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ON THE SINGULARLY PERTURBED DERIVATIVE NONLINEAR
SCHRODINGER EQUATION

PHAN VAN TIN

ABsSTRACT. We consider the Schrodinger equation with derivative nonlinear term on the line.
‘We obtain results on local well posedness under the assumption of uniqueness of weak solutions
and we obtain the orbital stability of standing waves via the abstract theory of Grillakis, Shatah,
Strauss. Moreover, we consider the Schrodinger equation with nonlinear derivative term on
[0, +00) under Robin boundary condition at 0. Using a virial argument, we obtain the existence
of blowing up solutions and using variational techniques, we obtain stability and instability by
blow up results for standing waves.
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1. INTRODUCTION

We consider the singularly perturbed derivative nonlinear Schrédinger equation in two forms.
First, we consider the equation with a Dirac potential:

g + Ugy — You + i|ul*7u, = 0,
u(0) = .

Here, u: Ry x R, — C, p € H'(R), v € R, 0 > 0, J is the Dirac distribution at 0 defined for all
u,v € HY(R) by

(1.1)

<5U,, U)Hfl,Hl = 'RZ(U(O)U(O)),
and the indices denote derivatives. Second, we consider the equation on [0,+o00) with Robin
boundary condition at 0:

W + Vpy = %|v|2vz — %UQE — 1%|v\4v for v € Ry,
v(0) = ¢, (1.2)
0,v(t,0) = av(t,0) VteR,

where a € R is a given constant.
The equations (1.1) and (1.2) have some relationships. First, there is a relation between the
nonlinear terms. Indeed, under the transform (for z < 0)

u(t, I’) = 67£ f;r Iv(t7y)‘2 dyv(t7 7@)
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the equation (1.2) becomes
iy + Uge + i|u|*uy = 0. (1.3)
Furthermore, the linear parts of (1.1) and (1.2) can be rewritten in the following forms:

tug + Hyu = 0, ivt+ﬁav:Of0rx€R+,
{um>=w, {v®)=w7
where H, and I;Ta are self-adjoint operators defined by
Ha: D(I) € TA(Ry) — LA(R),
Hatr = tza,  D(Ha) = {u € HX(Ry) : ua(0%) = au(0*)},
H,:D(H,) C L*(R) — L*(R),
Hyu = tze, D(H,)={ue H*R\0)NH'(R):u,;(0") — 1y (07) = yu(0)} .

For each u € D(H,) set w such that w(z) = u(sign)(z)x. Hence,
we {ue H*(R\ {0}) N H'(R),u even ,u, (01) — u,(07) = 2au(0)}

and Haow = wy,. This implies that H, can be seen as the restriction of Hy, on even functions,
and we have ~

eiHat@ _ eiH2°‘t<p|R+, (14)
where ¢ € D(f[a) and ¢ is the even function on R whose restriction on RT is ¢.

The derivative nonlinear Schrodinger equation was originally introduced in Plasma Physics as a
simplified model for Alfvén wave propagation. Since then, it has attracted a lot of attention from
the mathematical community (see e.g [9,10,22,23,25,27,33,34]). There are also many works on
the perturbed nonlinear Schrédinger equation (see e.g [1-4,16,18,26,29]). To our knowledge, there
is no result combining the two difficulties. In this work, we are interested in the Cauchy problem
and in the existence and stability of standing waves of (1.1) and (1.2).

The Cauchy problem for classical non linear Schrédinger equations has been studied many
times before (see e.g the books of Cazenave [5] and Cazenave and Haraux [6] and the references
therein). Most works use the fixed point method on Sobolev spaces. For the classical nonlinear
Schridinger equation with a Dirac potential, by using the semi-group theory it is easy to obtain the
existence and uniqueness of solutions in H!(R). For derivative nonlinear Schrédinger equations, we
cannot use directly the fixed point method. There are many other methods to deal with the local
well posedness of derivative nonlinear Schrédinger equations. For example, one can use Bourgain
spaces [32], the approximation method [21, 35, 36] or the Gauge transform [24]. The combination
of the Dirac potential and the derivative nonlinearity renders the Cauchy problem quite difficult
to solve. We use the approximate method to prove the existence of strong solution under the
assumption of uniqueness of weak solution. Our first main result is the following.

Theorem 1.1. Assume that for all initial data in H*(R) there exists at most one weak solu-
tion of (1.1). Let ¢ € HYR), o > 1. Then there exists a unique mazimal solution u €
C((Tonins Trnaz), HY(R)) of (1.1). Moreover, u satisfies the following conservation laws.

(1) Conservation of the energy:

E(u(t)) = %Huanz + D) + ﬁm/ﬂ{ 2w da = E(p). (1.5)
(2) Conservation of the mass
Mu(t)) = llull> = M(p). (16)

In [24] the authors used Gauge transforms to convert the original equation into a system of two
equations without derivative. In our case, it seems that we cannot use directly this method due to
the perturbed term. Instead, we use the approximation method to prove the existence of solutions
of (1.1).

The equation (1.1) admit special solutions called standing waves which are of form e, where
w >0 and ¢ € H'(R) is explicitly given by

)= ezetz J2 o 10177 dy¢($>
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where (see Section 2.2 for details)

1
1o |40+ 1)2 9 I s
d(x) = 1 {(20 + 1)w sech (20\/(;|:L'| + tanh (2\/‘7}))} )

The stability of standing waves for classical nonlinear Schrédinger equations was originally stud-
ied by Cazenave and Lions [7] with variational and compactness arguments. A second approach,
based on spectral arguments, was introduced by Weinstein [37,38] and then considerably general-
ized by Grillakis, Shatah and Strauss [19,20] (see also [11], [12]). In the case of standing waves for
a Dirac potential and nonlinear terms of the form |u[P~!u, Goodman, Holmes and Weinstein [17]
proved the stability of ground states for p = 3,7+ > 0 using variational methods. Using variational
techniques, Fukuizumi, Ohta and Ozawa [14] have obtained the results of stability and instabil-
ity for standing waves when v > 0, p > 1 and Fukuizumi and Jeanjean have obtained results
when v < 0 under radial perturbations. Finally, by using the theory of Grillakis, Shatah and
Strauss [19,20], Le Coz, Fukuizumi, Fibich, Ksherim and Sivan [29] have obtained the complete
picture of stability for any p > 1,7 € R. For the derivative nonlinear Schrodinger equation when
v =0 and o = 1 the solitons have two parameters and are stable as proved in the work of Colin
and Ohta [8]. In the more general case o > 0, Liu, Simpson and Sulem [30] have obtained stability
results for solitons. In our work, we use the abstract theory of Grillakis, Shatah, Strauss [19, 20]
to study the orbital stability of standing waves. Our second main result is the following.

Theorem 1.2. Let w > 0. There exist wy, wa > 1—2 (explicitly known) such that the following
holds. The standing wave ‘., of equation (1.1) is orbitally stable if one of the two following
cases happens:

(1) ’y<0,w>772 and20<a§1,

(ii)) v<0,0>1and % <w < w;.
The standing wave €™, of the equation (1.1) is unstable if one of three following cases happens:

(i) v<0, w>w; and o > 1,

2

(i) v>0,w>2 and 0 <o < 3,

(iii) v >0, w > wy and 3 <o < 1.
Remark 1.3. The following cases are open:

2
(1) y>0,w>%,0>1
2

(2) v>0, F <w<uwy 3<o<L

We now study (1.2). Since (1.2) contains a Robin boundary condition, the notion of solution
in H'(R™) is not completely clear. We use the following definition. Let I be an open interval of

R. We say that v is a H!(R™) solution of the problem (1.2) on I if v € C(I, H*(R™)) satisfies the
following equation

~ t
v(t) = etflety —i/ eat=5) g (y(s)) ds, (1.7)
0

© is defined as in (1.4) and g is the function defined by

. . 3
g(v) = %MQUI - %UZEC - 1—6|U|411.

To study the equation (1.2), we will need the following assumption.

where etHat

Assumption. For all o € HY(R"), there exists a unique associated mazimal solution
v € C((Tmin, Trnaz), HY(RT)) of (1.2). Moreover, v satisfies the blow up alternative, the solution

depends continuously on the initial data, and if ¢ € D(H,) then for all time t, we have v(t) €
D(H,).

The existence of blowing up solutions for classical nonlinear Schrédinger equations was consid-
ered by Glassey [15] in 1977. He introduced a concavity argument based on the second derivative
in time of ||zu(t)||?. to show the existence of blowing up solutions. In this paper, we are also
interested in studying the existence of blowing-up solutions of (1.2). In the limit case o = +o0,
which is formally equivalent to Dirichlet boundary condition if we write v(0) = 1¢/(0) = 0, the

equation (1.2) transforms into the equation (1.1) with v = 0 by using Gauge transform. In [39], Wu
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proved the blow up in finite time of solutions of (1.2) with Dirichlet boundary condition and some
conditions on the initial data. Using the method of Wu [39] we obtain the existence of blowing up
solutions in the case a > 0, under a weighted space condition for the initial data and negativity of
the energy. Our third main result is the following.

Theorem 1.4. Assume Assumption A. Let p € 3 where
S ={ue H'R"),2ue L*(Ry))}.

Then there exists a unique solution v € C((Tmin, Tmaz), 2) of (1.2). Furthermore, v satisfies the
conservation laws of the mass and the energy as follows:

1
M(v) = §||’UH%2(R+) =M(p) forallt € (Tmin, Tmaz)s

1 1 a
E(v) == §Ilvwlliz<R+> - @IIUH‘%GW) + 5\11(0)|2 = E(p).

Assume o > 0 and E(p) < 0. Then the solution v of (1.2) blows-up in finite time i.e Ty > —00
and Thae < +00.

Stability and instability of standing waves are obtained by variational arguments. Define

1 1
Su(®) = 5 [[vellfaqes) +wlvlFaqary + alo©)F] = glvlGoee,
3
Ky (v) = ||Uw||%2(m+) +W||UH%2(1R+) +alu(0)* - EHU”%5(R+)'
We are interested in the following variational problem:
d(w) == inf {S,(v) | K,(v) = 0,0 € H'(RT)\ {0}} . (1.8)

Proposition 1.5. Let w,a € R such that w > o?. All minimizers of (1.8) are of form ¢, where
0 € R and ¢ is given by

¢ = 2¢wsech? (2\/5|x + tanh™! (—a)) :
Vw
We give the definition of stability and instability by blow up in H*(R*). Let w(t, z) = e™“p(z)
be a standing wave solution of (1.2).
(1) The standing wave w is called orbitally stable in H'(R™) if for all € > 0, there exists § > 0
such that if vy € H'(R™) satisfies

lvo — ¢l arm+) <9,

then the associated solution v of (1.2) satisfies
inf [[v(t) — e <e.
sup inf[|v(t) = el @) <e

Otherwise, w said to be instable.

(2) The standing wave w is called instable by blow up if there exists a sequence (i,,) such that
lim ||, — @[/ g1r+) = 0 and the associated solution v, of (1.2) blows up in finite time for
n—oo

all n.

Using the variational characterization Proposition 1.5 and the method of Colin and Ohta [§],
we obtain the orbital stability of these standing wave solutions if & < 0. When a > 0, we obtain
instability by blow up.

Theorem 1.6. Let o,w € R be such that w > o?. The standing wave e, where ¢ is the profile
as in Proposition 1.5, solution of (1.2), satisfies the following properties.

(1) If a < 0 then the standing wave is orbitally stable in H'(RT).
(2) If a > 0 then the standing wave is instable by blow up.

This paper is organized as follows. In Section 3, we consider the first model (1.1) of a derivative
nonlinear Schriédinger equation on the line with a Dirac potential. We prove the local wellposedness
result Theorem 1.1 and the stability results of the standing waves Theorem 1.2. In Section 4, we
consider the second model (1.2) of a derivative nonlinear Schrédinger equation on [0, c0) under
Robin boundary condition at 0. First, under the assumption of local well posedness in H*(R*), we
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prove the existence of blowing up solutions using a virial argument Theorem 1.4. Second, in the
case « < 0, using variational techniques, we prove the orbital stability of standing waves of (1.2).
Finally, in the case o > 0, using similar arguments as in [28], we prove the instability by blow up
of standing waves.

Acknowledgement. The author wishes to thank Prof.Stefan Le Coz for his guidance and encour-
agement.

2. ON THE SINGULARLY PERTURBED DERIVATIVE SCHRODINGER EQUATION ON THE LINE

2.1. The Cauchy problem. In this section we give a proof of Theorem 1.1.
For a > 0, consider

Vi(z) = ’yae*mrzw?.
Then V@ — 46 weakly-* in H~!(R) as a — oo. We consider the approximated problem
{iut + Uy — VOu +i|ul*u, = 0,
u(0) = .
Using the similar arguments in the proof of [21, Theorem 2.1.4], using the assumption o > 1,

there exist (7, ,7,") and a unique solution u® € C((T,,T, ), H(R)) of (2.1) such that for all
te (T, ,T,F) we have

(2.1)

E*(u®(t)) = E*(¢), M(u®(t)) = M(p),
where the approximated energy E“ is defined by
a 1 1 a 1 o, =
E*(v) := §||vz||%2(R) + §/V |v|? dz + 2(04—1)1”1/ [v|?7 v, T d.
R R

The proof of Theorem 1.1 is divided into three steps. First, we give an estimate on the sequence
(u®). Second, under the assumption of uniqueness of weak solutions, we prove that the sequence
(u®) converges (up to subsequence) to a function u strongly in H!(R). It implies that u is a strong
solution of (1.1) and u satisfies the conservation laws. Finally, we prove the continuous dependence
on the initial data of the solution wu.

2.1.1. Step 1: Estimate on the sequence (u®). In this section we prove the following result.
Proposition 2.1. There exist Ty > 0 independent of a and a constant M such that
sup (| oo (=1, 701,11 ) + 10 || oo (-0 0, -1 () ) < M. (2.2)
We rely on the arguments of Hayashi and Ozawa [21] to show the boundedness of the sequence
u® in H*(R). We need the following preliminary results.

Lemma 2.2. For all a > 0 and for all w € H*(R) we have

/ Vlul? de| < 2 ull 2 |9sul] 2.
R

Proof. Recall first the well known inequality
[ollZoe < 2llvllz2l|0z0]] e (2.3)
Using (2.3) and the remark that ||V%|| 1 = || we have

/Va|u\2dx <V Iz lulze = Wlllullze < 20ylllullz210zul 2
R

This finishes the proof. d

Lemma 2.3. Let a > 0 and u® be a solution of (2.1). For all r > 1 there ezists C > 0 such that

d a ‘s a '
G [t e < cluc . (2.4)
R
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Proof. We first assume that u® € H?(R). Since u® solves 2.1 we have

d JR—
T |u“|27'=/2r|ual2<"‘1)7€e(u;‘ua)dx
R R
= /2r|ua|2(r_1)7&((iuiw — V% — |u®*u?)u®) d
R
a|2(r—1) a —q 1 a|20 a2
= | 2l ~Tn(u,u") — S [u®[* O |u[* ) da
R
:Im/2Tu;8w(‘ua|2(r71))mdx_ oir/ﬁx(|ua‘2r+20) da
R R
:Im/2ru;ax(\ua|2<“1>)mdx

R
2(r—1 2
< Ol |75 lugl1 72
2
< Cllu 7wy
The above calculation is valid in H?(R) but we can obtain the result in H*(R) by density using
the continuous dependence on the initial data property. O

Proof. Proof of Proposition 2.1. We now come back to the boundedness property of u® in H*(R).
Using Lemma 2.2 we have

= N7z + g7

oc+1

1 _
= ||u®|2: + 2E%(u®) — /V“\u“|2 dx — 7Im/ |u®| 27 ulu® dx
R R
1

< luZe +2E% (u) + 21y llu® | 2wy lugll 22 + gl 2l (u®)>* | 2

oc+1
a a a a 1 a a a g
< u®l[Z2 + 2B (u®) + 492 |[u®]|72 + illug,-\lﬁz + mlluzllmllu [

1

al||4o+2
55 1ol

||ug||%2 + Lao+2-

a a a 1 a
< (1 +497)[[u||7> + 2B (u®) + Z”ux"%? + 012

It implies that

1 1 a a a/. a 1 a||ldo
(1=~ gorg ) IoelBor < (L 4+ 2B%(w) + 5t

1
2 a a(, a a||do+2
=2(14+ 4y )M (u®) + 2E(u®) + 5 2Hu | otz

_ 1 1
SetC’—l—Z—QUJr2 and

_1
e

1
a/,ay . 2 a a/, a a||4do+2
() 1= g (20 497 M) + 287w + e ).
then we have
w77 gy < €% (u®). (2.5)
By conservation of energy and mass, we have

a a\ __ ]‘ d a||ldo+2
at W)= C(20 +2) RIS

Hence, by applying Lemma 2.3 for » = 20 + 1 we obtain

d a(,a a|2(20+1 a(, a\\2oc
e (W) < Cllut |77 < O (uh)*
It is equivalent to
%6“(1&‘)

ey <
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Integral two sides of the above inequality from 0 to ¢ we have

(W) — ) (0) < C
Hence,
£ (u®) "2 () > % (u®) 27 (0) — 20Ct. (2.6)

Moreover, it is easy to see that E%(y) is uniformly bounded by some constant independent of a,
and we obtain

(u)0) = 5 (2004 02 (0) + 25°(0) +

for D independent of a. Let Ty such that

el ) < D @7)

D—20
2Co

Combined (2.6) and (2.7), there exists K > 0 independent of a such that for all ¢t € [Ty, Tp] we
have

|To| < (2.8)

e®(u)(t) < K.
Hence, since (2.5) holds, we have
Sup”ua”LO"([—To,ToLHl) S K.
a>1
Since u® verifies 2.1, this implies that there exists a constant N such that
supl|w/ || Loe ((~1, 1), 1-1) < N-
a>1
Choosing M = K + N, we obtain the desired result for Proposition 2.1. O
2.1.2. Step 2: The convergence of the sequence (u®).

Proposition 2.4. There exists u € C([~Tp, To], H'(R)) such that up to subsequence for all t €
[—To, Ty, the sequence u®(t) converges strongly to u(t) in H'(R).

We introduce the following convergence lemma.

Lemma 2.5. Let (v"),en C HY(R) be a bounded sequence in H'(R) such that v™ — v weakly in
HY(R). Then
i|v"20,0™ — i|v|? 0y
weakly-* in H—1(R).
Proof. Let M > 0 be such that sup||v™||z: < M. Let v € H*(R). We have

<i|vn|28ﬂ}n - i|U|28wv>1/}>H—17H1 = (1(v" =" 0v", V) o1 g + (WUT = 0)0pV” ) o g
+ <Z|U|26L(Un - U),¢>H71’H1

= J1+ Jy + Js.
Let ¢y, € D(R) such that || — ¥||gr — 0. We have
(V"™ — )P0 (Y — ) dx + /z(v” — )"0,y da
R R
<" = vl 0" Lo 1020 [ 2 1Y — Willpz + 100" |2 [V | oo [|(0™ — v)ti| 2

SOM)(IY = trlle> + (0" = v)grll2)-
Let € > 0. Fix ko large enough such that C(M)||¢) — 9y,||z2 < §. From the fact that
[[(v™ — V)i, ||z — 0 as n — 400,

there exists Ny such that for n > Ny we have C(M)||(v" —v)r| > < §. Hence for n > Ny we have
J1 < e. It follows that J; — 0 as n — 4o00. By a similar argument, we have J; — 0 as n — +o0.
For the term J3, we remark that 9, (v"® — v) — 0 weakly in L?(R), therefore J3 — 0 as n — oc.
This gives the desired result. O
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Proof. Proof of Proposition 2.4. Recall from Proposition 2.1 that for all ¢t € [Ty, Tp], u® is
uniformly bounded in H'(R) and u{ is uniformly bounded in H~!(R). It is classical to see that
(for details, see |5, Proposition 1.3.14]) for u® € L>°([~Tp, To], HY(R)) N W ([~Tp, To], H 1 (R))
there exists u € L>([—To, To], H(R)) N W°°([-Tp, To], H ' (R)) such that up to subsequence for
all t € [—T07T0},

u(t) — u(t) (2.9)
weakly in H1(R) when a — +o0o. Without loss of generality we assume that the convergence holds
for all a. Using Lemma 2.5 we obtain

i|u®Pul — iu*u, weakly-* in H'(R). (2.10)
Moreover, thanks to Sobolev embeddings, we have
u® — v a.e and uniformly on compact sets of R
and it is not hard to see that this permits us to show
Veu® — yéu  weakly-* in H'(R). (2.11)
Since u“ satisfies (2.1), it follows from (2.10), (2.11) and (2.9) that u satisfies (1.1). We have
e = Il 2 = 6o (@) 22-

Combined with u®(t) — u(t) weakly in H'(R), this implies that u®(¢t) — u(t) strongly in L?(R) for
all t € [-Tp, Tp)- In addition, we have u®(t) — wu(t) in L" for all r € [2,00]. We obtain as a — +00

Im/ |u“|2"u§de—>Im/ |u| %7 u, T de, (2.12)
R R
and

B(u(t) < lim_E*(u'(t) = lim_E°() = E(p). (2.13)

Thus we have shown that for each ¢ € H!(R) there exists a weak solution u € L>([—Tp, Tp], H'(R))N
Wheo([=To, To), H1(R)) of (1.1) and u satisfies

lu@®)ll72 = lellZes  Blu(t) < E(p).
Let us show that E(u(t)) is constant on [—Tp,7p] under the assumption of uniqueness of weak
solutions. Indeed, let tg,t1 € [—To,To]. Let ¢ = u(ty) and v be the associated solution given
by the above arguments. The solution v(. — ty) is defined on [Ty, Tp], by the assumption of
uniqueness, v(. — tg) = u(.) on [—Tp, Tp]. Hence,

E(u(t1)) < E(u(to))-
By similar arguments we also obtain
E(u(to)) < E(u(ty)).
It follows that for all tg,t; € [Ty, To]
E(u(to)) = E(u(t1)).
We have
E*(u*) = E*(¢) = E(p) = E(u(t)) as a — +o0. (2.14)

Combined (2.12) with (2.14), it is easily seen that u®(t) — wu(t) strongly in H'(R) for all ¢ €
[T, To]. We have for all ¢t € [—Tp, Tp)
E(u(t)) = E(p), M(u(t)) = M(¢), (2.15)

hence by [5, Lemma 3.3.6], u € C%'/2([~T,, Ty], L*(R)), so the function

1 20 Y
t— 2(0_’_1)Im/R|u(t)| Uy (t)u(t) do

is continuous [—Tp,Ty] — R. In view of (2.15), this implies that ||u(t)||g: is continuous from
[Ty, To] to R. Therefore, u € C([~To, Tp], H*(R)). This concludes the proof of existence of a

unique strongly solution of 1.1.
O
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2.2. The orbital stability of standing waves. In this section, we are interested in the orbital
stability of the standing wave solutions of the problem (1.1).

2.2.1. Standing waves. A standing wave is a solution of (1.1) of the form
u(t,z) = e“o(x).
The profile p € H'(R) is a solution of
— uz + Y00 +wp —ilp[*7 o, = 0. (2.16)
We have the following description for the solution of (2.16) (see [13, Lemma 25] for a proof).
Lemma 2.6. Lety € R andw > %2. Then any solution ¢ € H*(R) of (2.16) verifies the following:

p € C(R)NC2(R\ 0),
—Paa(7) + wp(r) = ilp(2)*7pa(x) =0 forz #0,

N (2.17)
02(07) = ¢z (07) = 7(0),
pa(x), p(x) =0,  as|z] — oo.
Let ¢ € H'(R) be a solution of (2.17). As in [30], set
. -1 20 L —i0(x)
00)i= iy [ 1oy, 0lo) i= pla)e ), (218)
Since ¢ satisfies (2.17) we have ¢ € H'(R) and
$2(07) = 6:(07) = e D (p,(0%) = .(07)) = 79(0). (2.19)
Moreover, by elementary calculations, we can verify that ¢ solves
20 +1 - o o —
— oz + W — To+1? 510170 — ﬁkﬁl2 2¢Im(¢p,) =0 for z #0. (2.20)
Set ) )
o+ _
A=w-— ¢ 4o _ ¢¢z
e (62)
By writing ¢ = f +ig for f and g are real valued functions, for all  # 0, we have
f:cac = Af7 (2'21)
e = Ag. (2.22)
Thus,
aa:(fwg_ga:f):fwwg_ga:a:fzo whenx;ﬁO.
Hence, by using f,g € H?(R\ 0) we have
fe(@)g(z) — go(x)f(z) =0 when x # 0.
Then, for all x # 0 we have
In(p(x) ¢z () = fu(x)g(x) — go(x)f(x) = 0.
Combined with (2.20) we have
2 1
Gt wh— L |47 =0  for z #£0. (2.23)

Ao +1)?

The solutions of (2.23) with jump condition (2.19) are well known (see e.g [13]):

1
4 1)2 _ ic
up to phase shift. Then all standing wave solutions of (1.1) are of the form

0 piwt o= m5rs 7o 8177 dy¢(x)’

where ¢y € R and ¢ is defined as above.
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2.2.2. Orbital stability of standing waves. In this section, we give the proof of Theorem 1.2. Recall
that the energy and mass are defined in (1.5), (1.6). We have
E'(u) = —tgy +y0u — i|ul* ug,, M (u) = u.
Hence, ¢ solves
E'(¢) +wM' () = 0.
Set
Hu:=E"(p)u+wM"(p)u and d(w)= E(p)+wM(p).
Let n(H) be number of negative eigenvalue of the operator H and define
" ~ J1if 9, M(p) >0,

p(d*(w) = {o it 9, M() < 0.
We use the following theory of Grillakis, Shatah and Strauss [19,20] to obtain the desired result.
In our case, the results of [19,20] boil down to the following.

Proposition 2.7. The following is true.
(1) The standing wave ety is orbitally stable if n(H) = p(d"(w)).
(2) The standing wave e*ty is unstable if n(H) — p(d”(w)) is odd.

Using similar arguments as in the proof of [30, Lemma 3.3] we have the following result.

Lemma 2.8. Let ‘
u = e (uy + iuy)
where 6 is defined by (2.18), uy, uo are the real part and the imaginary part of e~u. Then
2

~ o
(Hu,u} = <L11U1,U1> +/R |:¢(¢1UQ)x + mqﬁ%ul dx. (224)
where
802 4+ 60 + 1

T — 92 _ 40
Ly =-0,+v0+w o1 1) .

Proof. By elementary calculations, we have
(Hu,u) = (Liyui,ur) + (Laiug, ur) + (Ligui, uz) + (Logug, ug) ,

where
402 + 60 + 1
Li;:=—-80>+~¢ - Tt
o o
Loty := — 20—1 - 20 s
21 a—|—1¢ Gz + o+1¢ Oz,
_ @o4+1)o 5, 20
L12 = o+1 ¢ (bz — 1¢ am
20 +1
Loy := —0? ) .
22 8z+7 +w 4<U+1)2¢
We see that
2
~ o
L1 =1L — . 2.2
11 1+ (a—|—1)2¢ (2.25)
Moreover, we can check that
(Lyguq, ug) = —Ma (7)), urug ) — 7 ¢ Opur, u (2.26)
12U1, U2) = 2o+ 1)” ) U U2 o1 x U1, U2 .
2w +1 1 )
= 0 6%y, N C TR 2.27
200 + 1) (077 uaw,ur) + 200+ 1) (9% 1z, u2) (227)
Similarly, we have
1 o
I __ 20 T (% 2.2
(Layuz,u) 200+ 1) <6ac(¢ ),u1u2>+ o1 <¢ U2z,ul> (2.28)
20 +1 1

= (¢*7ug, u1) +

2o +1) (0% urz, uz) - (2.29)

2(c+1)
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Combining (2.27), (2.29) we have

2 1 1
(Liguy,ug) + (Laiug, u1) = :_:_1 <¢2UU21’ “1> + ﬁ <¢ u117u2>
Introducing Uz = ¢~ 'us into the above expression, and integrating by parts, we obtain
20 ~
<L12U1,’LL2> + <L21U2,u1> = py 1 <¢2‘7u21,u1> . (230)

We have

20+1 4,
(Lagug, ug) = (—07ug,us) + <(w + 70 — m¢4 ) U2,u2>

20 + 1
2 40+1 ~
x ] )
/ U dx + <m¢ + Pyé(b 4(0_ )2 (;5 U2u2>

_ /(q&ah + bin)? do + <w¢ N P 42“7“(;540*1, a2u2> .
R (o

Using the fact that
20+1

do+1 _ -1
4(U+1)2¢ 0 in H ' (R),

_¢xm +’75¢ +w—

we have

<L22U2; U2>

- / (GTias + dai)? A + (D, Tatta)
R
- / (GTize + Goia)? da — / 620, (120) da
R
/ 622, + 260, Tsiie + B202 du — / b (Gui2 + 26Tisiin) da
R

/¢ U2x

Combined the above expression with (2.25), (2.30) we have
(Hu,u)

2 20

T o 4o
:<L11U17U1>+<(O_+1)2¢ U17U1>+0+1< U2mu1 /¢u21
2
~ ~ (o
= <L11u1,u1> +/ <¢u2x + O’—i—l¢2au1> dx
R
T —1 g 20 g
= <L11U1,U1> + ¢(¢) Ug)x + m(ﬁ (751 de
R

This completes the proof. O

With the help of the previous lemma we will prove the following result.
Proposition 2.9. For all values of 0 > 0 and w > 0 we have
n(H) =n(Ly).
Proof. First, since L1 is a self adjoint operator, the spectrum of L1 satisfies
o(Ly1) C R.
Moreover, the essential spectrum of Ell satisfies
Oess(ill) = Oess(—07 + w) = [w,00).

In addition, Zy is bounded from below, hence, there is a finite number of negative eigenvalues. In
particular, n(Ly;) is well defined. Now, let u € H(R) be a function such that

(Hu,u) < 0.
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Hence, from the assumption v < 0 and (2.24) we have

<E11u1, U1> < 0.

It implies that

Moreover, if u; € H'(R) is a function such that
<leu1,u1> <0,
then by choosing us € H'(R) such that
ug(x) =
we can check that us € H!(R) and

B¢ uz), + G%ldﬂ”ul =0.

—0
c+1

o(z) / o) s (y) dy,

The function u = €% (u; + iuy) then satisfies
(Hu,u) < 0.
Thus,
n(H) > n(Ly).
This implies the desired result.

By using [29, Lemma 12] we obtain the following result.

Lemma 2.10. The following assertions hold.
(i) Ify > 0 then n(H) = n(Ly1) = 2.
(ii) If v <0 then n(H) =n(L11) = 1.

We now turn our attention toward d(w). We have
d"(w) = .M (p) = 0,M ().

Using [29, Lemma 8, Lemma 18] we have the following result.

Lemma 2.11. Let v € R and w > 1—2. There exist wi,ws such that
(i) O,M(p) > 0 in one of four following cases
2
1
—7>0,w>%,(1)<0<§,
—7>0,w>w, 5 <0<,
-7<0,0<0<1,
2
-7<0,0>1,w >w> 1.
(ii) 0,M(¢) <0 in one of three following cases
2
—y>0,w>w>L, L<o<,
2
—y>0,w>2, 021,
—7v<0,0>1, w>uw.

The constants wy,ws are defined as in [13, 14] as follow

_ (20—1)
oc—1 — ~? Zo /°°
J = 1—— J =
g (wl) 2\/ w1 < 4w1> ’ (W1) tanh_1<
for v < 0 and
1 9 _ (2;71) oS
g - — v v
—J = 1—-— J =
o (c2) 2,/w; ( 4w2> o Jle) /tanh1<
for v > 0.

—y
PV

-
2, /Wy

sech'/ y dy.

sech'/7 y dy.

Combining Lemma 2.11 and Proposition 2.7 we obtain the results of Theorem 1.2.
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3. ON THE DERIVATIVE SCHRODINGER EQUATION ON THE HALF LINE WITH ROBIN BOUNDARY
CONDITION

In this section we are studying in (1.2). All along this section, we suppose that Assumption 1
holds.

3.1. The existence of a blowing-up solution. In this section, we give the proof of Theorem
1.4 using a virial argument (see e.g [15] or [39] for similar arguments). Let o > 0. Let v be a

solution of (1.2). By density of D(H,) in H'(R"), we can assume that v € D(H,). Recall that
since v € H2(R"), we have

v(x),v,(z) = 0 as z — oo. (3.1)

Formally, since v solves (1.2), we have
1
§3t(|v|2) = —0,Im(v, V).

Therefore, using the Robin boundary condition we have

1 [~ _ _
Oy (2/0 |v|? dx) = —Im(v,0)(00) + Zm(v,v)(0)
= Im(v,0)(0)
= aZm(|v(0)]*)
=0.

This implies the conservation of the mass. By elementary calculations, we have
2 1,6 — Lo 2, 1 oo
O | |vz]” — EM = 0y | 2Re(v,Tt) — 5\1}\ |V +§U vy |-
Hence, integrating the two sides in space, we obtain

2

L - 1 1 .
Oy (/ﬂh |Ux‘2dl' — 16|U|6dx> = *Q'Re(vz(())vt(O)) + §|U(O)|2|’l}m(0)|2 B 51}(0)2’%(0)

Using the Robin boundary condition for v, we obtain

1
af, (/]R+ |Uz‘2d17 — 16|'U|6dx> = 720[728(1)(0)1&(0)) = 7O‘8t(‘1/(0)|2)

This implies the conservation of the energy.
To prove the existence of blowing up solutions we use similar arguments as in [39]. Set

Let
u(t,z) = v(t, ) exp (-i /z L dy) (3.2)

be a Gauge transform in H*(R). Then the problem (1.2) is equivalent with

(3.3)

iU+ Upy = i|ul?ug,
. (0) = au(0) + %|u(0)|2u(0).

The equation (3.3) has a simpler nonlinear form, but we pay this simplification with a nonlinear
boundary condition. Observe that

I(t):/Ooox2|u(t)|2da::/Ooox2|v(t)|2dac.
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By a direct calculation, we get

o0 oo
OI(t) = 272e/ x2u(t, x)opu(t, ) do = 2’Re/ 22 U(ige + |uPu,) do
0 0

o0 1 oo
= 2Im/ 2z, dr — f/ 2z|u|* dx
0 2 Jo

:4Im/ mumﬂdxf/ z|u|* da.
0 0

J(t) :Im/ TuL U dx.
0

Define

We have

oo t
OJ(t) = / TUL Uy dr + / TUUL AT
0 0

—Im/ TU Uy dx—Im/ (20) puy do

0 0

= —QIm/ TUTU, dT —Im/ u U dx
0 0

= —2Im/ Ty (e + |u)?ug) do — Im/ Wity + |ul?uy) d
0 0

o0 o0 o0
—272@/ TUp Uy AT — Re/ Uy dT — Im/ u|?u, T dx
0 0 0

_ _/ x81|um|2dx—72e(ﬂux)(+oo)+7?e(ﬁum)(0)+72e/ Tty dx—Im/
0 0 0

oo

:/ |uz\2d:z:+72e(ﬂ(0)uz(0))+/ |um|2dx—l'm/ ([P, dz
0 0 0

:2/ |ux|2dx—Im/ (22,77 d + Re(T(0)11, (0)).
0 0

Using the Robin boundary condition we have

o0 o0
DI (1) :2/ |um\2dac—Im/ 2wt da + alu(0)2.
0 0

Moreover using the expression of v in term of u given in (3.2), we get

O J(t) = 2/000 v |? dz — ;/OOO [v|® dz + a|v(0)]?
— 4B(v) — alv(0)2 < 4B (v) = 4E(y).
By integrating the two sides of the above inequality in time we have
J(t) < J(0) +4E(p)t.

Integrating the two sides of (3.4) in time we have
i t o)
10 = 10)+4 [ s@as— [ [ alutsn)f s
0 0 Jo

< I(0) + 4 / () ds.
0
Using (3.7) we have
I(t) < I(0) +4/t(J(0) +4E(p)s)ds
0

< I(0) +4J(0)t + 8E(p)t?.

o0

From the assumption E(y¢) < 0, there exists a finite time T} > 0 such that I(7T,) =0,

I(t) >0 for 0 <t < T..

|u|?u, T da
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Note that
/ |gp(x)\2da::/ |u(t,x)\2dx=—27ze/ ot 2)Ts(t, ) da
0 0 0

< 2lwvllez @ vell 2 ) = 2VI@)val 2 ey -
Then there exists a constant C' = C(p) > 0 such that
C
v llrz vy ) = VIO — +oo as t — T,.
Then the solution v blows up in finite time in H!(R*). This complete the proof of Theorem 1.4.
Remark 3.1. We can prove that if ||<p||%2(R+) <  then the associated solution v of (1.2) is bounded

in H'(R") by conservation laws and the Gagliardo-Nirenberg inequality. This implies that the
Cauchy problem (1.2) is globally wellposed in H'(R™) when the initial data is small enough in
L?(RT).

3.2. Stability and instability of standing waves. In this section, we give the proof of Theorem
1.6. First, we find the form of the standing waves of (1.2).
3.2.1. Standing waves. Let v = ¢™*p be a solution of (1.2). Then ¢ solves

0= prz —wp+ %Im(%v@)(ﬂ + %|(P|4(P7 for x >0
p2(0) = ap(0), (3.8)
o € H*(RT).

Set
A= w = 5In(¢eP) — 16l
By writing ¢ = f 4+ ig for f and g real valued functions, for = > 0, we have
f:vm = Afa
Gazx = Ag'
Thus,
aﬂ?(fmg - gmf) = f:c:cg - gaca:f =0 when z 7& 0.
Hence, by using f,g € H?>(RT), we have
fa(x)g(x) = go(2) f(x) = 0 when z # 0.
Then, for all = # 0, we have
In(pe(z)p(2)) = ga () f(2) = falz)g(x) = 0,

hence, (3.8) is equivalent to

0= pe — wp + %|<p|4g0, for z >0
22(0) = a(0), (3.9)
o € H*(RT).

We have the following description of the profile .

2

Proposition 3.2. Letw > «
is of the form

. There exists a unique (up to phase shift) solution ¢ of (3.9), which

¢ = 2¢/wsech? (2\/5|x| + tanh ™! (\;g)) , (3.10)

for all x > 0.

Proof. Let w be the even function defined by

(z)if x>0,
w(z) = {(f(_x) if x <0.
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Then w solves
0= —wyy + ww — Z|w|*w, for z #0,
we(07) — w,(07) = 2aw(0), (3.11)
w e H2(R)\ {0} N HY(R).
Using the results of Fukuizumi and Jeanjean [13], we obtain that
w(z) = 2¢/wsech? (2\/(;|JI| + tanh™" (\_/g))
up to phase shift provided w > a2. Hence, for > 0 we have
o(x) = 2/wsech? <2ﬁm| + tanh ™ <\_/g>>

up to phase shift. This implies the desired result. O

3.2.2. The variational problems. In this section, we give the proof of Proposition 1.5.
First, we introduce another variational problem:

d(w) := inf {gw(v) | v even, K, (v) = 0,v € H'(R) \ {0}} , (3.12)
where S,,, K,, are defined for all v € H!(R) by
~ 1 1
Su(v) = 3 [||Uw||2L2(R) +wlvllFam + 2a|U(0)\2} - 3*2””“%6(11@)7

~ 3
Ko () i= [loz]lZag) + @llvllze@) + 20]0(0)* = FEllvllze @)-
The functional K,, is called Nehari functional. The following result has proved in [13,14].

Proposition 3.3. Let w > o and ¢ satisfies
—paz +20a8p +wp — 55|l =0,
p € H'(R)\ {0}.

Then, there exists a unique positive solution ¢ of (3.13). This solution is the unique positive
minimizer of (3.12). Furthermore, we have an explicit formula for ¢

o(z) = 2/wsech? <2\/&|x + tanh ™! (\;g)) .

We have the following relation between the variational problems.

(3.13)

Proposition 3.4. Let w > a?. We have
1~
d(w) = §d(w).

Proof. Assume v is a minimizer of (1.8), define the H!(R) function w by

| v(x)if z >0,
w(z) = {v(—a:) if x < 0.

The function w € H(R) \ {0} verifies
Sy (w) = 28, (v) = 2d(w),
K

Ko (w) = 2K, (v) = 0.
This implies that
d(w) < S, (w) = 2d(w). (3.14)
Now, assume v is a minimizer of (3.12). Let w be the restriction of v on RT, then,
1~
Kw(w) = §Kw(’l)) =0

Hence, we obtain
d(w) = Su(v) = 25, (w) > 2d(w). (3.15)
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Combining (3.14) and (3.15) we have
d(w) = 2d(w).
This implies the desired result. O

Proof of Theorem 1.5. Let v be a minimizer of (1.8). Define w(z) € H'(R) by

_Jov(z)ifz >0,
w(z) = {v(—x) if x <0.

Then, w is an even function. Moreover, w satisfies
Ko (w) = 2K, (v) =0,
Su(w) = 28,(v) = 2d(w) = d(w).

Hence, w is a minimizer of (3.12). From Propositions 3.3, 3.4, w is of the form e, where § € R
is a constant and ¢ is of the form

2w sech? <2\@|x| + tanh ™! (;g)) .

Hence, v = w|g+ satisfies
v(x) = e’p(),
for > 0. This completes the proof of Proposition 1.5. O

Remark 3.5. Let w,a € R such that w > o?. Define
Ho = {ve H' (RY),S,(v) < d(w), K,(v) > 0}.

If ¢ € H, then the associated solution v € C((Tyin, Tynaz), H*(R')) of (1.2) is global. Indeed,
assume that ¢ € H,,. Let t € (Thnin, Tmaz ), using the conservation laws, we have

Sw(v(t) = E(v(t) + wM(v(t)) = E(p) + wM(p) = Su(p) < d(w).

Now, assume there exists ¢y > 0 such that K, (v(tg)) < 0, then, there exists t; € [0,tg) such that
K., (v(t1)) = 0. Hence, v(t1) is a minimizer of (1.8) and v(t;) = e¢. This implies that v is a
standing wave solution of (1.2), hence, K, (v(t)) = 0 for all ¢. This contradicts the assumption.
Hence, for all t € (Thin, Traz ), v(t) € H,, and

1 1 1 1 ~
SlelBaery + 5wllvlage + 50l0() = = [vllSas) < dw),

3
02172 gy + @lol| 2 @ry + lv(0)* - T6||U||%6(R+) 2 0.

It implies that (£ — ) []|%6 g+ bounded. Thus, [[v; |2 (g+) is uniformly bounded in (Tynin, Tnaa)

and we obtain the desired result.

3.2.3. Stability and instability of standing waves. In this section, we give the proof of Theorem 1.6.
We use the notations S, and K, as in Section 3.2.2. First, we recall a property, which is proved
in [14, Proof of Proposition 2].

Proposition 3.6. Let (w,) C H'(R) satisfies the following properties
Su(wn) — d(w),
K, (w,) — 0.

as n — co. Then, there exists a minimizer w of (3.12) such that w, — w strongly in H'(R) up to
subsequence.

To prove the stability statement (1) for a < 0 in Theorem 1.6, we will use similar arguments as
in the work of Colin and Ohta [8]. We need the following property.
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Lemma 3.7. Let a <0, w > o?. If a sequence (v,) C H'(R") satisfies
Sw(vn) = d(w), (3.16)
Ko (v,) — 0, (3.17)

then there exist a constant 8y € R such that v, — €%y, up to subsequence, where ¢ is defined as
i Proposition 1.5.

Proof. Define the sequence (w,) C H(R) as follows,

(z) = v (z) for x > 0,
W) = vp(—x) for x < 0.

We can check that
Se(wn) = 28, (v,) — 2d(w) = d(w),
Ko (wy) = 2K, (v,) — 0,

as n — oo. Using Proposition 3.6, there exists a minimizer wg of (3.12) such that w,, — wq strongly
in H*(R), up to subsequence. For convenience, we assume that w, — wg strongly in H'(R). By
Proposition 3.3, there exists a constant 6y € R such that

6o =

Wy =€ ",

where ¢ is defined by

o= { VNS o35

Hence, the sequence (v,,) is the restriction of the sequence (w,) on R, and satisfies
vp, — €%, strongly in HY(R"),
up to subsequence. This completes the proof. O

Now, we define

3
N(v) = EHU”%S(HH)’ (3.19)
L(v) := [[vz]|72@ry + wlol 2@y +alo(0)*. (3.20)
We can rewrite S,,, K, as follows
1 1
w==-L— =N,
R 2 6
K,=L-N.

We have the following classical properties of the above functions.

Lemma 3.8. Let (w,a) € R? such that w > o?. The following assertions hold.
(1) There exists a constant C' > 0 such that

L(v) > Clol}gsy Yo € H'(RT).

(2) We have d(w) > 0.
(3) If ve HY(RY) satisfies K,,(v) <0 then L(v) > 3d(w).

Proof. We have
W (0)[2 = —/0 O (lv(@)|2) da = —m/o o(2)7, (2) da

< 2|vll 2@+ llvallL2@+)-
Hence,
L(v) = |vg T2+ + wllvlF2@ey + alv(0)]?
02|72y + @llol 2@y = 2ledlvll 2@y vall L2 @+
Clloll3 @y + (1 = Olvallz@ry + (@ = Ovl|Z2@ry — 2lalllv]l 2@t Vel 2@+

C||U||§{1(R+) + 2V (1 = C)(w = C) = 2]a])|vllz2@+) Vel L2 @+)-

\YARR\VARR\V
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From the assumption w > a2, we can choose C € (0, 1) such that
2y/(1-C)(w—C) —=2|a| > 0.
This implies (1). Now, we prove (2). Let v be an element of H!(RT) satisfying K, (v) = 0. We
have
Cllv[3n m+y < L(v) = N(v) < Ci[|v]l 3 sy
Then,
C

[0l @+ > § o
From the fact that, for v satisfying K. (v) = 0, we have S,(v) = S,(v) — $Ku(v) = $L(v), this
implies that

d(w) = %inf{L(v) tv € H'(RY), K, (v) =0} > (;i/g > 0.

Finally, we prove (3). Let v € H*(R™) satisfying K, (v) < 0. Then, there exists A\; € (0,1) such
that K, (A\v) = ML(v) — AN (v) = 0. Since v # 0, we have 3d(w) < L(M\v) = M2 L(v) < L(v). O

Define
Al ={ve H'(R*)\ {0} : Su(v) < d(w), Ku(v) > 0},
Ag = {ve H' R\ {0} : S,(v) < d(w), Ku(v) < 0},
BY = {ve H'(R*)\ {0} : Su(v) < d(w), N(v) < 3d(w)},
B, = {ve H'(R')\ {0} : Su(v) < d(w), N(v) > 3d(w)} .

We have the following result.

Lemma 3.9. Let w,a € R? such that o < 0 and w > o2,

(1) The sets A} and A, are invariant under the flow of (1.2).

(2) AL =B and A =B
Proof. (1) Let up € AJ, and u(t) the associated solution for (1.2) on (Tynin, Timax)- By uo # 0
and the conservation laws, we see that S, (u(t)) = S, (uo) < d(w) for t € (Tin, Tmax). Moreover,
by definition of d(w) we have K, (u(t)) # 0 on (Tiin, Tmaz)- Since the function t — K, (u(t)) is
continuous, we have K, (u(t)) > 0 on (Tpin, Trmaz). Hence, A7 is invariant under flow of (1.2). By

the same way, A, is invariant under flow of (1.2).

(2) If v € A7 then by (3.20), (3.19) we have N(v) = 3S,(v) — 2K, (v) < 3d(w), which shows
v € B, hence A}, C BY. Now, let v € Bf. We show K, (v) > 0 by contradiction. Suppose that
K, (v) <0. Then, by Lemma 3.8 (3), L(v) > 3d(w). Thus, by (3.20) and (3.19), we have

5u(v) = 3 L(0) ~ N (v) > d(w),

which contradicts S, (v) < d(w). Therefore, we have K,(v) > 0, which shows v € A and
B} c Af. Next, if v € A, then by Lemma 3.8 (3), L(v) > 3d(w). Thus, by (3.20) and (3.19), we
have N(v) = L(v) — K, (v) > 3d(w), which shows v € B;. Thus, A, C B, . Finally, if v € B,
then by (3.20) and (3.19), we have 2K, (v) = 35,(v) — N(v) < 3d(w) — 3d(w) = 0, which shows
v € A, hence, B, C A, . This completes the proof. O

From Proposition 1.5, we have

Since a < 0, we see that

@) = Bullelfa s = 50ull Bl > 0
where ¢ is defined as (3.18) and we know from [14], [13] that
012N Z2 ) > 0,
for a < 0. We define the function h : (—eg,£9) — R by
h(r) =d(w £ T),
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for g9 > 0 sufficiently small such that A”(7) > 0 and the sign + or — is selected such that A’'(r) > 0
for 7 € (—eg,e0). Without loss of generality, we can assume
h(r) =d(w+ 7).

Lemma 3.10. Let (w,a) € R? such that w > o? and let h be defined as above. Then, for any
e € (0,e0), there exists & > 0 such that if vg € H'(R") satisfies |[vg — ol g1 (r+) < 0, then the
solution v of (1.2) with v(0) = vy satisfies 3h(—¢) < N(v(t)) < 3h(e) for allt € (Tpin, Tmaz)-

Proof. The proof of the above lemma is similar to the one of [8] or [31]. Let ¢ € (0,e9). Since
h is increasing, we have h(—¢) < h(0) < h(e). Moreover, by K,(¢) = 0 and (3.19), (3.20), we
see that 3h(0) = 3d(w) = 35,(¢) = N(¢). Thus, if up € H'(R") satisfies |ug — @l|gr(r+) < &
then we have 3h(0) = N(ug) + O(4) and 3h(—e) < N(ug) < 3h(e) for sufficiently small § > 0.
Since h(+e) = d(w £ €) and the set BY are invariant under the flow of (1.2) by Lemma 3.9, to
conclude the proof, we only have to show that there exists 6 > 0 such that if ug € H'(R") satisfies
|uo—@ll i (r+) < & then Sy,4c(ug) < h(+e). Assume that ug € H*(R") satisfies [[ug—| m1(r+) < 6.
We have
Swte(tio) = Suxe(p) +O(0)
= Su(p) £eM(p) + O(9)
= h(0) £eh/(0) + O(9).

On the other hand, by the Taylor expansion, there exists 7 = 7y (¢) € (—&p, &) such that
2
h(e) = h(0) & h'(0) + " ().

Since A’ (1) > 0 by definition of h, we see that there exists § > 0 such that if ug € H!(RT) satisfies
luo — @l g1 (r+y < 6 then S,4+c(ug) < h(+£e). This completes the proof. O

Proof of Theorem 1.6 (1). Assume that e™!¢ is not stable for (1.2). Then, there exists a constant
€1 > 0, a sequence of solutions (v™) to (1.2), and a sequence {t,} € (0,00) such that

vn(0) = @ in H'(RY), inf [vn(tn) — el m) > o1 (3.21)

By using the conservation laws of solutions of (1.2), we have
Sw (Un(tn)) = Sw(vn(o)) - Sw((p) = d(w) (3'22)
Using Lemma 3.10, we have
N(vn(tn)) = 3d(w). (3.23)
Combined (3.22) and (3.23), we have

Ka(vntn)) = 25u(0a(tn)) = SN (a(tn)) = 0.

Therefore, using Lemma 3.7, there exists ¢y € R such that (v, (¢,,.)) has a subsequence (we denote
it by the same letter) that converges to ey in H'(R*), where ¢ is defined as in Proposition 1.5.
Hence, we have

§2£||Un(tn) —ollm @y — 0, (3.24)

as n — oo, this contradicts (3.21). Hence, we obtain the desired result. 0

Next, we give the proof of Theorem 1.6 (2), using similar arguments as in [28].
Assume o > 0. Let ¢’y be the standing wave solution of (1.2). Introduce the scaling

ua(z) = )\%v()\z).

Let S,,, K, be defined as in Proposition 1.5, for convenience, we will remove the index w. Define

0 1 «
P(v) = 5o5(va)la=1 = 02|72 Ry — T6||U“%6(R+) + 5\”(0)|2~

In the following lemma, we investigate the behaviour of the above functional under scaling.

Lemma 3.11. Let v € H*(R™")\ {0} be such that v(0) # 0, P(v) < 0. Then there exists Ao € (0,1]
such that

(1) P(UN)) =0,
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(ii) Ao =1 if only if P(v) =0,

(iti) ZS(va) = $P(vy),

(iv) ZS(va) >0 on (0,X0) and Z&S(vy) <0 on (Ao, 00),
(v) The function A — S(vy) is concave on (Ag, o0).

Proof. A simple calculation leads to

Ao

)\2
P(vx) = N|va ]| 7o) — TGHUH%G(W) + 7\”(0”2-

Then, for A > 0 small enough, we have
P(U)\) > 0.

By continuity of P, there exists A\g € (0, 1] such that P(vy,) = 0. Hence (i) is proved. If A\g = 1
then P(v) = 1. Conversely, if P(v) = 0 then

Ao — AZ

Ao — A2

0= P(ox,) = MP(v) + afv(0)* = =5alo(0)".
By the assumption v(0) # 0, we have A\g = 1, hence (ii) is proved. Item (iii) is obtained by a simple
calculation. To obtain (iv), we use (iii). We have

B M MATla
P(m)szpmm(— 0 )|v<o>|2

2 2
Aa(Ag —A) 9
= 22w
Hence, P(vy) > 0if A < Ag and P(vy) < 0if A > Ag. This proves (iv). Finally, we have
82

53 5(0) = P(v) = Sl(0) < 0.
This proves (v). O
In the case of functions such that v(0) = 0, we have the following lemma.
Lemma 3.12. Let v € H'(RT)\ {0}, v(0) = 0 and P(v) = 0 then we have
S(vx) = S(v)  for all A > 0.
Proof. The proof is simple, using the fact that

é%sm) - %P(m — AP(v) =0,

Hence, we obtain the desired result. O

Now, consider the minimization problems
dap :=inf {S(v) :v e M}, (3.25)
m := inf {S(v),v € H'(RT)\ 0,5 (v) =0}, (3.26)
where
M= {ve H(R")\0,P(v)=0,K(v)<0}.
By classical arguments, we can prove the following property.
Proposition 3.13. Let m be defined as above. Then, we have
m = inf {S(v) :v € H'(RT)\ 0,K(v) =0} .
We have the following relation between the minimization problems m and dag.
Lemma 3.14. Let m and dq be defined as above. We have

m:dM.
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Proof. Let G be the set of all minimizers of (3.26). If ¢ € G then S’(¢) = 0. By the definition of S,
P, K we have P(¢) =0 and K(¢) = 0. Hence, ¢ € M, this implies S(¢) > daq. Thus, m > du.
Conversely, let v € M. If K(v) = 0 then S(v) > m, using Proposition 3.13. Otherwise,
K(v) < 0. Using the scaling vy (z) = Azv(Az), we have
3\2
16
as A = 0. Hence, K(vx) > 0 as A > 0 is small enough. Thus, there exists A\; € (0,1) such that
K(vy,) = 0. Using Proposition 3.13, S(vy,) = m. We consider two cases. First, if v(0) = 0 then
using Lemma 3.12, we have S(v) = S(vy,) = m. Second, if v(0) # 0 then using Lemma 3.11,
we have S(v) = S(vy,) = m. In any case, S(v) > m. This implies dyq > m, and completes the
proof. d

a\
K(v\) = )‘QHUI||2L2(R+) - Hv||6L6(R+) +W||”H%2(]R+) + 7|U(0)|2 - cUHU||2L2(]R+) >0,

Define
V:={ve H(R")\ {0} : K(v) <0,P(v) <0,S(v) <m}.
We have the following important lemma.

Lemma 3.15. If vy € V then the solution v of (1.2) associated with vy satisfies v(t) € V for all t
in the time of existence.

Proof. Since S(vg) < 0, by conservation of the energy and the mass we have

S(v) = E(v) + wM(v) = E(vg) + wM (vg) = S(vg) < m. (3.27)
If there exists ¢y > 0 such that K (v(to)) > 0 then by continuity of K and v, there exists ¢; € (0, to]
such that K(v(t;)) = 0. This implies S(v(t1)) > m, using Proposition 3.13. This contradicts
(3.27). Hence, K(v(t)) < 0 for all ¢ in the time of existence of v. Now, we prove P(v(t)) < 0 for
all ¢ in the time of existence of v. Assume that there exists to > 0 such that P(v(¢2)) > 0, then,
there exists t3 € (0,¢2] such that P(v(t3)) = 0. Using the previous lemma, S(v(t3)) > m, which
contradicts (3.27). This completes the proof. O

Using the above lemma, we have the following property of solutions of (1.2) when the initial
data lies on V.

Lemma 3.16. Let vy € V, v be the corresponding solution of (1.2) in (Tmin, Tmaz)- There exists
0 > 0 independent of t such that P(v(t)) < —0, for all t € (Trin, Tmax)-

Proof. Let t € (Thin, Trmaz), v = v(t) and uy(z) = )\%u(/\m). Using Lemma 3.11, there exists
Ao € (0,1) such that P(uy,) = 0. If K(uy,) < 0 then we keep Ao. Otherwise, K(ux,) > 0, then,
there exists Ao € (Ao, 1) such that K(uz ) = 0. We replace Ao by Ao. In any case, we have

S(uxy) = m. (3.28)
By (v) of Proposition 3.11 we have

S(u) — S(ur,) = (1 — AO)%S(U,\)h:l = (1= Ag)P(u).

In addition P(u) < 0, we obtain

S(u) — S(ux,) = (1 —Xo)P(u) > P(u). (3.29)
Combined (3.28) and (3.29), we obtain

S(vg) —m = S(v(t)) —m = S(u) —m = S(u) — S(uy,) > P(u) = P(v(t)).
Setting
—6 := S(vy) —m,

we obtain the desired result. g

Using the previous lemma, if the initial data lies on V and satisfies a weight condition then the
associated solution blows up in finite time on H!(R*). More precisely, we have the following result.

Proposition 3.17. Let ¢ € V such that |z|¢p € L*>(R"). Then the corresponding solution v of
(1.2) blows up in finite time on H'(RT).
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Proof. By Lemma 3.16, there exists 6 > 0 such that P(v(t)) < —6 for t € (Tynin, Tmaz). Remember
that

7]
G0 Ol ey = 76 = [ alof*da, (3.30)

where J(t) satisfies

1
0I(0) =4 (200 ey = ol + ol ) = S(P(0(0) < -85
This implies that
t
J(t) = J(0)+ 8/ P(v(s))ds < J(0) — 86t.
0

Hence, from (3.30), we have

t t
Joo @22 = [7000) [2ages + / J(s)ds - / / zlo|* dz ds
0 0 R+

¢
< 1oO) ey + | (00) — 885) ds
0
< zo(0)]|Z2ry + J(0)t — 46,
Thus, for ¢ sufficiently large, there is a contradiction with ||zv||z2+) > 0. Hence, Trnqz < 00 and

Trmin > —o00. By the blow up alternative, we have

i el =, T ol = .

This completes the proof. O

Proof of Theorem 1.6 (2). Using Proposition 3.17, we need to construct a sequence (¢,) C V such
that ¢,, converges to ¢ in H!(R™). Define

pa(z) = AT p(\x).

We have

By (iv) of Proposition 3.11,
S(px) < m for all A > 0.

In the addition,
P(px) <0 for all A > 1.

Moreover,

9] 3
S K00) =22 (Il aen) — mlelfeqany ) +lo(0)

= 20K (p) — wl@lF2+) — alp(0)*) + alp(0)[?
= —20A¢[|F2(m+) — (2X = 1)]p(0)[?
<0,

when A > 1. Thus, K(¢x) < K(¢) =0 when A > 1. This implies ) € V when A > 1. Let A\, > 1
such that A\, = 1 as n — oo. Define, for n € N*

Pn = P,

then, the sequence (¢,,) satisfies the desired property. This completes the proof of Theorem 1.6. [
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