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ON THE SYMMETRIC VERSION OF SEAKI

THEOREM AND FLAT DENSITIES

E. H. EL ABDALAOUI

Abstract. It is shown that for any α ∈] 1
2
, 1[ there exists a sym-

metric probability measure σ on the torus such that the Hausdorff
dimension of its support is α and σ∗σ is absolutely continuous with
flat continuous Radon-Nikodym derivative. Namely, we obtain a
symmetric version of Seaki Theorem but the flat Radon-Nikodym
derivative of σ ∗ σ can not be a Lipschitz function.
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1. Introduction

Seaki’s theorem assert that there exists a singular measure σ with
support of Lebesgue measure zero such that σ ∗ σ is absolutely con-
tinuous and in addition the Radon-Nikodym derivative of σ ∗ σ has a
uniformly convergent Fourier series. It is any easy exercise to show
that the measure σ can not be symmetric. Nevertheless, using the
ideas of Körner’s proof of Seaki Theorem [2], we shall obtain a sym-
metric version of Saeki theorem. In fact, we shall prove that there exist
a symmetric singular measure for which the convolution is absolutely
continuous with continuous Radon-Nikodym derivative. Our principal
motivation is connected to the question raised in [1] on the existence
of singular symmetric measure σ with absolutely continuous such that
the Radon-Nikodym derivative is flat. We recall that the function f is
flat if ||f − 1||∞ < ε, for some ε ∈ [0, 1). The subject of this note is to
establish that such measure exist. For that, we will essentially follows
Körner’s proof of Seaki Theorem [2].

This note is organized as follows. In section 2, we state our main
result and the fundamental theorem need it for its proof. In section 3,
we present the ingredients of need it in the proof of the fundamental
theorem, and we conclude by presenting its proof.

2. The main theorem and its proof

We start by stating our main theorem.

Theorem 2.1. Given ε > 0 we can find a symmetric measure σ with

support of Hausdorff dimension
1

2
and a continuous function f : T −→

R such that
∥∥f − 1

∥∥
∞
< ε, and σ ∗ σ = fdλ, where λ is a Lebesgue

measure.

The main ingredients of Theorem 2.1 is contained in the Körner’s
proof of Seaki Theorem [2]. Following Körner, we denote by Fs the
space of non-empty closed symmetric subsets of T equipped with the
Hausdorff distance dH define by

∀(E, F ) ∈ Fs, dH(E, F ) = sup
e∈E

d(e, F ) + sup
f∈F

d(E, f).

It is an easy exercise to verify that (Fs, dH) is a complete metric space,
in fact, we have more (Fs, dH) is compact (see [3, Ch. IV.]). As in [2],
we consider the metric space (Es, dEs), where Es is consisting of ordered
pairs (E, µ) where E ∈ Fs and µ is a symmetric probability measure
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with supp(µ) ⊂ E and µ̂(r) −→ 0 as |r| −→ +∞ and dEsis defined by

∀((E, µ), (F, σ)) ∈ Es, dEs((E, µ), (F, σ)) = dH(E, F )+sup
r∈Z

|µ̂(r)−σ̂(r)|.

Finally, we consider the metric space (Gs, dGs
), where Gs is consisting

of those (E, µ) ∈ Es such that µ ∗ µ = fµdλ with fµ is continuous, dGs

is given by, for all ((E, µ), (F, σ)) ∈ Gs
dGs

((Eµ), (F, σ)) = dEs((E, µ), (F, σ)) + ||fµ − fσ||∞.
For the proof of our main result, we need the following Lemma.

Lemma 1. The metric spaces (Es, dEs) and (Gs, dGs
) are complete.

The proof of the lemma is leaved to reader. We need also the follow-
ing crucial lemma

Lemma 2. Let α ∈ [1
2
, 1) and Hn be the subset of consisting of those

(E, µ) ∈ Gs such that we can find a finite collection of intervals I
symmetric (which means if I ∈ I the −I is in I) with

E ⊆
⋃

I∈I

I and
∑

I∈I

|I|α+ 1

n <
1

n
.

Then Hn is open dense set in (Gs, dGs
).

The proof of Lemma 2 is similar to that in [2], we need only to point
out that the metric dψ defined in [2] verify dψ ≥ dGs

.
At this, we stat the fundamental result of this note.

Theorem 2.2. Let α ∈ [1
2
, 1). The complement of the set

Hα = {(E, µ) ∈ Gs : E has Hausdorff dimension α}
is of first category in (Gs, dGs

).

Obviously, Theorem 2.1 follows from Theorem 2.2.

3. The proof of Theorem 2.2.

The fondamental ingredient of the proof of Theorem 2.2 is based
on the following lemmas. The first one is standard in Probability and
Martingale theory. and its the proof can be found in [2].

Lemma 3. Suppose that 0 < Np < 1 and m ≥ 2. Then, if Y1, Y2, · · · ,
YN are independent random variables with

P(Yj = 1) = p, P(Yj = 0) = 1− p,

it follows that

P

(
N∑

j=1

Yj ≥ m

)
≤ 2(Np)m

m!
.
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Before stating the second one. We recall the following definition.

Definition 1. A sequence Wr is said to be a martingale with respect
to a sequence Xr of random variables if

(i) E (|Wj|) <∞.

(ii) E (Wr+1|X0, · · · , Xr) =Wr.

Lemma 4. Let δ > 0 and let Wr be a martingale with respect to a
sequence Xr of random variables. Write Yr+1 = Wr+1 −Wr. Suppose
that

E
(
eλYr+1|X0, X1, · · · , Xr

)
≤ ear+1

λ2

2 .

for all λ < δ and some ar+1 > 0. Suppose further that A ≥
∑N

r=1 ar.
Then, provided that 0 ≤ x < Aδ, we have

P (|WN −W0|) ≤ exp
(−x2
2A

)
.

Lemma 4 is known as Hoeffding-Azuma’s inequality. By applying
Lemma 3, we get the following lemma. For its complete proof, we refer
to [2].

Lemma 5. Let γ ∈]0, 1[ and ε > 0, we can find an integer M =
M(γ, ε) ≥ 1 such that the following property holds. Suppose n ≥
2, nγ ≥ N and X1, X2, · · · , XN are independent symmetric random
variables each uniformly distributed on

Γn
def
=

{
r

n
: r ∈

{
−1, · · · , −1

n
,
1

n
, · · · , 1

}}
.

Then, with probability at least 1− ε
n
,

N∑

j=1

(
δXj

({ r
n

})
+ δ−Xj

({ r
n

}))
< M.

for all r ∈
{
−1, · · · , −1

n
, 1
n
, · · · , 1

}
.

The key lemma is the following lemma.

Lemma 6. Suppose ϕ : N −→ R is a sequence with ϕ(n) −−−−→
n→∞

+∞. If γ ∈]0, 1[ and ε > 0, there exists a integer M(γ)
def
= M and

n0(ϕ, γ, ε)
def
= n0 with the following property. Suppose that n > n0, n is

odd, nγ ≥ N and X1, X2, · · · , XN are independent symmetric random
variables each uniformly distributed on

Γn
def
=

{
r

n
: r ∈

{
−1, · · · , −1

n
,
1

n
, · · · , 1

}}
.
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Then, if we write σ
def
= 1

N

∑N

j=1

(
δXj

+ δ−Xj

)
, we have

∣∣∣∣σ ∗ σ
(
k

n

)
− 1

2n

∣∣∣∣ ≤ ε
ϕ(n)

√
ln(n)

N
√
n

,

and

σ

(
k

n

)
≤ M

N

for all k ∈
{
−1, · · · , −1

n
, 1
n
, · · · , 1

}
, with probability at least 1

2
.

As a corollary of the lemme 6 we have the following lemma

Lemma 7. Suppose ϕ : N −→ R is a sequence with ϕ(n) −−−−→
n→∞

+∞. If γ ∈]0, 1[ and ε > 0, there exists a integer M(γ)
def
= M and

n0(ϕ, γ, ε)
def
= n0 with the following property. Suppose that n > n0, n is

odd, nγ ≥ N , we can find N points

xj ∈ Γn
def
=

{
r

n
: r ∈

{
−1, · · · , −1

n
,
1

n
, · · · , 1

}}
,

such that writing σ
def
= 1

2N

∑N

j=1

(
δxj + δ−xj

)
, we have

∣∣∣∣σ ∗ σ
(
k

n

)
− 1

2n

∣∣∣∣ ≤ ε
ϕ(n)

√
ln(n)

N
√
n

,

and

σ

(
k

n

)
≤ M

N

for all k ∈
{
−1, · · · , −1

n
, 1
n
, · · · , 1

}
.

Now, let us emphasize that we need only to give a sketch of a the proof
of the lemma 6.

Proof. Let M = M(γ, 1
4
) be as in Lemma 5. Fix r

n
∈ Γn and define

Y1, Y2, · · · , YN as follows. If

j−1∑

v=1

(
δXv

(u
n

)
+ δ−Xv

(u
n

))
< M, for all u

with 1 ≤ |u| ≤ n, set
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Yj = −2j − 1

2n
+

1

4

(
δ2Xj

({ r
n

})
+ δ−2Xj

({ r
n

}))
+

1

2

j−1∑

v=1

{
δXv+Xj

({ r
n

})
+ δ−(Xv+Xj)

({ r
n

})}
+

1

2

j−1∑

v=1

{
δXv−Xj

({ r
n

})
+ δXj−Xv

({ r
n

})}
.

Otherwise Yj = 0. P ut W0 = 0 and Wj =

j−1∑

v=1

Yv. it is a nice exercise

to show that E(Yj|X1, · · · , Xj−1) = 0. Thus the sequence Wj is a
martingale with respect to X1, · · · , XN . Following Körner proof, we
get that

E(eλYj |X1, · · · , XN) ≤ exp

{
N

n
4(1 +M2)λ2

}
.

We can thus apply Lemma 4 with

A = 8
N2

n
(M2 + 1) and x = ε

Nφ(n)
√

ln(n)√
n

,

since φ(n) −−−−→
n→+∞

+∞ we can choose n0(φ, γ, ε) = n0. Therefore

P

{
|Wn| ≥ ε

Nφ(n)
√

ln(n)√
n

}
≤ 1

4n
,

for all n ≥ n0. To finish the proof, observe that

|WN | =
∣∣∣∣∣

N∑

j=1

Yj

∣∣∣∣∣ =
∣∣∣∣(Nσ ∗Nσ)

({ r
n

})
− N2

2n

∣∣∣∣ .

It follows with probability at least 1− 1
2n
, that we have

N∑

v=1

(
δXj

+ δ−Xj

) ({ r
n

})
< M,

for all r with 1 ≤ |r| ≤ n and

| (Nσ ∗Nσ)
({ r

n

})
− 1

2n
| < ε

Nφ(n)
√
ln(n)√

n
.

Hence

| (σ ∗ σ)
({ r

n

})
− 1

2n
| < ε

φ(n)
√

ln(n)

N
√
n

.



ON SYMMETRIC VERSION OF SEAKI THEOREM 7

and the proof of the lemma is complete. �

Now we rewrite the lemma 7 in more usable from. More precisely,
we will exhibit a function g in order to prove the following lemma.

Lemma 8. Suppose ϕ : N −→ R is a sequence with ϕ(n) −−−−→
n→∞

+∞. If γ ∈]0, 1[ and ε > 0, there exists a integer M(γ)
def
= M and

n0(ϕ, γ, ε)
def
= n0 with the following property. Suppose that n > n0, n is

odd, nγ ≥ N , we can find N points

xj ∈ Γn
def
=

{
r

n
: r ∈

{
−1, · · · , −1

n
,
1

n
, · · · , 1

}}
,

such that, writing

g =
n

N

∑

1≤|j|≤N

I[xj−
1

4n
,xj+

1

4n
],

with x(−j) = −xj , we have g ∗ g continuous and

(1) ||g ∗ g − 1||∞ ≤ 2ε
φ(n)

√
n ln(n)

N
.

(2) |g(t)| ≤ 2nM
N

for all t ∈ T.

Proof. Observe that we have

g = σ ∗ 2nI[− 1

2n
, 1

2n
].

It follows that

g ∗ g = σ ∗ σ ∗ 2nI[− 1

4n
, 1

4n
] ∗ 2nI[− 1

4n
, 1

4n
] = σ ∗ σ ∗ 2n∆n,

where ∆n(x) = max {0, 1− 2n|x|}. By the way, we get

g ∗ g( r
n
) = 2n (σ ∗ σ)

({ r
n

})
.

�

From now the rest of the proof follows the path of Körner’s proof and
this finish the proof of Theorem 2.2 and the proof of the main result
of this note is done.

Remark. Lemma 25 from [2] tell us that we can approximate uni-
formly a continuous function by a sequence of infinitely differentiable
functions but not in any space Λψ where ψ is a positive strictly increas-
ing continuous function which satisfy

ψ(0) = 0 and
ψ(t)

tβ
−−−−→
t→0+

0, β < α− 1

2
,

for some given (in advance) α ∈]1
2
, 1[.
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