
HAL Id: hal-03024630
https://hal.science/hal-03024630

Submitted on 25 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Tapered vector Doppler for improved quantification of
low velocity blood flow

Ingvild Kinn Ekroll, Vincent Perrot, Herve Liebgott, Jørgen Avdal

To cite this version:
Ingvild Kinn Ekroll, Vincent Perrot, Herve Liebgott, Jørgen Avdal. Tapered vector Doppler for
improved quantification of low velocity blood flow. IEEE Transactions on Ultrasonics, Ferroelectrics
and Frequency Control, 2020, �10.1109/TUFFC.2020.3028874�. �hal-03024630�

https://hal.science/hal-03024630
https://hal.archives-ouvertes.fr


This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TUFFC.2020.3028874, IEEE
Transactions on Ultrasonics, Ferroelectrics, and Frequency Control

1

Tapered vector Doppler for improved quantification
of low velocity blood flow

Ingvild Kinn Ekroll, Vincent Perrot, Hervé Liebgott, Jørgen Avdal

Abstract—A new vector velocity estimation scheme is devel-
oped, termed Tapered Vector Doppler (TVD), aiming to improve
the accuracy of low velocity flow estimation. This is done by
assessing the effects of Singular Value Decompostion (SVD)
and Finite Impulse Response (FIR) filters and designing an
estimator which accounts for signal loss due to filtering. Synthetic
data created using a combination of in vivo recordings and
flow simulations were used to investigate scenarios with low
blood flow, in combination with true clutter motion. Using this
approach, the accuracy and precision of TVD was investigated
for a range of clutter-to-blood and signal-to-noise ratios. The
results indicated that for the investigated carotid application
and setup, the SVD filter performed as a frequency based
filter. For both SVD and FIR filters, suppression of the clutter
signal resulted in large bias and variance in the estimated
blood velocity magnitude and direction close to the vessel walls.
Application of the proposed tapering technique yielded significant
improvement in the accuracy and precision of near-wall vector
velocity measurements, compared to non-tapered vector Doppler
and weighted least squares approaches. In synthetic data, for
a blood SNR of 5 dB, and in a near-wall region where the
average blood velocity was 9 cm/s, the use of tapering reduced
the average velocity magnitude bias from 26.3 cm/s to 1.4 cm/s.
Complex flow in a carotid bifurcation was used to demonstrate
the in vivo performance of TVD, and it was shown that tapering
enables vector velocity estimation less affected by clutter and
clutter filtering than what could be obtained by adaptive filter
design only.

Index Terms—Adaptive clutter filtering, vector velocity esti-
mation, tapered vector Doppler, blood flow imaging, low velocity
blood flow, vector Doppler, quantitative vascular blood flow
estimation, weighted least squares.

I. INTRODUCTION

Vector velocity imaging (VVI) of blood flow has been
a topic of interest for ultrasound research since the 1970s.
By combining VVI estimators with the use of broad beam
acquisitions, it has become possible to produce vector velocity
estimates in larger regions of interest with high frame rates. In
recent years, the use of vector velocity imaging based on vec-
tor Doppler, transverse oscillations, speckle tracking or vector
flow mapping has been investigated in applications ranging
from assessment of tissue elasticity [1], [2], visualization of
complex flow fields in the hearts of newborns, children and
adults [3]–[6] as well as in the carotid arteries [7]–[9] and
ascending aorta [10], mapping of vorticity and energy loss in
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the left ventricle [11], [12] and mapping of flow complexity
in the carotid bulb [13]. The widespread research utilizing
2D and 3D velocity estimation techniques indicates that the
different approaches have matured in recent years and have
the potential to provide additional diagnostic information in
cardiovascular applications.

Though visualization of flow patterns already provides more
information than the conventional color Doppler images, many
applications would benefit from more quantitative measure-
ments of blood velocities. Examples include grading of carotid
stenoses [14], [15], volume flow measurements [16], and
assessment of wall shear rate [17]. Whereas quantitative blood
flow measurements are currently performed using spectral
Doppler, vector velocity imaging techniques have the potential
to improve diagnostic accuracy by providing measurements
that are less dependent on the operator and ideally also
independent of the flow angle. The use of vector velocity imag-
ing for quantitative measurements is, however, still limited,
because the underlying mean velocity estimates are associated
with large bias and variance.

Due to reverberations and limitations in the spatial res-
olution of the system, signals from regions inside blood
vessels will also contain interfering signal components from
stationary and slowly moving tissue surrounding the vessels.
Such signal components are typically suppressed using clutter
filters before velocity estimation. However, designing clutter
filters to improve velocity estimation accuracy is challenging.
If the signal from tissue is not sufficiently attenuated before
mean velocity estimation, it will lead to a bias towards zero
velocity. Although residual clutter will reduce the variance of
the resulting vector velocity field, the bias is highly unpre-
dictable, hampering the usefulness of vector velocity imaging
techniques for quantitative measurements. On the other hand,
more aggressive clutter filtering often leads to removal of low
velocity blood components from the signal, which in turn leads
to increased variance and overestimation of both mean and
vector velocities.

In addition, both blood velocities and tissue movement
varies throughout the cardiac cycle, meaning that the optimal
filter parameters may differ among frames. One way to address
this problem is to adapt the clutter filter to the tissue motion.
For filters with a well defined frequency response, this would
mean varying the stopband and passband cutoff frequencies
based on the velocities of the surrounding tissue, as was the
suggested solution in e.g. [18]. However, in regions where
blood and tissue velocities overlap, these filters can no longer
provide accurate blood velocity estimates. Another approach
is to use prior assumptions on the flow field in the vessel of
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interest either as a regularization on the estimated flow field
[19], [20], or to derive the flow pattern in low flow regions
directly from estimates closer to the center of the lumen [21].
This latter approach partially disregards velocity estimates near
the wall due to signal loss.

One approach proposed to improve separation between
blood and clutter signal in low flow applications is the use
of Singular Value Decomposition (SVD) or Eigenvalue de-
composition [22], [23]. The use of such filters in quantitative
applications, however, is not straightforward as they do not
have a well defined frequency response, as is the case for
Finite Impulse Response (FIR), Infinite Impulse Response
(IIR) and even polynomial regression filters [24]. The lack
of a frequency response makes it challenging to predict the
performance of SVD filters, both in terms of blood flow
detection and the potential impact on estimates of velocity
magnitude and direction. The performance of such filters
should therefore be assessed separately for each application.

One application in which accurate low flow vector velocity
estimates are important, is the estimation of wall shear stress
(WSS). WSS is known to influence both the development of
atherosclerosis and progression of plaques [25], [26]. Measure-
ments of the WSS, or the purely velocity derived parameter
wall shear rate (WSR), could therefore aid in the assessment
of progressing vascular disease. However, clinically valuable
measurements of the WSR depends on accurate estimates of
the magnitude and direction of low velocity blood flow close
to the vessel wall, where separation of the blood and clutter
signals are particularly challenging.

In this work, we aim to improve the accuracy of vascular
vector Doppler estimates in such challenging low flow scenar-
ios. This is achieved by 1) introducing a simulation framework
allowing us to mix realistic clutter signal with in silico data,
enabling assessment of SVD filters on data where the true
velocity field is known, 2) assessing the impact of SVD and
FIR based clutter filtering techniques on the blood signal, and
3) proposing and assessing the performance of a new method,
termed tapered Vector Doppler, to compensate for filtering
effects.

The motivation for and description of the tapered Vector
Doppler method is included in Section II. Section III provides
details on the applied acquisition, processing and generation of
synthetic datasets. The behavior of SVD filters in carotid blood
flow imaging is investigated in Section IV-A, followed by
assessment and validation of the suggested tapering technique
in Section IV-B to IV-F. Discussion of results and limitations
is included in Section V, before concluding the paper in
Section VI.

II. TAPERED VECTOR DOPPLER (TVD)

A. Rationale

In both conventional Color Flow Imaging and Vector
Doppler imaging, the mean velocity from each receive beam
direction is estimated from the autocorrelation function of the
Doppler signal. If s(k) is sample k of the complex signal

after IQ demodulation from a pixel of interest, then the
autocorrelation function R of s can be estimated as

R(m) =
1

M −m

M−m∑
k=1

s(k)∗s(k +m), (1)

where m is the lag and M is the number of samples in the
observation window. The phase angle of R(m) for m 6= 0
can be used to estimate the axial velocity component of blood
[27].

v̂ax =
∠R(m)cPRF

4πmf0
(2)

where c is the speed of sound, PRF is the pulse repetition
frequency and f0 is the pulse center frequency. In order to
remove the signal from tissue scatterers, the Doppler signal s is
typically highpass filtered before estimating R(m). However,
both FIR filters and SVD filters will potentially also remove
the lowest frequency components of the blood signal and thus
affect the phase angle estimate. In regions containing high
velocity flow, the impact of filtering is less significant. This
is because the spectral bandwidth of s typically increases
proportionally with the center frequency, and the stopband of
the filter becomes narrow compared to the bandwidth.

In regions with low velocity blood flow, however, the entire
blood signal frequency band may be contained in the stopband
of the filter. The remaining signal after filtering will then
essentially be highpass filtered white noise. The autocorre-
lation estimate of such signals have an expected value around
the Nyquist frequency and high variance. For the final vector
Doppler estimates, this will yield a strong bias away from zero
and a corresponding increase in variance yielding spurious
velocity vectors. To correct for this bias and simultaneously
lower the variance of low flow vector Doppler estimates, we
propose a variation of conventional vector Doppler estimates
which we have termed Tapered Vector Doppler (TVD).

B. Formulation

In the suggested Tapered Vector Doppler approach, it is
assumed that when some, but not all, signals from different
receive directions have low SNR, the blood signal from these
directions have frequency content in the stopband. This leads
to a bias away from zero combined with increased variance.
By adjusting the estimated mean velocity components for the
corresponding directions towards zero, both bias and variance
of the final vector velocity estimate would be reduced. For
the Tapered Vector Doppler approach, this is achieved by
multiplying the phase angle estimate by a tapering function.

∠R̃(1) =

{
∠R(1) sin

(
π |R(1)|
2Pnα

)
if |R(1)|

Pn
< α

∠R(1) otherwise
(3)

In this work, the angle correction factor as a function of
R(1) signal power is a standard cosine tapering window, and
is shown in the left panel of Fig. 1. In the right panel, it can be
observed that with the chosen tapering function, the standard
deviation of the corrected estimate would be approximately
constant for the lowest SNR values in the case that the original
signal is a sinusoid in noise. For all examples shown in this
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Fig. 1. The left panel shows the proposed angle correction factor used
for correction of autocorrelation estimates, using the notation from (5). The
right panel shows the impact of tapering on the standard deviation of the
corresponding angle estimates, in case of sinusoidal signals in noise.

work, the tapering threshold value α = 30, meaning that
tapering is applied if the magnitude of R(1) is lower than
30 times that of the noise floor.

C. Alternative tapering methods

The proposed method uses the magnitude of R(1) to deter-
mine the tapering factor used to adjust the velocity estimates.
An alternative method could be to let the tapering factor
depend on R(0) instead. A natural approach would be to set
the angle velocity estimate to 0 if the power is below a certain
threshold, leading to the formulation:

∠R̃(1) =

{
0 if |R(0)|

P 0
n

< α0

∠R(1) otherwise.
(4)

This method will be referred to as hard R0 thresholding. In
this work, the parameter α0 = 1.5.

Another alternative is to use the ratio between |R(1)| and
R(0) as a discriminator. This ratio is closely connected to
the bandwidth of the slow time signal, with values close to
1 associated with high bandwidths, and values close to 0
associated with low bandwidths. This yields the formulation:

∠R̃(1) =

{
∠R(1) sin

(
π |R(1)|
2αRR(0)

)
if |R(1)|

R(0) < αR

∠R(1) otherwise.
(5)

This method will be referred to as soft R1/R0 tapering. In
this work, the parameter αR = 0.7.

D. Noise power calculations

To apply tapering, it is necessary to estimate the noise
floor Pn or P 0

n , which are the expected |R(1)| and R(0),
respectively, for a signal containing thermal noise only.

In this work the noise floor P 0
n was calculated as a function

of image depth from recordings containing no scatterers. An
estimate of Pn is then found by inserting m = 0, 1 in (1).
For a noise signal, R(0) is the mean of M values that are in
phase, whereas R(1) is the mean of M-1 complex values with
the same expected magnitude, but with random phase. This
yields

Pn =
1√

M − 1
P 0
n . (6)

If it is desirable to apply tapering retrospectively to a recording
without access to a noise recording, it is often possible to

Fig. 2. Single frames from the the original recording (left), the simulated
blood flow data (middle), and the combined, synthetic data (right). Upper
panels are from the healthy volunteer, lower panels from the patient. SNR
and CBR values of 5 and 30 dB were used for the synthetic data,

estimate the spectral noise floor in regions where blood is not
covering the entire bandwidth of the Doppler spectrum, and
convert this to P 0

n .

III. METHODS

A. Acquisition

Recordings were performed using a 9L probe (GE Vingmed
Ultrasound, Horten, Norway) connected to a Verasonics Van-
tage 256 channel system (Verasonics Inc., Redmond, WA,
USA). Plane wave transmissions (2.5 cycles@4.8 MHz) with
alternating insonation angles of ±15° were used, resulting in
a Doppler PRF of 6 kHz. A multi-angle beamforming scheme
was applied on receive [28], enabling robust 2D vector velocity
estimation from lag-one autocorrelation velocity estimates.

Two in vivo common carotid artery (CCA) recordings were
used in combination with flow simulations to create Doppler
signals from known velocity fields, influenced by realistic
clutter. The first recording was from a 34 year old healthy
volunteer, whereas the second recording was from a patient
with symptoms of carotid artery disease. The creation of
synthetic datasets is described in section III-B. Two additional
recordings from a 33 year old and a 66 year old volunteer were
used to independently demonstrate the performance of the
tapered vector Doppler technique in a realistic imaging setting.
Recordings were performed by an experienced clinician, in a
study approved by the regional ethical committee.

B. Creation of synthetic datasets

Quantitative assessment of the processing chain based on in
vivo recordings is difficult as the true blood velocities are not
known. In addition, Doppler data containing realistic clutter,
including reverberations and sidelobes from moving tissue, is
challenging to simulate. To obtain both realistic clutter and
a known flow field, synthetic data sets were constructed by
combining recorded tissue signal and simulated blood signal.
The synthetic data set was produced using 5 steps:
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Fig. 3. The left panel shows the average cross sectional signal power in the
vessel region for a single frame from the healthy volunteer (broadband clutter
scenario). The right panel shows average Doppler spectra of the same signals.
The original clutter signal is seen in black, the simulated blood signal in blue,
and the combined, synthetic signal in yellow.

1) Record in vivo data.
2) Extract vessel geometry from the common carotid artery,

modelling the vessel as a straight tube.
3) Simulate flow data with the resulting geometry, using

the in vivo acquisition and beamforming setup.
4) Remove original blood signal from in vivo data:

- Low pass filter
- Add white noise yielding desired noise floor

5) Add simulated blood flow data to yield the desired
clutter-to-blood and blood signal-to-noise ratio.

Noise and blood signal were added to the tissue signal after
beamforming. The clutter-to-blood ratio (CBR) and blood
signal-to-noise ratio (SNR) were estimated by averaging clut-
ter, blood and noise power over the entire lumen.

As indicated in Fig. 2, two 3D vessel regions with diameters
of 6 mm were simulated using the Field II software [29],
[30], using on average 10 scatterers per resolution cell. Vessel
depths and inclinations were based on the in vivo geometries.
Stationary flow with a parabolic profile was chosen, with a
maximum velocity of 20 cm/s in the middle of the artery. The
relatively low velocity was selected to mimic challenging parts
of the cardiac cycle, where the blood velocity in the artery
is low, and the tissue motion is at its largest. A relatively
large observation window of 45 ms was used (270 samples),
to reduce variance and improve clutter filtering performance.

After subjecting the original data to filtering and addition
of noise, the resulting clutter signal was investigated in fre-
quency and eigenvector domains to ensure that no blood signal
remained above the noise floor. Simulated blood flow data
were then added, creating synthetic Doppler data. Several
combinations of lumenal SNR and clutter-to-blood ratio (CBR)
values were used (Table I). For the healthy volunteer, two
observation windows were investigated: one where the clutter
was nearly stationary (narrowband clutter), and one including
the maximum tissue motion (broadband clutter). For the pa-
tient data, the wall motion was less pronounced, and only a
single observation window was investigated.

Fig. 3 shows cross sectional signal power (left panel)
and Doppler spectra (right panel) from the original clutter
signal, simulated blood signal and combined synthetic signal.

TABLE I
ACQUISITION, SYNTHETIC DATA AND PROCESSING PARAMETERS

Parameter Value

Transmit frequency [MHz] 4.8
Pulse cycles 2.5
Pulse Repetition Frequency [kHz] 12
Number of transmit angles 2
Transmit angles [deg] [-15, 15]
Rx angles tx1 [deg] [-15, -3.5, 6, 15, 0]
Rx angles tx2 [deg] [-6, 3.5, 15, 0]
Rx F-number 1.4
Packet size 270
Grid resolution λ/2
Averaging region complex R1 estimates 2λ× 2λ
Synthetic blood SNR values [dB] [0 2 5 8 10]
Synthetic CBR values [dB] [10 30]
Velocity profile Parabolic
Maximum velocity [cm/s] 20

The example is from the broadband clutter scenario of the
healthy volunteer, with SNR and CBR values of 5 and 30 dB
respectively. The figures are obtained using 104 cross-sections
normal to the vessel axis, covering the 2 cm long section
indicated in Fig. 2.

C. Adaptive clutter filtering

1) FIR filtering: Adaptive FIR filtering was performed
using a precomputed dictionary of FIR filters to reduce the
computational load and computation time. A list of FIR
filters was computed using a cutoff from 1 mm/s to 5 cm/s
with a discretization step of 0.01 mm/s. Filters are based on
an equiripple design with a stopband attenuation of 70 dB
and an order of 170, resulting in 100 valid samples in the
observation window after filtering. The relatively high filter
order was chosen to obtain sufficient stopband attenuation
and a narrow transition band, to remove the clutter signal
while simultaneously minimizing the loss of signal from low
velocity blood flow. For each frame in the observation window,
mean axial wall velocity was estimated in all pixels based on
the complex autocorrelation of the received signal. A spatial
averaging filter with a 2D Hanning kernel of 1 mm was applied
to the complex autocorrelation to reduce variance. Then, the
filter with cutoff closest to twice the maximum mean axial
wall velocity was selected from the dictionary. The factor of
two was chosen to ensure that no remaining clutter was present
without setting a too high cutoff value.

2) Adaptive SVD filtering: Unless otherwise specified,
adaptive SVD filtering was applied individually to each
Doppler frame. The correlation of spatial eigenvectors was
used to automatically determine the dimension of the clutter
space, inspired by the work of Baranger et al. [23]. Filtering
was performed by removing the corresponding eigenvectors.

D. Vector velocity estimation

2D vector velocities were estimated based on an extended
least squares technique (ELS-VD) [28] utilizing multiple lag-
one complex autocorrelation estimates. More specifically, the
Doppler frequency is estimated for L = 7 different transmit-
receive (tx/rx) angle combinations, each corresponding to
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a unique two-way Doppler angle, yielding the normalized
measurement vector

f̂ = [∠R(1)0 . . .∠R(1)L]/π. (7)

The velocity vector v = [vx, vz] corresponding best to
the measured Doppler shifts can then be found by solving
a least squares problem. In the general formulation, aliasing
is accounted for, yielding separate least squares problems for
each aliasing pattern gi:

kAvi = f̂ + gi. (8)

Here, k is a constant factor converting velocity to normalized
frequency. The matrix A = Atx+Arx has dimensions 7×2,
and is the sum of the projection matrices onto the transmit
and receive Doppler directions, respectively. The rows of A
are given by al = [− sinαl− sinβl, cosαl+cosβl] where αl
and βl are the steering angles of the angle pair l on transmit
and receive, respectively.

The general solution to these equations are

vi = k−1A+
W(f̂ + gi), (9)

where A+
W is the weighted pseudoinverse of A, given by

A+
W =

(
ATWA

)−1
ATW (10)

The diagonal matrix W in (9) allows for weighting of the
individual measurements to account for e.g. variance.

The Tapered Vector Doppler approach will be compared to
two other variations of the ELS-VD technique. Differences in
the vector velocity estimators are highlighted in the following:

1) Standard: In the standard implementation of ELS-VD,
W = I, yielding the solution

vi = k−1A+(f̂ + gi), (11)

2) Weighted least squares: Two variations of weighted
least squares were implemented. In the conventional approach
(WLS), weights are inversely proportional to the variance
of the R(1)l phase angle estimates, yielding the following
expression for the diagonal elements of W [27]:

wl,l =
1

2

(
1− |R(1)l|

R(0)l

)−1
(12)

In the alternative approach (WLS-R1), the weights are propor-
tional to the magnitude of R(1)l squared, that is

wl,l = |R(1)l|2. (13)

In both WLS implementations, the final vector velocity es-
timates are found using (9) and (10) with the appropriate
weighting.

3) Tapered Vector Doppler: As detailed in Section II, taper-
ing accounts for filter attenuation by modifying the Doppler
measurement vector in (7) to

f̃ = [∠R̃(1)0 . . .∠R̃(1)L]/π, (14)

yielding the modified solution

vi = k−1A+(f̃ + gi), (15)

For all approaches, complex autocorrelation estimates are
averaged in a 4x4 pixel region defined by the beamforming
grid (see Table I). No regularization or filtering is applied to
the vector velocity estimates.

Fig. 4. Filter impact on the synthetic Doppler signal (yellow) and clutter signal
only (black). Red color is used in the case of FIR filtering, and blue color in
the case of SVD filtering. The dashed lines show the frequency content of the
remaining signal after applying the filters on the clutter signal alone, whereas
the continuous red and blue lines show the synthetic signal after FIR and SVD
filtering respectively. The green line shows the blood signal before filtering.
The power estimates were produced by averaging power spectra from every
image point within the vessel region before and after applying the adaptive
filters.

Fig. 5. Eigenvector spectra from the narrowband (left) and broadband (right)
clutter scenarios. The panel insets zoom in on the region determined to
represent the clutter signal in the SVD filtering process. The spectra are
based on the synthetic signals shown in yellow in Fig. 4. Only the first 100
eigenvectors are included in the figure. The remaining 170 contain noise.

E. Wall shear rate estimation

As further quantitative assessment of the tapered Vector
Doppler method, wall shear rate was estimated from the
synthetic blood flow data. After vector Doppler estimation,
velocity estimates were reinterpolated to a grid parallel to the
vessel walls. If (x,z) denotes an image point close to the vessel
wall, the wall shear rate is calculated as

γ(x, z) =
∂vx
∂z

+
∂vz
∂x

. (16)

The spatial derivatives were calculated using numerical dif-
ferentiation with a spatial lag of 0.6 mm. The wall shear rate
associated with a spatial position in the wall was then defined
as the largest value of γ observed within 1 mm from the wall
along a line in the radial direction.

IV. RESULTS

A. Clutter filtering in low flow scenarios

FIR filters have a well defined frequency response, and
will predictably attenuate blood signal with frequency content
below the filter frequency cut-off. Decomposition of the signal
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Fig. 6. Mean velocity estimates normalized by the Nyquist velocity without tapering and using different tapering techniques. In the region around zero
velocity, the clutter filter results in mean velocity estimates with high variance and bias. The use of tapering ensures that these highly erroneous estimates are
placed around zero.

Fig. 7. R(1) estimates based on 500 realizations of a single velocity with
average SNR 10 dB. Ideally, the R(1) estimates should be located along the
dashed, black line, indicating the true velocity. In the right panel the velocity
is within the filter stopband, depicted in gray. The circle corresponds to the
power threshold below which tapering is applied. Without tapering, the angular
distribution of R(1) deviates significantly from the true velocity line, whereas
the use of tapering yields improved alignment.

into its eigencomponents will in general not be equivalent to a
frequency decomposition, and the impact of SVD filtering on
the frequency content of the signal is therefore less predictable.
This motivated a comparison between SVD filters and adaptive
FIR filters with regard to their impact on the frequency content
of the signal in this application.

A typical example of the impact of the two investigated
filter types is shown in Fig. 4. The left and right panels show
Doppler velocity spectra from the synthetic data sets with
narrowband and broadband clutter respectively. Also shown
is the impact of the clutter filters on the clutter signal alone
(dashed lines). It can be observed that both the FIR and SVD
filter adapt to the changing clutter motion by varying the
stopband region around zero velocity, with some differences

in attenuation of the lowest velocities and sharpness of the
transition region.

Fig. 5 shows the frequency content (converted to velocity) of
the temporal eigenvectors of the lumenal signal in the narrow-
and broadband clutter scenario. The white, dashed line shows
the filter threshold found using correlation of the spatial eigen-
vectors. In both cases, the power spectrum is approximately
symmetric and narrowband prior to the threshold value, and
removing the eigencomponents prior to the threshold value
will also remove the lowest frequency components of the blood
signal.

The examples shown are representative for all investigated
data frames, indicating that for the current application and
processing, SVD filtering still behaves similarly to a frequency
based filter. It will therefore also share the limitations of
frequency based filters in a low flow scenario, namely that
they cannot separate blood flow and clutter yielding similar
Doppler shifts.

B. Numerical simulations

Simple numerical simulations of Doppler signals were used
to illustrate the effect of tapering on Doppler angle estimates.
Fig. 6 shows Doppler axial velocity estimates as a function of
true axial velocity for different tapering methods and a range
of SNR values. The bandwidth of the Doppler signals were
6 % and the filter stopband width was 4% of the sampling
frequency. Using a packet size of 270 and a 170 order FIR filter
yields 100 samples for averaging before determining the phase
of the lag one autocorrelation estimate. For each velocity bin,
the marker represents the mean value of 500 realizations. As
may be observed, the mean velocity estimates without tapering
suffer from both significant bias and high variance within the
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Fig. 8. Bias in velocity magnitude (left columns) and direction (right columns) for all synthetic datasets as a function of SNR. The CBR is 30 dB. The
arteries are subdivided into three sections based on distance from the vessel axis. Upper wall (-3 mm – -1 mm), mid artery (-1 mm – 1 mm) and lower wall
(1 mm – 3 mm). Each measurement point is formed by calculating the RMS value of the bias over all valid points in 104 cross sections.

filter stopband. This bias is largely corrected for by using
tapering. Of the evaluated tapering methods, soft R(1) tapering
exhibits the lowest variance for low velocities, and also avoids
the steep transition towards zero velocity seen when using hard
R(0) thresholding. In subsequent results, tapering will refer to
soft R(1) tapering unless otherwise specified.

Fig. 7 further illustrates the effect of tapering, showing
complex R(1) estimates from all 500 realizations for two
single velocities. The angle corresponding to the true velocity
is shown as a black, dashed line. The left panel shows a case
where the true velocity is right outside the filter stopband.
Most R(1) estimates have magnitude larger than the tapering
limit and are not adjusted. In the right panel, the velocity is
within the filter stopband, causing significant attenuation of
the blood signal, with corresponding low values of the R(1)
magnitude. It can be observed that whereas the original R(1)
estimates have a widespread angular distribution, tapering
yields a distribution of R(1) values in good agreement with
the true velocity.

C. Quantitative analysis on synthetic data

Fig. 8 shows the bias in the vector velocity estimates of all
three synthetic data sets, for the investigated SNR scenarios.
The vessel is subdivided into three regions of interest: 1)
close to the upper wall, 2) mid artery and 3) close to the
lower wall. This is done to enable inspection of the low
velocity regions specifically, and also highlight differences
due to reverberations and the point spread function. The
use of tapering decreases the bias both in velocity direction
and magnitude compared to the standard ELS-VD and WLS
approaches. The largest improvement is seen close to the upper
wall. In this region the average blood velocity was 9 cm/s, and
for 5 dB SNR the use of tapering lead to a reduction in bias
from 26.3 cm/s to 1.4 cm/s.

Fig. 9 shows estimated velocity profiles from synthetic data
based on the patient recording. The results illustrate that filter-
ing using SVD or FIR filters removes low velocity blood flow
close to the vessel wall, yielding velocity estimates with high
standard deviation. The suggested tapering approach yields
reduced bias and variance in the vector velocity estimates
compared with the standard and WLS variations of ELS-VD.
Although the estimates of velocity magnitude and direction
both show reduced bias and variance, the most significant
improvement in performance is seen in the estimates of
velocity magnitude. The lower panels show the normalized
R(1) magnitude and the standard deviation of R(1) phase angle
estimates from each tx/rx direction. The corresponding R(1)
phase angle estimates are shown in Fig. 10. The two receive
directions that are most affected by tapering are those with the
lowest true axial velocity components. Without tapering, the
corresponding velocity component estimates are significantly
overestimated. The use of tapering in this case reduces the
bias in the regions with high variance near the vessel walls.

Fig.11 shows the mean and standard deviation of the es-
timated velocity magnitude mid vessel and in the vicinity of
the upper wall with and without tapering. The left panels show
velocity magnitude estimates as a function of removed clutter
components when applying SVD filtering, whereas the right
panels show velocity magnitude estimates as a function of FIR
filter velocity cutoff value. Estimates of mean and standard
deviation are based on 104 values at the same distance from the
vessel axis. The relation between estimated velocity magnitude
and filter strength when no tapering is applied is shown in
gray. When using SVD filtering, a strong initial transient is
present, associated with the removal of an increasing amount
of clutter signal. After a more stable level where the estimates
are dominated by signal from blood flow, a second transient
region follows as the signals become increasingly dominated
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Fig. 9. Velocity profiles from the patient dataset using standard ELS-VD
(black), WLS (yellow and red) and TVD with soft R1 tapering (blue). In
the left and right panels, clutter suppression is performed using SVD and
FIR filtering respectively. CBR and SNR values are 30 dB and 5 dB. The
lower panels show, for each of the 7 receive directions, mean and standard
deviations of quantities used for tapering and weighted least squares: the
ratio between |R(1)| and the noise floor, and the standard deviation of R(1)
angle estimates. Horizontal dashed lines denote the power level below which
tapering is gradually applied.

Fig. 10. Mean and standard deviation of R(1) phase angle estimates, with
and without tapering, for the seven different Doppler receive directions,
corresponding to the velocity estimates using SVD filtering in Fig. 9. Solid
lines denote the ground truth velocity components.

by noise, resulting in rapidly increasing velocity magnitudes.
It should be noted that when tapering is applied, the region
around the chosen cutoff-value has more stable velocity esti-
mates, and a significantly lowered variance as compared to the
standard case with no tapering. In the vicinity of the vessel
wall, tapering also leads to a significant decrease in velocity
bias compared to the standard no-tapering case.

Fig. 11. Estimated velocity magnitude as a function of filter cutoff values
when using SVD (left) and FIR (right) in the synthetic data with broadband
clutter. The horizontal dashed line indicate true velocity, whereas the vertical
dashed line indicates the automatically chosen cutoff-value for the SVD
and FIR filters. Mean and standard deviations are shown for standard ELS-
VD (black), TVD with soft R1 tapering (blue) and ELS-VD with hard R0
thresholding (red). CBR and SNR values are 30 dB and 5 dB.

Fig. 12. Wall shear rate estimates for a range of SNR values. The left panel
shows results using the standard and WLS versions of ELS-VD, whereas the
right panel shows the results using different tapering approaches. The true
WSR value is shown as a dashed, black line. Notice the large difference in
WSR axis limits, also indicated by the gray horizontal lines in the left panel.

Wall shear rate estimates with and without tapering are
shown in Fig. 12. As can be observed, the estimators using
both hard R(0) thresholding and soft R(1) tapering yield much
more accurate wall shear rate measurements than standard
Vector Doppler and weighted least squares Vector Doppler.
Of these two alternatives, soft R(1) tapering provided more
accurate estimates, with a bias below 10% for all measured
SNRs. In comparison, the WSR when using hard R(0) thresh-
olding was overestimated by 22-38%.

D. In vivo data processing: Computational load

The computational load of critical steps in the processing
chain are summarized in Table II. Implementations have not
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Fig. 13. Example of regular and tapered vector Doppler in diastole of a 66 year old volunteer. All vector velocity estimates shown are from the region
indicated by white lines in the left panel. Differences are seen close to the upper wall, where filtering has suppressed the blood signal. Close to the lower
wall, sidelobes from mid-vessel blood flow with high velocities yield higher SNR after clutter filtering and therefore smaller differences between regular and
tapered VD.

Fig. 14. Estimates of R(1) for each transmit/receive direction for a voxel
in the middle of the artery (top panels), and close to the upper wall (bottom
panels) in the frame shown in Fig. 13. Note the difference in axes limits.

been parallelized or optimized for speed, but processing times
are still reported to give an impression of the potential for
future real time implementation. The reported times are for
processing 90, 270 and 2000 frames in a Matlab environment,
each frame consisting of 158 x 274 beamformed pixels and 7
receive directions, on a 2.1GHz Intel Xeon CPU with 128 GB
RAM available.

TABLE II
PROCESSING TIME CRITICAL STEPS

90 frames 270 frames 2000 frames

Beamforming 9.2 s 22 s 162 s
SVD calculation 0.27 s 0.9 s 29 s
Non-tapered Doppler 1.14 s 1.23 s N/A
Tapered Doppler 1.14 s 1.24 s N/A

E. In vivo example: Common carotid artery

Fig. 13 demonstrates the difference between regular and
tapered least squares vector Doppler for diastolic flow in the
common carotid artery of the 66 year old volunteer. The impact
of the clutter filter and subsequent tapering is most significant
close to the upper wall. This is further illustrated in Fig. 14,
which shows R(1) estimates from all TxRx directions for two
points in the artery. In the middle of the artery, the blood signal
was not significantly affected by the clutter filter, yielding an
SNR between 7 and 15 dB for the different TxRx directions,
and no tapering of the R(1) estimates. Close to the upper wall,
however, the blood signal was highly attenuated by the clutter
filter, yielding a low SNR and a wider angular distribution.
It can be observed that estimates from TxRx 4 and 5 are
especially affected, and biased towards the Nyquist limit. The
use of tapering adjusts the angular distribution of the R(1)
estimates, yielding a more reasonable flow field.

F. In vivo example: Complex flow in the carotid bifurcation

Fig. 15 shows estimated vector velocities with and without
tapering, and also when removing 60% of automatically se-
lected eigencomponents. The selected frames are from systolic
upstroke and diastole, whereas the supplementary videos cap-
ture the full lifespan of the recirculation zone (vortex) in the
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Fig. 15. Left panels show the estimated flow field in the carotid bifurcation during systolic upstroke: Regular SVD filter + standard ELS-VD (top), regular
SVD filter + TVD (middle) and weak (60%) SVD filtering + standard ELS-VD (bottom). Vector flow images in the right panels show the estimated flow
field in a diastolic frame using regular SVD filtering with (middle) and without (top) tapering. The bottom right figure summarizes statistics for the whole
bifurcation flow field and the smaller regions of interest. The line in the middle of the boxes represent the median value of the velocity magnitude, whereas
the bottom and top of each box are the 25th and 75th percentiles, respectively. The whiskers include all remaining velocity estimates in each region. Standard
ELS-VD is shown using black boxes, TVD is shown using blue boxes, whereas weak filtering + ELS-VD is shown in red boxes. No regularization has been
applied to the vector velocity fields. See also supplementary videos capturing flow throughout the cardiac cycle.
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Fig. 16. Top panels show estimated velocity vectors during systolic upstroke,
for a cross-section in the CCA, and for different combinations of filter ob-
servation window and Doppler ensemble size. Note that the filter observation
window is longer than the Doppler ensemble size in the rightmost column.
Middle panels show the magnitude of the velocity estimate in a single grid
point near the wall, for varying numbers of removed eigencomponents. Lower
panels show the power of the signals from different receive directions after
filtering. The dashed horizontal line denotes the noise floor. Supplementary
videos show the associated flow fields with and without tapering.

upper part of the bifurcation. When using the automatically
selected SVD filter order without tapering, spurious velocity
estimates are observed near the upper walls.

The boxplots in the lower right panels of Fig. 15 provide
summary statistics for the estimated flow field in the whole
bifurcation region, in addition to some smaller regions of
interest. It can be observed that the velocity magnitudes are
in general lower when using a weaker SVD filter (red boxes),
particularly during systolic upstroke and in the external carotid
artery. The effect of tapering is seen by comparing the blue and
black boxes. Differences are particularly evident in the vortex
region, where the top whiskers has a significantly reduced
length when tapering is applied. This corresponds to the lack
of spurious vectors with high velocity magnitude seen in the
vector velocity images.

Fig. 16 shows how the number of removed eigencomponents
impacts velocity magnitude estimates in a low flow region in
the CCA. The lower panels show signal power after filtering
for each of the 7 receive directions. Results are shown for

Fig. 17. Top panels show estimated velocity vectors during systolic upstroke,
for a cross-section in the high velocity region before the flow divider, and for
different combinations of filter observation window and Doppler ensemble
size. Note that the filter observation window is longer than the Doppler
ensemble size in the rightmost column. Middle panels show the magnitude of
the velocity estimate in a single grid point close to the flow divider, for varying
numbers of removed eigencomponents. Lower panels show the power of the
signals from different receive directions after filtering. The dashed horizontal
line denotes the noise floor.

three combinations of filter observation windows and packet
sizes. As can be observed in the middle panels, the estimated
velocity magnitudes are largely dependent on the number of
removed eigencomponents. When using tapering, the velocity
estimates eventually reach a plateau. When not using tapering,
however, only a small range of filter parameters yields stable
velocity magnitudes. These observations correspond well with
near wall estimates from synthetic data shown in the lower
left panel of Fig. 11.

Fig. 17 shows the corresponding results from a high velocity
region in the same temporal frame. In this region, the signal
power is significantly higher than the noise floor, and estimates
with and without tapering are identical. Also, velocity magni-
tudes both with and without tapering stabilize after removing
enough eigenvectors.

Fig. 18 shows a comparison between velocity profiles ob-
tained using tapering and those obtained without tapering, but
using a lower number of removed eigenvectors. The results
indicate that velocity estimates are sensitive to clutter filter
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Fig. 18. Top and middle panels show vector velocity estimates in the CCA and
ECA/ICA cross sections indicated in the left panels of Fig. 15. TVD estimates
following the adaptive SVD filtering is shown in black. Results after applying
SVD filters removing 80% and 60% as many eigencomponents, but without
tapering are shown in blue and red respectively. The bottom panels shows
a CCA velocity trace with the inspected frame (left), and the applied SVD
clutter dimension as a function of frame number (right).

strength along the upper and lower walls in the CCA, and
throughout the lumen in the ECA and ICA.

V. DISCUSSION

An approach for improving the accuracy and robustness of
vector velocity estimation of low flow in the carotid arteries
has been proposed. First, it was shown that for the relevant
setup and application, SVD and adaptive FIR filters shared
some of the same limitations in separating low velocity blood
signal from moving tissue signal. To address these limitations,
a tapered Vector Doppler technique was proposed, in which
signal loss after clutter suppression is used to indicate Doppler
measurements where the blood signal is in the stopband-region
of the filter. Synthetic data created using a combination of in
vivo data and flow simulations were used to show that the
proposed method reduces bias and variance in the resulting
vector velocity estimates compared to standard and weighted-
least squares vector Doppler implementations. Promising re-
sults were also shown in vivo using recordings from healthy
volunteers.

FIR and SVD filtering

In Fig. 4, it is demonstrated that both SVD and FIR filters
are able to adjust the effective frequency response when the
tissue signal bandwidth increases. Whereas for the FIR filter
this would imply also the loss of low velocity blood signal,
ideally for the SVD filter some blood signal would remain with
the same frequency content as the tissue signal. The spectra in
Fig. 5, however, indicate that, for the current application and

setup, the eigenvector decomposition also essentially behaves
like a frequency filter in the low frequency region. This implies
that the use of either filtering method to remove tissue signal
could result in the removal of low frequency blood components
from the Doppler signals. For low velocity blood flow this
may lead to significant bias and variance in the corresponding
velocity component estimates. The proposed tapering method
is an attempt to address this problem.

Although the SVD filter essentially behaves as a frequency
filter in this application, it has some other advantages com-
pared to the adaptive FIR filter. As can be seen in Fig. 4,
SVD filtering results in a narrower transition band in the
frequency domain compared to the FIR filters. In addition,
no initialization is necessary for the filter, resulting in a better
tradeoff between SNR and temporal resolution.

Design choices

Different tapering approaches were initially evaluated, using
either R(1) or R(0), soft tapering or hard thresholding. Of
the investigated methods, soft R(1) tapering was the preferred
alternative, as it yielded the lowest variance for low velocities.
In Fig. 12 it was also observed that the use of hard R(0)
thresholding yielded a consistent overestimation of wall shear
rate. This corresponds well with the more significant underes-
timation observed using this method in Fig. 6 and Fig. 11.

In this work, a cosine tapering function with a corresponding
parameter α = 30 was used to compensate for the increased
bias and variance observed when Doppler signals become
dominated by noise after filtering. In Fig. 1, it is shown
that this choice of tapering function yields approximately
constant standard deviation in the complex autocorrelation
estimates for narrowband signals. Results from synthetic data
in Fig. 9 and Fig. 10 indeed show that low R(1) magnitude
is associated with blood signal in the filter stopband and
corresponding overestimation of velocity components. The use
of tapering in this case yields reduced bias and significantly
reduced standard deviation. Some residual bias is observed for
receive directions with true axial velocities in the stopband
of the clutter filter. This is also predicted by results shown
from simulated data in Fig. 6. So although results presented
in this work are promising, other tapering functions may
be designed to potentially further improve estimates for the
relevant application. One such possibility would be to use a
function which minimizes bias also for the lowest velocities.
But this would probably come at the cost of higher variance.
In principle, the tapering function may be optimized based on
measured data, e.g. by first estimating the bandwidth and SNR
of the blood signal.

Comparison to weighted least squares

Results in Fig. 8, Fig. 9 and Fig. 12 show that the
weighted least squares methods were not as effective as
tapering methods for reducing bias and variance. The standard
WLS approach, using weights inversely proportional to the
variance of the angle estimates, arguably did not perform
better than ordinary least squares for low velocity flow. Using
|R(1)| weights that lead to stronger suppression of unreliable
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estimates yielded slightly better results, although a significant
bias was still observed for low velocities and low SNR values.
There are at least two factors partially explaining this. First,
the variance of each R(1) phase angle estimate is typically
high, so even though variance is higher for signals dominated
by noise, the ratio is not significant enough to suppress the
unreliable estimates using standard WLS. This is illustrated
in the lower panels of Fig. 9, as the standard deviations of
R(1) phase angle estimates only span the range [0.6, 1.4].
Second, the use of WLS implicitly assumes that the velocity
component estimates from different directions are unbiased,
whereas tapering assumes that phase estimates from signals
with very low R(1) magnitude have a bias away from zero.
In the current application, the latter assumption is true and
this should improve the performance of a tapering approach
compared to both WLS methods.

Tapering for robust and accurate velocity estimation

Figure 11 illustrates the relation between velocity estimates
and filter parameters. For SVD filters, when removing a low
number of eigencomponents, the resulting velocity magnitudes
are underestimated. In the middle of the vessel, when increas-
ing the number of removed eigencomponents, the velocity
magnitudes reach a plateau with level corresponding well
with the true blood velocity. This may be explained by the
difference in magnitude between eigencomponents dominated
by clutter and blood. The clutter signal is largely contained
in a small number of eigencomponents with high magnitude,
and each removed clutter signal component has a large impact
on the resulting velocity estimate. The signal from blood, on
the other hand, tends to be distributed over a larger number of
eigencomponents with more uniform magnitude, reducing the
impact of each removed eigencomponent on the mean velocity
estimates.

When not using tapering, significant overestimation com-
bined with increased variance is observed when removing
many eigencomponents. This may be explained by near com-
plete removal of blood signal from at least one of the receive
directions, leaving a noise signal with mean frequency around
the Nyquist limit and corresponding high variance. This would
also explain why overestimation occurs for a lower number of
removed eigenvectors in the low flow region near the wall, as
the bandwidth of the blood signal is lower. In this region, the
estimated velocity magnitude becomes a steadily increasing
function of the number of removed components, without any
apparent plateau region. The use of tapering, however, removes
the observed overestimation, retaining a near unbiased estimate
for a higher number of removed eigencomponents. Conse-
quently, the range of removed eigencomponents yielding near
correct velocity magnitudes is extended significantly. Results
in the right panels show that the above observations are largely
valid also for FIR filters, with the filter cutoff serving the same
role as the number of removed eigencomponents.

In vivo observations

Vector velocity estimates from the carotid bifurcation shown
in Fig. 15 show that velocity estimates with and without

applied tapering agree in large parts of the vessels. The main
differences are observed in near-wall regions, where spurious
estimates are present when not using tapering. As can be seen
in the lower left panel, spurious vector velocity estimates may
also be avoided by using a weaker SVD filter, i.e. removing
a lower number of eigencomponents. However, as shown in
the lower right panel, using weaker filters results in lower
estimated velocity magnitudes, particularly during systolic
upstroke, for which wall movement is most significant.

Fig. 16 and Fig. 17 together illustrate that achieving accurate
velocity estimation throughout the image can be challenging
without the use of tapering. In the middle panel of Fig. 16,
it may be observed that velocity levels in the CCA stabilize
when removing 60% of the selected eigencomponents, just
before the signal reaches the noise floor level. Removing
80% of eigenvectors would result in increased velocity mag-
nitudes, because signals from several angles are below the
noise floor. As observed in Fig. 17, however, removing 60%
of eigencomponents results in velocity estimates in the first
transient region for the high velocity region close to the flow
divider. In these transient regions, small changes in filtering
parameters yield a relatively large change in estimated velocity
magnitude. Further, based on the observations in Fig. 11,
the first transient region is arguably associated with residual
clutter and underestimation of velocity magnitudes. Because
the results shown in Fig. 16 and Fig. 17 are from the same
temporal frame, this would motivate the removal of a different
number of eigencomponents for different spatial points, unless
tapering is applied. This challenge is also highlighted in
Fig. 18. Removing 60% of eigencomponents arguably yields
residual clutter signal, whereas removing 80% yields spurious
estimates near the upper wall of the CCA. The use of tapering
yields results agreeing with the stronger filter in the middle of
the vessel, while avoiding spurious estimates along the wall.

The sensitivity of estimated velocity magnitudes on filter
parameters seems to decrease with higher filter observation
length. This can be observed by studying the slope of the
curves in the middle row of Fig. 16. Thus, if not using
tapering, one way to reduce the adverse effects of clutter
filtering might be to use longer observation windows for the
filter, if this is possible for the application of interest. Note that
the ensemble size may be shorter than the filter observation
window, meaning that it is possible to achieve both high
temporal resolution and long temporal windows for filtering.
The length of the filter observation window will then determine
a trade-off between filter performance and real time feasibility,
as shown in Table II.

The severity of underestimation when applying too weak
clutter filters will depend on the signal intensity and motion
of the wall, and can be challenging to correct for. However,
as shown in Fig. 11 and indicated in Fig. 16 and Fig. 17,
the use of tapering facilitates the use of stronger clutter filters
without the associated bias and variance. Due to the use of
many receive beams with a relatively large angle span, accurate
velocity estimates can still be produced even though the blood
signal is removed from the received signals with beam-to-flow
angles close to 90°. For more qualitative applications, using
weaker clutter filters could be an option as the presence of
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residual clutter will regularize the signal and make the flow
field appear smooth. However, this will also lead to a potential
bias in velocity estimates which is difficult to control. As the
aim of this work is to quantify low blood velocities near the
wall which would be significantly affected by residual clutter,
filters were designed to strongly suppress the clutter signal,
combined with tapering to reduce adverse filtering effects.

Limitations

Combining tissue signal from recorded data with flow signal
from simulations was used for estimating the bias and variance
of the velocity estimators. One limitation of this approach is
that the ratio between clutter and noise signal in the synthetic
data can not exceed that of the original data. Another limitation
is that some of the clutter signal might have been removed by
the low pass filter. Also, a more thorough validation could be
performed including more complex flow scenarios. Neverthe-
less, this approach allowed assessment of the performance of
the velocity estimators on a data set containing both realistic
clutter signal and flow signal with known velocity profile.

The results in Fig. 13 illustrate a clear difference in be-
havior between upper and lower artery walls. Inspection of
the right panels indicates that there is residual blood signal
below the artery after filtering. This may be caused either
by reverberations, or by the use of plane waves, which is
associated with strong sidelobes and axial lobes in the point
spread function. As a consequence, the blood signal in the
vicinity of the lower wall will be affected by signal from
more central blood flow with higher velocities. If the SNR is
sufficiently high, no tapering or only weak tapering would be
applied in this region. In the case shown in Fig. 13 this results
in estimates showing high blood velocities also below the
artery. This challenge cannot be addressed by tapered vector
Doppler as formulated in this work, but motivates further work
on suppressing reverberations and improving the point spread
function.

All results indicate that the use of tapering may significantly
improve the accuracy of low flow vector velocity estimation.
The underlying assumption is that blood signal power from a
region should be approximately equal for all receive directions,
unless parts of the blood signal are in the stopband. This
assumption might not always be valid, e.g if strong reflections
from plaques lead to a reduction in signal power for some
receive directions.

Potential applications

The results in Figure 12 indicate that the use of tapering has
potential to improve estimation of wall shear rate. Accurate
estimation of wall shear rate in vivo will also depend on
robust extraction of the wall position for all frames, and a
choice of suitable measurement parameters yielding consistent
wall shear rate estimates. The contribution of tapering in this
context is to reduce both bias and variance of low velocity
estimates near the wall and make them less sensitive to filtering
parameters.

Although tapered Vector Doppler was validated using a
specific acquisition setup in this work, the technique is general

and could easily be used in regular cross-beam vector Doppler
or other vector Doppler setups. In this work, tapering was
applied to a processing chain originally designed for aliasing
correction, yielding a vector velocity estimation scheme with
improved robustness for both high and low blood velocities.
As the inclusion of the tapering step only implies weighting
of autocorrelation estimates, it is a computationally cheap ap-
proach to improve the accuracy of low flow velocity estimation
without the use of regularization or prior assumptions on the
flow field.

VI. CONCLUSION

A new method for vector velocity estimation, termed Ta-
pered Vector Doppler, has been presented, to account for
the removal of blood signal due to clutter filtering. The
performance of the method was assessed using both simple
and more realistic simulations, and in vivo feasibility was
shown. Several tapering approaches were investigated, with
soft tapering using R(1) signal power yielding the lowest
variance for low velocity blood flow. All results indicate
that Tapered Vector Doppler enables vector velocity estimates
less affected by clutter and clutter filtering than what can
be obtained by adaptive filter design only. This facilitates
quantitative analysis of low velocity blood flow without the
use of regularization techniques.
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