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On the derivative nonlinear Schrödinger equation
on the half line with Robin boundary condition
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We consider the Schrödinger equation with nonlinear derivative term on [0,+∞) under

Robin boundary condition at 0. Using a virial argument, we obtain the existence of blowing

up solutions and using variational techniques, we obtain stability and instability by blow

up results for standing waves.

a)Electronic mail: van-tin.phan@univ-tlse3.fr

1

mailto:van-tin.phan@univ-tlse3.fr


I. INTRODUCTION

In this paper, we consider the derivative nonlinear Schrödinger equation on [0,+∞) with Robin

boundary condition at 0:
ivt + vxx =

i
2 |v|

2vx− i
2v2vx− 3

16 |v|
4v for x ∈ R+,

v(0,x) = v0(x),

∂xv(t,0) = αv(t,0) ∀t ∈ R,

(1.1)

where α ∈R is a given constant. The particular choice for the nonlinearity will become clear after

Remark I.1.

The linear parts of (1.1) can be rewritten in the following forms:ivt + H̃αv = 0 for x ∈ R+,

v(0) = v0,
(1.2)

where H̃α are self-adjoint operators defined by

H̃α : D(H̃α)⊂ L2(R+)→ L2(R+),

H̃αu = uxx, D(H̃α) =
{

u ∈ H2(R+) : ux(0+) = αu(0+))
}
.

We recall that eiH̃α t : R→L (L2(R+)) is a group which defines the solution of (1.2).

The derivative nonlinear Schrödinger equation was originally introduced in Plasma Physics as

a simplified model for Alfvén wave propagation. Since then, it has attracted a lot of attention from

the mathematical community (see Refs. 1–3).

Robin boundary conditions are a weighted combination of Dirichlet boundary conditions and

Neumann boundary conditions. Robin boundary conditions are also called impedance boundary

conditions, from their application in electromagnetic problems, or convective boundary conditions,

from their application in heat transfer problems. In mathematics, there are many works studying

equations under the Robin boundary condition (see e.g Ref. 4 and 5).

Consider the equation (1.1), and set

u(t,x) = exp
(

3i
4

∫ x

∞

|v(t,y)|2 dy
)

v(t,x).

Using the Gauge transformation, we see that u solves

iut +uxx = i∂x(|u|2u), t ∈ R, x ∈ (0,∞), (1.3)
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under a boundary condition ∂xu(t,0) = αu(t,0)+ 3i
4 |u(t,0)|

2u(t,0). In the case on all line, there

are many papers dealing with the Cauchy problem of (1.3). In Ref. 6, the authors established the

local well posedness in H1(R) by using a Gauge transform. Indeed, since u solves (1.3) on R, by

setting

h(t,x) = exp
(
−i
∫ x

−∞

|u(t,y)|2 dy
)

u(t,x),

k = hx +
i
2
|h|2h, (1.4)

we have h,k solve iht +hxx =−ih2k,

ikt + kxx = ik2h.
(1.5)

By classical arguments, we can prove that given h0,k0 ∈ L2(R) satisfying (1.4) there exists a

unique solution h,k ∈C([0,T ],L2(R))∩L4([0,T ],L∞(R)). To obtain the existence of solution of

(1.1), the authors proved that the relation (1.4) is satisfied for all t ∈ [0,T ]. Thus, since h,k solve

(1.5) and satisfy (1.4), if we set

u(t,x) = exp
(

i
∫ x

−∞

|h(t,y)|2 dy
)

h(t,x),

then u ∈C([0,T ],H1(R)) solves (1.1). In Ref.7, the author proved the global well posedness on

H1(R) under a L2(R) norm bound for the initial data (see also Refs. 8 and 9). In Ref. 10, the

authors proved the global well posedness of (1.3) given initial data in H
1
2 (R) and that furthemore

the H
1
2 (R) norm is globally bounded in time. This result closes the discussion in the setting of

the Sobolev spaces Hs(R). In the half line case, Wu11 proved existence of blow up solution of

(1.3) under Dirichlet boundary condition, given initial data in Σ := {u0 ∈H2(R+),xu0 ∈ L2(R+)}.

In this paper, we give a proof of existence of blow up solutions of (1.1) under Robin boundary

condition.

To study equation (1.1), we start by the definition of solution on H1(R+). Since (1.1) contains

a Robin boundary condition, the notion of solution in H1(R+) is not completely clear. We use the

following definition. Let I be an open interval of R. We say that v is a H1(R+) solution of the

problem (1.1) on I if v ∈C(I,H1(R+)) satisfies the following equation

v(t) = eiH̃α t
ϕ− i

∫ t

0
eiH̃α (t−s)g(v(s)) ds, (1.6)

where g is defined by

g(v) =
i
2
|v|2vx−

i
2

v2vx−
3

16
|v|4v.
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Let v ∈C(I,D(H̃α)) be a classical solution of (1.1). At least formally, we have

1
2

∂t(|v|2) =−∂xIm(vxv).

Therefore, using the Robin boundary condition we have

∂t

(
1
2

∫
∞

0
|v|2 dx

)
=−Im(vxv)(t,∞)+Im(vxv)(t,0)

= Im(vxv)(t,0)

= αIm(|v(t,0)|2)

= 0.

This implies the conservation of the mass. By elementary calculations, we have

∂t

(
|vx|2−

1
16
|v|6
)
= ∂x

(
2Re(vxvt)−

1
2
|v|2|vx|2 +

1
2

v2v2
x

)
.

Hence, integrating the two sides in space, we obtain

∂t

(∫
R+
|vx|2 dx− 1

16
|v|6 dx

)
=−2Re(vx(t,0)vt(t,0))+

1
2
|v(t,0)|2|vx(t,0)|2−

1
2

v(t,0)2vx(t,0)
2
.

Using the Robin boundary condition for v, we obtain

∂t

(∫
R+
|vx|2 dx− 1

16
|v|6 dx

)
=−2αRe(v(t,0)vt(t,0)) =−α∂t(|v(t,0)|2).

This implies the conservation of the energy which is defined as in (1.7).

In this paper, we will need the following assumption.

Assumption 1. We assume that for all v0 ∈ H1(R+) there exists a solution v ∈C(I,H1(R+)) of

(1.1) for some interval I ⊂ R. Moreover, v satisfies the following conservation laws:

M(v) :=
1
2
‖v‖2

H1(R+) = M(v0),

E(v) :=
1
2
‖vx‖2

L2(R+)−
1

32
‖v‖6

L6(R+)+
α

2
|v(t,0)|2 = E(v0). (1.7)

Remark I.1. In (1.1), if we consider the nonlinear term i|v|2vx instead of i
2 |v|

2vx− i
2v2vx− 3

16 |v|
4v

then there is no conservation of energy of solution. Indeed, set

u(t,x) = v(t,x)exp
(
− i

4

∫ x

∞

|v(t,y)|2 dy
)
.
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If v solves ivt + vxx = i|v|2vx,

∂xv(t,0) = αv(t,0)

then u solves iut +uxx =
i
2 |u|

2ux− i
2u2ux− 3

16 |u|
4u,

∂xu(t,0) = αu(t,0)− i
4 |u(t,0)|

2u(t,0).
(1.8)

By elementary calculations, since u solves (1.8), we have

∂t

(
|ux|2−

1
16
|u|6
)
= ∂x

(
2Re(uxut)−

1
2
|u|2|ux|2 +

1
2

u2ux
2
)
.

Integrating two sides in space, we obtain

∂t

(∫
R+
|ux|2−

1
16
|u|6 dx

)
=−2Re(ux(t,0)ut(t,0))+

1
2
|u(t,0)|2|ux(t,0)|2−

1
2

u(t,0)2ux(t,0)
2
.

Using the boundary condition of u, we obtain

∂t

(∫
R+
|ux|2−

1
16
|u|6 dx

)
=−2αRe(u(t,0)ut(t,0))−

1
2
Im(u(t,0)|u(t,0)|2ut(t,0))

+
1
2
|u(t,0)|4

(
α

2 +
1

16
|u(t,0)|4−

(
α +

i
4
|u(t,0)|2

)2
)

=−α∂t(|u(t,0)|2)+A,

where A = −1
2Im(u(t,0)|u(t,0)|2ut(t,0)) + 1

2 |u(t,0)|
4
(

α2 + 1
16 |u(t,0)|

4−
(
α + i

4 |u(t,0)|
2)2
)

.

Moreover, we cannot write A in form ∂tB(u(t,0)), for some function B : C→ C. Then, there is no

conservation of energy of u and hence, there is no conservation of energy of v.

The existence of blow-up solutions for classical nonlinear Schrödinger equations was consid-

ered by Glassey12 in 1977. He introduced a concavity argument based on the second derivative

in time of ‖xu(t)‖2
L2 to show the existence of blow up solutions. In this paper, we are also inter-

ested in studying the existence of blow-up solutions of (1.1). The limit case α = +∞ is formally

equivalent to Dirichlet boundary condition if we write v(t,0) = 1
α

vx(t,0) = 0. In Ref. 11, the

author proved the existence of blow up solutions of (1.1) with Dirichlet boundary condition and

some conditions on the initial data. Using similar arguments as in Ref. 11, we obtain the existence

of blow up solutions in the case α > 0, under a weighted space condition for the initial data and

negativity of the energy. Our first main result is the following.
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Theorem I.2. We assume Assumption 1. Let α > 0 and v0 ∈ Σ where

Σ =
{

u ∈ D(H̃α),xu ∈ L2(R+)
}

such that E(v0)< 0. Then the associated solution v of (1.1) blows up in finite time i.e Tmin >−∞

and Tmax <+∞.

The stability of standing waves for classical nonlinear Schrödinger equations was originally

studied by Cazenave and Lions13 with variational and compactness arguments. A second ap-

proach, based on spectral arguments, was introduced by Weinstein14,15 and then considerably

generalized by Grillakis, Shatah and Strauss16,17 (see also Refs. 18, 19). The derivative nonlin-

ear Schrödinger equation has a two-parameter family of solitary waves solutions. The stability of

these particular solutions was studied in many works before (see e.g Refs. 20–22). In our work,

we use the variational techniques to study the stability of standing waves. First, we define

Sω(v) :=
1
2

[
‖vx‖2

L2(R+)+ω‖v‖2
L2(R+)+α|v(0)|2

]
− 1

32
‖v‖6

L6(R+),

Kω(v) := ‖vx‖2
L2(R+)+ω‖v‖2

L2(R+)+α|v(0)|2− 3
16
‖v‖6

L6(R+),

where v(0) is value of function v at x = 0. We are interested in the following variational problem:

d(ω) := inf
{

Sω(v) | Kω(v) = 0,v ∈ H1(R+)\{0}
}
. (1.9)

We have the following result.

Proposition I.3. Let ω,α ∈R such that ω > α2. All minimizers of (1.9) are of form eiθ ϕω , where

θ ∈ R and ϕω is given by

ϕω = 2 4
√

ω sech
1
2

(
2
√

ω|x|+ tanh−1
(
−α√

ω

))
.

We give the definition of stability and instability by blow up in H1(R+). Let w(t,x)= eiωtϕω(x)

be a standing wave solution of (1.1).

(1) The standing wave w is called orbitally stable in H1(R+) if for all ε > 0, there exists δ > 0

such that if v0 ∈ H1(R+) satisfies

‖v0−ϕω‖H1(R+) 6 δ ,

then the associated solution v of (1.1) satisfies

sup
t∈R

inf
θ∈R
‖v(t)− eiθ

ϕω‖H1(R+) < ε.

Otherwise, w said to be unstable.
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(2) The standing wave w is called unstable by blow up if there exists a sequence (ϕn) such that

lim
n→∞
‖ϕn−ϕω‖H1(R+) = 0 and the associated solution vn of (1.1) blows up in finite time for

all n.

Our second main result is the following.

Theorem I.4. Let α,ω ∈ R be such that ω > α2. The standing wave eiωtϕω , where ϕω is the

profile as in Proposition I.3, solution of (1.1), satisfies the following properties.

(1) If α < 0 then the standing wave is orbitally stable in H1(R+).

(2) If α > 0 then the standing wave is unstable by blow up.

Remark I.5. The conservation laws play an important role to study the stability of standing waves.

However, the existence of conservation of energy is not always true (see remark I.1). Our work

can only extend for the models with nonlinear terms such that the energy is conserved.

Remark I.6. The blow up of solution is true in the case α = 0 i.e Neumann boundary condition.

In addition, there exist standing waves in this case. The formula of standing waves in this case is

only a special case of the general case α ∈R. Using similar arguments as in Ref. 23 (see also Ref.

24, Theorem 5.2), we obtain that in case α = 0, the standing waves is unstable by blow up.

This paper is organized as follows. First, under the assumption of local well posedness in

H1(R+), we prove the existence of blow-up solutions using a virial argument: In Section II A, we

give the proof of Theorem I.2. Second, in the case α < 0, using similar arguments as in Ref.25, we

prove the orbital stability of standing waves of (1.1). In the case α > 0, using similar arguments

as in Ref.24, we prove the instability by blow up of standing waves. The proof of Theorem I.4 is

obtained in Section II B. Finaly, in Section III, we prove the invariance of a set under the flow of

equation (1.1) which gives us another proof of the instability of standing waves. In this section,

we also prove that ∂ω‖ϕ̃ω‖2
L2(R) > 0 provided α < 0, which is important in the proof of stability

of standing waves.

II. PROOF OF THE MAIN RESULTS

We consider the equation (1.1) and assume that Assumption 1 holds.
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A. The existence of blow-up solutions

In this section, we give the proof of Theorem I.2 using a virial argument. Let α > 0 and v be a

solution of (1.1). To prove the existence of blow-up solutions, we use similar arguments as in Ref.

11. Set

I(t) =
∫

∞

0
x2|v(t)|2 dx.

Let

u(t,x) = v(t,x)exp
(
− i

4

∫
∞

x
|v|2 dy

)
(2.10)

be a Gauge transform in H1(R+). Then the problem (1.1) is equivalent with

iut +uxx = i|u|2ux,

ux(t,0) = αu(t,0)+ i
4 |u(t,0)|

2u(t,0).
(2.11)

The equation (2.11) has a simpler nonlinear form, but we pay this simplification with a nonlinear

boundary condition. Observe that

I(t) =
∫

∞

0
x2|u(t)|2 dx =

∫
∞

0
x2|v(t)|2 dx.

By a direct calculation, we get

∂tI(t) = 2Re
∫

∞

0
x2u(t,x)∂tu(t,x)dx = 2Re

∫
∞

0
x2u(iuxx + |u|2ux)dx (2.12)

= 2Im
∫

∞

0
2xuux dx− 1

2

∫
∞

0
2x|u|4 dx (2.13)

= 4Im
∫

∞

0
xuxudx−

∫
∞

0
x|u|4 dx. (2.14)

Define

J(t) = Im
∫

∞

0
xuxudx.
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We have

∂tJ(t) = Im
∫

∞

0
xuxut dx+Im

∫
∞

0
xuuxt dx

=−Im
∫

∞

0
xutux dx−Im

∫
∞

0
(xu)xut dx

=−2Im
∫

∞

0
xutux dx−Im

∫
∞

0
utudx

=−2Im
∫

∞

0
xux(iuxx + |u|2ux)dx−Im

∫
∞

0
u(iuxx + |u|2ux)dx

=−2Re
∫

∞

0
xuxuxx dx−Re

∫
∞

0
uuxx dx−Im

∫
∞

0
|u|2uxudx

=−
∫

∞

0
x∂x|ux|2 dx−Re(uux)(t,+∞)+Re(uux)(t,0)+Re

∫
∞

0
uxux dx−Im

∫
∞

0
|u|2uxudx

=
∫

∞

0
|ux|2 dx+Re(u(t,0)ux(t,0))+

∫
∞

0
|ux|2 dx−Im

∫
∞

0
|u|2uxudx

= 2
∫

∞

0
|ux|2 dx−Im

∫
∞

0
|u|2uxudx+Re(u(t,0)ux(t,0)).

Using the Robin boundary condition we have

∂tJ(t) = 2
∫

∞

0
|ux|2 dx−Im

∫
∞

0
|u|2uxudx+α|u(t,0)|2.

Moreover using the expression of v in term of u given in (2.10), we get

∂tJ(t) = 2
∫

∞

0
|vx|2 dx− 1

8

∫
∞

0
|v|6 dx+α|v(t,0)|2

= 4E(v)−α|v(t,0)|2 6 4E(v) = 4E(v0).

By integrating the two sides of the above inequality in time we have

J(t)6 J(0)+4E(v0)t. (2.15)

Integrating the two sides of (2.12) in time we have

I(t) = I(0)+4
∫ t

0
J(s)ds−

∫ t

0

∫
∞

0
x|u(s,x)|4 dxds

6 I(0)+4
∫ t

0
J(s)ds.

Using (2.15) we have

I(t)6 I(0)+4
∫ t

0
(J(0)+4E(v0)s)ds

6 I(0)+4J(0)t +8E(v0)t2.
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From the assumption E(v0)< 0, there exists a finite time T∗ > 0 such that I(T∗) = 0,

I(t)> 0 for 0 < t < T∗.

Note that ∫
∞

0
|v0(x)|2 dx =

∫
∞

0
|v(t,x)|2 dx =−2Re

∫
∞

0
xv(t,x)vx(t,x)dx

6 2‖xv‖L2
x(R+)‖vx‖L2

x(R+) = 2
√

I(t)‖vx‖L2
x(R+).

Then there exists a constant C =C(v0)> 0 such that

‖vx‖L2
x(R+) >

C

2
√

I(t)
→+∞ as t→ T∗.

Then the solution v blows up in finite time in H1(R+). This complete the proof of Theorem I.2.

B. Stability and instability of standing waves

In this section, we give the proof of Theorem I.4. To avoid confusion, throughout of this section,

we denote v(0) is value of function v at point x = 0. First, we find the form of the standing waves

of (1.1).

1. Standing waves

Let v = eiωtϕω be a solution of (1.1). Then ϕω solves
0 = ϕxx−ωϕ + 1

2Im(ϕxϕ)ϕ + 3
16 |ϕ|

4ϕ, for x > 0

ϕx(0) = αϕ(0),

ϕ ∈ H2(R+).

(2.16)

Set

A := ω− 1
2
Im(ϕ ′ωϕω)−

3
16
|ϕω |4

By writing ϕω = f + ig for f and g real valued functions, for x > 0, we have

fxx = A f ,

gxx = Ag.
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Thus,

∂x( fxg−gx f ) = fxxg−gxx f = 0 when x > 0.

Hence, by using f ,g ∈ H2(R+), we have

fx(x)g(x)−gx(x) f (x) = 0 when x > 0.

Then, for all x > 0, we have

Im(ϕ ′ω(x)ϕω(x)) = gx(x) f (x)− fx(x)g(x) = 0,

hence, ϕω solves 
0 = ϕxx−ωϕ + 3

16 |ϕ|
4ϕ, for x > 0

ϕx(0) = αϕ(0),

ϕ ∈ H2(R+).

(2.17)

We have the following result.

Proposition II.1. Let ω > α2. There exists a unique (up to phase shift) solution ϕω of (2.17),

which is of the form

ϕω = 2 4
√

ω sech
1
2

(
2
√

ω|x|+ tanh−1
(
−α√

ω

))
, (2.18)

for all x > 0.

Proof. Let ϕω be a solution of (2.17) and w be the even function defined by

w(x) =

 ϕω(x) if x > 0,

ϕω(−x) if x 6 0.

Then w solves 
0 =−wxx +ωw− 3

16 |w|
4w, for x 6= 0,

wx(0+)−wx(0−) = 2αw(0),

w ∈ H2(R)\{0}∩H1(R).

(2.19)

Using the results of Fukuizumi and Jeanjean26 (see Proposition II.2), we obtain that

w(x) = 2 4
√

ω sech
1
2

(
2
√

ω|x|+ tanh−1
(
−α√

ω

))
up to phase shift provided ω > α2. Hence, for x > 0 we have

ϕω(x) = 2 4
√

ω sech
1
2

(
2
√

ω|x|+ tanh−1
(
−α√

ω

))
up to phase shift. This implies the desired result.
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2. The variational problems

In this section, we give the proof of Proposition I.3.

First, we introduce another variational problem:

d̃(ω) := inf
{

S̃ω(v) | v even, K̃ω(v) = 0,v ∈ H1(R)\{0}
}
, (2.20)

where S̃ω , K̃ω are defined for all v ∈ H1(R) by

S̃ω(v) :=
1
2

[
‖vx‖2

L2(R)+ω‖v‖2
L2(R)+2α|v(0)|2

]
− 1

32
‖v‖6

L6(R),

K̃ω(v) := ‖vx‖2
L2(R)+ω‖v‖2

L2(R)+2α|v(0)|2− 3
16
‖v‖6

L6(R).

The functional K̃ω is called Nehari functional. The following result was proved in Refs. 26 and

27.

Proposition II.2. Let ω > α2. Consider the following equation−ϕxx +2αδϕ +ωϕ− 3
16 |ϕ|

4ϕ = 0,

ϕ ∈ H1(R)\{0} .
(2.21)

There exists a unique positive solution ϕ̃ω of (2.21). This solution is the unique positive minimizer

of (2.20). Furthermore, we have an explicit formula for ϕ̃ω

ϕ̃ω(x) = 2 4
√

ω sech
1
2

(
2
√

ω|x|+ tanh−1
(
−α√

ω

))
. (2.22)

We have the following relation between the variational problems.

Proposition II.3. Let ω > α2. We have

d(ω) =
1
2

d̃(ω).

Proof. Assume v is a minimizer of (1.9), define the H1(R) function w by

w(x) =

 v(x) if x > 0,

v(−x) if x < 0.

The function w ∈ H1(R)\{0} verifies

S̃ω(w) = 2Sω(v) = 2d(ω),

K̃ω(w) = 2Kω(v) = 0.
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This implies that

d̃(ω)6 S̃ω(w) = 2d(ω). (2.23)

Now, assume v is a minimizer of (2.20). Let w be the restriction of v on R+, then,

Kω(w) =
1
2

K̃ω(v) = 0.

Hence, we obtain

d̃(ω) = S̃ω(v) = 2Sω(w)> 2d(ω). (2.24)

Combining (2.23) and (2.24) we have

d̃(ω) = 2d(ω).

This implies the desired result.

Proof of Theorem I.3. Let v be a minimizer of (1.9). Define w(x) ∈ H1(R) by

w(x) =

 v(x) if x > 0,

v(−x) if x < 0.

Then, w is an even function. Moreover, w satisfies

K̃ω(w) = 2Kω(v) = 0,

S̃ω(w) = 2Sω(v) = 2d(ω) = d̃(ω).

Hence, w is a minimizer of (2.20). From Proposition II.2, w is of the form eiθ ϕ̃ω . Hence, v = w|R+

satisfies

v = eiθ
ϕ̃ω |R+ = eiθ

ϕω .

This completes the proof of Proposition I.3.

3. Stability and instability of standing waves

In this section, we give the proof of Theorem I.4. We use the notations S̃ω and K̃ω as in Section

II B 2. First, we define

N(v) :=
3

16
‖v‖6

L6(R+), (2.25)

L(v) := ‖vx‖2
L2(R+)+ω‖v‖2

L2(R+)+α|v(0)|2. (2.26)

13



We can rewrite Sω ,Kω as follows

Sω =
1
2

L− 1
6

N,

Kω = L−N.

We have the following classical properties of the above functions.

Lemma II.4. Let (ω,α) ∈ R2 such that ω > α2. The following assertions hold.

(1) There exists a constant C > 0 such that

L(v)>C‖v‖2
H1(R+) ∀v ∈ H1(R+).

(2) We have d(ω)> 0.

(3) If v ∈ H1(R+) satisfies Kω(v)< 0 then L(v)> 3d(ω).

Proof. We have

|v(0)|2 =−
∫

∞

0
∂x(|v(x)|2)dx =−2Re

∫
∞

0
v(x)vx(x)dx

6 2‖v‖L2(R+)‖vx‖L2(R+).

Hence,

L(v) = ‖vx‖2
L2(R+)+ω‖v‖2

L2(R+)+α|v(0)|2

> ‖vx‖2
L2(R+)+ω‖v‖2

L2(R+)−2|α|‖v‖L2(R+)‖vx‖L2(R+)

>C‖v‖2
H1(R+)+(1−C)‖vx‖2

L2(R+)+(ω−C)‖v‖2
L2(R+)−2|α|‖v‖L2(R+)‖vx‖L2(R+)

>C‖v‖2
H1(R+)+(2

√
(1−C)(ω−C)−2|α|)‖v‖L2(R+)‖vx‖L2(R+).

From the assumption ω > α2, we can choose C ∈ (0,1) such that

2
√

(1−C)(ω−C)−2|α|> 0.

This implies (1). Now, we prove (2). Let v be an element of H1(R+) satisfying Kω(v) = 0. We

have

C‖v‖2
H1(R+) 6 L(v) = N(v)6C1‖v‖6

H1(R+).

Then,

‖v‖2
H1(R+) >

4

√
C
C1

.
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From the fact that, for v satisfying Kω(v) = 0, we have Sω(v) = Sω(v)− 1
6Kω(v) = 1

3L(v), this

implies that

d(ω) =
1
3

inf
{

L(v) : v ∈ H1(R+),Kω(v) = 0
}
>

C
3

4

√
C
C1

> 0.

Finally, we prove (3). Let v∈H1(R+) satisfying Kω(v)< 0. Then, there exists λ1 ∈ (0,1) such that

Kω(λ1v) = λ 2
1 L(v)−λ 6

1 N(v) = 0. Since v 6= 0, we have 3d(ω)6 L(λ1v) = λ 2
1 L(v)< L(v).

Define

Ñ(v) :=
3

16
‖v‖6

L6(R), (2.27)

L̃(v) := ‖vx‖2
L2(R)+ω‖v‖2

L2(R)+2α|v(0)|2. (2.28)

We can rewrite S̃ω , K̃ω as follows

S̃ω =
1
2

L̃− 1
6

Ñ,

K̃ω = L̃− Ñ.

As consequence of the previous lemma, we have the following result.

Lemma II.5. Let (ω,α) ∈ R2 such that ω > α2. The following assertions hold.

(1) There exists a constant C > 0 such that

L̃(v)>C‖v‖2
H1 ∀v ∈ H1(R).

(2) We have d̃(ω)> 0.

(3) If v ∈ H1(R) satisfies K̃ω(v)< 0 then L̃(v)> 3d̃(ω).

We introduce the following properties.

Lemma II.6. Let 2 6 p < ∞ and ( fn) be a bounded sequence in Lp(R). Assume that fn→ f a.e

in R. Then we have

‖ fn‖p
Lp−‖ fn− f‖p

Lp−‖ f‖p
Lp → 0.

For the proof of Lemma II.6, see Ref. 28.

Lemma II.7. The following minimization problem is equivalent to the problem (2.20) i.e they have

the same minimum and the same minimizers:

d := inf
{

1
16
‖u‖6

L6 : u even ,u ∈ H1(R)\{0}, K̃ω(u)6 0
}
. (2.29)
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Proof. We see that the minimizer problem (2.20) is equivalent to following problem:

inf
{

1
16
‖u‖6

L6 : u even u ∈ H1(R)\{0}, K̃ω(u) = 0
}
. (2.30)

Let v be a minimizer of (2.20) then K̃ω(v) = 0, hence, d̃(ω) = 1
16‖v‖

6
L6 > d. Now, let v be a

minimizer of (2.29). We prove that K̃ω(v) = 0. Indeed, assuming K̃ω(v)< 0, we have

K̃ω(λv) = λ
2
(
‖vx‖2

L2 +ω‖v‖2
L2 +2α|v(0)|2− 3λ 4

16
‖v‖6

L6

)
> 0,

as 0 < λ is small enough. Thus, by continuity, there exists a λ0 ∈ (0,1) such that K̃ω(λ0v) = 0. We

have d 6 d̃(ω) 6 1
16‖λ0v‖6

L6 <
1

16‖v‖
6
L6 = d, which is a contradiction. It implies that K̃ω(v) = 0

and v is a minimizer of (2.30), hence v is a minimizer of (2.20). This completes the proof.

Now, using similar arguments as in Ref. 27, Proof of Proposition 2, we have the following

result.

Proposition II.8. Let (ω,α) ∈ R2 be such that α < 0, ω > α2 and (wn) ⊂ H1(R) be a even

sequence satisfying the following properties as n→ ∞.

S̃ω(wn)→ d̃(ω),

K̃ω(wn)→ 0.

Then, there exists a minimizer w of (2.20) such that wn→ w strongly in H1(R) up to subsequence.

Proof. In what follows, we shall often extract subsequence without mentioning this fact explicitly.

We divide the proof into two steps.

Step 1. Weak convergence to a nonvanishing function for the minimizing sequence. We

have
1
3

L̃(wn) = S̃ω(wn)−
1
6

K̃ω(wn)→ d̃(ω),

as n→ ∞. Then, (wn) is bounded in H1(R) and there exists w ∈ H1(R) even such that wn ⇀ w in

H1(R) up to subsequence. We prove w 6= 0. Assume that w≡ 0. Define, for u ∈ H1(R),

S0
ω(u) =

1
2
‖ux‖2

L2 +
ω

2
‖u‖2

L2−
1

32
‖u‖6

L6,

K0
ω(u) = ‖ux‖2

L2 +ω‖u‖2
L2−

3
16
‖u‖6

L6.
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Let ψω be minimizer of the following problems

d0(ω) = inf
{

S0
ω(u) : u even ,u ∈ H1(R)\{0},K0

ω(u) = 0
}

= inf
{

1
16
‖u‖6

L6 : u even ,u ∈ H1(R)\{0},K0
ω(u)6 0

}
.

We have K0
ω(wn) = K̃ω(wn)−2α|wn(0)|2→ 0, as n→ ∞. Since α < 0, we have K̃ω(ψω)< 0 and

hence we obtain

d̃(ω)<
1

16
‖ψω‖6

L6 = d0(ω) (2.31)

We set

λn =

(
‖∂xwn‖2

L2 +ω‖wn‖2
L2

3
16‖wn‖6

L6

) 1
4

.

We here remark that 0 < d̃(ω) = lim
n→∞

1
16‖wn‖6

L6 . It follows that

λ
4
n −1 =

K0
ω(wn)

3
16‖wn‖6

L6

→ 0,

as n→ ∞. We see that K0
ω(λnwn) = 0 and λnwn 6= 0. By the definition of d0(ω), we have

d0(ω)6
1
16
‖λnwn‖6

L6 → d̃(ω) as n→ ∞.

This contradicts (2.31). Thus, w 6= 0.

Step 2. Conclusion of the proof. Using Lemma II.6 we have

K̃ω(wn)− K̃ω(wn−w)− K̃ω(w)→ 0, (2.32)

L̃(wn)− L̃(wn−w)− L̃(w)→ 0. (2.33)

Now, we prove K̃ω(w) 6 0 by contradiction. Suppose that K̃ω(w) > 0. By the assumption

K̃ω(wn)→ 0 and (2.32), we have

K̃ω(wn−w)→−K̃ω(w)< 0.

Thus, K̃ω(wn−w)< 0 for n large enough. By Lemma II.5 (3), we have L̃(wn−w)> 3d̃(ω). Since

L̃(wn)→ 3d̃(ω), by (2.33), we have

L̃(w) = lim
n→∞

(L̃(wn)− L̃(wn−w))6 0.

Moreover, w 6= 0 and by Lemma II.5 (1), we have L̃(w) > 0. This is a contradiction. Hence,

K̃ω(w)< 0. By Lemma II.5 (2), (3) and weak lower semicontinuity of L̃, we have

3d̃(ω)6 L̃(w)6 lim
n→∞

inf L̃(wn) = 3d̃(ω).
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Thus, L̃(w) = 3d̃(ω). Combining with (2.33), we have L̃(wn−w)→ 0, as n→ ∞. By Lemma II.5

(1), we have wn→ w strongly in H1(R). Hence, w is a minimizer of (2.20). This completes the

proof.

To prove the stability statement (1) for α < 0 in Theorem I.4, we will use similar arguments as

in the work of Colin and Ohta25. We need the following property.

Lemma II.9. Let α < 0, ω > α2. If a sequence (vn)⊂ H1(R+) satisfies

Sω(vn)→ d(ω), (2.34)

Kω(vn)→ 0, (2.35)

then there exists a constant θ0 ∈R such that vn→ eiθ0ϕω , up to subsequence, where ϕω is defined

as in Proposition I.3.

Proof. Define the sequence (wn)⊂ H1(R) as follows,

wn(x) =

 vn(x) for x > 0,

vn(−x) for x < 0.

We can check that

S̃ω(wn) = 2Sω(vn)→ 2d(ω) = d̃(ω),

K̃ω(wn) = 2Kω(vn)→ 0,

as n→∞. Using Proposition II.8, there exists a minimizer w0 of (2.20) such that wn→w0 strongly

in H1(R), up to subsequence. For convenience, we assume that wn→ w0 strongly in H1(R). By

Proposition II.2, there exists a constant θ0 ∈ R such that

w0 = eiθ0ϕ̃ω ,

where ϕ̃ is defined as in (2.22). Hence,

vn→ eiθ0ϕ̃ω |R+ = eiθ
ϕω , strongly in H1(R+),

up to subsequence. This completes the proof.
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Define

A +
ω =

{
v ∈ H1(R+)\{0} : Sω(v)< d(ω),Kω(v)> 0

}
,

A −
ω =

{
v ∈ H1(R+)\{0} : Sω(v)< d(ω),Kω(v)< 0

}
,

B+
ω =

{
v ∈ H1(R+)\{0} : Sω(v)< d(ω),N(v)< 3d(ω)

}
,

B−ω =
{

v ∈ H1(R+)\{0} : Sω(v)< d(ω),N(v)> 3d(ω)
}
.

We have the following result.

Lemma II.10. Let ω,α ∈ R2 such that α < 0 and ω > α2. The following assertions holds.

(1) The sets A +
ω and A −

ω are invariant under the flow of (1.1).

(2) A +
ω = B+

ω and A −
ω = B−ω .

Proof. (1) Let u0 ∈ A +
ω and u(t) the associated solution for (1.1) on (Tmin,Tmax). By u0 6= 0

and the conservation laws, we see that Sω(u(t)) = Sω(u0)< d(ω) for t ∈ (Tmin,Tmax). Moreover,

by definition of d(ω) we have Kω(u(t)) 6= 0 on (Tmin,Tmax). Since the function t 7→ Kω(u(t)) is

continuous, we have Kω(u(t))> 0 on (Tmin,Tmax). Hence, A +
ω is invariant under flow of (1.1). By

the same way, A −
ω is invariant under flow of (1.1).

(2) If v ∈ A +
ω then by (2.28), (2.27) we have N(v) = 3Sω(v)− 2Kω(v) < 3d(ω), which shows

v ∈B+
ω , hence A +

ω ⊂B+
ω . Now, let v ∈B+

ω . We show Kω(v)> 0 by contradiction. Suppose that

Kω(v)6 0. Then, by Lemma II.5 (3), L(v)> 3d(ω). Thus, by (2.28) and (2.27), we have

Sω(v) =
1
2

L(v)− 1
6

N(v)> d(ω),

which contradicts Sω(v)< d(ω). Therefore, we have Kω(v)> 0, which shows v ∈A +
ω and B+

ω ⊂

A +
ω . Next, if v ∈ A −

ω , then by Lemma II.5 (3), L(v) > 3d(ω). Thus, by (2.28) and (2.27), we

have N(v) = L(v)−Kω(v)> 3d(ω), which shows v ∈B−ω . Thus, A −
ω ⊂B−ω . Finally, if v ∈B−ω ,

then by (2.28) and (2.27), we have 2Kω(v) = 3Sω(v)−N(v)< 3d(ω)−3d(ω) = 0, which shows

v ∈A −
ω , hence, B−ω ⊂A −

ω . This completes the proof.

From Proposition I.3, we have

d(ω) = Sω(ϕω).

Since α < 0, using Proposition III.5, we have

d′′(ω) = ∂ω‖ϕω‖2
L2(R+) =

1
2

∂ω‖ϕ̃ω‖2
L2(R) > 0,
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We define the function h : (−ε0,ε0)→ R by

h(τ) = d(ω + τ).

Since h′(0) = d′(ω) = ‖ϕω‖2
L2(R+)

> 0 and h′′(0) = d′′(ω)> 0, by choosing ε0 small enough, we

can assume that h′(τ)> 0 and h′′(τ)> 0 for τ ∈ (−ε0,ε0).

Lemma II.11. Let (ω,α) ∈ R2 such that α < 0 and ω > α2 and let h be defined as above. Then,

for any ε ∈ (0,ε0), there exists δ > 0 such that if v0 ∈ H1(R+) satisfies ‖v0−ϕω‖H1(R+) < δ ,

then the solution v of (1.1) with v(0,x) = v0(x) satisfies 3h(−ε) < N(v(t)) < 3h(ε) for all t ∈

(Tmin,Tmax).

Proof. The proof of the above lemma is similar to the one on Ref.25. Let ε ∈ (0,ε0). Since h is

increasing, we have h(−ε) < h(0) < h(ε). Moreover, by Kω(ϕω) = 0 and (2.27), (2.28), we see

that 3h(0) = 3d(ω) = 3Sω(ϕω) = N(ϕω). Thus, if u0 ∈ H1(R+) satisfies ‖u0−ϕω‖H1(R+) < δ

then we have 3h(0) = N(u0)+O(δ ) and 3h(−ε) < N(u0) < 3h(ε) for sufficiently small δ > 0.

Since h(±ε) = d(ω ± ε) and the set B±ω are invariant under the flow of (1.1) by Lemma II.10,

to conclude the proof, we only have to show that there exists δ > 0 such that if u0 ∈ H1(R+)

satisfies ‖u0−ϕω‖H1(R+) < δ then Sω±ε(u0)< h(±ε). Assume that u0 ∈ H1(R+) satisfies ‖u0−

ϕω‖H1(R+) < δ . We have

Sω±ε(u0) = Sω±ε(ϕω)+O(δ )

= Sω(ϕω)± εM(ϕω)+O(δ )

= h(0)± εh′(0)+O(δ ).

On the other hand, by the Taylor expansion, there exists τ1 = τ1(ε) ∈ (−ε0,ε0) such that

h(±ε) = h(0)± εh′(0)+
ε2

2
h′′(τ1).

Since h′′(τ1)> 0 by definition of h, we see that there exists δ > 0 such that if u0 ∈H1(R+) satisfies

‖u0−ϕω‖H1(R+) < δ then Sω±ε(u0)< h(±ε). This completes the proof.

Proof of Theorem I.4 (1). Assume that eiωtϕω is not stable for (1.1). Then, there exists a constant

ε1 > 0, a sequence of solutions (vn) to (1.1), and a sequence {tn} ∈ (0,∞) such that

vn(0,x)→ ϕω(x) in H1(R+), inf
θ∈R
‖vn(tn)− eiθ

ϕω‖H1(R+) > ε1. (2.36)
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Using the conservation laws of (1.1), we have

Sω(vn(tn)) = Sω(vn(0))→ Sω(ϕω) = d(ω). (2.37)

Using Lemma II.11, we have

N(vn(tn))→ 3d(ω). (2.38)

Combining (2.37) and (2.38), we have

Kω(vn(tn)) = 2Sω(vn(tn))−
2
3

N(vn(tn))→ 0.

Therefore, using Lemma II.9, there exists θ0 ∈R such that (vn(tn, .)) has a subsequence (we denote

it by the same letter) that converges to eiθ0ϕω in H1(R+), where ϕω is defined as in Proposition

I.3. Hence, we have

inf
θ∈R
‖vn(tn)− eiθ

ϕω‖H1(R+)→ 0, (2.39)

as n→ ∞, this contradicts (2.36). Hence, we obtain the desired result.

Next, we give the proof of Theorem I.4 (2). We divide the proof in two cases.

First, let α = 0. In this case, we use similar arguments as in Ref. 23. We have

Eω(v) =
1
2
‖vx‖2

L2(R+)−
1

32
‖v‖6

L6(R+),

P(v) = ‖vx‖2
L2(R+)−

1
16
‖v‖6

L6(R+).

Thus, E(ϕω) = P(ϕω) = 0. Let ε > 0 and ϕω,ε = (1+ ε)ϕω . We have

E(ϕω,ε)= (1+ε)2 1
2
‖ϕω‖2

L2(R+)−(1+ε)6 1
32
‖ϕω‖6

L6(R+)=((1+ε)2−(1+ε)6)
1
2
‖ϕω‖2

L2(R+)< 0.

In the addition, |x|ϕω,ε(x) ∈ L2(R+) by exponential decay of ϕω . Using Theorem I.2, the solution

associated to ϕω,ε blows up in finite time. As ϕω,ε → ϕω in H1(R+), we obtain the instability by

blow-up of standing waves.

Now, let α > 0. We use similar arguments as in Ref.24. Let eiωtϕω be the standing wave

solution of (1.1). Introduce the scaling

vλ (x) = λ
1
2 v(λx).

Let Sω , Kω be defined as in Proposition I.3, for convenience, we will remove the index ω . Define

P(v) :=
∂

∂λ
S(vλ )|λ=1 = ‖vx‖2

L2(R+)−
1

16
‖v‖6

L6(R+)+
α

2
|v(0)|2.

In the following lemma, we investigate the behaviour of the above functional under scaling.
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Lemma II.12. Assume α > 0. Let v ∈ H1(R+)\{0} be such that v(0) 6= 0, P(v)6 0. Then there

exists λ0 ∈ (0,1] such that

(i) P(vλ0) = 0,

(ii) λ0 = 1 if only if P(v) = 0,

(iii) ∂

∂λ
S(vλ ) =

1
λ

P(vλ ),

(iv) ∂

∂λ
S(vλ )> 0 on (0,λ0) and ∂

∂λ
S(vλ )< 0 on (λ0,∞),

(v) The function λ → S(vλ ) is concave on (λ0,∞).

Proof. A simple calculation leads to

P(vλ ) = λ
2‖vx‖2

L2(R+)−
λ 2

16
‖v‖6

L6(R+)+
λα

2
|v(0)|2.

Then, for λ > 0 small enough, we have

P(vλ )> 0.

By continuity of P, there exists λ0 ∈ (0,1] such that P(vλ0) = 0. Hence (i) is proved. If λ0 = 1

then P(v) = 1. Conversely, if P(v) = 0 then

0 = P(vλ0) = λ
2
0 P(v)+

λ0−λ 2
0

2
α|v(0)|2 =

λ0−λ 2
0

2
α|v(0)|2.

By the assumption v(0) 6= 0, we have λ0 = 1, hence (ii) is proved. Item (iii) is obtained by a simple

calculation. To obtain (iv), we use (iii). We have

P(vλ ) = λ
2
λ
−2
0 P(vλ0)+

(
λα

2
−

λ 2λ
−1
0 α

2

)
|v(0)|2

=
λα(λ0−λ )

2λ0
|v(0)|2.

Hence, P(vλ )> 0 if λ < λ0 and P(vλ )< 0 if λ > λ0. This proves (iv). Finally, we have

∂ 2

∂ 2λ
S(vλ ) = P(v)− α

2
|v(0)|2 < 0.

This proves (v).

In the case of functions such that v(0) = 0, we have the following lemma.

22



Lemma II.13. Let v ∈ H1(R+)\{0}, v(0) = 0 and P(v) = 0 then we have

S(vλ ) = S(v) for all λ > 0.

Proof. The proof is simple, using the fact that

∂

∂λ
S(vλ ) =

1
λ

P(vλ ) = λP(v) = 0.

Hence, we obtain the desired result.

Now, consider the minimization problems

dM := inf{S(v) : v ∈M } , (2.40)

m := inf
{

S(v),v ∈ H1(R+)\0,S′(v) = 0
}
, (2.41)

where

M =
{

v ∈ H1(R+)\0,P(v) = 0,K(v)6 0
}
.

By classical arguments, we can prove the following property.

Proposition II.14. Let m be defined as above. Then, we have

m = inf
{

S(v) : v ∈ H1(R+)\0,K(v) = 0
}
.

We have the following relation between the minimization problems m and dM .

Lemma II.15. Let m and dM be defined as above. We have

m = dM .

Proof. Let G be the set of all minimizers of (2.41). If ϕ ∈ G then S′(ϕ) = 0. By the definition of

S, P, K we have P(ϕ) = 0 and K(ϕ) = 0. Hence, ϕ ∈M , this implies S(ϕ)> dM . Thus, m > dM .

Conversely, let v ∈M . If K(v) = 0 then S(v)> m, using Proposition II.14. Otherwise, K(v)<

0. Using the scaling vλ (x) = λ
1
2 v(λx), we have

K(vλ ) = λ
2‖vx‖2

L2(R+)−
3λ 2

16
‖v‖6

L6(R+)+ω‖v‖2
L2(R+)+

αλ

2
|v(0)|2→ ω‖v‖2

L2(R+) > 0,

as λ → 0. Hence, K(vλ ) > 0 as λ > 0 is small enough. Thus, there exists λ1 ∈ (0,1) such that

K(vλ1) = 0. Using Proposition II.14, S(vλ1) > m. We consider two cases. First, if v(0) = 0 then

using Lemma II.13, we have S(v) = S(vλ1) > m. Second, if v(0) 6= 0 then using Lemma II.12,

we have S(v) > S(vλ1) > m. In any case, S(v) > m. This implies dM > m, and completes the

proof.

23



Define

V :=
{

v ∈ H1(R+)\{0} : K(v)< 0,P(v)< 0,S(v)< m
}
.

We have the following important lemma.

Lemma II.16. If v0 ∈ V then the solution v of (1.1) associated with v0 satisfies v(t) ∈ V for all t

in the time interval of existence.

Proof. Since S(v0)< 0, by conservation of the energy and the mass we have

S(v(t)) = E(v(t))+ωM(v(t)) = E(v0)+ωM(v0) = S(v0)< m. (2.42)

If there exists t0 > 0 such that K(v(t0)) > 0 then by continuity of K and v, there exists t1 ∈ (0, t0]

such that K(v(t1)) = 0. This implies S(v(t1))> m, using Proposition II.14. This contradicts (2.42).

Hence, K(v(t)) < 0 for all t in the time of existence of v. Now, we prove P(v(t)) < 0 for all t in

the time of existence of v. Assume that there exists t2 > 0 such that P(v(t2))> 0, then, there exists

t3 ∈ (0, t2] such that P(v(t3)) = 0. Using the previous lemma, S(v(t3)) > m, which contradicts

(2.42). This completes the proof.

Using the above lemma, we have the following property of solutions of (1.1) when the initial

data lies on V .

Lemma II.17. Let v0 ∈ V , v be the corresponding solution of (1.1) in (Tmin,Tmax). There exists

δ > 0 independent of t such that P(v(t))<−δ , for all t ∈ (Tmin,Tmax).

Proof. Let t ∈ (Tmin,Tmax), u = v(t) and uλ (x) = λ
1
2 u(λx). Using Lemma II.12, there exists

λ0 ∈ (0,1) such that P(uλ0) = 0. If K(uλ0) 6 0 then we keep λ0. Otherwise, K(uλ0) > 0, then,

there exists λ̃0 ∈ (λ0,1) such that K(u
λ̃0
) = 0. We replace λ0 by λ̃0. In any case, we have

S(uλ0)> m. (2.43)

By (v) of Proposition II.12 we have

S(u)−S(uλ0)> (1−λ0)
∂

∂λ
S(uλ )|λ=1 = (1−λ0)P(u).

In addition P(u)< 0, we obtain

S(u)−S(uλ0)> (1−λ0)P(u)> P(u). (2.44)
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Combined (2.43) and (2.44), we obtain

S(v0)−m = S(v(t))−m = S(u)−m > S(u)−S(uλ0)> P(u) = P(v(t)).

Setting

−δ := S(v0)−m,

we obtain the desired result.

Using the previous lemma, if the initial data lies on V and satisfies a weight condition then

the associated solution blows up in finite time on H1(R+). More precisely, we have the following

result.

Proposition II.18. Let ϕ ∈ V such that |x|ϕ ∈ L2(R+). Then the corresponding solution v of

(1.1) blows up in finite time on H1(R+).

Proof. By Lemma II.17, there exists δ > 0 such that P(v(t))<−δ for t ∈ (Tmin,Tmax). Remember

that

∂

∂ t
‖xv(t)‖2

L2(R+) = J(t)−
∫
R+

x|v|4 dx, (2.45)

where J(t) satisfies

∂tJ(t) = 4
(

2‖vx‖2
L2(R+)−

1
8
‖v‖6

L6(R+)+α|v(t,0)|2
)
= 8(P(v(t)))<−8δ .

This implies that

J(t) = J(0)+8
∫ t

0
P(v(s))ds < J(0)−8δ t.

Hence, from (2.45), we have

‖xv(t)‖2
L2(R+) = ‖xv0‖2

L2(R+)+
∫ t

0
J(s)ds−

∫ t

0

∫
R+

x|v|4 dxds

6 ‖xv0‖2
L2(R+)+

∫ t

0
(J(0)−8δ s)ds

6 ‖xv0‖2
L2(R+)+ J(0)t−4δ t2.

Thus, for t sufficiently large, there is a contradiction with ‖xv(t)‖L2(R+) > 0. Hence, Tmax < ∞ and

Tmin >−∞. By the blow up alternative, we have

lim
t→Tmax

‖vx‖L2(R+) = lim
t→Tmin

‖vx‖L2(R+) = ∞.

This completes the proof.
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Proof of Theorem I.4 (2). Using Proposition II.18, we need to construct a sequence (ϕn)⊂V such

that ϕn converges to ϕω in H1(R+). Define

ϕλ (x) = λ
1
2 ϕω(λx).

We have

S(ϕω) = m, P(ϕω) = K(ϕω) = 0, ϕω(0) 6= 0.

By (iv) of Proposition II.12,

S(ϕλ )< m for all λ > 0.

In the addition,

P(ϕλ )< 0 for all λ > 1.

Moreover,

∂

∂λ
K(ϕλ ) = 2λ

(
‖ϕ ′ω‖2

L2(R+)−
3
16
‖ϕω‖6

L6(R+)

)
+α|ϕω(0)|2

= 2λ (K(ϕω)−ω‖ϕω‖2
L2(R+)−α|ϕω(0)|2)+α|ϕω(0)|2

=−2ωλ‖ϕω‖2
L2(R+)−α(2λ −1)|ϕω(0)|2

< 0,

when λ > 1. Thus, K(ϕλ ) < K(ϕω) = 0 when λ > 1. This implies ϕλ ∈ V when λ > 1. Let

λn > 1 such that λn→ 1 as n→ ∞. Define, for n ∈ N∗

ϕn = ϕλn ,

then, the sequence (ϕn) satisfies the desired property. This completes the proof of Theorem I.4.

III. SOME TECHNICAL LEMMAS

Let ϕω be defined as in (2.18). Recall that

Sω(v) =
1
2
‖vx‖2

L2(R+)+
ω

2
‖v‖2

L2(R+)+
α

2
|v(0)|2− 1

32
‖v‖6

L6(R+),

Kω(v) = ‖vx‖2
L2(R+)+ω‖v‖2

L2(R+)+α|v(0)|2− 3
16
‖v‖6

L6(R+),

P(v) = ‖vx‖2
L2(R+)+

α

2
|v(0)|2− 1

16
‖v‖6

L6(R+),

for all v ∈ H1(R+). We have the following result.
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Lemma III.1. The minimizers of two following variational problems are same:

d(ω) = inf{Sω(v)|Kω(v) = 0,v ∈ H1(R+)\{0}},

µ(ω) = inf{Sω(v)|S′ω(v) = 0,v ∈ H1(R+)\{0}}.

Moreover, d(ω) = µ(ω) and each minimizer is of form eiθ ϕω , where θ ∈ R and ϕω is defined as

in (2.18)

Proof. This is a classical result (see e.g Ref. 25, Lemma 10).

Lemma III.2. Let α > 0 and v∈H1(R+) satisfies v 6= 0. Assume that P(v)6 0. Then the following

holds
1
2

P(v)6 Sω(v)−µ(ω).

Proof. We use similar arguments as in Ref.29, proof of Lemma 4.3. Recall that

vλ (x) = λ
1
2 v(λx).

Define

f (λ ) = Sω(vλ )−
λ 2

2
P(v) =

ω

2
‖v‖2

L2(R+)+
α

2
|v(0)|2

(
λ − λ 2

2

)
.

We have

f ′(λ ) =
α

2
|v(0)|2(1−λ ).

Hence, in case v(0) 6= 0 we have

f (1) = max
λ>0

f (λ ).

Moreover, in case v(0) = 0 we have f (λ )≡ ω

2 ‖v‖
2
L2(R+)

. Thus, in all case we have

f (1) = max
λ>0

f (λ ).

We have

Kω(vλ ) = λ
2
(
‖vx‖2

L2(R+)−
3
16
‖v‖6

L6(R+)

)
+αλ |v(0)|2 +ω‖v‖2

L2(R+).

Thus, for λ > 0 small enough we have Kω(vλ )> 0. For λ > 0 large enough, using P(v)6 0 and

α > 0 (hence ‖vx‖2
L2(R+)

6 1
16‖v‖

6
L6(R+)

) we have Kω(vλ )< 0. It follows that there exists a λ0 > 0

such that Kω(vλ0) = 0. By the definition of µ(ω), P(v)6 0 and f (1)> f (λ0), we have

µ(ω)6 Sω(vλ0)6 Sω(vλ0)−
λ 2

0
2

P(v)6 Sω(v)−
1
2

P(v).

This completes the proof.
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Next, using the result of the previous lemmas we have the following.

Lemma III.3. The following set is invariant under flow of (1.1)

H :=
{

Sω(v)< d(ω),P(v)< 0,v ∈ H1(R+)
}
.

Proof. Let v0 ∈H and v ∈C(I,H1(R+)) be the associated solution of (1.1). By the conservation

law of (1.1), we have Sω(v(t)) = Sω(v0) < d(ω). It remains to prove that P(v(t)) < 0 on I. By

continuity of function t → P(v(t)), we only need to prove that P(v(t)) 6= 0 for all t ∈ I. On the

contrary, suppose that P(v(t0)) = 0 for some t0 ∈ I. Using Lemma III.2, we have

d(ω) = µ(ω)6 Sω(v(t0))−
1
2

P(v(t0)) = Sω(v(t0)),

which contradicts the fact that Sω(v(t))< d(ω) on I. This completes the proof.

The following lemma is a consequence of the above lemma.

Lemma III.4. Let v0 ∈H . Then the associated solution of (1.1) blows up in finite time.

Proof. Let v(t) be the associated solution of (1.1). Using Lemma III.3, we have v(t) ∈H for all

t. In the addition, using Lemma III.2, we have

1
2

P(v(t))6 Sω(v(t))−µ(ω) = Sω(v0)−d(ω)< 0.

By classical arguments, we have that v(t) blows up in finite time.

The above lemma gives another proof of instability of standing waves. The following result is

important in the proof of stability of standing waves.

Proposition III.5. Let α < 0 and ϕ̃ω be defined as in (2.22). Then, we have

∂ω‖ϕ̃ω‖2
L2(R) > 0.

Proof. Recall the formula of ϕ̃ω as follows

ϕ̃ω = 2 4
√

ω sech
1
2

(
2
√

ω|x|+ tanh−1
(
−α√

ω

))
.
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Thus,

‖ϕ̃ω‖2
L2(R) =

∫
R

ϕ̃
2
ω dx

=
∫
R

4
√

ω sech
(

2
√

ω|x|+ tanh−1
(
−α√

ω

))
dx

= 8
√

ω

∫
R+

sech
(

2
√

ωx+ tanh−1
(
−α√

ω

))
dx

= 4
∫

∞

tanh−1
(
−α√

ω

) sech(y)dy for y = 2
√

ωx+ tanh−1
(
−α√

ω

)
:= h(ω),

Define the following functions

h(z) = 4
∫

∞

z
sech(y)dy,

z(y) = tanh−1(y),

y(ω) =
−α√

ω
=−αω

−1
2 .

Thus, we have

h′(ω) = h′(z)z′(y)y′(ω)

=−4sech(z)
1

tanh′(tanh−1(y))
(−α)

−1
2

ω
−3
2

=−2α sech(z)
1

tanh′(tanh−1(y))
ω
−3
2 .

Since, α < 0 and

tanh′(x) =
4e2x

(e2x +1)2 > 0, for all x,

we have

h′(ω)> 0.

which completes the proof.
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