with the Cauchy problem of (1.3). In Ref. [START_REF] Hayashi | Finite energy solutions of nonlinear Schrödinger equations of derivative type[END_REF], the authors established the local well posedness in H 1 (R) by using a Gauge transform. Indeed, since u solves (1.3) on R, by setting

h(t, x) = exp -i x -∞ |u(t, y)| 2 dy u(t, x), k = h x + i 2 |h| 2 h, (1.4) 
we have h, k solve

     ih t + h xx = -ih 2 k, ik t + k xx = ik 2 h.
(1.5)

By classical arguments, we can prove that given h 0 , k 0 ∈ L 2 (R) satisfying (1.4) there exists a unique solution h, k ∈ C([0, T ], L 2 (R)) ∩ L 4 ([0, T ], L ∞ (R)). To obtain the existence of solution of (1.1), the authors proved that the relation (1.4) is satisfied for all t ∈ [0, T ]. Thus, since h, k solve (1.5) and satisfy (1.4), if we set

u(t, x) = exp i x -∞
|h(t, y)| 2 dy h(t, x), then u ∈ C([0, T ], H 1 (R)) solves (1.1). In Ref. [START_REF] Wu | Global well-posedness on the derivative nonlinear Schrödinger equation[END_REF], the author proved the global well posedness on H 1 (R) under a L 2 (R) norm bound for the initial data (see also Refs. 8 and 9). In Ref. [START_REF] Bahouri | Global well-posedness for the derivative nonlinear schrödinger equation[END_REF], the authors proved the global well posedness of (1.3) given initial data in H 1 2 (R) and that furthemore the H 1 2 (R) norm is globally bounded in time. This result closes the discussion in the setting of the Sobolev spaces H s (R). In the half line case, Wu 11 proved existence of blow up solution of (1.3) under Dirichlet boundary condition, given initial data in Σ := {u 0 ∈ H 2 (R + ), xu 0 ∈ L 2 (R + )}.

In this paper, we give a proof of existence of blow up solutions of (1.1) under Robin boundary condition.

To study equation (1.1), we start by the definition of solution on H 1 (R + ). Since (1.1) contains a Robin boundary condition, the notion of solution in H 1 (R + ) is not completely clear. We use the following definition. Let I be an open interval of R. We say that v is a

H 1 (R + ) solution of the problem (1.1) on I if v ∈ C(I, H 1 (R + )) satisfies the following equation v(t) = e i H α t ϕ -i t 0 e i H α (t-s) g(v(s)) ds, (1.6) 
where g is defined by

g(v) = i 2 |v| 2 v x - i 2 v 2 v x - 3 16 |v| 4 v.
Let v ∈ C(I, D( H α )) be a classical solution of (1.1). At least formally, we have

1 2 ∂ t (|v| 2 ) = -∂ x Im(v x v).
Therefore, using the Robin boundary condition we have

∂ t 1 2 ∞ 0 |v| 2 dx = -Im(v x v)(t, ∞) + Im(v x v)(t, 0) = Im(v x v)(t, 0) = αIm(|v(t, 0)| 2 ) = 0.
This implies the conservation of the mass. By elementary calculations, we have

∂ t |v x | 2 - 1 16 |v| 6 = ∂ x 2Re(v x v t ) - 1 2 |v| 2 |v x | 2 + 1 2 v 2 v 2 x .
Hence, integrating the two sides in space, we obtain

∂ t R + |v x | 2 dx - 1 16 |v| 6 dx = -2Re(v x (t, 0)v t (t, 0)) + 1 2 |v(t, 0)| 2 |v x (t, 0)| 2 - 1 2 v(t, 0) 2 v x (t, 0) 2 .
Using the Robin boundary condition for v, we obtain

∂ t R + |v x | 2 dx - 1 16 |v| 6 dx = -2αRe(v(t, 0)v t (t, 0)) = -α∂ t (|v(t, 0)| 2 ).
This implies the conservation of the energy which is defined as in (1.7).

In this paper, we will need the following assumption.

Assumption 1. We assume that for all v 0 ∈ H 1 (R + ) there exists a solution v ∈ C(I, H 1 (R + )) of (1.1) for some interval I ⊂ R. Moreover, v satisfies the following conservation laws:

M(v) := 1 2 v 2 H 1 (R + ) = M(v 0 ), E(v) := 1 2 v x 2 L 2 (R + ) - 1 32 v 6 L 6 (R + ) + α 2 |v(t, 0)| 2 = E(v 0 ). (1.7) 
Remark I.1. In (1.1), if we consider the nonlinear term

i|v| 2 v x instead of i 2 |v| 2 v x -i 2 v 2 v x -3 16 |v| 4 v then there is no conservation of energy of solution. Indeed, set u(t, x) = v(t, x) exp - i 4 x ∞ |v(t, y)| 2 dy . If v solves      iv t + v xx = i|v| 2 v x , ∂ x v(t, 0) = αv(t, 0) then u solves      iu t + u xx = i 2 |u| 2 u x -i 2 u 2 u x -3 16 |u| 4 u, ∂ x u(t, 0) = αu(t, 0) -i 4 |u(t, 0)| 2 u(t, 0). (1.8)
By elementary calculations, since u solves (1.8), we have

∂ t |u x | 2 - 1 16 |u| 6 = ∂ x 2Re(u x u t ) - 1 2 |u| 2 |u x | 2 + 1 2 u 2 u x 2 .
Integrating two sides in space, we obtain

∂ t R + |u x | 2 - 1 16 |u| 6 dx = -2Re(u x (t, 0)u t (t, 0)) + 1 2 |u(t, 0)| 2 |u x (t, 0)| 2 - 1 2 u(t, 0) 2 u x (t, 0) 2 .
Using the boundary condition of u, we obtain

∂ t R + |u x | 2 - 1 16 |u| 6 dx = -2αRe(u(t, 0)u t (t, 0)) - 1 2 Im(u(t, 0)|u(t, 0)| 2 u t (t, 0)) + 1 2 |u(t, 0)| 4 α 2 + 1 16 |u(t, 0)| 4 -α + i 4 |u(t, 0)| 2 2 = -α∂ t (|u(t, 0)| 2 ) + A, where A = -1 2 Im(u(t, 0)|u(t, 0)| 2 u t (t, 0)) + 1 2 |u(t, 0)| 4 α 2 + 1 16 |u(t, 0)| 4 -α + i 4 |u(t, 0)| 2 2
. Moreover, we cannot write A in form ∂ t B(u(t, 0)), for some function B : C → C. Then, there is no conservation of energy of u and hence, there is no conservation of energy of v.

The existence of blow-up solutions for classical nonlinear Schrödinger equations was considered by Glassey 12 in 1977. He introduced a concavity argument based on the second derivative in time of xu(t) 2 L 2 to show the existence of blow up solutions. In this paper, we are also interested in studying the existence of blow-up solutions of (1.1). The limit case α = +∞ is formally equivalent to Dirichlet boundary condition if we write v(t, 0) = 1 α v x (t, 0) = 0. In Ref. 11, the author proved the existence of blow up solutions of (1.1) with Dirichlet boundary condition and some conditions on the initial data. Using similar arguments as in Ref. 11, we obtain the existence of blow up solutions in the case α 0, under a weighted space condition for the initial data and negativity of the energy. Our first main result is the following.

Theorem I.2. We assume Assumption 1. Let α 0 and v 0 ∈ Σ where

Σ = u ∈ D( H α ), xu ∈ L 2 (R + )
such that E(v 0 ) < 0. Then the associated solution v of (1.1) blows up in finite time i.e T min > -∞ and T max < +∞.

The stability of standing waves for classical nonlinear Schrödinger equations was originally studied by Cazenave and Lions 13 with variational and compactness arguments. A second approach, based on spectral arguments, was introduced by Weinstein 14,15 and then considerably generalized by Grillakis, Shatah and Strauss 16,17 (see also Refs. 18,[START_REF] De Bièvre | Orbital stability via the energy-momentum method: the case of higher dimensional symmetry groups[END_REF]. The derivative nonlinear Schrödinger equation has a two-parameter family of solitary waves solutions. The stability of these particular solutions was studied in many works before (see e.g Refs. [START_REF] Ning | Instability of solitary wave solutions for derivative nonlinear Schrödinger equation in endpoint case[END_REF][START_REF] Kwon | Orbital stability of solitary waves for derivative nonlinear Schrödinger equation[END_REF][START_REF] Guo | Instability of the solitary wave solutions for the generalized derivative nonlinear Schrödinger equation in the critical frequency case[END_REF]. In our work, we use the variational techniques to study the stability of standing waves. First, we define

S ω (v) := 1 2 v x 2 L 2 (R + ) + ω v 2 L 2 (R + ) + α|v(0)| 2 - 1 32 v 6 L 6 (R + ) , K ω (v) := v x 2 L 2 (R + ) + ω v 2 L 2 (R + ) + α|v(0)| 2 - 3 16 v 6 L 6 (R + ) ,
where v(0) is value of function v at x = 0. We are interested in the following variational problem:

d(ω) := inf S ω (v) | K ω (v) = 0, v ∈ H 1 (R + ) \ {0} .
(1.9)

We have the following result.

Proposition I.3. Let ω, α ∈ R such that ω > α 2 . All minimizers of (1.9) are of form e iθ ϕ ω , where θ ∈ R and ϕ ω is given by

ϕ ω = 2 4 √ ω sech 1 2 2 √ ω|x| + tanh -1 -α √ ω .
We give the definition of stability and instability by blow up in H 1 (R + ). Let w(t, x) = e iωt ϕ ω (x) be a standing wave solution of (1.1).

(1) The standing wave w is called orbitally stable in H 1 (R + ) if for all ε > 0, there exists δ > 0

such that if v 0 ∈ H 1 (R + ) satisfies v 0 -ϕ ω H 1 (R + ) δ ,
then the associated solution v of (1.1) satisfies

sup t∈R inf θ ∈R v(t) -e iθ ϕ ω H 1 (R + ) < ε.
Otherwise, w said to be unstable.

(2) The standing wave w is called unstable by blow up if there exists a sequence (ϕ n ) such that lim n→∞ ϕ nϕ ω H 1 (R + ) = 0 and the associated solution v n of (1.1) blows up in finite time for all n.

Our second main result is the following.

Theorem I.4. Let α, ω ∈ R be such that ω > α 2 . The standing wave e iωt ϕ ω , where ϕ ω is the profile as in Proposition I.3, solution of (1.1), satisfies the following properties.

(1) If α < 0 then the standing wave is orbitally stable in H 1 (R + ).

(2) If α 0 then the standing wave is unstable by blow up.

Remark I.5. The conservation laws play an important role to study the stability of standing waves.

However, the existence of conservation of energy is not always true (see remark I.1). Our work can only extend for the models with nonlinear terms such that the energy is conserved.

Remark I.6. The blow up of solution is true in the case α = 0 i.e Neumann boundary condition.

In addition, there exist standing waves in this case. The formula of standing waves in this case is only a special case of the general case α ∈ R. Using similar arguments as in Ref. [START_REF] Weinstein | Nonlinear Schrödinger equations and sharp interpolation estimates[END_REF] (see also Ref.

24, Theorem 5.2), we obtain that in case α = 0, the standing waves is unstable by blow up.

This paper is organized as follows. First, under the assumption of local well posedness in H 1 (R + ), we prove the existence of blow-up solutions using a virial argument: In Section II A, we give the proof of Theorem I.2. Second, in the case α < 0, using similar arguments as in Ref. [START_REF] Colin | Stability of solitary waves for derivative nonlinear Schrödinger equation[END_REF], we prove the orbital stability of standing waves of (1.1). In the case α 0, using similar arguments as in Ref. [START_REF] Coz | Standing waves in nonlinear Schrödinger equations[END_REF], we prove the instability by blow up of standing waves. The proof of Theorem I.4 is obtained in Section II B. Finaly, in Section III, we prove the invariance of a set under the flow of equation (1.1) which gives us another proof of the instability of standing waves. In this section, we also prove that ∂ ω φω 2 L 2 (R) > 0 provided α < 0, which is important in the proof of stability of standing waves.

II. PROOF OF THE MAIN RESULTS

We consider the equation (1.1) and assume that Assumption 1 holds.

A. The existence of blow-up solutions

In this section, we give the proof of Theorem I.2 using a virial argument. Let α 0 and v be a solution of (1.1). To prove the existence of blow-up solutions, we use similar arguments as in Ref.

Set

I(t) = ∞ 0 x 2 |v(t)| 2 dx. Let u(t, x) = v(t, x) exp - i 4 ∞ x |v| 2 dy (2.10) be a Gauge transform in H 1 (R + ). Then the problem (1.1) is equivalent with      iu t + u xx = i|u| 2 u x , u x (t, 0) = αu(t, 0) + i 4 |u(t, 0)| 2 u(t, 0). (2.11) 
The equation (2.11) has a simpler nonlinear form, but we pay this simplification with a nonlinear boundary condition. Observe that

I(t) = ∞ 0 x 2 |u(t)| 2 dx = ∞ 0 x 2 |v(t)| 2 dx.
By a direct calculation, we get

∂ t I(t) = 2Re ∞ 0 x 2 u(t, x)∂ t u(t, x) dx = 2Re ∞ 0 x 2 u(iu xx + |u| 2 u x ) dx (2.12) = 2Im ∞ 0 2xuu x dx - 1 2 ∞ 0 2x|u| 4 dx (2.13) = 4Im ∞ 0 xu x u dx - ∞ 0 x|u| 4 dx. (2.14) Define J(t) = Im ∞ 0 xu x u dx.
We have

∂ t J(t) = Im ∞ 0 xu x u t dx + Im ∞ 0 xuu xt dx = -Im ∞ 0 xu t u x dx -Im ∞ 0 (xu) x u t dx = -2Im ∞ 0 xu t u x dx -Im ∞ 0 u t u dx = -2Im ∞ 0 xu x (iu xx + |u| 2 u x ) dx -Im ∞ 0 u(iu xx + |u| 2 u x ) dx = -2Re ∞ 0 xu x u xx dx -Re ∞ 0 uu xx dx -Im ∞ 0 |u| 2 u x u dx = - ∞ 0 x∂ x |u x | 2 dx -Re(uu x )(t, +∞) + Re(uu x )(t, 0) + Re ∞ 0 u x u x dx -Im ∞ 0 |u| 2 u x u dx = ∞ 0 |u x | 2 dx + Re(u(t, 0)u x (t, 0)) + ∞ 0 |u x | 2 dx -Im ∞ 0 |u| 2 u x u dx = 2 ∞ 0 |u x | 2 dx -Im ∞ 0 |u| 2 u x u dx + Re(u(t, 0)u x (t, 0)).
Using the Robin boundary condition we have

∂ t J(t) = 2 ∞ 0 |u x | 2 dx -Im ∞ 0 |u| 2 u x u dx + α|u(t, 0)| 2 .
Moreover using the expression of v in term of u given in (2.10), we get

∂ t J(t) = 2 ∞ 0 |v x | 2 dx - 1 8 ∞ 0 |v| 6 dx + α|v(t, 0)| 2 = 4E(v) -α|v(t, 0)| 2 4E(v) = 4E(v 0 ).
By integrating the two sides of the above inequality in time we have

J(t) J(0) + 4E(v 0 )t. (2.15)
Integrating the two sides of (2.12) in time we have

I(t) = I(0) + 4 t 0 J(s) ds - t 0 ∞ 0 x|u(s, x)| 4 dx ds I(0) + 4 t 0 J(s) ds.
Using (2.15) we have

I(t) I(0) + 4 t 0 (J(0) + 4E(v 0 )s) ds I(0) + 4J(0)t + 8E(v 0 )t 2 .
From the assumption E(v 0 ) < 0, there exists a finite time T * > 0 such that I(T * ) = 0,

I(t) > 0 for 0 < t < T * . Note that ∞ 0 |v 0 (x)| 2 dx = ∞ 0 |v(t, x)| 2 dx = -2Re ∞ 0 xv(t, x)v x (t, x) dx 2 xv L 2 x (R + ) v x L 2 x (R + ) = 2 I(t) v x L 2 x (R + ) .
Then there exists a constant

C = C(v 0 ) > 0 such that v x L 2 x (R + ) C 2 I(t) → +∞ as t → T * .
Then the solution v blows up in finite time in H 1 (R + ). This complete the proof of Theorem I.2.

B. Stability and instability of standing waves

In this section, we give the proof of Theorem I.4. To avoid confusion, throughout of this section, we denote v(0) is value of function v at point x = 0. First, we find the form of the standing waves of (1.1).

Standing waves

Let v = e iωt ϕ ω be a solution of (1.1). Then ϕ ω solves

           0 = ϕ xx -ωϕ + 1 2 Im(ϕ x ϕ)ϕ + 3 16 |ϕ| 4 ϕ, for x > 0 ϕ x (0) = αϕ(0), ϕ ∈ H 2 (R + ).
(2.16)

Set

A := ω - 1 2 Im(ϕ ω ϕ ω ) - 3 16 |ϕ ω | 4
By writing ϕ ω = f + ig for f and g real valued functions, for x > 0, we have

f xx = A f , g xx = Ag.
Thus,

∂ x ( f x g -g x f ) = f xx g -g xx f = 0 when x > 0.
Hence, by using f , g ∈ H 2 (R + ), we have

f x (x)g(x) -g x (x) f (x) = 0 when x > 0.
Then, for all x > 0, we have

Im(ϕ ω (x)ϕ ω (x)) = g x (x) f (x) -f x (x)g(x) = 0, hence, ϕ ω solves            0 = ϕ xx -ωϕ + 3 16 |ϕ| 4 ϕ, for x > 0 ϕ x (0) = αϕ(0), ϕ ∈ H 2 (R + ).
(2.17)

We have the following result.

Proposition II.1. Let ω > α 2 . There exists a unique (up to phase shift) solution ϕ ω of (2.17), which is of the form

ϕ ω = 2 4 √ ω sech 1 2 2 √ ω|x| + tanh -1 -α √ ω , (2.18) 
for all x > 0.

Proof. Let ϕ ω be a solution of (2.17) and w be the even function defined by

w(x) =    ϕ ω (x) if x 0, ϕ ω (-x) if x 0. Then w solves            0 = -w xx + ωw -3 16 |w| 4 w, for x = 0, w x (0 + ) -w x (0 -) = 2αw(0), w ∈ H 2 (R) \ {0} ∩ H 1 (R). (2.19)
Using the results of Fukuizumi and Jeanjean 26 (see Proposition II.2), we obtain that

w(x) = 2 4 √ ω sech 1 2 2 √ ω|x| + tanh -1 -α √ ω
up to phase shift provided ω > α 2 . Hence, for x > 0 we have

ϕ ω (x) = 2 4 √ ω sech 1 2 2 √ ω|x| + tanh -1 -α √ ω up to phase shift.
This implies the desired result.

The variational problems

In this section, we give the proof of Proposition I.3.

First, we introduce another variational problem:

d(ω) := inf S ω (v) | v even, K ω (v) = 0, v ∈ H 1 (R) \ {0} , (2.20) 
where S ω , K ω are defined for all v ∈ H 1 (R) by

S ω (v) := 1 2 v x 2 L 2 (R) + ω v 2 L 2 (R) + 2α|v(0)| 2 - 1 32 v 6 L 6 (R) , K ω (v) := v x 2 L 2 (R) + ω v 2 L 2 (R) + 2α|v(0)| 2 - 3 16 v 6 L 6 (R) .
The functional K ω is called Nehari functional. The following result was proved in Refs. 26 and 27.

Proposition II.2. Let ω > α 2 . Consider the following equation

     -ϕ xx + 2αδ ϕ + ωϕ -3 16 |ϕ| 4 ϕ = 0, ϕ ∈ H 1 (R) \ {0} .
(

2.21)

There exists a unique positive solution φω of (2.21). This solution is the unique positive minimizer of (2.20). Furthermore, we have an explicit formula for φω

φω (x) = 2 4 √ ω sech 1 2 2 √ ω|x| + tanh -1 -α √ ω . (2.22)
We have the following relation between the variational problems.

Proposition II.3. Let ω > α 2 . We have

d(ω) = 1 2 d(ω).
Proof. Assume v is a minimizer of (1.9), define the H 1 (R) function w by

w(x) =    v(x) if x > 0, v(-x) if x < 0. The function w ∈ H 1 (R) \ {0} verifies S ω (w) = 2S ω (v) = 2d(ω), K ω (w) = 2K ω (v) = 0.
This implies that

d(ω) S ω (w) = 2d(ω). (2.23)
Now, assume v is a minimizer of (2.20). Let w be the restriction of v on R + , then,

K ω (w) = 1 2 K ω (v) = 0.
Hence, we obtain

d(ω) = S ω (v) = 2S ω (w) 2d(ω). (2.24)
Combining (2.23) and (2.24) we have

d(ω) = 2d(ω).
This implies the desired result.

Proof of Theorem I.3. Let v be a minimizer of (1.9). Define w(x) ∈ H 1 (R) by

w(x) =    v(x) if x > 0, v(-x) if x < 0.
Then, w is an even function. Moreover, w satisfies

K ω (w) = 2K ω (v) = 0, S ω (w) = 2S ω (v) = 2d(ω) = d(ω).
Hence, w is a minimizer of (2.20). From Proposition II.2, w is of the form e iθ φω . Hence,

v = w| R + satisfies v = e iθ φω | R + = e iθ ϕ ω .
This completes the proof of Proposition I.3.

Stability and instability of standing waves

In this section, we give the proof of Theorem I.4. We use the notations S ω and K ω as in Section II B 2. First, we define

N(v) := 3 16 v 6 L 6 (R + ) , (2.25) 
L(v) := v x 2 L 2 (R + ) + ω v 2 L 2 (R + ) + α|v(0)| 2 . (2.26)
We can rewrite S ω , K ω as follows

S ω = 1 2 L - 1 6 N, K ω = L -N.
We have the following classical properties of the above functions.

Lemma II.4. Let (ω, α) ∈ R 2 such that ω > α 2 . The following assertions hold.

(1) There exists a constant C > 0 such that

L(v) C v 2 H 1 (R + ) ∀v ∈ H 1 (R + ).
(2) We have d(ω) > 0.

(

) If v ∈ H 1 (R + ) satisfies K ω (v) < 0 then L(v) > 3d(ω). 3 
Proof. We have

|v(0)| 2 = - ∞ 0 ∂ x (|v(x)| 2 ) dx = -2Re ∞ 0 v(x)v x (x) dx 2 v L 2 (R + ) v x L 2 (R + ) .
Hence,

L(v) = v x 2 L 2 (R + ) + ω v 2 L 2 (R + ) + α|v(0)| 2 v x 2 L 2 (R + ) + ω v 2 L 2 (R + ) -2|α| v L 2 (R + ) v x L 2 (R + ) C v 2 H 1 (R + ) + (1 -C) v x 2 L 2 (R + ) + (ω -C) v 2 L 2 (R + ) -2|α| v L 2 (R + ) v x L 2 (R + ) C v 2 H 1 (R + ) + (2 (1 -C)(ω -C) -2|α|) v L 2 (R + ) v x L 2 (R + ) .
From the assumption ω > α 2 , we can choose C ∈ (0, 1) such that

2 (1 -C)(ω -C) -2|α| > 0.
This implies [START_REF] Hayashi | On the derivative nonlinear Schrödinger equation[END_REF]. Now, we prove (2). Let v be an element of

H 1 (R + ) satisfying K ω (v) = 0. We have C v 2 H 1 (R + ) L(v) = N(v) C 1 v 6 H 1 (R + ) .
Then,

v 2 H 1 (R + ) 4 C C 1 .
From the fact that, for v satisfying K ω (v) = 0, we have

S ω (v) = S ω (v) -1 6 K ω (v) = 1 3 L(v), this implies that d(ω) = 1 3 inf L(v) : v ∈ H 1 (R + ), K ω (v) = 0 C 3 4 C C 1 > 0.
Finally, we prove (3). Let v ∈ H 1 (R + ) satisfying K ω (v) < 0. Then, there exists λ 1 ∈ (0, 1) such that

K ω (λ 1 v) = λ 2 1 L(v) -λ 6 1 N(v) = 0. Since v = 0, we have 3d(ω) L(λ 1 v) = λ 2 1 L(v) < L(v). Define Ñ(v) := 3 16 v 6 L 6 (R) , (2.27) 
L(v) := v x 2 L 2 (R) + ω v 2 L 2 (R) + 2α|v(0)| 2 .
(2.28)

We can rewrite Sω , Kω as follows

Sω = 1 2 L - 1 6 Ñ, Kω = L -Ñ.
As consequence of the previous lemma, we have the following result.

Lemma II.5. Let (ω, α) ∈ R 2 such that ω > α 2 . The following assertions hold.

(1) There exists a constant C > 0 such that

L(v) C v 2 H 1 ∀v ∈ H 1 (R).
(2) We have d(ω) > 0.

(

) If v ∈ H 1 (R) satisfies Kω (v) < 0 then L(v) > 3 d(ω). 3 
We introduce the following properties.

Lemma II.6. Let 2 p < ∞ and ( f n ) be a bounded sequence in L p (R). Assume that f n → f a.e in R. Then we have

f n p L p -f n -f p L p -f p L p → 0.
For the proof of Lemma II.6, see Ref. 28.

Lemma II.7. The following minimization problem is equivalent to the problem (2.20) i.e they have the same minimum and the same minimizers: d. Now, let v be a minimizer of (2.29). We prove that Kω (v) = 0. Indeed, assuming Kω (v) < 0, we have

d := inf 1 16 u 6 L 6 : u even , u ∈ H 1 (R) \ {0}, Kω (u) 0 . ( 2 
Kω (λ v) = λ 2 v x 2 L 2 + ω v 2 L 2 + 2α|v(0)| 2 - 3λ 4 16 v 6 L 6 > 0,
as 0 < λ is small enough. Thus, by continuity, there exists a λ 0 ∈ (0, 1) such that Kω (λ 0 v) = 0. We

have d d(ω) 1 16 λ 0 v 6 L 6 < 1 16 v 6 L 6 = d,
which is a contradiction. It implies that Kω (v) = 0 and v is a minimizer of (2.30), hence v is a minimizer of (2.20). This completes the proof. Now, using similar arguments as in Ref. 27, Proof of Proposition 2, we have the following result.

Proposition II.8. Let (ω, α) ∈ R 2 be such that α < 0, ω > α 2 and (w n ) ⊂ H 1 (R) be a even sequence satisfying the following properties as n → ∞.

S ω (w n ) → d(ω), K ω (w n ) → 0.
Then, there exists a minimizer w of (2.20) such that w n → w strongly in H 1 (R) up to subsequence.

Proof.

In what follows, we shall often extract subsequence without mentioning this fact explicitly.

We divide the proof into two steps.

Step 1. Weak convergence to a nonvanishing function for the minimizing sequence. We

have 1 3 L(w n ) = Sω (w n ) - 1 6 Kω (w n ) → d(ω),
as n → ∞. Then, (w n ) is bounded in H 1 (R) and there exists w ∈ H 1 (R) even such that w n w in H 1 (R) up to subsequence. We prove w = 0. Assume that w ≡ 0. Define, for u ∈ H 1 (R),

S 0 ω (u) = 1 2 u x 2 L 2 + ω 2 u 2 L 2 - 1 32 u 6 L 6 , K 0 ω (u) = u x 2 L 2 + ω u 2 L 2 - 3 16 u 6 L 6 .
Let ψ ω be minimizer of the following problems

d 0 (ω) = inf S 0 ω (u) : u even , u ∈ H 1 (R) \ {0}, K 0 ω (u) = 0 = inf 1 16 u 6 L 6 : u even , u ∈ H 1 (R) \ {0}, K 0 ω (u) 0 . We have K 0 ω (w n ) = Kω (w n ) -2α|w n (0)| 2 → 0, as n → ∞.
Since α < 0, we have Kω (ψ ω ) < 0 and hence we obtain

d(ω) < 1 16 ψ ω 6 L 6 = d 0 (ω) (2.31)
We set

λ n = ∂ x w n 2 L 2 + ω w n 2 L 2 3 16 w n 6 L 6 1 4
.

We here remark that 0 < d(ω) = lim n→∞ 1 16 w n 6 L 6 . It follows that

λ 4 n -1 = K 0 ω (w n ) 3 16 w n 6 L 6 → 0,
as n → ∞. We see that K 0 ω (λ n w n ) = 0 and λ n w n = 0. By the definition of d 0 (ω), we have

d 0 (ω) 1 16 λ n w n 6 L 6 → d(ω) as n → ∞.
This contradicts (2.31). Thus, w = 0.

Step 2. Conclusion of the proof. Using Lemma II.6 we have Thus, L(w) = 3 d(ω). Combining with (2.33), we have L(w nw) → 0, as n → ∞. By Lemma II.5

Kω (w n ) -Kω (w n -w) -Kω (w) → 0, (2.32) L(w n ) -L(w n -w) -L(w) → 0. ( 2 
(1), we have w n → w strongly in H 1 (R). Hence, w is a minimizer of (2.20). This completes the proof.

To prove the stability statement (1) for α < 0 in Theorem I.4, we will use similar arguments as in the work of Colin and Ohta 25 . We need the following property.

Lemma II.9.

Let α < 0, ω > α 2 . If a sequence (v n ) ⊂ H 1 (R + ) satisfies S ω (v n ) → d(ω), (2.34) K ω (v n ) → 0, (2.35)
then there exists a constant θ 0 ∈ R such that v n → e iθ 0 ϕ ω , up to subsequence, where ϕ ω is defined as in Proposition I.3.

Proof. Define the sequence (w n ) ⊂ H 1 (R) as follows,

w n (x) =    v n (x) for x > 0, v n (-x) for x < 0.
We can check that

S ω (w n ) = 2S ω (v n ) → 2d(ω) = d(ω), K ω (w n ) = 2K ω (v n ) → 0,
as n → ∞. Using Proposition II.8, there exists a minimizer w 0 of (2.20) such that w n → w 0 strongly in H 1 (R), up to subsequence. For convenience, we assume that w n → w 0 strongly in H 1 (R). By Proposition II.2, there exists a constant θ 0 ∈ R such that w 0 = e iθ 0 φω , where φ is defined as in (2.22). Hence,

v n → e iθ 0 φω | R + = e iθ ϕ ω , strongly in H 1 (R + ),
up to subsequence. This completes the proof.

Define

A + ω = v ∈ H 1 (R + ) \ {0} : S ω (v) < d(ω), K ω (v) > 0 , A - ω = v ∈ H 1 (R + ) \ {0} : S ω (v) < d(ω), K ω (v) < 0 , B + ω = v ∈ H 1 (R + ) \ {0} : S ω (v) < d(ω), N(v) < 3d(ω) , B - ω = v ∈ H 1 (R + ) \ {0} : S ω (v) < d(ω), N(v) > 3d(ω) .
We have the following result.

Lemma II.10. Let ω, α ∈ R 2 such that α < 0 and ω > α 2 . The following assertions holds.

(1) The sets A + ω and A - ω are invariant under the flow of (1.1).

(

) A + ω = B + ω and A - ω = B - ω . 2 
Proof.

(1) Let u 0 ∈ A + ω and u(t) the associated solution for (1.1) on (T min , T max ). By u 0 = 0 and the conservation laws, we see that S ω (u(t)) = S ω (u 0 ) < d(ω) for t ∈ (T min , T max ). Moreover, by definition of d(ω) we have K ω (u(t)) = 0 on (T min , T max ). Since the function t → K ω (u(t)) is continuous, we have K ω (u(t)) > 0 on (T min , T max ). Hence, A + ω is invariant under flow of (1.1). By the same way, A - ω is invariant under flow of (1.1). (2) If v ∈ A + ω then by (2.28), (2.27) we have

N(v) = 3S ω (v) -2K ω (v) < 3d(ω), which shows v ∈ B + ω , hence A + ω ⊂ B + ω . Now, let v ∈ B + ω .
We show K ω (v) > 0 by contradiction. Suppose that K ω (v) 0. Then, by Lemma II.5 (3), L(v) 3d(ω). Thus, by (2.28) and (2.27), we have

S ω (v) = 1 2 L(v) - 1 6 N(v) d(ω), which contradicts S ω (v) < d(ω). Therefore, we have K ω (v) > 0, which shows v ∈ A + ω and B + ω ⊂ A + ω . Next, if v ∈ A - ω , then by Lemma II.5 (3), L(v) > 3d(ω)
. Thus, by (2.28) and (2.27), we have 

N(v) = L(v) -K ω (v) > 3d(ω), which shows v ∈ B - ω . Thus, A - ω ⊂ B - ω . Finally, if v ∈ B - ω ,
(v) = 3S ω (v) -N(v) < 3d(ω) -3d(ω) = 0, which shows v ∈ A - ω , hence, B - ω ⊂ A - ω .
This completes the proof.

From Proposition I.3, we have

d(ω) = S ω (ϕ ω ).
Since α < 0, using Proposition III.5, we have

d (ω) = ∂ ω ϕ ω 2 L 2 (R + ) = 1 2 ∂ ω φω 2 L 2 (R) > 0,
We define the function h :

(-ε 0 , ε 0 ) → R by h(τ) = d(ω + τ). Since h (0) = d (ω) = ϕ ω 2 L 2 (R + )
> 0 and h (0) = d (ω) > 0, by choosing ε 0 small enough, we can assume that h (τ) > 0 and h (τ) > 0 for τ ∈ (-ε 0 , ε 0 ).

Lemma II.11. Let (ω, α) ∈ R 2 such that α < 0 and ω > α 2 and let h be defined as above. Then, for any ε ∈ (0, ε 0 ), there exists

δ > 0 such that if v 0 ∈ H 1 (R + ) satisfies v 0 -ϕ ω H 1 (R + ) < δ , then the solution v of (1.1) with v(0, x) = v 0 (x) satisfies 3h(-ε) < N(v(t)) < 3h(ε) for all t ∈ (T min , T max ).
Proof. The proof of the above lemma is similar to the one on Ref. [START_REF] Colin | Stability of solitary waves for derivative nonlinear Schrödinger equation[END_REF]. Let ε ∈ (0, ε 0 ). Since h is increasing, we have h(-ε) < h(0) < h(ε). Moreover, by K ω (ϕ ω ) = 0 and (2.27), (2.28), we see

that 3h(0) = 3d(ω) = 3S ω (ϕ ω ) = N(ϕ ω ). Thus, if u 0 ∈ H 1 (R + ) satisfies u 0 -ϕ ω H 1 (R + ) < δ then we have 3h(0) = N(u 0 ) + O(δ ) and 3h(-ε) < N(u 0 ) < 3h(ε) for sufficiently small δ > 0.
Since h(±ε) = d(ω ± ε) and the set B ± ω are invariant under the flow of (1.1) by Lemma II.10, to conclude the proof, we only have to show that there exists δ > 0 such that if

u 0 ∈ H 1 (R + ) satisfies u 0 -ϕ ω H 1 (R + ) < δ then S ω±ε (u 0 ) < h(±ε). Assume that u 0 ∈ H 1 (R + ) satisfies u 0 - ϕ ω H 1 (R + ) < δ . We have S ω±ε (u 0 ) = S ω±ε (ϕ ω ) + O(δ ) = S ω (ϕ ω ) ± εM(ϕ ω ) + O(δ ) = h(0) ± εh (0) + O(δ ).
On the other hand, by the Taylor expansion, there exists

τ 1 = τ 1 (ε) ∈ (-ε 0 , ε 0 ) such that h(±ε) = h(0) ± εh (0) + ε 2 2 h (τ 1 ).
Since h (τ 1 ) > 0 by definition of h, we see that there exists δ > 0 such that if

u 0 ∈ H 1 (R + ) satisfies u 0 -ϕ ω H 1 (R + ) < δ then S ω±ε (u 0 ) < h(±ε)
. This completes the proof.

Proof of Theorem I.4 [START_REF] Hayashi | On the derivative nonlinear Schrödinger equation[END_REF]. Assume that e iωt ϕ ω is not stable for (1.1). Then, there exists a constant ε 1 > 0, a sequence of solutions (v n ) to (1.1), and a sequence {t n } ∈ (0, ∞) such that

v n (0, x) → ϕ ω (x) in H 1 (R + ), inf θ ∈R v n (t n ) -e iθ ϕ ω H 1 (R + ) ε 1 . (2.36)
Using the conservation laws of (1.1), we have

S ω (v n (t n )) = S ω (v n (0)) → S ω (ϕ ω ) = d(ω).
(2.37) Using Lemma II.11, we have

N(v n (t n )) → 3d(ω). (2.38) 
Combining (2.37) and (2.38), we have

K ω (v n (t n )) = 2S ω (v n (t n )) - 2 3 N(v n (t n )) → 0.
Therefore, using Lemma II.9, there exists θ 0 ∈ R such that (v n (t n , .)) has a subsequence (we denote it by the same letter) that converges to e iθ 0 ϕ ω in H 1 (R + ), where ϕ ω is defined as in Proposition I.3. Hence, we have

inf θ ∈R v n (t n ) -e iθ ϕ ω H 1 (R + ) → 0, (2.39) 
as n → ∞, this contradicts (2.36). Hence, we obtain the desired result.

Next, we give the proof of Theorem I.4 (2). We divide the proof in two cases.

First, let α = 0. In this case, we use similar arguments as in Ref. [START_REF] Weinstein | Nonlinear Schrödinger equations and sharp interpolation estimates[END_REF]. We have

E ω (v) = 1 2 v x 2 L 2 (R + ) - 1 32 v 6 L 6 (R + ) , P(v) = v x 2 L 2 (R + ) - 1 16 v 6 L 6 (R + ) .
Thus, E(ϕ ω ) = P(ϕ ω ) = 0. Let ε > 0 and ϕ ω,ε = (1 + ε)ϕ ω . We have

E(ϕ ω,ε ) = (1+ε) 2 1 2 ϕ ω 2 L 2 (R + ) -(1+ε) 6 1 32 ϕ ω 6 L 6 (R + ) = ((1+ε) 2 -(1+ε) 6 ) 1 2 ϕ ω 2 L 2 (R + ) < 0.
In the addition, |x|ϕ ω,ε (x) ∈ L 2 (R + ) by exponential decay of ϕ ω . Using Theorem I.2, the solution associated to ϕ ω,ε blows up in finite time. As ϕ ω,ε → ϕ ω in H 1 (R + ), we obtain the instability by blow-up of standing waves. Now, let α > 0. We use similar arguments as in Ref. [START_REF] Coz | Standing waves in nonlinear Schrödinger equations[END_REF]. Let e iωt ϕ ω be the standing wave solution of (1.1). Introduce the scaling

v λ (x) = λ 1 2 v(λ x).
Let S ω , K ω be defined as in Proposition I.3, for convenience, we will remove the index ω. Define

P(v) := ∂ ∂ λ S(v λ )| λ =1 = v x 2 L 2 (R + ) - 1 16 v 6 L 6 (R + ) + α 2 |v(0)| 2 .
In the following lemma, we investigate the behaviour of the above functional under scaling.

Lemma II.12. Assume α > 0. Let v ∈ H 1 (R + ) \ {0} be such that v(0) = 0, P(v) 0. Then there

exists λ 0 ∈ (0, 1] such that (i) P(v λ 0 ) = 0, (ii) λ 0 = 1 if only if P(v) = 0, (iii) ∂ ∂ λ S(v λ ) = 1 λ P(v λ ), (iv) ∂ ∂ λ S(v λ ) > 0 on (0, λ 0 ) and ∂ ∂ λ S(v λ ) < 0 on (λ 0 , ∞), (v) The function λ → S(v λ ) is concave on (λ 0 , ∞).
Proof. A simple calculation leads to

P(v λ ) = λ 2 v x 2 L 2 (R + ) - λ 2 16 v 6 L 6 (R + ) + λ α 2 |v(0)| 2 .
Then, for λ > 0 small enough, we have

P(v λ ) > 0.
By continuity of P, there exists λ 0 ∈ (0, 1] such that P(v λ 0 ) = 0. Hence (i) is proved. If λ 0 = 1 then P(v) = 1. Conversely, if P(v) = 0 then

0 = P(v λ 0 ) = λ 2 0 P(v) + λ 0 -λ 2 0 2 α|v(0)| 2 = λ 0 -λ 2 0 2 α|v(0)| 2 .
By the assumption v(0) = 0, we have λ 0 = 1, hence (ii) is proved. Item (iii) is obtained by a simple calculation. To obtain (iv), we use (iii). We have

P(v λ ) = λ 2 λ -2 0 P(v λ 0 ) + λ α 2 - λ 2 λ -1 0 α 2 |v(0)| 2 = λ α(λ 0 -λ ) 2λ 0 |v(0)| 2 .
Hence, P(v λ ) > 0 if λ < λ 0 and P(v λ ) < 0 if λ > λ 0 . This proves (iv). Finally, we have

∂ 2 ∂ 2 λ S(v λ ) = P(v) - α 2 |v(0)| 2 < 0.
This proves (v).

In the case of functions such that v(0) = 0, we have the following lemma.

Lemma II.13. Let v ∈ H 1 (R + ) \ {0}, v(0) = 0 and P(v) = 0 then we have S(v λ ) = S(v) for all λ > 0.

Proof. The proof is simple, using the fact that

∂ ∂ λ S(v λ ) = 1 λ P(v λ ) = λ P(v) = 0.
Hence, we obtain the desired result. Now, consider the minimization problems

d M := inf {S(v) : v ∈ M } , (2.40) 
m := inf S(v), v ∈ H 1 (R + ) \ 0, S (v) = 0 , (2.41) 
where

M = v ∈ H 1 (R + ) \ 0, P(v) = 0, K(v) 0 .
By classical arguments, we can prove the following property.

Proposition II.14. Let m be defined as above. Then, we have

m = inf S(v) : v ∈ H 1 (R + ) \ 0, K(v) = 0 .
We have the following relation between the minimization problems m and d M .

Lemma II.15. Let m and d M be defined as above. We have m = d M .

Proof. Let G be the set of all minimizers of (2.41). If ϕ ∈ G then S (ϕ) = 0. By the definition of S, P, K we have P(ϕ) = 0 and K(ϕ) = 0. Hence, ϕ ∈ M , this implies S(ϕ) d M . Thus, m d M .

Conversely, let v ∈ M . If K(v) = 0 then S(v) m, using Proposition II.14. Otherwise, K(v) < 0. Using the scaling v λ (x) = λ 1 2 v(λ x), we have

K(v λ ) = λ 2 v x 2 L 2 (R + ) - 3λ 2 16 v 6 L 6 (R + ) + ω v 2 L 2 (R + ) + αλ 2 |v(0)| 2 → ω v 2 L 2 (R + ) > 0,
as λ → 0. Hence, K(v λ ) > 0 as λ > 0 is small enough. Thus, there exists λ 1 ∈ (0, 1) such that K(v λ 1 ) = 0. Using Proposition II.14, S(v λ 1 ) m. We consider two cases. First, if v(0) = 0 then using Lemma II.13, we have S(v) = S(v λ 1 ) m. Second, if v(0) = 0 then using Lemma II.12, we have S(v) S(v λ 1 ) m. In any case, S(v) m. This implies d M m, and completes the proof.

Define

V := v ∈ H 1 (R + ) \ {0} : K(v) < 0, P(v) < 0, S(v) < m .
We have the following important lemma.

Lemma II. [START_REF] Grillakis | Stability theory of solitary waves in the presence of symmetry. I[END_REF]. If v 0 ∈ V then the solution v of (1.1) associated with v 0 satisfies v(t) ∈ V for all t in the time interval of existence.

Proof. Since S(v 0 ) < 0, by conservation of the energy and the mass we have

S(v(t)) = E(v(t)) + ωM(v(t)) = E(v 0 ) + ωM(v 0 ) = S(v 0 ) < m. (2.42)
If there exists t 0 > 0 such that K(v(t 0 )) 0 then by continuity of K and v, there exists t 1 ∈ (0,t 0 ] such that K(v(t 1 )) = 0. This implies S(v(t 1 )) m, using Proposition II.14. This contradicts (2.42).

Hence, K(v(t)) < 0 for all t in the time of existence of v. Now, we prove P(v(t)) < 0 for all t in the time of existence of v. Assume that there exists t 2 > 0 such that P(v(t 2 )) 0, then, there exists t 3 ∈ (0,t 2 ] such that P(v(t 3 )) = 0. Using the previous lemma, S(v(t 3 )) m, which contradicts (2.42). This completes the proof.

Using the above lemma, we have the following property of solutions of (1.1) when the initial data lies on V .

Lemma II.17. Let v 0 ∈ V , v be the corresponding solution of (1.1) in (T min , T max ). There exists δ > 0 independent of t such that P(v(t)) < -δ , for all t ∈ (T min , T max ).

Proof. Let t ∈ (T min , T max ), u = v(t) and u λ (x) = λ 1 2 u(λ x). Using Lemma II.12, there exists λ 0 ∈ (0, 1) such that P(u λ 0 ) = 0. If K(u λ 0 ) 0 then we keep λ 0 . Otherwise, K(u λ 0 ) > 0, then, there exists λ 0 ∈ (λ 0 , 1) such that K(u λ 0 ) = 0. We replace λ 0 by λ 0 . In any case, we have

S(u λ 0 ) m. (2.43)
By (v) of Proposition II.12 we have

S(u) -S(u λ 0 ) (1 -λ 0 ) ∂ ∂ λ S(u λ )| λ =1 = (1 -λ 0 )P(u).
In addition P(u) < 0, we obtain 

S(u) -S(u λ 0 ) (1 -λ 0 )P(u) > P(u). ( 2 
S(v 0 ) -m = S(v(t)) -m = S(u) -m S(u) -S(u λ 0 ) > P(u) = P(v(t)).

Setting

-δ := S(v 0 )m, we obtain the desired result.

Using the previous lemma, if the initial data lies on V and satisfies a weight condition then the associated solution blows up in finite time on H 1 (R + ). More precisely, we have the following result.

Proposition II.18. Let ϕ ∈ V such that |x|ϕ ∈ L 2 (R + ). Then the corresponding solution v of (1.1) blows up in finite time on H 1 (R + ).

Proof. By Lemma II.17, there exists δ > 0 such that P(v(t)) < -δ for t ∈ (T min , T max ). Remember that

∂ ∂t xv(t) 2 L 2 (R + ) = J(t) - R + x|v| 4 dx, (2.45) 
where J(t) satisfies

∂ t J(t) = 4 2 v x 2 L 2 (R + ) - 1 8 v 6 L 6 (R + ) + α|v(t, 0)| 2 = 8(P(v(t))) < -8δ .
This implies that

J(t) = J(0) + 8 t 0 P(v(s)) ds < J(0) -8δt.
Hence, from (2.45), we have

xv(t) 2 L 2 (R + ) = xv 0 2 L 2 (R + ) + t 0 J(s) ds - t 0 R + x|v| 4 dx ds xv 0 2 L 2 (R + ) + t 0 (J(0) -8δ s) ds xv 0 2 L 2 (R + ) + J(0)t -4δt 2 .
Thus, for t sufficiently large, there is a contradiction with xv(t) L 2 (R + ) 0. Hence, T max < ∞ and T min > -∞. By the blow up alternative, we have lim

t→T max v x L 2 (R + ) = lim t→T min v x L 2 (R + ) = ∞.
This completes the proof.

Proof of Theorem I.4 (2). Using Proposition II.18, we need to construct a sequence

(ϕ n ) ⊂ V such that ϕ n converges to ϕ ω in H 1 (R + ). Define ϕ λ (x) = λ 1 2 ϕ ω (λ x).
We have

S(ϕ ω ) = m, P(ϕ ω ) = K(ϕ ω ) = 0, ϕ ω (0) = 0.
By (iv) of Proposition II.12, S(ϕ λ ) < m for all λ > 0.

In the addition, P(ϕ λ ) < 0 for all λ > 1.

Moreover,

∂ ∂ λ K(ϕ λ ) = 2λ ϕ ω 2 L 2 (R + ) - 3 16 ϕ ω 6 L 6 (R + ) + α|ϕ ω (0)| 2 = 2λ (K(ϕ ω ) -ω ϕ ω 2 L 2 (R + ) -α|ϕ ω (0)| 2 ) + α|ϕ ω (0)| 2 = -2ωλ ϕ ω 2 L 2 (R + ) -α(2λ -1)|ϕ ω (0)| 2 < 0, when λ > 1. Thus, K(ϕ λ ) < K(ϕ ω ) = 0 when λ > 1. This implies ϕ λ ∈ V when λ > 1. Let λ n > 1 such that λ n → 1 as n → ∞. Define, for n ∈ N * ϕ n = ϕ λ n ,
then, the sequence (ϕ n ) satisfies the desired property. This completes the proof of Theorem I.4.

III. SOME TECHNICAL LEMMAS

Let ϕ ω be defined as in (2.18). Recall that

S ω (v) = 1 2 v x 2 L 2 (R + ) + ω 2 v 2 L 2 (R + ) + α 2 |v(0)| 2 - 1 32 v 6 L 6 (R + ) , K ω (v) = v x 2 L 2 (R + ) + ω v 2 L 2 (R + ) + α|v(0)| 2 - 3 16 v 6 L 6 (R + ) , P(v) = v x 2 L 2 (R + ) + α 2 |v(0)| 2 - 1 16 v 6 L 6 (R + ) ,
for all v ∈ H 1 (R + ). We have the following result.

Lemma III.1. The minimizers of two following variational problems are same:

d(ω) = inf{S ω (v)|K ω (v) = 0, v ∈ H 1 (R + ) \ {0}}, µ(ω) = inf{S ω (v)|S ω (v) = 0, v ∈ H 1 (R + ) \ {0}}.
Moreover, d(ω) = µ(ω) and each minimizer is of form e iθ ϕ ω , where θ ∈ R and ϕ ω is defined as in (2.18) Proof. This is a classical result (see e.g Ref. [START_REF] Colin | Stability of solitary waves for derivative nonlinear Schrödinger equation[END_REF], Lemma 10).

Lemma III.2. Let α > 0 and v ∈ H 1 (R + ) satisfies v = 0. Assume that P(v) 0. Then the following holds 1 2 P(v) S ω (v)µ(ω).

Proof. We use similar arguments as in Ref.29, proof of Lemma 4.3. Recall that

v λ (x) = λ 1 2 v(λ x).
Define

f (λ ) = S ω (v λ ) - λ 2 2 P(v) = ω 2 v 2 L 2 (R + ) + α 2 |v(0)| 2 λ - λ 2 2 .
We have

f (λ ) = α 2 |v(0)| 2 (1 -λ ).
Hence, in case v(0) = 0 we have

f (1) = max λ >0 f (λ ).
Moreover, in case v(0) = 0 we have f (λ ) ≡ ω 2 v 2 L 2 (R + ) . Thus, in all case we have

f (1) = max λ >0 f (λ ).
We have

K ω (v λ ) = λ 2 v x 2 L 2 (R + ) - 3 16 v 6 L 6 (R + ) + αλ |v(0)| 2 + ω v 2 L 2 (R + ) .
Thus, for λ > 0 small enough we have K ω (v λ ) > 0. For λ > 0 large enough, using P(v) 0 and α > 0 (hence v x 2 L 2 (R + ) 1 16 v 6 L 6 (R + ) ) we have K ω (v λ ) < 0. It follows that there exists a λ 0 > 0 such that K ω (v λ 0 ) = 0. By the definition of µ(ω), P(v) 0 and f (1) f (λ 0 ), we have

µ(ω) S ω (v λ 0 ) S ω (v λ 0 ) - λ 2 0 2 P(v) S ω (v) - 1 2 P(v).
This completes the proof.

Next, using the result of the previous lemmas we have the following.

Lemma III.3. The following set is invariant under flow of (1.1)

H := S ω (v) < d(ω), P(v) < 0, v ∈ H 1 (R + ) .

Proof. Let v 0 ∈ H and v ∈ C(I, H 1 (R + )) be the associated solution of (1.1). By the conservation law of (1.1), we have S ω (v(t)) = S ω (v 0 ) < d(ω). It remains to prove that P(v(t)) < 0 on I. By continuity of function t → P(v(t)), we only need to prove that P(v(t)) = 0 for all t ∈ I. On the contrary, suppose that P(v(t 0 )) = 0 for some t 0 ∈ I. Using Lemma III.2, we have

d(ω) = µ(ω) S ω (v(t 0 )) - 1 2 P(v(t 0 )) = S ω (v(t 0 )),
which contradicts the fact that S ω (v(t)) < d(ω) on I. This completes the proof.

The following lemma is a consequence of the above lemma.

Lemma III.4. Let v 0 ∈ H . Then the associated solution of (1.1) blows up in finite time.

Proof. Let v(t) be the associated solution of (1.1). Using Lemma III.3, we have v(t) ∈ H for all t. In the addition, using Lemma III.2, we have 1 2 P(v(t)) S ω (v(t))µ(ω) = S ω (v 0 )d(ω) < 0.

By classical arguments, we have that v(t) blows up in finite time.

The above lemma gives another proof of instability of standing waves. The following result is important in the proof of stability of standing waves.

Proposition III.5. Let α < 0 and φω be defined as in (2.22). Then, we have Since, α < 0 and tanh (x) = 4e 2x (e 2x + 1) 2 > 0, for all x, we have h (ω) > 0.

which completes the proof.

  .33) Now, we prove Kω (w) 0 by contradiction. Suppose that Kω (w) > 0. By the assumption Kω (w n ) → 0 and (2.32), we have Kω (w nw) → -Kω (w) < 0. Thus, Kω (w nw) < 0 for n large enough. By Lemma II.5 (3), we have L(w nw) 3 d(ω). Since L(w n ) → 3 d(ω), by (2.33), we have L(w) = lim n→∞ ( L(w n ) -L(w nw)) 0. Moreover, w = 0 and by Lemma II.5 (1), we have L(w) > 0. This is a contradiction. Hence, Kω (w) < 0. By Lemma II.5 (2), (3) and weak lower semicontinuity of L, we have 3 d(ω) L(w) lim n→∞ inf L(w n ) = 3 d(ω).

∂ ω φω 2 L 2 ( 2

 222 R) > 0.Proof. Recall the formula of φω as follows φω = dy for y = 2√ ωx + tanh -1 -α √ ω := h(ω),Define the following functionsh(z) = 4 ∞ z sech(y) dy, z(y) = tanh -1 (y),

  then by (2.28) and (2.27), we have 2K ω
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