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ON THE DERIVATIVE NONLINEAR SCHRÖDINGER EQUATION ON THE

HALF LINE WITH ROBIN BOUNDARY CONDITION

PHAN VAN TIN

Abstract. We consider the Schrödinger equation with nonlinear derivative term on [0,+∞)

under Robin boundary condition at 0. Using a virial argument, we obtain the existence of
blowing up solutions and using variational techniques, we obtain stability and instability by
blow up results for standing waves.
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1. Introduction

In this paper, we consider the derivative nonlinear Schrödinger equation on [0,+∞) with Robin
boundary condition at 0:

ivt + vxx = i
2 |v|

2vx − i
2v

2vx − 3
16 |v|

4v for x ∈ R+,

v(0) = ϕ,

∂xv(t, 0) = αv(t, 0) ∀t ∈ R,
(1.1)

where α ∈ R is a given constant.
The linear parts of (1.1) can be rewritten in the following forms:{

ivt + H̃αv = 0 for x ∈ R+,

v(0) = ϕ,
(1.2)

where H̃α are self-adjoint operators de�ned by

H̃α : D(H̃α) ⊂ L2(R+)→ L2(R+),

H̃αu = uxx, D(H̃α) =
{
u ∈ H2(R+) : ux(0+) = αu(0+))

}
.

We call eiH̃αt : R→ L(L2(R+)) is group de�ning the solution of (1.2).
The derivative nonlinear Schrödinger equation was originally introduced in Plasma Physics as a

simpli�ed model for Alfvén wave propagation. Since then, it has attracted a lot of attention from
the mathematical community (see e.g [4, 5, 13,14,16,17,20,21]).

Consider the equation (1.1), and set

u(t, x) = exp

(
3i

4

∫ x

∞
|v(t, y)|2 dy

)
v(t, x).
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2 PHAN VAN TIN

Using the Gauge transformation, we see that u solves

iut + uxx = i∂x(|u|2u), t ∈ R, , x ∈ (0,∞), (1.3)

under a boundary condition ∂xu(t, 0) = αu(t, 0)+ 3i
4 |u(t, 0)|2u(t, 0). In all line case, there are many

papers to deal with Cauchy problem of (1.3) (see e.g [15,22,23]). In [15], the authors establish the
local well posedness in H1(R) by using a Gauge transform. Indeed, since u solves (1.3) on R, by
setting

h(t, x) = exp

(
−i
∫ x

−∞
|u(t, y)|2 dy

)
u(t, x),

k = hx +
i

2
|h|2h, (1.4)

we have h, k solve {
iht + hxx = −ih2k,
ikt + kxx = ik2h.

(1.5)

By classical arguments, we can prove that there exists a unique solution h, k ∈ C([0, T ], L2(R)) ∩
L4([0, T ], L∞(R)) given h0, k0 ∈ L2(R) are satisfy (1.4). To obtain the existence solution of (1.1),
the authors prove that the relation (1.4) satis�es for all t ∈ [0, T ]. Thus, since h, k solve (1.5)
satisfy (1.4), if we set

u(t, x) = exp

(
i

∫ x

−∞
|h(t, y)|2 dy

)
h(t, x),

then u ∈ C([0, T ], H1(R)) solves (1.1). In [1], the authors have proved the global well posedness of

(1.3) given initial data in H
1
2 (R). In half line case, [26] Wu prove existence of blow up solution of

(1.3) under Dirichlet boundary condition, given initial data in Σ := {u0 ∈ H2(R+), xu0 ∈ L2(R+)}.
In this paper, we give a proof of existence of blow up solution of (1.1) under Robin boundary
condition.

To study equation (1.1), we start by the de�nition of solution on H1(R+). Since (1.1) contains
a Robin boundary condition, the notion of solution in H1(R+) is not completely clear. We use the
following de�nition. Let I be an open interval of R. We say that v is a H1(R+) solution of the
problem (1.1) on I if v ∈ C(I,H1(R+)) satis�es the following equation

v(t) = eiH̃αtϕ− i
∫ t

0

eiH̃α(t−s)g(v(s)) ds, (1.6)

where g is the function de�ned by

g(v) =
i

2
|v|2vx −

i

2
v2vx −

3

16
|v|4v.

Let v ∈ C(I,D(H̃α)) be classical solution of (1.1). At least formally, we have

1

2
∂t(|v|2) = −∂xIm(vxv).

Therefore, using the Robin boundary condition we have

∂t

(
1

2

∫ ∞
0

|v|2 dx
)

= −Im(vxv)(∞) + Im(vxv)(0)

= Im(vxv)(0)

= αIm(|v(0)|2)

= 0.

This implies the conservation of the mass. By elementary calculations, we have

∂t

(
|vx|2 −

1

16
|v|6
)

= ∂x

(
2Re(vxvt)−

1

2
|v|2|vx|2 +

1

2
v2v2x

)
.

Hence, integrating the two sides in space, we obtain

∂t

(∫
R+

|vx|2 dx−
1

16
|v|6 dx

)
= −2Re(vx(0)vt(0)) +

1

2
|v(0)|2|vx(0)|2 − 1

2
v(0)2vx(0)

2
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Using the Robin boundary condition for v, we obtain

∂t

(∫
R+

|vx|2 dx−
1

16
|v|6 dx

)
= −2αRe(v(0)vt(0)) = −α∂t(|v(0)|2).

This implies the conservation of the energy.
In this paper, we will need the following assumption.

Assumption. We assume that for all ϕ ∈ H1(R+) there exist a solution v ∈ C(I,H1(R+)) of
(1.1) for some interval I ⊂ R. Moreover, v satis�es the following conservation law:

M(v) :=
1

2
‖v‖2H1(R+) = M(ϕ),

E(v) :=
1

2
‖vx‖2L2(R+) −

1

32
‖v‖L6(R+) +

α

2
|v(0)|2.

The existence of blowing up solutions for classical nonlinear Schrödinger equations was consid-
ered by Glassey [10] in 1977. He introduced a concavity argument based on the second derivative
in time of ‖xu(t)‖2L2 to show the existence of blowing up solutions. In this paper, we are also inter-
ested in studying the existence of blowing-up solutions of (1.1). In the limit case α = +∞, which
is formally equivalent to Dirichlet boundary condition if we write v(0) = 1

αv
′(0) = 0. In [26], Wu

proved the blow up in �nite time of solutions of (1.1) with Dirichlet boundary condition and some
conditions on the initial data. Using the method of Wu [26] we obtain the existence of blowing up
solutions in the case α > 0, under a weighted space condition for the initial data and negativity of
the energy. Our �rst main result is the following.

Theorem 1.1. We assume assumption 1. Let α > 0 and ϕ ∈ Σ where

Σ =
{
u ∈ D(H̃α), xu ∈ L2(R+))

}
such that E(ϕ) < 0. Then the solution v of (1.1) blows-up in �nite time i.e Tmin > −∞ and
Tmax < +∞.

Remark 1.2. In general case, on the equation (1.1), if we consider the other nonlinear term instead
of i

2 |v|
2vx − i

2v
2vx − 3

16 |v|
4v then the existence of conservation of energy may be not true (see

remark 2.1 (2)).

The stability of standing waves for classical nonlinear Schrödinger equations was originally stud-
ied by Cazenave and Lions [2] with variational and compactness arguments. A second approach,
based on spectral arguments, was introduced by Weinstein [24, 25] and then considerably general-
ized by Grillakis, Shatah and Strauss [11,12] (see also [6], [7]). In our work, we use the variational
techniques to study the stability of standing waves. First, we de�ne

Sω(v) :=
1

2

[
‖vx‖2L2(R+) + ω‖v‖2L2(R+) + α|v(0)|2

]
− 1

32
‖v‖6L6(R+),

Kω(v) := ‖vx‖2L2(R+) + ω‖v‖2L2(R+) + α|v(0)|2 − 3

16
‖v‖6L6(R+).

We are interested in the following variational problem:

d(ω) := inf
{
Sω(v) | Kω(v) = 0, v ∈ H1(R+) \ {0}

}
. (1.7)

We have the following result.

Proposition 1.3. Let ω, α ∈ R such that ω > α2. All minimizers of (1.7) are of form eiθϕ, where
θ ∈ R and ϕ is given by

ϕ = 2 4
√
ω sech

1
2

(
2
√
ω|x|+ tanh−1

(
−α√
ω

))
.

We give the de�nition of stability and instability by blow up in H1(R+). Let w(t, x) = eiωtϕ(x)
be a standing wave solution of (1.1).

(1) The standing wave w is called orbitally stable in H1(R+) if for all ε > 0, there exists δ > 0
such that if v0 ∈ H1(R+) satis�es

‖v0 − ϕ‖H1(R+) 6 δ,
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then the associated solution v of (1.1) satis�es

sup
t∈R

inf
θ∈R
‖v(t)− eiθϕ‖H1(R+) < ε.

Otherwise, w said to be instable.
(2) The standing wave w is called instable by blow up if there exists a sequence (ϕn) such that

lim
n→∞

‖ϕn−ϕ‖H1(R+) = 0 and the associated solution vn of (1.1) blows up in �nite time for

all n.

Our second main result is the following.

Theorem 1.4. Let α, ω ∈ R be such that ω > α2. The standing wave eiωtϕ, where ϕ is the pro�le
as in Proposition 1.3, solution of (1.1), satis�es the following properties.

(1) If α < 0 then the standing wave is orbitally stable in H1(R+).
(2) If α > 0 then the standing wave is instable by blow up.

Remark 1.5. To our knowledge, the conservation law play an important role to study the stability
of standing waves. However, the existence of conservation of energy is not always true (see remark
1.2). Our work can only extend for the models with nonlinear terms provide the conservation law
of solution.

This paper is organized as follows. First, under the assumption of local well posedness in
H1(R+), we prove the existence of blowing up solutions using a virial argument Theorem 1.1. In
section 2.1, we give the proof of Theorem 1.1. Second, in the case α < 0, using similar arguments
as in [3], we prove the orbital stability of standing waves of (1.1). In the case α > 0, using similar
arguments as in [18], we prove the instability by blow up of standing waves. The proof of Theorem
1.4 is obtained in Section 2.2.

Acknowledgement. The author wishes to thank Prof.Stefan Le Coz for his guidance and encour-
agement.

2. Proof of main results

We consider the equation (1.1) and assume that the assumption 1 holds.

2.1. The existence of a blowing-up solution. In this section, we give the proof of Theorem 1.1
using a virial argument (see e.g [10] or [26] for similar arguments). Let α > 0. Let v be a solution
of (1.1). To prove the existence of blowing up solutions we use similar arguments as in [26]. Set

I(t) =

∫ ∞
0

x2|v(t)|2 dx.

Let

u(t, x) = v(t, x) exp

(
− i

4

∫ +∞

x

|v|2 dy
)

(2.1)

be a Gauge transform in H1(R+). Then the problem (1.1) is equivalent with{
iut + uxx = i|u|2ux,
ux(0) = αu(0) + i

4 |u(0)|2u(0).
(2.2)

The equation (2.2) has a simpler nonlinear form, but we pay this simpli�cation with a nonlinear
boundary condition. Observe that

I(t) =

∫ ∞
0

x2|u(t)|2 dx =

∫ ∞
0

x2|v(t)|2 dx.

By a direct calculation, we get

∂tI(t) = 2Re
∫ ∞
0

x2u(t, x)∂tu(t, x) dx = 2Re
∫ ∞
0

x2u(iuxx + |u|2ux) dx (2.3)

= 2Im
∫ ∞
0

2xuux dx−
1

2

∫ ∞
0

2x|u|4 dx (2.4)

= 4Im
∫ ∞
0

xuxu dx−
∫ ∞
0

x|u|4 dx. (2.5)
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De�ne

J(t) = Im
∫ ∞
0

xuxu dx.

We have

∂tJ(t) =

∫ ∞
0

xuxut dx+

∫ t

0

xuuxt dx

= −Im
∫ ∞
0

xutux dx− Im
∫ ∞
0

(xu)xut dx

= −2Im
∫ ∞
0

xutux dx− Im
∫ ∞
0

utu dx

= −2Im
∫ ∞
0

xux(iuxx + |u|2ux) dx− Im
∫ ∞
0

u(iuxx + |u|2ux) dx

= −2Re
∫ ∞
0

xuxuxx dx−Re
∫ ∞
0

uuxx dx− Im
∫ ∞
0

|u|2uxu dx

= −
∫ ∞
0

x∂x|ux|2 dx−Re(uux)(+∞) +Re(uux)(0) +Re
∫ ∞
0

uxux dx− Im
∫ ∞
0

|u|2uxu dx

=

∫ ∞
0

|ux|2 dx+Re(u(0)ux(0)) +

∫ ∞
0

|ux|2 dx− Im
∫ ∞
0

|u|2uxu dx

= 2

∫ ∞
0

|ux|2 dx− Im
∫ ∞
0

|u|2uxu dx+Re(u(0)ux(0)).

Using the Robin boundary condition we have

∂tJ(t) = 2

∫ ∞
0

|ux|2 dx− Im
∫ ∞
0

|u|2uxu dx+ α|u(0)|2.

Moreover using the expression of v in term of u given in (2.1), we get

∂tJ(t) = 2

∫ ∞
0

|vx|2 dx−
1

8

∫ ∞
0

|v|6 dx+ α|v(0)|2

= 4E(v)− α|v(0)|2 6 4E(v) = 4E(ϕ).

By integrating the two sides of the above inequality in time we have

J(t) 6 J(0) + 4E(ϕ)t. (2.6)

Integrating the two sides of (2.3) in time we have

I(t) = I(0) + 4

∫ t

0

J(s) ds−
∫ t

0

∫ ∞
0

x|u(s, x)|4 dx ds

6 I(0) + 4

∫ t

0

J(s) ds.

Using (2.6) we have

I(t) 6 I(0) + 4

∫ t

0

(J(0) + 4E(ϕ)s) ds

6 I(0) + 4J(0)t+ 8E(ϕ)t2.

From the assumption E(ϕ) < 0, there exists a �nite time T∗ > 0 such that I(T∗) = 0,

I(t) > 0 for 0 < t < T∗.

Note that ∫ ∞
0

|ϕ(x)|2 dx =

∫ ∞
0

|v(t, x)|2 dx = −2Re
∫ ∞
0

xv(t, x)vx(t, x) dx

6 2‖xv‖L2
x(R+)‖vx‖L2

x(R+) = 2
√
I(t)‖vx‖L2

x(R+).

Then there exists a constant C = C(ϕ) > 0 such that

‖vx‖L2
x(R+) >

C

2
√
I(t)

→ +∞ as t→ T∗.
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Then the solution v blows up in �nite time in H1(R+). This complete the proof of Theorem 1.1.

Remark 2.1. In (1.1), if we consider nonlinear term i|v|2vx instead of i
2 |v|

2vx − i
2v

2vx − 3
16 |v|

4v
then there is no conservation of energy of solution. Indeed, set

u(t, x) = v(t, x) exp

(
− i

4

∫ x

∞
|v(t, y)|2 dy

)
.

If v solves {
ivt + vxx = i|v|2vx,
∂xv(t, 0) = αv(t, 0)

then u solves {
iut + uxx = i

2 |u|
2ux − i

2u
2ux − 3

16 |u|
4u,

∂xu(t, 0) = αu(t, 0)− i
4 |u(t, 0)|2u(t, 0).

(2.7)

By similar arguments in proof of Theorem 1.1, since u solves (2.7), we have

∂t

(
|ux|2 −

1

16
|u|6
)

= ∂x

(
2Re(uxut)−

1

2
|u|2|ux|2 +

1

2
u2ux

2

)
.

Integrating the two sides in space, we obtain

∂t

(∫
R+

|ux|2 −
1

16
|u|6 dx

)
= −2Re(ux(0)ut(0)) +

1

2
|u(0)|2|ux(0)|2 − 1

2
u(0)2ux(0)

2
.

Using the boundary condition of u, we obtain

∂t

(∫
R+

|ux|2 −
1

16
|u|6 dx

)
= −2αRe(u(0)ut(0))− 1

2
Im(u(0)|u(0)|2ut(0))

+
1

2
|u(0)|4

(
α2 +

1

16
|u(0)|4 −

(
α+

i

4
|u(0)|2

)2
)

= −α∂t(|u(0)|2) +A,

where A = − 1
2Im(u(0)|u(0)|2ut(0)) + 1

2 |u(0)|4
(
α2 + 1

16 |u(0)|4 −
(
α+ i

4 |u(0)|2
)2)

. Moreover, we

can not write A in form ∂tB(u(0)), for some function B : C → C. Then, there is no conservation
of energy of u and hence, there is no conservation of energy of v.

2.2. Stability and instability of standing waves. In this section, we give the proof of Theorem
1.4. First, we �nd the form of the standing waves of (1.1).

2.2.1. Standing waves. Let v = eiωtϕ be a solution of (1.1). Then ϕ solves
0 = ϕxx − ωϕ+ 1

2Im(ϕxϕ)ϕ+ 3
16 |ϕ|

4ϕ, for x > 0

ϕx(0) = αϕ(0),

ϕ ∈ H2(R+).

(2.8)

Set

A := ω − 1

2
Im(ϕxϕ)− 3

16
|ϕ|4

By writing ϕ = f + ig for f and g real valued functions, for x > 0, we have

fxx = Af,

gxx = Ag.

Thus,

∂x(fxg − gxf) = fxxg − gxxf = 0 when x 6= 0.

Hence, by using f, g ∈ H2(R+), we have

fx(x)g(x)− gx(x)f(x) = 0 when x 6= 0.

Then, for all x 6= 0, we have

Im(ϕx(x)ϕ(x)) = gx(x)f(x)− fx(x)g(x) = 0,
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hence, (2.8) is equivalent to 
0 = ϕxx − ωϕ+ 3

16 |ϕ|
4ϕ, for x > 0

ϕx(0) = αϕ(0),

ϕ ∈ H2(R+).

(2.9)

We have the following description of the pro�le ϕ.

Proposition 2.2. Let ω > α2. There exists a unique (up to phase shift) solution ϕ of (2.9), which
is of the form

ϕ = 2 4
√
ω sech

1
2

(
2
√
ω|x|+ tanh−1

(
−α√
ω

))
, (2.10)

for all x > 0.

Proof. Let w be the even function de�ned by

w(x) =

{
ϕ(x) if x > 0,
ϕ(−x) if x 6 0.

Then w solves 
0 = −wxx + ωw − 3

16 |w|
4w, for x 6= 0,

wx(0+)− wx(0−) = 2αw(0),

w ∈ H2(R) \ {0} ∩H1(R).

(2.11)

Using the results of Fukuizumi and Jeanjean [8], we obtain that

w(x) = 2 4
√
ω sech

1
2

(
2
√
ω|x|+ tanh−1

(
−α√
ω

))
up to phase shift provided ω > α2. Hence, for x > 0 we have

ϕ(x) = 2 4
√
ω sech

1
2

(
2
√
ω|x|+ tanh−1

(
−α√
ω

))
up to phase shift. This implies the desired result. �

2.2.2. The variational problems. In this section, we give the proof of Proposition 1.3.
First, we introduce another variational problem:

d̃(ω) := inf
{
S̃ω(v) | v even, K̃ω(v) = 0, v ∈ H1(R) \ {0}

}
, (2.12)

where S̃ω, K̃ω are de�ned for all v ∈ H1(R) by

S̃ω(v) :=
1

2

[
‖vx‖2L2(R) + ω‖v‖2L2(R) + 2α|v(0)|2

]
− 1

32
‖v‖6L6(R),

K̃ω(v) := ‖vx‖2L2(R) + ω‖v‖2L2(R) + 2α|v(0)|2 − 3

16
‖v‖6L6(R).

The functional K̃ω is called Nehari functional. The following result has proved in [8, 9].

Proposition 2.3. Let ω > α2 and ϕ satis�es{
−ϕxx + 2αδϕ+ ωϕ− 3

16 |ϕ|
4ϕ = 0,

ϕ ∈ H1(R) \ {0} .
(2.13)

Then, there exists a unique positive solution ϕ of (2.13). This solution is the unique positive
minimizer of (2.12). Furthermore, we have an explicit formula for ϕ

ϕ(x) = 2 4
√
ω sech

1
2

(
2
√
ω|x|+ tanh−1

(
−α√
ω

))
.

We have the following relation between the variational problems.

Proposition 2.4. Let ω > α2. We have

d(ω) =
1

2
d̃(ω).
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Proof. Assume v is a minimizer of (1.7), de�ne the H1(R) function w by

w(x) =

{
v(x) if x > 0,
v(−x) if x < 0.

The function w ∈ H1(R) \ {0} veri�es

S̃ω(w) = 2Sω(v) = 2d(ω),

K̃ω(w) = 2Kω(v) = 0.

This implies that

d̃(ω) 6 S̃ω(w) = 2d(ω). (2.14)

Now, assume v is a minimizer of (2.12). Let w be the restriction of v on R+, then,

Kω(w) =
1

2
K̃ω(v) = 0.

Hence, we obtain

d̃(ω) = S̃ω(v) = 2Sω(w) > 2d(ω). (2.15)

Combining (2.14) and (2.15) we have

d̃(ω) = 2d(ω).

This implies the desired result. �

Proof of Theorem 1.3. Let v be a minimizer of (1.7). De�ne w(x) ∈ H1(R) by

w(x) =

{
v(x) if x > 0,
v(−x) if x < 0.

Then, w is an even function. Moreover, w satis�es

K̃ω(w) = 2Kω(v) = 0,

S̃ω(w) = 2Sω(v) = 2d(ω) = d̃(ω).

Hence, w is a minimizer of (2.12). From Propositions 2.3, 2.4, w is of the form eiθϕ, where θ ∈ R
is a constant and ϕ is of the form

2 4
√
ω sech

1
2

(
2
√
ω|x|+ tanh−1

(
−α√
ω

))
.

Hence, v = w|R+ satis�es

v(x) = eiθϕ(x),

for x > 0. This completes the proof of Proposition 1.3. �

2.2.3. Stability and instability of standing waves. In this section, we give the proof of Theorem 1.4.

We use the notations S̃ω and K̃ω as in Section 2.2.2. First, we de�ne

N(v) :=
3

16
‖v‖6L6(R+), (2.16)

L(v) := ‖vx‖2L2(R+) + ω‖v‖2L2(R+) + α|v(0)|2. (2.17)

We can rewrite Sω,Kω as follows

Sω =
1

2
L− 1

6
N,

Kω = L−N.

We have the following classical properties of the above functions.

Lemma 2.5. Let (ω, α) ∈ R2 such that ω > α2. The following assertions hold.

(1) There exists a constant C > 0 such that

L(v) > C‖v‖2H1(R+) ∀v ∈ H1(R+).

(2) We have d(ω) > 0.
(3) If v ∈ H1(R+) satis�es Kω(v) < 0 then L(v) > 3d(ω).
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Proof. We have

|v(0)|2 = −
∫ ∞
0

∂x(|v(x)|2) dx = −2Re
∫ ∞
0

v(x)vx(x) dx

6 2‖v‖L2(R+)‖vx‖L2(R+).

Hence,

L(v) = ‖vx‖2L2(R+) + ω‖v‖2L2(R+) + α|v(0)|2

> ‖vx‖2L2(R+) + ω‖v‖2L2(R+) − 2|α|‖v‖L2(R+)‖vx‖L2(R+)

> C‖v‖2H1(R+) + (1− C)‖vx‖2L2(R+) + (ω − C)‖v‖2L2(R+) − 2|α|‖v‖L2(R+)‖vx‖L2(R+)

> C‖v‖2H1(R+) + (2
√

(1− C)(ω − C)− 2|α|)‖v‖L2(R+)‖vx‖L2(R+).

From the assumption ω > α2, we can choose C ∈ (0, 1) such that

2
√

(1− C)(ω − C)− 2|α| > 0.

This implies (1). Now, we prove (2). Let v be an element of H1(R+) satisfying Kω(v) = 0. We
have

C‖v‖2H1(R+) 6 L(v) = N(v) 6 C1‖v‖6H1(R+).

Then,

‖v‖2H1(R+) >
4

√
C

C1
.

From the fact that, for v satisfying Kω(v) = 0, we have Sω(v) = Sω(v) − 1
6Kω(v) = 1

3L(v), this
implies that

d(ω) =
1

3
inf
{
L(v) : v ∈ H1(R+),Kω(v) = 0

}
>
C

3
4

√
C

C1
> 0.

Finally, we prove (3). Let v ∈ H1(R+) satisfying Kω(v) < 0. Then, there exists λ1 ∈ (0, 1) such
that Kω(λ1v) = λ21L(v)−λ61N(v) = 0. Since v 6= 0, we have 3d(ω) 6 L(λ1v) = λ21L(v) < L(v). �

De�ne

Ñ(v) :=
3

16
‖v‖6L6 , (2.18)

L̃(v) := ‖vx‖2L2 + ω‖v‖2L2 + 2α|v(0)|2. (2.19)

We can rewrite Sω,Kω as follows

S̃ω =
1

2
L̃− 1

6
Ñ ,

K̃ω = L̃− Ñ .
As consequence of the previous lemma, we have the following result.

Lemma 2.6. Let (ω, α) ∈ R2 such that ω > α2. The following assertions hold.

(1) There exists a constant C > 0 such that

L̃(v) > C‖v‖2H1 ∀v ∈ H1(R).

(2) We have d̃(ω) > 0.

(3) If v ∈ H1 satis�es K̃ω(v) < 0 then L̃(v) > 3d̃(ω).

We introduce the following properties.

Lemma 2.7. Let 2 6 p <∞ and (fn) be a bounded sequence in Lp(R). Assume that fn → f a.e
in R. Then we have

‖fn‖pLp − ‖fn − f‖
p
Lp − ‖f‖

p
Lp → 0.

Lemma 2.8. The following minimization problem is equivalent to the problem (2.12) i.e same
minimum and the minimizers:

d := inf

{
1

16
‖u‖6L6 : u even , u ∈ H1(R) \ {0}, K̃ω(u) 6 0

}
. (2.20)
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Proof. We see that the minimizer problem (2.12) is equivalent to following problem:

inf

{
1

16
‖u‖6L6 : u even u ∈ H1(R) \ {0}, K̃ω(u) = 0

}
. (2.21)

Let v be a minimizer of (2.12) then K̃ω(v) 6 0, hence, d̃(ω) = 1
16‖v‖

6
L6 > d. Now, let v be a

minimizer of (2.20). We prove that K̃ω(v) = 0. Indeed, assuming K̃ω(v) < 0, we have

K̃ω(λv) = λ2
(
‖vx‖2L2 + ω‖v‖2L2 + 2α|v(0)|2 − 3λ4

16
‖v‖6L6

)
6 0,

as 0 < λ is small enough. Thus, by continuity, there exists a λ0 ∈ (0, 1) such that K̃ω(λ0v) = 0. We

have d < d̃(ω) 6 1
16‖λ0v‖

6
L6 <

1
16‖v‖

6
L6 = d. Which is a contradiction. It implies that K̃ω(v) = 0

and v is a minimizer of (2.21), hence v is a minimizer of (2.12). This completes the proof. �

Now, using the similar arguments in [9, Proof of Proposition 2], we have the following result.

Proposition 2.9. Let (ω, α) ∈ R2 be such that α < 0, ω > α2 and (wn) ⊂ H1(R) be a even
sequence satisfying the following properties

S̃ω(wn)→ d̃(ω),

K̃ω(wn)→ 0.

as n→∞. Then, there exists a minimizer w of (2.12) such that wn → w strongly in H1(R) up
to subsequence.

Proof. In what follows, we shall often extract subsequence without mentioning this fact explicitly.
We divide the proof into two steps.
Step 1. Weakly convergence to a nonvanishing function of minimizer sequence We

have
1

3
L̃(wn) = S̃ω(wn)− 1

6
K̃ω(wn)→ d̃(ω),

as n→∞. Then, (wn) is bounded in H1(R) and there exists w ∈ H1(R) even such that wn ⇀ w
in H1(R) up to subsequence. We prove w 6= 0. Assume that w ≡ 0. De�ne, for u ∈ H1(R),

S0
ω(u) =

1

2
‖ux‖2L2 +

ω

2
‖u‖2L2 −

1

32
‖u‖6L6 ,

K0
ω(u) = ‖ux‖2L2 + ω‖u‖2L2 −

3

16
‖u‖6L6 .

Let ψω be minimizer of following problem

d0(ω) = inf
{
S0
ω(u) : u even , u ∈ H1(R) \ {0},K0

ω(u) = 0
}

= inf

{
1

16
‖u‖6L6 : u even , u ∈ H1(R) \ {0},K0

ω(u) 6 0

}
.

We have K0
ω(wn) = K̃ω(wn)− 2α|wn(0)|2 → 0, as n→∞. Since, α < 0. we have K̃ω(ψω) < 0 and

hence we obtain

d̃(ω) <
1

16
‖ψω‖6L6 = d0(ω) (2.22)

We set

λn =

(
‖∂xwn‖2L2 + ω‖wn‖2L2

3
16‖wn‖

6
L6

) 1
4

.

We here remark that 0 < d̃(ω) = lim
n→∞

1
16‖wn‖

6
L6 . It follows that

λ4n − 1 =
K0
ω(wn)

3
16‖wn‖

6
L6

→ 0,

as n→∞. We see that K0
ω(λnwn) = 0 and λnwn 6= 0. By the de�nition of d0(ω), we have

d0(ω) 6
1

16
‖λnwn‖6L6 → d̃(ω) as n→∞.

This contradicts to (2.22). Thus, w 6= 0.
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Step 2. Conclude the proof Using Lemma 2.7 we have

K̃ω(wn)− K̃ω(wn − w)− K̃ω(w)→ 0, (2.23)

L̃(wn)− L̃(wn − w)− L̃(w)→ 0. (2.24)

Now, we prove K̃ω(w) 6 0 by contradiction. Suppose that K̃ω(w) > 0. By the assumption

K̃ω(wn)→ 0 and (2.23), we have

K̃ω(wn − w)→ −K̃ω(w) < 0.

Thus, K̃ω(wn −w) < 0 for n large enough. By Lemma 2.6 (3), we have L̃(wn −w) > 3d̃(ω). Since

L̃(wn)→ 3d̃(ω), by (2.24), we have

L̃(w) = lim
n→∞

(L̃(wn)− L̃(wn − w)) 6 0.

Moreover, w 6= 0 and by Lemma 2.6 (1), we have L̃(w) > 0. This is a contradiction. Hence,

K̃ω(w) < 0. By Lemma 2.6 (2), (3) and weakly lower semicontinuity of L̃, we have

3d̃(ω) 6 L̃(w) 6 lim
n→∞

inf L̃(wn) = 3d̃(ω).

Thus, L̃(w) = 3d̃(ω). Combining with (2.24), we have L̃(wn − w)→ 0, as n→∞. By Lemma 2.6
(1), we have wn → w strongly in H1(R). Hence, w is a minimizer of (2.12). This completes the
proof. �

To prove the stability statement (1) for α < 0 in Theorem 1.4, we will use similar arguments as
in the work of Colin and Ohta [3]. We need the following property.

Lemma 2.10. Let α < 0, ω > α2. If a sequence (vn) ⊂ H1(R+) satis�es

Sω(vn)→ d(ω), (2.25)

Kω(vn)→ 0, (2.26)

then there exist a constant θ0 ∈ R such that vn → eiθ0ϕ, up to subsequence, where ϕ is de�ned as
in Proposition 1.3.

Proof. De�ne the sequence (wn) ⊂ H1(R) as follows,

wn(x) =

{
vn(x) for x > 0,
vn(−x) for x < 0.

We can check that

S̃ω(wn) = 2Sω(vn)→ 2d(ω) = d̃(ω),

K̃ω(wn) = 2Kω(vn)→ 0,

as n→∞. Using Proposition 2.9, there exists a minimizer w0 of (2.12) such that wn → w0 strongly
in H1(R), up to subsequence. For convenience, we assume that wn → w0 strongly in H1(R). By
Proposition 2.3, there exists a constant θ0 ∈ R such that

w0 = eiθ0 ϕ̃,

where ϕ̃ is de�ned by

ϕ̃(x) =

{
ϕ(x) for x > 0,
ϕ(−x) for x < 0.

(2.27)

Hence, the sequence (vn) is the restriction of the sequence (wn) on R+, and satis�es

vn → eiθ0ϕ, strongly in H1(R+),

up to subsequence. This completes the proof. �
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De�ne

A+
ω =

{
v ∈ H1(R+) \ {0} : Sω(v) < d(ω),Kω(v) > 0

}
,

A−ω =
{
v ∈ H1(R+) \ {0} : Sω(v) < d(ω),Kω(v) < 0

}
,

B+ω =
{
v ∈ H1(R+) \ {0} : Sω(v) < d(ω), N(v) < 3d(ω)

}
,

B−ω =
{
v ∈ H1(R+) \ {0} : Sω(v) < d(ω), N(v) > 3d(ω)

}
.

We have the following result.

Lemma 2.11. Let ω, α ∈ R2 such that α < 0 and ω > α2.

(1) The sets A+
ω and A−ω are invariant under the �ow of (1.1).

(2) A+
ω = B+ω and A−ω = B−ω .

Proof. (1) Let u0 ∈ A+
ω and u(t) the associated solution for (1.1) on (Tmin, Tmax). By u0 6= 0

and the conservation laws, we see that Sω(u(t)) = Sω(u0) < d(ω) for t ∈ (Tmin, Tmax). Moreover,
by de�nition of d(ω) we have Kω(u(t)) 6= 0 on (Tmin, Tmax). Since the function t 7→ Kω(u(t)) is
continuous, we have Kω(u(t)) > 0 on (Tmin, Tmax). Hence, A+

ω is invariant under �ow of (1.1). By
the same way, A−ω is invariant under �ow of (1.1).
(2) If v ∈ A+

ω then by (2.19), (2.18) we have N(v) = 3Sω(v) − 2Kω(v) < 3d(ω), which shows
v ∈ B+ω , hence A+

ω ⊂ B+ω . Now, let v ∈ B+ω . We show Kω(v) > 0 by contradiction. Suppose that
Kω(v) 6 0. Then, by Lemma 2.6 (3), L(v) > 3d(ω). Thus, by (2.19) and (2.18), we have

Sω(v) =
1

2
L(v)− 1

6
N(v) > d(ω),

which contradicts Sω(v) < d(ω). Therefore, we have Kω(v) > 0, which shows v ∈ A+
ω and

B+ω ⊂ A+
ω . Next, if v ∈ A−ω , then by Lemma 2.6 (3), L(v) > 3d(ω). Thus, by (2.19) and (2.18), we

have N(v) = L(v) −Kω(v) > 3d(ω), which shows v ∈ B−ω . Thus, A−ω ⊂ B−ω . Finally, if v ∈ B−ω ,
then by (2.19) and (2.18), we have 2Kω(v) = 3Sω(v) − N(v) < 3d(ω) − 3d(ω) = 0, which shows
v ∈ A−ω , hence, B−ω ⊂ A−ω . This completes the proof. �

From Proposition 1.3, we have

d(ω) = Sω(ϕ).

Since α < 0, we see that

d′′(ω) = ∂ω‖ϕ‖2L2(R+) =
1

2
∂ω‖ϕ̃‖2L2(R) > 0,

where ϕ̃ is de�ned as (2.27) and we know from [9], [8] that

∂ω‖ϕ̃‖2L2(R) > 0,

for α < 0. We de�ne the function h : (−ε0, ε0)→ R by

h(τ) = d(ω ± τ),

for ε0 > 0 su�ciently small such that h′′(τ) > 0 and the sign + or − is selected such that h′(τ) > 0
for τ ∈ (−ε0, ε0). Without loss of generality, we can assume

h(τ) = d(ω + τ).

Lemma 2.12. Let (ω, α) ∈ R2 such that ω > α2 and let h be de�ned as above. Then, for any
ε ∈ (0, ε0), there exists δ > 0 such that if v0 ∈ H1(R+) satis�es ‖v0 − ϕ‖H1(R+) < δ, then the
solution v of (1.1) with v(0) = v0 satis�es 3h(−ε) < N(v(t)) < 3h(ε) for all t ∈ (Tmin, Tmax).

Proof. The proof of the above lemma is similar to the one of [3] or [19]. Let ε ∈ (0, ε0). Since
h is increasing, we have h(−ε) < h(0) < h(ε). Moreover, by Kω(ϕ) = 0 and (2.18), (2.19), we
see that 3h(0) = 3d(ω) = 3Sω(ϕ) = N(ϕ). Thus, if u0 ∈ H1(R+) satis�es ‖u0 − ϕ‖H1(R+) < δ
then we have 3h(0) = N(u0) + O(δ) and 3h(−ε) < N(u0) < 3h(ε) for su�ciently small δ > 0.
Since h(±ε) = d(ω ± ε) and the set B±ω are invariant under the �ow of (1.1) by Lemma 2.11, to
conclude the proof, we only have to show that there exists δ > 0 such that if u0 ∈ H1(R+) satis�es
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‖u0−ϕ‖H1(R+) < δ then Sω±ε(u0) < h(±ε). Assume that u0 ∈ H1(R+) satis�es ‖u0−ϕ‖H1(R+) < δ.
We have

Sω±ε(u0) = Sω±ε(ϕ) +O(δ)

= Sω(ϕ)± εM(ϕ) +O(δ)

= h(0)± εh′(0) +O(δ).

On the other hand, by the Taylor expansion, there exists τ1 = τ1(ε) ∈ (−ε0, ε0) such that

h(±ε) = h(0)± εh′(0) +
ε2

2
h′′(τ1).

Since h′′(τ1) > 0 by de�nition of h, we see that there exists δ > 0 such that if u0 ∈ H1(R+) satis�es
‖u0 − ϕ‖H1(R+) < δ then Sω±ε(u0) < h(±ε). This completes the proof. �

Proof of Theorem 1.4 (1). Assume that eiωtϕ is not stable for (1.1). Then, there exists a constant
ε1 > 0, a sequence of solutions (vn) to (1.1), and a sequence {tn} ∈ (0,∞) such that

vn(0)→ ϕ in H1(R+), inf
θ∈R
‖vn(tn)− eiθϕ‖H1(R+) > ε1. (2.28)

By using the conservation laws of solutions of (1.1), we have

Sω(vn(tn)) = Sω(vn(0))→ Sω(ϕ) = d(ω). (2.29)

Using Lemma 2.12, we have

N(vn(tn))→ 3d(ω). (2.30)

Combined (2.29) and (2.30), we have

Kω(vn(tn)) = 2Sω(vn(tn))− 2

3
N(vn(tn))→ 0.

Therefore, using Lemma 2.10, there exists θ0 ∈ R such that (vn(tn, .)) has a subsequence (we denote
it by the same letter) that converges to eiθ0ϕ in H1(R+), where ϕ is de�ned as in Proposition 1.3.
Hence, we have

inf
θ∈R
‖vn(tn)− eiθϕ‖H1(R+) → 0, (2.31)

as n→∞, this contradicts (2.28). Hence, we obtain the desired result. �

Next, we give the proof of Theorem 1.4 (2), using similar arguments as in [18].
Assume α > 0. Let eiωtϕ be the standing wave solution of (1.1). Introduce the scaling

vλ(x) = λ
1
2 v(λx).

Let Sω, Kω be de�ned as in Proposition 1.3, for convenience, we will remove the index ω. De�ne

P (v) :=
∂

∂λ
S(vλ)|λ=1 = ‖vx‖2L2(R+) −

1

16
‖v‖6L6(R+) +

α

2
|v(0)|2.

In the following lemma, we investigate the behaviour of the above functional under scaling.

Lemma 2.13. Let v ∈ H1(R+)\{0} be such that v(0) 6= 0, P (v) 6 0. Then there exists λ0 ∈ (0, 1]
such that

(i) P (vλ0
) = 0,

(ii) λ0 = 1 if only if P (v) = 0,
(iii) ∂

∂λS(vλ) = 1
λP (vλ),

(iv) ∂
∂λS(vλ) > 0 on (0, λ0) and ∂

∂λS(vλ) < 0 on (λ0,∞),
(v) The function λ→ S(vλ) is concave on (λ0,∞).

Proof. A simple calculation leads to

P (vλ) = λ2‖vx‖2L2(R+) −
λ2

16
‖v‖6L6(R+) +

λα

2
|v(0)|2.

Then, for λ > 0 small enough, we have

P (vλ) > 0.
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By continuity of P , there exists λ0 ∈ (0, 1] such that P (vλ0) = 0. Hence (i) is proved. If λ0 = 1
then P (v) = 1. Conversely, if P (v) = 0 then

0 = P (vλ0
) = λ20P (v) +

λ0 − λ20
2

α|v(0)|2 =
λ0 − λ20

2
α|v(0)|2.

By the assumption v(0) 6= 0, we have λ0 = 1, hence (ii) is proved. Item (iii) is obtained by a simple
calculation. To obtain (iv), we use (iii). We have

P (vλ) = λ2λ−20 P (vλ0) +

(
λα

2
− λ2λ−10 α

2

)
|v(0)|2

=
λα(λ0 − λ)

2λ0
|v(0)|2.

Hence, P (vλ) > 0 if λ < λ0 and P (vλ) < 0 if λ > λ0. This proves (iv). Finally, we have

∂2

∂2λ
S(vλ) = P (v)− α

2
|v(0)|2 < 0.

This proves (v). �

In the case of functions such that v(0) = 0, we have the following lemma.

Lemma 2.14. Let v ∈ H1(R+) \ {0}, v(0) = 0 and P (v) = 0 then we have

S(vλ) = S(v) for all λ > 0.

Proof. The proof is simple, using the fact that

∂

∂λ
S(vλ) =

1

λ
P (vλ) = λP (v) = 0.

Hence, we obtain the desired result. �

Now, consider the minimization problems

dM := inf {S(v) : v ∈M} , (2.32)

m := inf
{
S(v), v ∈ H1(R+) \ 0, S′(v) = 0

}
, (2.33)

where
M =

{
v ∈ H1(R+) \ 0, P (v) = 0,K(v) 6 0

}
.

By classical arguments, we can prove the following property.

Proposition 2.15. Let m be de�ned as above. Then, we have

m = inf
{
S(v) : v ∈ H1(R+) \ 0,K(v) = 0

}
.

We have the following relation between the minimization problems m and dM.

Lemma 2.16. Let m and dM be de�ned as above. We have

m = dM.

Proof. Let G be the set of all minimizers of (2.33). If ϕ ∈ G then S′(ϕ) = 0. By the de�nition of S,
P , K we have P (ϕ) = 0 and K(ϕ) = 0. Hence, ϕ ∈M, this implies S(ϕ) > dM. Thus, m > dM.

Conversely, let v ∈ M. If K(v) = 0 then S(v) > m, using Proposition 2.15. Otherwise,

K(v) < 0. Using the scaling vλ(x) = λ
1
2 v(λx), we have

K(vλ) = λ2‖vx‖2L2(R+) −
3λ2

16
‖v‖6L6(R+) + ω‖v‖2L2(R+) +

αλ

2
|v(0)|2 → ω‖v‖2L2(R+) > 0,

as λ → 0. Hence, K(vλ) > 0 as λ > 0 is small enough. Thus, there exists λ1 ∈ (0, 1) such that
K(vλ1

) = 0. Using Proposition 2.15, S(vλ1
) > m. We consider two cases. First, if v(0) = 0 then

using Lemma 2.14, we have S(v) = S(vλ1
) > m. Second, if v(0) 6= 0 then using Lemma 2.13,

we have S(v) > S(vλ1) > m. In any case, S(v) > m. This implies dM > m, and completes the
proof. �

De�ne
V :=

{
v ∈ H1(R+) \ {0} : K(v) < 0, P (v) < 0, S(v) < m

}
.

We have the following important lemma.
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Lemma 2.17. If v0 ∈ V then the solution v of (1.1) associated with v0 satis�es v(t) ∈ V for all t
in the time of existence.

Proof. Since S(v0) < 0, by conservation of the energy and the mass we have

S(v) = E(v) + ωM(v) = E(v0) + ωM(v0) = S(v0) < m. (2.34)

If there exists t0 > 0 such that K(v(t0)) > 0 then by continuity of K and v, there exists t1 ∈ (0, t0]
such that K(v(t1)) = 0. This implies S(v(t1)) > m, using Proposition 2.15. This contradicts
(2.34). Hence, K(v(t)) < 0 for all t in the time of existence of v. Now, we prove P (v(t)) < 0 for
all t in the time of existence of v. Assume that there exists t2 > 0 such that P (v(t2)) > 0, then,
there exists t3 ∈ (0, t2] such that P (v(t3)) = 0. Using the previous lemma, S(v(t3)) > m, which
contradicts (2.34). This completes the proof. �

Using the above lemma, we have the following property of solutions of (1.1) when the initial
data lies on V.

Lemma 2.18. Let v0 ∈ V, v be the corresponding solution of (1.1) in (Tmin, Tmax). There exists
δ > 0 independent of t such that P (v(t)) < −δ, for all t ∈ (Tmin, Tmax).

Proof. Let t ∈ (Tmin, Tmax), u = v(t) and uλ(x) = λ
1
2u(λx). Using Lemma 2.13, there exists

λ0 ∈ (0, 1) such that P (uλ0) = 0. If K(uλ0) 6 0 then we keep λ0. Otherwise, K(uλ0) > 0, then,

there exists λ̃0 ∈ (λ0, 1) such that K(uλ̃0
) = 0. We replace λ0 by λ̃0. In any case, we have

S(uλ0
) > m. (2.35)

By (v) of Proposition 2.13 we have

S(u)− S(uλ0
) > (1− λ0)

∂

∂λ
S(uλ)|λ=1 = (1− λ0)P (u).

In addition P (u) < 0, we obtain

S(u)− S(uλ0
) > (1− λ0)P (u) > P (u). (2.36)

Combined (2.35) and (2.36), we obtain

S(v0)−m = S(v(t))−m = S(u)−m > S(u)− S(uλ0) > P (u) = P (v(t)).

Setting

−δ := S(v0)−m,

we obtain the desired result. �

Using the previous lemma, if the initial data lies on V and satis�es a weight condition then the
associated solution blows up in �nite time on H1(R+). More precisely, we have the following result.

Proposition 2.19. Let ϕ ∈ V such that |x|ϕ ∈ L2(R+). Then the corresponding solution v of
(1.1) blows up in �nite time on H1(R+).

Proof. By Lemma 2.18, there exists δ > 0 such that P (v(t)) < −δ for t ∈ (Tmin, Tmax). Remember
that

∂

∂t
‖xv(t)‖2L2(R+) = J(t)−

∫
R+

x|v|4 dx, (2.37)

where J(t) satis�es

∂tJ(t) = 4

(
2‖vx‖2L2(R+) −

1

8
‖v‖6L6(R+) + α|v(0)|2

)
= 8(P (v(t))) < −8δ.

This implies that

J(t) = J(0) + 8

∫ t

0

P (v(s)) ds < J(0)− 8δt.
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Hence, from (2.37), we have

‖xv(t)‖2L2(R+) = ‖xv(0)‖2L2(R+) +

∫ t

0

J(s) ds−
∫ t

0

∫
R+

x|v|4 dx ds

6 ‖xv(0)‖2L2(R+) +

∫ t

0

(J(0)− 8δs) ds

6 ‖xv(0)‖2L2(R+) + J(0)t− 4δt2.

Thus, for t su�ciently large, there is a contradiction with ‖xv‖L2(R+) > 0. Hence, Tmax <∞ and
Tmin > −∞. By the blow up alternative, we have

lim
t→Tmax

‖vx‖L2(R+) = lim
t→Tmin

‖vx‖L2(R+) =∞.

This completes the proof. �

Proof of Theorem 1.4 (2). Using Proposition 2.19, we need to construct a sequence (ϕn) ⊂ V such
that ϕn converges to ϕ in H1(R+). De�ne

ϕλ(x) = λ
1
2ϕ(λx).

We have
S(ϕ) = m, P (ϕ) = K(ϕ) = 0, ϕ(0) 6= 0.

By (iv) of Proposition 2.13,
S(ϕλ) < m for all λ > 0.

In the addition,
P (ϕλ) < 0 for all λ > 1.

Moreover,

∂

∂λ
K(ϕλ) = 2λ

(
‖ϕx‖2L2(R+) −

3

16
‖ϕ‖6L6(R+)

)
+ α|ϕ(0)|2

= 2λ(K(ϕ)− ω‖ϕ‖2L2(R+) − α|ϕ(0)|2) + α|ϕ(0)|2

= −2ωλ‖ϕ‖2L2(R+) − α(2λ− 1)|ϕ(0)|2

< 0,

when λ > 1. Thus, K(ϕλ) < K(ϕ) = 0 when λ > 1. This implies ϕλ ∈ V when λ > 1. Let λn > 1
such that λn → 1 as n→∞. De�ne, for n ∈ N∗

ϕn = ϕλn ,

then, the sequence (ϕn) satis�es the desired property. This completes the proof of Theorem 1.4. �
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