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Abstract

We present an experimental study using mixtures of aqueous superabsorbent

polymers (SAP) where we systematically investigate the influence of the size

of grains that make up the fluid structure on the effective rheology and its

domain of validity. In water, these polymer powder grains swell up to 200

times and form gel grains whose size can be controlled by controlling the

size of the initial powder. The rheology of this mixture (water and touching

grains) combines viscous, elastic and plastic aspects and can be characterized

using the free-fall of spheres of different diameters (between 3 and 25 mm-

diameter) and densities (from 2200 to 15000 kg/m3). As the typical size of the

gel grains was varied between 1 and 8 mm, there is a range where it becomes

comparable to the size of the falling spheres. We observe five different motion

regimes. (1) A linear regime where the sphere has a rapid and linear fall

and reaches a constant terminal velocity. (2) An irregular regime where the

sphere’s velocity varies around a constant value. (3) An intermittent regime

where periods of no-motion and periods of irregular falls follow one another.
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(4) A slow fall regime where the sphere’s speed progressively decreases in a

logarithmic way. And (5) a no-motion regime when spheres are not heavy

enough to overcome the yield stress of the mixture, or are too small compared

to the grain size. Besides these five regimes, we find that the effective yield

stress and effective consistency of the mixtures always increase with the grain

size, suggesting that the effective rheology depends on the size of the grains

which constitute the fluid structure. Moreover, the critical Yield number (Yc)

above which there is no motion decreases as the sphere to grain diameters

ratio becomes smaller than 2. This shows the role of the fluid structure also

on the critical condition of motion under which the sphere is trapped.

Keywords: Yield stress, Falling sphere, SAP, Irregular motion,

Intermittent motion

1. Introduction1

Yield-stress fluids are a broad category of fluids which have been inten-2

sively studied in the last decades due to their key roles both in industry (e.g.3

drilling fluids, cement pastes, foams) and in natural phenomena (e.g. lava4

and mud flows, avalanches, landslides). Very often, the material consists5

typically of a suspension of particles in a liquid. When the particle volume6

fraction increases, they become in close contact with one another, and the7

material can face jamming. In this jammed state, the material can support8

stresses without flowing. A so-called yield-stress fluid does not flow if the9

applied stresses are not high enough to unjam the structure, but it does10

flow when the stresses become larger than a threshold value, the yield stress11

(σY ). The latter introduces a non-linearity into the material rheology, which12
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strongly impacts on its dynamics [1, 2, 3, 4]. An example of these materi-13

als are soft particle glasses. Above the yield stress, their flow results from14

the concurrence of particles elastic deformations and plastic events during15

which particles rearrange [5]. Plastic local events can influence each other16

and lead to non-local elastic relaxation. This collective rearrangement can17

be the reason of spatial variation of viscosity in an homogeneous stress field18

in emulsions [6, 7]. Other finite size effects to the bulk rheology of a jammed19

system appear due to concentration gradients of particles in non-Brownian20

particle suspensions [8] or due to structural heterogeneities in polymers [9].21

Several rheological models have been proposed to describe the rheology22

above the yield stress, such as the Bingham and the Herschel-Bulkley ”HB”23

models. One issue is the domain of validity of these rheology models: how24

well do they describe the fluid behavior close to the yield stress and how much25

larger than the microstructure typical length scale must be the flow length26

scale? For example, if we take the simple (and well known in Newtonian27

fluids) problem of a solid sphere settling in a particulate fluid, when and how28

will the fluid microstructure interact with the sphere motion? There are two29

end-members depending on the size ratio between the fluid microstructure30

dg (e.g. the size of the particles in suspension in the liquid) and the falling31

sphere ds. When dg/ds >> 1, the sphere will fall through a porous medium,32

moving along the liquid channels between particles, and when dg/ds << 1,33

the sphere will see a continuum with an effective rheology (e.g. ”HB” model).34

But what happens for intermediate dg/ds?35

The dg/ds << 1 case has been well studied for viscoplastic fluids, such36

as Carbopol [2]: the sphere reaches a steady-state downward motion only37
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if a critical force is overcome, otherwise the fall is prevented [10, 11, 12].38

However, the accurate value of this critical force is still debated and it varies,39

for example, considering or not the elasticity of the material [13]. Once the40

sphere is set in motion, crucial aspects are the determination of the drag41

coefficient [10, 11, 14, 15] and the determination of the shape and position of42

the yield surface that separates the solid-like region from the fluid-like one.43

The yield surface and the drag force on the sphere have first been determined44

numerically and analytically for a Bingham fluid by Beris et al. [10] and45

subsequently for an HB fluid numerically [14, 16, 15] and experimentally by46

Tabuteau et al. [11] in Carbopol. Within the liquid-like region, the flow in47

Carbopol is confined nearby the sphere, within an area which size depends48

on the yield stress of the fluid [17], and can be either symmetric [18] or49

asymmetric [17], depending on the sample preparation. Similar results50

had been found for Laponite, a very thixotropic colloidal suspensions [19],51

where the asymmetry of the flow pattern increases with the age of the fluid52

through the appearance of a negative wake (i.e. upward fluid motion in53

the sphere’s wake [20]) and in viscoelastic aqueous polyacrylamide solutions54

[21]. Another peculiar characteristic of a falling sphere in yield stress fluids55

or in viscoelastic materials is that its velocity can depart from a constant56

value and show oscillations and irregularities. One of the first observations57

of an oscillating particle settling has been in hydroxyl propyl guar (HPG)58

polymer gels [22], a yield-stress power-law family of fluids [23]. In this work,59

the authors suggested that the irregularities in the descending motion were60

linked to the elasticity of the gel. Something similar is reported in entangled61

wormlike micellar fluids [24, 25], in Laponite [26], where the vertical velocity62
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can oscillate in bursts and, again, in HPG [27]. In cornstarch suspensions63

[28, 29], the sphere velocity never approaches a steady terminal velocity but64

instead it oscillates, decreases with time, to reach a series of stop-go cycles65

as the sphere becomes close to the experimental tank bottom. In wormlike66

micellar fluids, the cause of non-transient oscillations is to be found in the67

formation and successively breakage of flow-induced structures; in cornstarch68

suspensions, in the formation and dissolution of a jammed layer that, under69

sufficient stress, increases drag and slows the sphere down; while the irregular70

motion in laponite is due to the existence of flow instabilities and shear71

banding.72

In this paper, we consider viscoplastic fluids that are constituted of an73

aqueous suspension of soft gel grains. To do so, we place ourselves in between74

the two end-members described above, using macroscopic super absorbent75

gels. Varying independently the size of the gels grains and the size of the76

falling spheres allows us to investigate the influence of the particle size on the77

effective rheology of the fluid and on the motion of spheres that are falling78

through it. The paper is organized as follow: in section 2 we describe the79

experimental set-up and the fluids used during the experiments. Section 380

presents the different regimes of motions that were observed. We close with81

section 4 and section 5 where results and their implications are discussed and82

summarized.83
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2. Experimental set-up and fluids84

2.1. The fluids85

According to the product company (Omiya Green Service Co., Ltd), the86

fluid used is a superabsorbent polymer (polyacrylamide) made by copoly-87

merization of acrylic acid and acrylamide. It is part of the family of aqueous88

dispersions of superabsorbent polymers (SAPs), polymeric materials with89

large capacity of water absorption [30, 31] which are used in many differ-90

ent water absorbing applications in agriculture [32], in health care industry91

(e.g. in sanitary pads and baby diapers), in sealants and in air-fresheners92

[33, 34]. The dry material is a white and granular powder of particles with93

different irregular shapes. In water, the original small particles can swell up94

to 200 times and form gel grains whose size can be controlled by controlling95

the size of the initially dry grains. Beside the general behaviour of such96

materials that combines viscoelastic [31] and shear-thinning aspects [35], the97

measurement of appropriate rheological properties at the swollen state is still98

quite complicated as typical commercial SAPs have large (up to few millime-99

ters) and irregular swollen particles that render classical rheological methods100

difficult to use [31].101

Starting from the provided raw material as the largest grains size end-102

member, we gradually ground the dry particles to form four thinner powders.103

All the final gel samples were then obtained by letting 17.5 ± 0.1 g of dry104

product react with 3.5 l of distilled water for one night. The resulting swollen105

mixture have been gently stirred (100 rpm) for 2-3 days with an electric stirrer106

in order to remove air bubbles and to homogenize the mixture. Careful weight107

measurements of a given volume of the final aqueous suspension before and108
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Figure 1: (a) Experimental set up. The cylindrical vessel containing the fluid is 50 cm

high (H) and 10 cm wide (D). Videos are recorded in the tube section between the two

black dotted lines (h). (b) Black and white image of the fluid structure illuminated by

a laser sheet. The gel grains are in dark grey and the thin water film around them is in

light grey.

after it was completely drained from the free water allowed to estimate a109

particle volume fraction of 62±2%.110

As it was for the starting dry powders, the five final fluids under scrutiny111

differ from each other only in the size of the grains that make up their112

structure. To obtain the grains size distribution of the swollen gel samples,113

we analyzed several high resolution images (4288 x 2848 pixels) of a laser-114

illuminated vertical cross-section of the experimental tank (Fig.1) by using115

Multispec, an image analysis software [36]. The sample was stirred between116

each image, so that each image shows a different organization of the fluid117

7



name Mean diameter std Median Max diameter

(mm) (mm) (mm) (mm)

Gel A 1.4 0.3 1.4 2.3

Gel B 2.1 0.5 2.1 3.5

Gel C 3.3 0.9 3.0 5.8

Gel D 4.8 1.2 4.5 9.5

Gel E 5.7 1.2 5.5 9.6

Table 1: Results from the imaging analysis of our five gel samples. Here we report the

mean diameter of the grains, the standard deviation (std), the median and the maximum

diameter. The grain equivalent diameter (dg) of a specific gel sample refers to the mean

grain size value.

structure. Fig.1b shows an example of how the fluid structure looks like.118

The arrangement of the grains is easily recognizable and the sampling of119

each of them during the images analysis can be automatically or manually120

done directly from black and white images without needing more complex121

adjustments. Once the outline of the grains is defined from the image, the122

grain surface comes by counting the number of pixels of which it is composed.123

We describe each grain by the equivalent diameter of a circle with the same124

area as the measured surface. The final grains size distributions are reported125

in Fig.2 where data are normalized to a probability density function and in126

Table 1 where the characteristics of the distributions are listed.127
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Figure 2: Grains size distributions for the five gels used in the experiments. Histogram

representation of grains equivalent diameters with a normal distribution curve on top for

gel A (a), gel B (b), gel C (c), gel D (d) and gel E (e). (f) All gels together.
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2.2. Setup128

All the spheres are released in a 50 cm deep (H) and 10 cm wide (D)129

cylindrical Plexiglas vessel, previously filled with approximately 3.5 liters of130

fluid (Fig.1a). In order to reduce optical distortions during the recording131

of images illuminated laterally by a laser sheet, the vessel was placed in a132

rectangular tank filled with water. A vertical cross-section of the tank is133

then illuminated by a 532 nm laser sheet, and images are recorded using a134

video camera (Canon Legria HF S21 1080p) with frame rate of 25 frames/s.135

The position of the center of the sphere on each frame was determined by136

plotting the spatio-temporal evolution of a vertical pixel line centered on the137

sphere, or by using the blob analysis method in Matlab [37] (fig.4 and 5a).138

Both methods allow the derivation of the local vertical velocity of the sphere139

through time. And the blob analysis also provides the measurements of the140

horizontal position and velocity of the sphere.141

We run experiments with spheres of different materials and sizes. Their142

properties (i.e. density and diameter) are summarized in Table 2. All the143

steel spheres (density of 7980 and 7970 kg/m3) have been painted with black144

spray paint to avoid strong reflections, while the other spheres have been left145

with their original surfaces. The use of spray paint could have increased the146

surface roughness that in turn can affect the velocity field in the fluid around147

the object as well as the shape of the yielded region [38]. However, we did148

not observe any discrepancies between the painted and the bare spheres.149

Before each experiment, we stirred gently the fluid to remove any possible150

preferential path that might have been formed during previously runs. SAP,151

in fact, shows a quite strong hysteresis where the fluid structure does not152
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ρs (kg/m3) ds (mm)

14952 6.00

7980 6.00; 12.00; 14.00; 16.00; 18.00

7970 3.00; 4.00; 5.00; 7.00; 8.00; 10.00; 20.00; 22.00; 25.00

7799 6.00

7782 14.00

7621 8.00

7519 3.20

3227 6.00

2200 15.66; 15.81

Table 2: Spheres density ρs and diameter ds.

recover completely its original state after it has been deformed. This aspect153

is observed when a second sphere is dropped from the same position as the154

previous one without stirring the fluid in between the two runs. For identical155

spheres, we have always measured higher velocities for those released later156

and falling through an already deformed path. Stirring the fluid between runs157

prevents this issue and allowed us to get reproducible velocities for identical158

spheres.159

3. Experimental results160

As first step of our investigation, it is useful to test the reproducibility161

and the accuracy of the experimental techniques and possible limits arising162

from the dimension of our setup. To do so, we measured the terminal ve-163
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locities (vy) of spheres settling in a Newtonian fluid at Tc=15.2±0.3 ◦C. The164

fluid is glucose syrup (Glucor 60/80) with ρ=1394.66 kg/m3 and η=12.3±0.7165

Pa.s, density and viscosity at Tc, respectively. Spherical objects falling in a166

Newtonian fluid at low Reynolds number reach a terminal velocity given by167

the Stokes velocity168

vStokes =
2

9

R2(ρs − ρfluid)
η

g, (1)

where R is the radius of the spherical object and g the acceleration due to169

gravity. In Fig.3 we plot the velocities measured for spheres of same density170

and diameters in between 3 and 18 mm. Larger spheres are subjected to wall171

effects and in this case the sphere terminal velocity can be corrected by a172

coefficient that writes as173

K−11 = 1 + α1

(
ds
D

)
+ α2

(
ds
D

)3

+ α3

(
ds
D

)5

, (2)

where α1 = −2.104443, α2 = 2.08877, α3 = −0.94813 and D is the tube174

diameter [39]. Experiments carried out in syrup show that the measured175

settling velocities are in good agreement with relative corrected Stokes ve-176

locities, that is vy/(vStokesK
−1
1 ) = 1, ensuring that our measurement system177

is accurate (Fig.3).178

We now move to the case where the fluid through which spheres fall is one179

SAP sample described in the previous section. In Fig.4 we report a selection180

of falling profiles in gel C (grains mean diameter dg=3.3 mm) for four falling181

spheres with same density but different diameters. The same type of plot182

is also showed in Fig.5a where this time we track spheres having same size183
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Figure 3: Measured terminal velocities, vy, in syrup (circles) and Stokes velocities, vStokes,

(crosses and dashed line) as function of spheres squared radius, R2
s. Uncertainties for

Stokes velocities come from the uncertainties in determining the syrup viscosity whereas

the error for vy is 0.25 mm/s, smaller than the symbols. Star symbols are the ideal

velocities considering the wall correction, eq. (2).
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Figure 4: Depth of spheres settling through gel C as function of time. Spheres have

constant density (∆ρ=6980±10 kg/m3). Symbols refer to the diameter of the sphere:

ds=10 mm (N), ds=8 mm (•), ds=7 mm (�), ds=4 mm (H). Varying sphere’s diameter,

one can recognize the following motion regimes: linear regime (upward-pointing triangles),

irregular motion superimposed to a linear trend (circles), logarithmic regime (squares)

and no-motion (downward-pointing triangles). Regimes (1), (2), (4) and (5) in the text,

respectively. The insert shows the distance as function of time for regime (4) with a

semi-log scale. The color line is the fit y(x)=a log(b x), where a=98.34 and b=0.66. The

correlation coefficient is R=0.980.

but different densities settling in gel D (dg=4.8 mm). In both figures, the184

starting position along y-axis, h=0, does not refer to the top fluid surface185

but to the upper limit of the camera view at which movies were recorded186

(Fig.1a). This is a consequence of the fact that all movies have been taken187

for a magnified portion of tube h=300 mm, starting from 70 mm under the188

surface. Camera position and therefore size of the view are kept constant for189

each run done in the same fluid.190
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Figure 5: (a) Depth of spheres settling through gel D as function of time. Here spheres have

constant diameter (ds=6 mm) but different densities. As in Fig.4, we report the case of

linear regime (upward-pointing triangles), no-motion (downward-pointing triangles) and,

in addition, the intermittent regime (circles). (b) Sequence of snapshots every 100 frames

showing the irregular motion in gel D for a sphere with ds=7 mm and ρs=7970 kg/m3.
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For each gel, depending on the diameter and density of the sphere, we191

distinguish the following five regimes (Fig.4 and Fig.5). (1) A linear regime:192

rapid and linear fall in which spheres reach a constant terminal velocity; (2)193

an irregular regime superimposed to a linear one where spheres never stop194

during their way down (vy >0) but their local velocity fluctuates around195

a constant value; (3) an intermittent regime: another irregular regime but196

here periods of no-motion, where the sphere’s vertical velocity goes to zero,197

and periods of irregular falls follow one another; (4) a logarithmic regime198

where the sphere’s speed progressively decreases (inset in Fig.4); and (5)199

a no-motion regime in which spheres do not move at all from their initial200

positions.201

Regimes (1) and (5) are characteristic of a yield stress fluid [11, 26, 40]202

and one can interpret them based on the state of the medium that surrounds203

the object. In the linear regime (1) the fluid around the sphere has a liquid-204

like behaviour that allows spheres to go down, whereas in regime (5) local205

stresses are below the yield stress (σY ) and the material around the sphere206

remains in the solid state, leading to the no motion of the object. Here the207

stress field is generated by the weight of the sphere minus the buoyancy and208

the no-motion regime is always observed for smallest diameters ds (Fig.4) or209

density contrast ∆ρ (Fig.5a, as in [11]). We have had no-motion whether the210

sphere was placed on the surface of the fluid column, or it was gently pushed211

within it and released deeper in the fluid. In both cases, we left the spheres212

in that position for days (up to a week for one run) and they never moved213

away from their starting positions.214

Although the distinction between the two end-member cases (1) and (5)215
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is easy to establish, to discern quantitatively between the first steady-state216

motion regime (1) and the more irregular ones is more delicate. We sum-217

marize how we define the different motion regimes in Table 3. From the218

falling profiles one can notice that, although sometimes it is still possible to219

identify an almost constant falling speed superimposed on fluctuations (cir-220

cle symbols both in Fig.4 and Fig.5a), in some other cases, spheres seem to221

slow down logarithmically during their way to the bottom (square symbols222

in Fig.4), making impossible the determination of a constant terminal veloc-223

ity. We report this aspect in Fig.6a by plotting the mean squared variations224

(MSE) obtained by fitting the falling profiles with a linear or a semilog fit225

as function of spheres buoyancy. The logarithmic regime (4) is defined for226

MSElinear > MSElog, that is when falls are better represented with a logarith-227

mic fit. Hence, this regime describes a continuous decrease in sphere’s speed228

which never reaches the steady-state. Although in the case of Carbopol [11]229

velocity decreases following a power law, in most of our cases it best fits230

a logarithmic curve. Although from Fig.6a is evident that the logarithmic231

behaviour appears more often at lower buoyancies, the distinction between232

linear and non-linear regime is not straightforward. In a few cases, indeed,233

at same buoyancy the two behaviours coexist.234

Once the separation between stoppage cases (logarithmic regime (4) and235

no-motion (5)) and the other cases is established, one can identify and rec-236

ognize diversities between the steady-state motion (regime (1)) and the more237

irregular and chaotic regimes (2) and (3). Depending on the buoyancy of238

the object and hence on its velocity, the irregularities show up as fluctua-239

tions in the sphere local vertical velocity and in a progressive increase of its240
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Figure 6: Determination of the different regimes of motion. In (a), (c) and (e) data refer

to experiments carried out in gel E. In (b), (d) and (f) data are for all fluids and colours

indicate the grain size as in Fig.2. (a) best fit (MSElinear/MSElog) of the falling profiles.

� indicates a better linear fit whereas ♦ a better semilog fit (logarithmic regime (4), in

the text). (b) mean falling velocities (vy) for those falling profiles that have been linearly

fitted. The error for vy is 0.25 mm/s, smaller than the symbols. We do not report the

standard deviation for vy here (whereas it is in (c) and (d)) as being also linked to the

physical fluctuation of the sphere, for small values of velocity it would make the plot

unreadable. In (c) and (d) we separate those experiments that show a more irregular and

chaotic motion (�) from those that do not show any irregularities during the fall (#) by

plotting std(vy)/vy. The dashed line is for std(vy)/vy = 0.15, from the Newtonian case.

In (e) and (f) we separate the intermittent regime (3) (×) from the other irregular regime

(2) (�) based on the amount of time ts the sphere remains at vy 6 err(vy). t0 is the total

time the sphere takes to descend h. The dashed line indicates ts/t0=5.
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horizontal motion (Fig.5b). Regimes (2) and (3) show some similarities: in241

both of them, spheres have a long term constant falling velocity on which242

is superimposed a more complex and irregular pattern of fluctuations. The243

latter are characterized by accelerations and subsequent decelerations in a244

short period of time and, in some cases, they can result in a succession of245

stops of the sphere. In the most drastic cases, we observe the complete arrest246

of the sphere after it has passed through most of the fluid (Fig.5a).247

To determine the boundaries between the irregular regimes (2) and (3)248

and regime (1), one can look, as a first approximation, at the ratio between249

the standard deviation (std) of the local falling velocity and its mean value.250

Variations of the local velocity for spheres in irregular regimes are much251

larger than the experimental uncertainty (Fig.6c-d). The latter is due to252

the precision of the technique we used to detect the sphere position in time253

(hereafter err(vy)). It is estimated to be 0.25 mm/s from the syrup-case mea-254

surements and from local velocity measurements in the no motion regime. In255

the Newtonian case, std(vy)/vy always remains smaller than 0.15. We define256

the linear regime (1) using this value, that is for std(vy)/vy < 0.15 (dashed257

line in Fig.6c-d). This limit represents therefore a boundary between the258

steady-state motion and what shows a more spread distribution of velocities.259

Once the linear regime is bounded in this way, we distinguish between260

the irregular regime (2) and the intermittent regime (3) as follows. In the261

intermittent case the sphere remains during a certain cumulative amount of262

time, ts, at vy 6 err(vy). We then compare ts to the total time, t0, the sphere263

takes to descend 30 cm. The intermittent regime is defined as ts/t0 ≥ 5%.264

The remaining irregular regime (2) is therefore defined as ts/t0 < 5% and265
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Regimes

(1) (2) (3) (4) (5)

vy = 0± err(vy) x

MSElin >MSElog x

MSElin <MSElog &

std(vy)/vy < 0.15
x

MSElin <MSElog &

std(vy)/vy > 0.15
x x

MSElin <MSElog &

ts/t0 ≥ 5%
x

Table 3: Summary of the observed motion regimes and the way they are classified

std(vy)/vy > 0.15 (Fig.6e-f).266

Fluctuations, accelerations and subsequent decelerations and the result-267

ing general complex set of behaviours of the moving sphere, characterize the268

experiments both in the direction of fall and in the one perpendicular to it.269

In fact, the irregular motion we have observed is not only present and visible270

in the vertical direction but it also affects the horizontal motion of spheres in271

a such a way that, along this direction, they collect a certain amount of trav-272

eled distance (Lx) with respect to their initial position, depending on their273

diameter (Fig.7a), on the gel grains size (Fig.7b), and on the vertical falling274

distance h (Fig. 8a). Fig. 8b shows that for each run, Lx is roughly propor-275

tional to h. Fig.7 shows that small spheres change frequently their horizontal276

position, oscillating continuously around the vertical axis, and traveling for277

larger distances Lx than the large spheres. If we normalize Lx by h and ds278
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Figure 7: Total distance traveled in the horizontal direction (Lx). (a) Lx as function of

the sphere diameter ds. Dashed line indicates the uncertainty in position. (b) Same plot

with y-axis normalized by the vertical falling distance h and x-axis by the gel grain size dg.

Colours indicate the different fluids as indicated in the legend. Symbols refer to the differ-

ent motion regimes: # for the linear regime (1); � for an irregular regime superimposed

to a linear one (2); × for the intermittent regime (3) and ♦ for the logarithmic regime

(4). Empty symbols are for steel spheres while the symbol with a point inside refers to

ρs=7799 kg/m3 and those filled with a plus sign are for ρs=14952 kg/m3.

by the diameter of the gel grains (dg), we achieve a good collapse for all our279

data along a line with slope -2. That is280

Lx/h = Cexp (ds/dg)
−2 . (3)

where Cexp = 0.49±0.26. In this way the total travelled distance in horizontal281

direction turns to be a good candidate to underline the strong interaction of282

the sphere and the gel grains that make up the fluid structure when those283

two have similar sizes.284
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Figure 8: Distance traveled in the horizontal direction in gel C. (a) Distance traveled in

different 15-cm-vertical-sections of h, Lx[Sect], as function of spheres buoyancy. Sections

are SectA=[h=0 cm, h=15 cm]; SectB=[h=15 cm, h=30 cm]; SectC=[h=7.5 cm, h=22.5

cm]. (b) Ratio between the total distance traveled in 30 cm, Lx, and the distance travelled

in 15 cm, Lx[Sect].

4. Discussion285

4.1. Determination of the SAP effective rheology286

The fall of a spherical object within certain boundary conditions is de-287

scribed by the combination of a proper set of equations of motion and the288

constitutive relation of the fluid through which the sphere is falling. For yield289

stress fluids a commonly used rheological model that relates stress and strain290

in a non-linear way is the Herschel-Bulkley model [2, 12, 41]:291

σ = σY +Kvγ̇
n if σ > σY

γ̇ = 0 if σ ≤ σY

(4)

292

where σ is the stress, σY the yield stress, γ̇ the shear rate, Kv the consistency293

and n the shear-thinning index. Considering a fluid which flows following294
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such model, for small Reynolds numbers (Re�1), the problem of a settling295

particle needs two parameters to be characterized [11, 42]. They are the296

Bingham number297

Bi =
σY

Kv(vy/ds)n
, (5)

that compares yield stress with viscous stresses, and the yield number298

Y =
3σY
gds∆ρ

(6)

that compares the yield stress with the buoyancy stress.299

As described in section 1, most of the experimental work done to study300

this problem is carried out by using Carbopol. The main difference between301

experiments done with Carbopol and the present work regards the typical302

size of the fluid structure compared to the dimension of the object that303

is moving through it. Carbopol corresponds to the case where the fluid304

structure (grains) is much smaller than the spheres. In this case, only regimes305

(1), (4) and (5) were reported (e.g. [11]) while neither the irregular regime306

(our regime (2)) nor the intermittent regime (3) were reported; and the fall307

of the sphere is always reported to be free of any sort of chaotic motion308

[11, 17, 38].309

In regime (1), that is when a constant terminal velocity can be deter-310

mined, Tabuteau et al. [11] showed that their data are well-fitted by the311

following equation312

1

Y
= 7 +

8.52

Bi
(7)
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with n=0.5, and that there is a critical value of Y , Yc=0.145, above which313

there is no motion.314

Taking into account the differences between SAP and Carbopol, one can315

use eq.(7), defined for ds � dg, and check whether it applies for a fluid with316

a much larger structure. Thus, assuming a framework in which eq.(7) is valid317

also in our case, we can rewrite it as318

gds∆ρ

3
= 7σY (eff) + 8.52Kv(eff)

(
vy
ds

)n

, (8)

where σY (eff) and Kv(eff) represent the effective yield stress and consis-319

tency of the SAP through which the sphere is falling. In eq.(8), vy is the320

average falling velocity defined for those experiments which do not show a321

decrease in speed, that is those in regime (1), (2) and (3). By plotting the322

buoyancy stress (gds∆ρ) as function of the effective strain rate, i.e. (vy/ds)
n,323

Fig. 9 shows for SAP the same linear relationship showed for Caropol [11].324

Therefore the slope of the linear fit is related to an effective consistency325

through326

Kv(eff) =

[
gds∆ρ

25.56
− 0.86σY (eff)

](
vy
ds

)−n
. (9)

and, similarly, an effective yield stress is related to the intercept at zero327

effective strain rate through328

σY (eff) =
gds∆ρ

21
. (10)

In this way, by using the falling sphere system as reometer we can define329

an effective rheology, which has to have same form of eq.(7), for each of our330

gel sample. Fits in Fig.9 depend on the shear thinning exponent n used to331
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calculate the effective shear rate. Minimum mean squared values for linear fit332

are found for n in between 0.5 and 0.7 (Fig.11). Unless otherwise indicated,333

in what follows we will use n=0.5 since it is with this value that eq. (7)334

is defined. Interesting, experiments in both regime (1), (2) and (3) can be335

linear fitted by the same line. Moreover, effective yield stress and consistency336

increase with the gel grains size (Fig.10).337

For experiments involving large spheres, it is opportune to check whether338

wall corrections are needed or not. For sufficiently small sphere-to-tube di-339

ameter ratio, ds/D, we do expect no reductions of sphere’s terminal velocity.340

This means that the measured velocity, vy, is equal to the ideal terminal341

velocity of a sphere falling in an unbounded medium, v∞. On the other342

hand, if ds/D exceeds a critical value, (ds/D)crit, velocity decreases leading343

to vy/v∞ <1. The critical diameter ratio for a yield stress fluid writes as [43]344

(ds/D)crit = 0.055 + 1.114Y if Y 6 Yc. (11)

In our case, ds/D is smaller than (ds/D)crit as long as ds/D <0.1. The345

influence of walls causes a reduction in speed such that [43]346

vy
v∞

= 1− 1.7 [(ds/D)− (ds/D)crit] if ds/D > (ds/D)crit. (12)

For 0.16 ds/D 60.17 experiments are above critical conditions and, ac-347

cording to eq. (12), wall effects lead to 0.8< vy/v∞ <1, that is a maximum348

decrease of vy/v∞ of less than 20%.349

Considering only the experiments with vy/v∞ > 0.8 and ignoring the350

others, we recalculate the effective rheology in the same way described above351
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Figure 9: Sphere buoyancy as function of effective shear rate, (vy/ds)
n . Following

Tabuteau et al. [11] approach, vy is the average falling velocity for those experiments

where a steady decrease of the speed has not been observed (i.e. we do not consider

regime (4)) and n=0.5 the power-law index. Colours represent the fluids (same as Fig.7)

while symbols the regimes (circles for regime (1), squares for regime (2) and crosses for

regime (3)). Empty symbols for steel sphere; symbol with a point inside for ρs=7799

kg/m3; with a plus sign for ρs=14952 kg/m3 and filled symbols for ρs=2200 kg/m3. Solid

lines are the linear data fits.
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Figure 10: Effective yield stress (σY ) and effective consistency (Kv) as function of gel

grains size.

Figure 11: Power law index (n) that best linearly fits data in Fig.9 for all gel samples. y-

axis represents the mean squared errors (MSE) of the linear fit normalized by the maximum

MSE found. The best range of n is in between 0.50 and 0.70.
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Figure 12: Influence of the velocity reduction due to wall effects on the effective rheology.

n=0.5. (a) The new fit that considers only experiments with vy/v∞ > 0.8 (solid lines) is

compared with the previous fit from Fig.9 (dashed lines). Colours and symbols here are

those described in Fig.9. (b) Effective yield stress and consistency as function of gel grains

size from the new fit (blue symbols). Red symbols are those in Fig.10.

(Fig.12a). The new values of σY (eff) and Kv(eff) do not differ much from the352

previous ones (Fig.12b); which means that our set up is big enough.353

Once we got the yield stress and the consistency of each sample, we354

plot Y −1 as function of Bi−1 in Fig.13. For values of Bi−1 >0 we achieve355

a good collapse along eq.(7) for experimental data that belong to regimes356

(1), (2) and (3). In this way, even considering the irregular regime (2) and357

the intermittent (3) where the interaction between moving objects and fluid358

structure results in highly irregular falls of objects themselves, an effective359
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rheology following the Hershel-Bulkley model with a classical shear-thinning360

index of 0.5 well represents the majority of our data.361

4.2. Entrapment conditions362

Fig.13 also shows that for Bi−1=0 spheres get entrapped also for Y −1 >363

Y −1c . From the experimental work of Tabuteau et al. [11], the critical value364

of the yield number (Yc) above which spheres do not move in a simple yield365

stress fluid is 0.145. This value is very close to 0.143, predicted in previous366

works of Beris et al. [10] and Blackery and Mitsoulis [14]. On the other hand,367

a more recent study [13] points out how the critical value may increase as368

function of the Deborah number if elastic effects are taken into account. In369

our case, however, we observe sphere arrest also for Y < Yc. For example,370

we observed arrest even for Y = 0.042 ≈ Yc/3 (4 mm steel sphere).371

As we highlighted at the beginning of this section, equation (7) was de-372

rived for Carbopol when the size of the moving object is much larger than the373

size of the particles than make up the fluid structure. Inside this assumption,374

the critical condition is well predicted in our case too. In gel E, for example,375

we had no-motion for a large glass sphere (ds/dg >2.5 and ∆ρ=1200 kg/m3)376

for Y=0.478 (Fig.14), greater than Yc=0.145. It is only when the diameter377

of the sphere becomes comparable to the diameter of the gel particles that Yc378

moves to lower values and the stoppage regime (5) cannot be anticipated any379

more from eq.(7). For the same gel E, a smaller steel sphere (ds/dg <2 and380

∆ρ=6970 kg/m3) is in stoppage for Y=0.13< Yc. We attribute this to the381

interaction between spheres and the gel structure: when ds →dg, the spheres382

”see” obstacles on their way and the effective rheology breaks down.383
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Figure 13: 1/Y as function of 1/Bi. Colours are for the different fluids. The dashed line

indicates Y −1c =0.145−1 [11]. Symbols are filled in a different way to distinguish between

spheres of different materials: full-filled symbols are for light spheres (ρs =2200 kg/m3),

open-symbols for ρs =7970 kg/m3, point-filled for ρs =7799 kg/m3, asterisk-filled for

ρs =3227 kg/m3 and plus-filled for ρs =14952 kg/m3. We show the good collapse of our

data along eq.(7) (solid black line). The inset shows the data zoomed around the critical

conditions in order to better display the entrapment conditions.
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Figure 14: Range of validity of the effective rheology. Colours are for the different fluids.

Symbols are those used in Fig.13. The dashed line indicates Y −1c =0.145−1 [11]. For ds/dg

approaching the value of 2, we have no motions (triangles), even for yield numbers lower

than the critical one commonly used.

31



4.3. Grains rearrangement and elasticity384

The emergence of a yield stress in SAP can be related to the jamming of385

soft grains. Gel grains act as athermal elastic particles that interact by gliding386

and compressing each other. The collective behaviour of a fluid made up by387

these elastic grains or particles can shows elasto-viscoplastic responses [5, 44].388

Therefore, one can expect that also the observed irregular motion regimes389

can be linked to the jamming nature of the fluid. Within this framework,390

going from the linear to the intermittent regime by decreasing the sphere391

size makes the elasticity and the yield stress seen by the sphere no longer392

the collective one of the bulk material, but rather the one of few gel grains.393

Once this occurs, to allow the continuous fall of the sphere, grains in front394

of it must undergo rearrangement. The mechanics of the flow appears then395

similar to the one of soft glassy materials. In this case the flow occurs through396

a sequence of elastic (reversible) deformations and local plastic (irreversible)397

rearrangement events which induce a long ranged relaxation of stress [6,398

45, 46]. Grains rearrangements will be all the more common the higher399

the local shear stresses are (e.g. in the case of a larger sphere). Since the400

number of plastic events for unit of time controls fluid flow and relaxation401

[6], a sufficient high number of them leads the system to be more fluid. The402

resulting sphere motion would be in the linear regime (1); whereas irregular403

and intermittent regimes might be the result of a less fluid system where404

the local rheology seen by the sphere becomes more relevant. In this way,405

the observed deformation induced by the sphere falling in the linear regime406

is mainly the elastic interaction between the grains, as it is for flow of soft407

particle glasses [5].408
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Fluid elasticity have been also linked to a peculiar characteristic of the409

fluid flow around the sphere, namely its asymmetry. The rise of a fore-arc410

asymmetry and the formation of a negative wake at the sphere’s tail has411

been detected experimentally in Carbopol [e.g. 17, 38] and associated with412

fluid elasticity [13, 17] or the emergence of thixotropy [18]. In SAP, we413

have observed a fore-arc asymmetry in the velocity field collected from PIV414

measurements. Indeed, Fig.15 shows that a negative wake in the region at415

the sphere back can be recognized at least for the linear motion regime (1).416

Although to discern the cause that breaks the fore-arc symmetry in SAP is417

not straightforward, its formation is more probably due to elasticity. In fact,418

between SAP grains there are not polymer chains that form system-spanning419

networks and the fluid, during a single experiment, does not undergo aging.420

More details about will be given in a coming work where the fluid velocity421

field will be properly analyzed and explained.422

Moreover, a further analysis on how the properties of a single elastic grain423

could influence σY (eff) and Kv(eff) might be relevant to evaluate the role that424

its viscoelasticity plays for the bulk rheology. However, the extreme softness425

of the material makes it very difficult. After several attempts to measure426

forces and penetration depth by using a microindenter with a minimum nor-427

mal force of 20 mN, we have not been able to get any reliable measurements428

since slip or rupture of the grain always occurred even for such small values429

of normal force.430
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Figure 15: Fluid flow from PIV measurements. We display the vertical component of the

right half part of instant velocity field (vz) for a sphere (ds=19 mm) falling in the linear

regime (1) through SAP.
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5. Conclusion431

In this work we have experimentally investigated the influence that the432

size of particles which build up the structure of an yield stress fluid has on433

the dynamics of a spherical intruder falling under gravity through it. As the434

typical size of the gel grains was varied between 1 and 6 mm and the sphere435

diameter was varied between 3 and 25 mm, there exists a range where they436

become comparable.437

We have been able to expand from three (in Carbopol) to five (in SAP)438

the observed regimes of motion of the sphere: (1) a linear regime where the439

sphere has a steady-state motion; (2) an irregular regime superimposed to a440

linear one where spheres never stop during their way down but their velocity441

varies; (3) an intermittent regime in which periods of no-motion and periods442

of irregular falls follow one another; (4) a logarithmic regime where the sphere443

velocity progressively decreases; (5) no-motion. Beside the classical steady-444

state motion (1) and stoppage regimes (5), typical of viscoplastic fluids, the445

interaction between moving objects and the fluid structure results then in446

two additional regimes ((2) and (3)) where the motion becomes more chaotic.447

The same strong interaction between the sphere and the gel grains is also448

observed from the sphere total travelled distance in the horizontal direction.449

Moreover, we have shown that the effective rheology of SAP follows the450

Herschel-Bulkley model with a power index n=0.50, making this simple set-451

up a good rheometer for this type of fluids.452

We also found that both yield stress and consistency of the gel increase453

with the gel grain size, suggesting that the effective rheology, due to the454

material heterogeneous properties, depends on the size of the particles which455
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constitute the fluid structure. However, it is remarkable that the overall456

sphere motion predicted by the Herschel-Bulkley model begins to ”see” the457

texture only for sphere diameters less than twice the SAP grain size.458
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