
HAL Id: hal-03024408
https://hal.science/hal-03024408v1

Submitted on 25 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The StakeCube blockchain : Instantiation, Evaluation &
Applications

Antoine Durand, Guillaume Hébert, Khalifa Toumi, Gérard Memmi,
Emmanuelle Anceaume

To cite this version:
Antoine Durand, Guillaume Hébert, Khalifa Toumi, Gérard Memmi, Emmanuelle Anceaume. The
StakeCube blockchain : Instantiation, Evaluation & Applications. BCCA 2020 - International Confer-
ence on Blockchain Computing and Applications, Nov 2020, Virtual, Turkey. pp.1-8. �hal-03024408�

https://hal.science/hal-03024408v1
https://hal.archives-ouvertes.fr


The StakeCube blockchain : Instantiation,
Evaluation & Applications

Antoine Durand
IRT-SystemX

Institut Polytechnique de Paris
antoine.durand@irt-systemx.fr

Guillaume Hébert
Atos

guillaume.hebert@atos.net

Khalifa Toumi
IRT-SystemX

khalifa.toumi@irt-systemx.fr

Gérard Memmi
LTCI, Télécom Paris

Institut Polytechnique de Paris
gerard.memmi@telecom-paris.fr

Emmanuelle Anceaume
CNRS/Univ Rennes/IRISA/Inria
emmanuelle.anceaume@irisa.fr

Abstract—Blockchains have seen a recent rise in popular-
ity as a generic solution for trustless distributed applications
across a wide range of industries. However, blockchain pro-
tocols have faced scalability issues in applications involving a
growing number of participants. In this paper we instantiate
and evaluate StakeCube, a proposal for a scalable shard-based
distributed ledger. We further detail and tune a byzantine
agreement algorithm suited for StakeCube’s sharding structure,
and we experimentally study and asses its performance, especially
regarding scalability. We were successfully able to run StakeCube
with up to 5000 participants, confirming up to 1100 bytes/s of
transaction, with a confirmation time starting at 200 seconds.
Finally, we use StakeCube in a large scale energy marketplace
application, and show that a node running on a Raspberry Pi
Zero is able to handle the load without issues.

Index Terms—blockchain, scalability, sharding, Proof-of-Stake,
benchmarking, application, smart grid

I. INTRODUCTION

Blockchain technology showed tremendous progress from
the early days of the Bitcoin cryptocurrency to providing ver-
satile and useful tools for distributed applications. Arguably,
one of Bitcoin biggest achievement is to efficiently bring
consensus protocols to the scale of the Internet, through the
use of Proof-of-Work (PoW). In that sense, it showed the
potential of large-scale distributed trustworthy applications
with participants who do not trust each other, and opened

a path for the use of such protocols in a wide range of
businesses, administrations, or industries [1].

However PoW-based blockchains have inherent downsides,
e.g. high energy consumption tied to the security level,
synchrony assumptions and increased transaction confirma-
tion delay. To deal with those issues, Proof-of-Stake (PoS)
blockchains have been proposed, but compared to Bitcoin they
have to fulfill the scalability requirement, which proved itself
to be quite challenging. Moreover, because they cannot rely
on randomness from the PoW, PoS blockchains often have to
securely generate themselves their randmoness which creates
additional complexity. Recently, a Proof-of-Stake distributed
ledger named StakeCube [2] was proposed to tackle the
scalability issue, with a solution based on sharding.

StakeCube has a per-block agreement approach, i.e. the
generation of a new block is started after consensus has been
reached on the previous block, and forks are not possible.
Roughly speaking, StakeCube is made efficient by spreading
all nodes into shards of fixed size which distribute the block
generation process. Each shard is splitted into a core set
and a spare set, where the core set act as a committee of
fixed size smin for the shard. Shard membership is based
on stake ownership, and is made unpredictable and renewed
periodically to prevent eclipse attacks.

StakeCube’s sharding structure relies on the distributed hash
table PeerCube [3], and thus inherits its properties. It is able



to efficiently handle high churn, and randomisation of shards
ensure the resistance against Byzantine adversaries.

Because StakeCube is given as a template from a set of
ingredients, we first instantiate it using protocols tuned for
its setting. Specifically, StakeCube requires a verifiable inter-
shard agreement protocol that we derive from the suggested
algorithm from Chen & al [4].

Then, to test StakeCube’s practical performance and verify
its behavior within large-scale applications, we experimentally
measure communication cost as well as transaction confirma-
tion time and throughput under varying network size, security
parameters and load. To the best of our knowledge, StakeCube
is the first blockchain reaching scalability levels well in the
thousands of nodes.

Finally, we demonstrate StakeCube’s viability with a large
scale IoT application: an energy marketplace [5]. In this appli-
cation energy producers and consumers sell directly to each-
others through a blockchain. We implemented this application
on StakeCube, and executed it with a large number of nodes,
with one Respberry Pi Zero among them. We measured its
ressources usage and found it to be largely within capacity.

We made all data related to the experiments available on
Github1.

A. Related Work

Our work is the first one to evaluate StakeCube, however
other blockchains with an emphasis on scalability have been
proposed. Large scale blockchain experiments includes Al-
gorand [6], Elastico [7] and the Red Belly Blockchain [8].
Runchao Han et al. evaluated several blockchains specifically
with IoT in mind [9], namely Hyperledger Fabric v0.6 with
PBFT, Fabric v1.0 with BFT-SMaRt, Ripple with BFT Rip-
ple consensus, Tendermint with hybrid PBFT and Casper,
R3 Corda with BFT-SMaRt. Their work showed that these
algorithms do not scale well passed the tens of devices.

There are several works that evaluates Hyperledger Fab-
ric [10]–[12] with up to 32 nodes. Some of these works make
use of the Caliper [13] tool, which also supports most of the
Hyperledger projects as well as Ethereum.

Blockbench [14] is a framework supporting Ethereum, Par-
ity and Fabrice, although it focuses more on resources utilised
by smart-contracts rather than network usage.

II. STAKECUBE OVERVIEW

For self-containment reasons, we now recall the main design
features of StakeCube.

StakeCube is a proof-of-stake protocol based on the per-
block agreement paradigm. It leverages a sharding structure
provided by the PeerCube distributed hash table to make the
block agreement procedure efficient and robust to adversarial
strategies. It uses the UTXO model, meaning that each public
key is associated with some amount of stake that can only be
spent all at once.

1https://github.com/Maschmalow/StakeCube experiment data

A. A Sharded Distributed Hash Table (DHT) based on Peer-
Cube

The notion of Sharded DHT is similar to a regular DHT
overlay, that is an overlay in which nodes self-organize accord-
ing to a given graph topology, except that each vertex of the
DHT is a set of nodes instead of a single node. More precisely,
in PeerCube [3], nodes gather together into shards, and shards
self-organize into a DHT graph topology. Shards are built so
that the respective common prefix of the identifiers of their
members is never a prefix of one-another. This guarantees that
each shard has a unique common prefix, that in turn serves as
a shard’s label. The shard’s label characterizes the position of
the shard in the overall hypercubic topology, as in a regular
DHT. Shard size is lower and upper bounded by parameters
smin and smax, respectively. Whenever the size of a shard S
falls under smin, S merges with another shard to give rise to
a new shard whose label is a prefix of S label. Whenever the
size of a shard S reaches smax, S splits into two shards such
that the label of each of these two new shards is prefixed by S
label. Each shard self-organizes into two sets. The core set is
made of smin random members while the remaining members
joins the spare set. The core set is responsible for running the
Byzantine agreement protocols in order to guarantee that each
shard behaves as a single and correct entity despite malicious
participants [15]. Members of the spare set merely keep track
of shard state. Joining the core set only happens when some
existing core member leaves, in which case the new member
of the core set is randomly elected among the spare set.

In PeerCube, peers are required to have a random identifier
that defines the shard membership and topology. StakeCube
provides these identifiers through a credential system. With
each UTXO and block height is associated a credential. Using
Verifiable Random Functions, a random value is generated
along with each block, which seeds the credentials’ random-
ness. Because PeerCube also require a minimal amount of
churn, we make each credential valid only for T blocks, after
which it is renewed with block T +1 randomness. As a result,
nodes may be participating in multiple shards at once, under
different roles, and this membership periodically evolve in an
unpredictable manner.

B. The StakeCube protocol

In StakeCube stake owners may join and leave their shard
during the protocol execution. Hence before each block gener-
ation phase there is a shard membership update phase. In this
phase, each shard individually agrees on the set of leaving and
joining members, and they also run an election to update their
core set accordingly.

At this point it is useful to recall that any shard may be
required to run an agreement protocol, which is possible only
if the proportion of malicious nodes in each core set is below
1/3. Similarly to nodes, we call such shards honest or correct,
and malicious or Byzantine otherwise. In [2] it is shown that
the corruption probability for a shard has an exponentially
decreasing bound in smin, hence smin is polynomial in the
security parameter. However, ensuring that all shards are

2

https://github.com/Maschmalow/StakeCube_experiment_data


always honest would imply a smin too large to be practical,
especially given that one of our goals is to spread the load
across the network. To work around this limitation, StakeCube
is made to tolerate a fixed number F of malicious shards.

This design feature is at the center of the block generation
phase. A new block is still created by a single shard using a
vector agreement protocol. But to ensure correctness despite
malicious shards, it has to be validated by other shards. This is
the task of an inter-shard agreement protocol run by a random
committee of Scom = 3F +1 shards.

This agreement is based on rotating leaders, where each
leader shard attempts to propose the next block. If the proposed
block is voted by the other shards it is then broadcast and
appended to the blockchain for every node. The knowledge
of this new block allows the nodes to update the credentials
and shard membership of all other nodes and to start the next
iteration.

III. CONCRETE INSTANTIATION

A. Model

First, we recall and define various parameters here:
• κ is the security parameter. All other variables are poly-

nomial in κ .
• smin is the size of the core set of shard. We also define

f = bsmin/3c.
• Scom is the size of the shard committee. We also define

F = bScom/3c.
• T is the credential renewal period.
• µ is the adversary relative share of stake.

The synchrony assumptions in StakeCube are determined by
the concrete instantiation of its building blocks. We choose to
use agreement algorithms with consistent requirements, that
is, deterministic in the partially synchronous model. Hence,
our instantiation is set in the same model.

The adversary is Stake-bounded weakly adaptive, as in
StakeCube. Specifically, a proportion µ < 1/3 of stake may
be owned by malicious nodes, and the adversary is able to
dynamically corrupt new nodes, but subject to a delay of
T blocks. That is, if the adversary decides to corrupt some
node when the i-th block is created, then corruption will
be effective when the i + T -th block will be created. We
recall here StakeCube’s properties, which are guaranteed with
probability 1− eO(κ).
• Safety. If honest user i accepts a block Bi

h at height h
in its copy of the ledger then, for any honest user j that
accepts a block at height h in its copy ledger, B j

h = Bi
h.

• Liveness. If a honest user submits transaction tx, then
eventually tx appears in a block accepted in the copy of
all honest users.

• Efficiency. The number of communication rounds needed
to create a block is constant in the number of participants
and polynomial in κ .

• Scalability. The communication cost grows linearly with
the number of participants, and the coefficients are poly-
nomial in κ .

In summary, the focus of the conducted experiments will be
to validate the last two properties.

We assume that the initial participants received each-others
public key untampered (i.e. they trust the genesis bloc), and
similarly for transactions we assume the integrity of the public
key transmitted by the recipient.

B. Modifications

Our implementation exhibits a significant amount of differ-
ences with StakeCube, due to improvements or simplifications.

a) Core members sampling: In contrast to StakeCube,
the common randomness used to seed the election of the
shards core members is derived from the block seed instead
of running a common coin tossing protocol. This means
that computing the shard composition only depends on the
blockchain and the peers join and leave operations.

b) Join operation: Our prototype does not support the
join operation of StakeCube. This means that we assume that
participating nodes can only leave or join the system by emit-
ting transactions that spend or give them stake, respectively.
All honest users that own stake are required to participate in
the algorithm and cannot be offline.

As a result, the original shard update phase of StakeCube
can be completely removed and the computation of the shard
membership can be carried out from the knowledge of the last
block. Although this simplification is indeed a major change
in the algorithm, we argue that it does not significantly affect
the focus of this work, because the communication cost of
the shard update phase is dominated by the block generation
phase evaluated in this work.

c) PeerCube: Because in our implementation the entire
PeerCube structure is replicated by all nodes, we made a few
design choices. It is seen as a binary tree, where a path in the
tree represents a label and a leaf is a credential. Hence, shard
information is stored at the path addressed by its label, and
peers are stored at the leaves addressed by their credential.
Then, given a PeerCube tree populated with peers, the shards
assignation is computed such that:

• The path of any credential goes through a single shard
node

• No shard may have less that smin members
• If a node is a shard then one of its direct child cannot be

a shard (i.e. due to its size)

Note that this assignation is the unique one that maximises
the shard count.

The main difference with the original PeerCube algorithm
is the absence of the upper bound on the shard size smax. In
that sense, we ”split” a shard whenever possible instead of .

We also store at each node the number of peers belonging
in the subtree. This allows us to efficiently batch update
operations: inserting/deleting a peer with its credential is
logarithmic ; updating shards after several modifications only
takes one iteration of the tree, with depth limited to the shards
nodes.

3



d) Communication: To distribute communication load,
inter-shard communication is defined to happen between the
core sets, which is then responsible for forwarding the message
to the spare set. However, if the whole core is corrupted, then
shards can now mount eclipse attacks against to prevent any
honest spare member from progressing indefinitely. To prevent
this situation, we require that there is at least one honest
core member in each shard. Because StakeCube’s security
parametrisation has two independent parameters, i.e. smin and
F , we can always meet this this requirement.

e) Block diffusion: When a new block is created, it has to
be efficiently broadcast to all nodes participating to StakeCube,
e.g. through a gossip protocol. For ease of implementation,
we rely on a simple diffusion protocol based on the sharding
structure: Whenever a shard member receives a block for the
first time, the node forwards it to all its neighbour shards.
Because inter-shard communication is done through core-to-
core broadcast, corrupt shards makes no issues regarding this
diffusion protocol.

C. Inter Shard agreement

In Stakecube, an algorithm from Chen & al [16] is
suggested for the inter-shard agreement. However, running an
algorithm with shards instead of nodes as participants required
some adaptations, as well as some additional optimisation
related to our setting. Critically, we conserve the property
of ”player-replaceability” which let different players vote at
each step. This property specifically allows us to have different
players from the same shard act as one. More precisely, we
will say that :

1) A shard S has sent a message m to the shard D whenever
at least 2 f +1 core members of S have sent m to all the
core members of D.

2) A peer p has received a message m from the shard S
whenever it has received m from all the core members
at least 2 f +1 core members of D.

3) A shard D has received a message m from the shard
S whenever at least 2 f + 1 core members of D have
received m from the shard D.

According to these definition, we can deduce that if shard S
sent a message m to shard D, then D will eventually receive m
from D, and that eventual synchrony assumptions also apply.
That is, inter-shard communication share the same properties
and synchrony assumptions than inter-node communication.

Note that if a honest shard sends a message to a corrupted
shard, its honest members will receive the message nonethe-
less, thus allowing them to continue receiving blocks until they
end up in an honest shard again.

Moreover, the algorithm from Chen & al. is not entirely
optimal for our setting. More precisely, it achieves security
against a rushing adversary. In our case, the adversary is only
weakly adaptive and has to wait T blocks before corrupting
a node, i.e. more than the duration of the agreement. This
means that security against static adversaries is sufficient for
our inter-shard agreement. Because of the rushing adversary,
the original algorithm cannot rely on a known leader and has

determine leadership after block proposals are sent. We can
define a leader rotation determined from the initial common
randomness (i.e. the block seed), and all shards will wait for
its proposal. Note that if no proposal is received, the timers
will eventually timeout and the next period will start.

The pseudo code for the inter-shard agreement is given
in Algorithms 1 and 2. This algorithm is presented in an
event-driven style, where each ”upon” block describes the
processing of a specific event. Note that this does not imply
any kind of parallelism in the treatment of events. In fact, in
our implementation, message processing is exclusively single-
threaded. We define H the set of hashes values, V :=H

⋃
{⊥},

V the set of blocks and leader(period ∈ N) a function that
returns shards identifiers in a round-robin manner. The send
primitive sends an inter-shard message to all shards, and
gossip efficiently diffuses an inter-nodes message to all shards
core members.

a) Differences with the original algorithm: Our algo-
rithm ensures that a vote will ever be sent only for one value
at each period. Because the leader is known in advance, we
are already expecting its proposition to soft vote.

Additionally, when the current period is reached after next
voting a value, all other honest nodes should also reach the
same period with the same value. Hence we already know
that the leader is going to propose it and we can soft vote it
in advance. Note that in this case in the original algorithm,
the soft voted value also ignores the leader proposal.

Because we can soft vote in advance or just wait for the
leader proposal, the ”voting” step of the original algorithm
becomes empty for us and can be removed. In this algorithm,
”value” refer to hashes of block. The block data itself is
broadcast when its value is proposed, and we allow soft votes
to be sent without knowing the block data.

However the block data is required to be known to cert
vote or output it, which ensure than only valid blocks can
be committed. This is an implementation of the ”one step”
extension of the original algorithm.

1) Safety Proof (sketch): First, we should note that honest
nodes may send a CertVote or So f tVote only once per period,
and they may send up to two NextVote per period but with
one them being v 6=⊥. Furthermore, because a message needs
to be sent by 2 f +1 nodes from the same shard S to be sent
by S , the previous remark also applies to shards instead of
nodes.

Assume two honest nodes n1 and n2 output blocks b1 and
b2 at periods p1 and p2, respectively. w.l.o.g., assume p1 ≤ p2.

a) First case, if p1 = p2: Safety is proven through
a classical quorum argument: Among the 2F + 1 CertVote
received by n1 and n2, F + 1 of them comes from the same
shards. Hence at least one of them is from the same honest
shard that sent the same block b = b1 = b2.

b) Other cases, if p1 < p2: First, note that because an
honest node received 2F + 1 CertVote for H(b1), there are
F +1 honest shards that may only NextVote once with value
H(b1). Hence any value v 6= H(b1) may have at most 2F

4



Algorithm 1: Inter-shard agreement
local variables:
period ∈ N the current period
prevNextVote ∈ V the value that advanced us to the
current period
knownBlocks⊂H×V the hashset of blocks received
from gossip.
timer an object that expires after some timeout duration.
procedure start period()

start timer;
if prevNextVote 6=⊥∧ prevNextVote ∈

knownBlocks.KeySet() then
if leader(period) == sel f then

send (Propose, period, prevNextVote);
gossip (period,knownBlocks[prevNextVote]);

send (So f tVote, period, prevNextVote);
else if leader(period) == sel f then

newBlock←− GenBlock();
send (Propose, period,H(newBlock));
gossip (period,newBlock);

end
upon receiving (Propose, period,v) from leader(period)

do
if prevNextVote =⊥∨ prevNextVote /∈

knownBlocks.KeySet() then
send (So f tVote, period,v);

end
upon receiving (So f tVote, period,v) from 2F +1 distinct

senders do
if v ∈ knownBlocks.KeySet() then

if timer not expired then
send (CertVote, period,v);

else
send (NextVote, period,v);

end
upon receiving (CertVote, period,v) from 2F +1 distinct

senders do
wait until v ∈ knownBlocks.KeySet();
output knownBlocks[v];

end

NextVote and only H(b1) may have 2F+1 NextVote at period
p1.

Therefore, for all honest nodes at period p1 + 1,
prevNextVote = H(b1). For any honest node n, if
prevNextVote 6= ⊥, then n may only So f tVote or NextVote
their prevNextVote value. Hence, only H(b1) may receive
2F +1 So f tVote, CertVote or NextVote at period p1 +1.

Finally, we have that only b1 may be output at period p1+1,
and that for all honest nodes at period p1+2, prevNextVote =
H(b1). By induction on p′ > p1, only b1 may be output on
subsequent periods.

Algorithm 2: Inter-shard agreement Pt.2

upon timer expires do
if (CertVote, period,v) has been sent then

send (NextVote, period,v);
else

send (NextVote, period, prevNextVote);
end
upon receiving (NextVote, p,v) from 2F +1 distinct
senders do

if p≥ period then
prevNextVote←− v;
increase timer timeout;
period←− p+1;
start period();

end

2) Liveness Proof (sketch): We have shown that once a
value v 6= ⊥ receive 2F + 1 NextVote at period p, it will
continue to do so for all period p′ > p.

For a value v 6=⊥ to receive 2F +1 NextVote at period p,
it is sufficient that:

1) All honest nodes are at period p
2) leader(p) is honest
3) They all receive the leader proposal and each other’s

So f tVote before their timer expire.
As a preliminary remark, we can see that for all period p′ 6=

0 reached by an honest node, all honest nodes will eventually
receive 2F + 1 NextVote from period p′− 1. Moreover, for
every period p′ where no block is output, at least one honest
node will reach p′.

Assume that no block has been output yet, we can deduce
that for the first item to hold, it is sufficient that all honest
nodes receive 2F +1 NextVote from period p−1 before their
timer expires. Hence, assuming that leader(p) is honest, if the
honest nodes’ timer duration is greater that the time it takes
for some messages to be received, the first and third items
will hold. Because the second item holds infinitely often, and
due to the eventual synchrony assumption, we can deduce that,
eventually, all items will holds.

We now have that there is a period ps and a value v such that
for all period p′≥ ps, all honest nodes have prevNextVote= v.
For a block to be output a period p′, it is sufficient that :

1) All honest nodes are at period p′

2) They all receive each other’s So f tVote and CertVote
before their timer expire.

Using the eventual synchrony assumption similarly to the
previous paragraph, we can show that these conditions will
eventually hold, and that a honest node will output a block.

a) Verifiability: If there are 2F + 1 CertVote for the a
value v at the same period, then only a block b s.t. H(b) =
v may be output. Therefore the set of CertVote constitute a
certificate for the block b which can convince any node of the
protocol output.

5



This can be used to certify a block for an external party
knowing the protocol participants, but we also use it as a
mean to guarantee totality: Once a node output a block b,
broadcasting its certificate will ensure that all honest nodes
will eventually output b.

IV. EXPERIMENTS

The implementation contains approximately 10,000 lines of
C++. It runs as a docker image that can be scaled and run on
multiple concurrent host machines. Each docker container is
allowed only one computing core. We run the experiments
across five virtual machines, each with 30Gib of RAM, 6
virtual CPU, and 30 Gib of storage. A trusted setup phase
consists for all the nodes in exchanging key material, shared
randomness and connection information. Once initialized, the
core of the protocol is triggered and all the nodes output their
metrics until each node has locally a chain of blocks of a
pre-determined size.

A. Parametrization

In Stakecube all nodes store the same instance of the shard-
ing structure provided by PeerCube. This structure represents
the shard membership (core and spare) of the whole network.
Hence, we can use it to simulate the corruption in StakeCube.
To do so, we generate N credentials with µN of them marked
as corrupted, compute the shard membership of nodes and
then count the number of corrupted shards. For a given µ

and f , this gives us a simple approximation of the probability
distribution of the number of corrupt shards. That is, we can
estimate the appropriate F to ensure correctness for varying
µ and f .

Using this method we computed the following security
parameters: f = 5,F = 5,µ = 0.1 ; f = 5,F = 10,µ = 0.15
; f = 7,F = 7,µ = 0.15. The full dataset is available in the
repository.

B. Limitations

Because the implementation is an early stage prototype,
it underperforms in several aspects. Most notably, the net-
working code had to be kept simple and naive. For instance,
each protocol message is sent in a dedicated TCP connexion,
which creates a large overhead. We also did not implement a
mechanism for nodes to synchronise and update their states
when they communicate. For instance, this means that nodes
will keep exchanging outdated blocks even when it is not
necessary.

In that respect, we expect that a fully optimised implementa-
tion to exhibit a large performance gain, and our experimenta-
tion can only be a proof of viability. But despite these issues,
we were able to run experiments with up to five thousands
nodes, and to keep reasonable transaction output even above
a thousand nodes.

C. Metrics

For each block, we output the following metrics, aggregated
over nodes:

0 1,000 2,000 3,000 4,000 5,000 6,000

0

0.2

0.4

0.6

0.8

1

1.2
·104

Number of nodes

To
ta

l
M

iB
ex

ch
an

ge
d

f=5 F=5 R2=0.9942
f=7 F=7 R2=0.9803

f=5 F=10 R2=0.9915

Figure 1. Communication cost as a function of the number of nodes when
the number of transactions per block is 10.

1) The median of the block interval time.
2) The sum of the number of bytes sent.

For a given run, the values are averaged over blocks and
plotted for varying parameters, namely:

1) Number of nodes. This parameter is set as the ’x’ axis
to allows us to verify StakeCube’s scalability.

2) Block size. The experiments with a small amount of
transactions per block indicate StakeCube minimal costs,
and the biggest amounts has been chosen to optimise
transaction throughput, intended to be representative of
operations under maximum load.

3) Security parameters, as chosen in section IV-A.
The error bars represent the standard deviation of the metric

for the run. Lines in Figure 1 are linear regressions, with the
coefficient of determination R2 in the legend. Note that because
the (maximum) number of transactions in a block is fixed, the
transaction throughput can be obtained from the block interval
time.

In Figure 1 we show the number of bytes exchanged in
the network, i.e. the communication cost. We can see that the
scalability property of StakeCube clearly holds, as shown by
the linear regressions with R2 ≥ 0.98. Thus we can conclude
that StakeCube is able to tackle the scalability issue of PoS
blockchains.

Figure 2 shows the block interval time as a function of the
number of nodes in the system. Due to the high variance,
we cannot conclude that we achieved a constant number of
communication rounds per block. Furthermore, even without
variance, the block interval time could increase with the
number of nodes solely because the network is slowing down.
However the fact that experimental variations have much more
influence than the number of nodes is a piece of evidence that
our algorithm performs correctly.

We observed during the experiments that the variations were

6



1,000 2,000 3,000 4,000 5,000

0

200

400

600

800

1,000

Number of nodes

B
lo

ck
tim

e
in

se
co

nd
s

f=5 F=5
f=7 F=7

f=5 F=10

Figure 2. Block time as a function of the number of nodes when the number
of transactions per block is 10

500 1,000 1,500 2,000 2,500
0

500

1,000

Number of nodes

B
lo

ck
tim

e
in

se
co

nd
s

f=5 F=5
f=7 F=7

Figure 3. Block time as a function of the number of nodes when the number
of transactions per block is 2,000

mostly due to sporadic communication failures between nodes,
which happens when the network and the operating system
become overloaded. Unfortunately, we were not capable to
address the real causes of such experimental variations.

In Figure 3 we show again the block interval time but with
blocks containing 2,000 transactions of 128 bytes each. This
Figure shows a transaction output between 1,100 and 300
bytes/s. We did not show the communication cost for 2,000
Tx/block because it is very similar to a scaled version of Figure
1 and does not give any additional information.

V. APPLICATION

To demonstrate StakeCube’s viability in large-scale IoT
application, we run an energy marketplace backed by Stake-
Cube on a Raspberry Pi Zero, and confirm that it is able
to handle the load even over large networks. The energy

marketplace is a blockchain-based answer for the demand
of decentralized solutions for the energy infrastructure [5].
In this application, energy producers and consumers such
as households and electric vehicles are trading electricity
on an local energy marketplace. Because participants may
be numerous and are typically running in a small system-
on-chip, we see this application as particularly fitting for
StakeCube. Indeed, we implemented an energy marketplace
pseudo-smartcontract where each node can sell and buy an
electricity token and the orders are matched using a double
auction algorithm [17].

We ran this application in a network of 500 nodes including
one Raspberry Pi Zero, which has 512Mib of RAM and a
1GHz single-core CPU. During execution, we saw that the
StakeCube executable used at most 15MiB of RAM and that
except for short spikes when receiving blocks the CPU was
mostly idling. The full monitoring trace is available in the
repository.

VI. CONCLUSION & FUTURE WORK

In this paper we presented an instantiation of a sharded
distributed blockchain, StakeCube. This work includes a
consensus algorithm suited for inter-shard coordination, and
computation of security parameters. We then evaluated its
performance and its scalability. We finally implemented an
energy marketplace application using StakeCube on a Rasp-
berry Pi Zero, which demonstrated its viability for resources-
constrained devices within a large network. For future work,
beyond improving the implementation, we aim at extending
StakeCube’s supported features, such as the join system.

ACKNOWLEDGEMENTS

We are thankful to Louis Martin-Pierrat and David Leporini
for their help and fruitful discussions. This work was carried
as part of the Blockchain Advanced Research & Technologies
(BART) Initiative and the Institute for Technological Research
SystemX, and therefore granted with public funds within the
scope of the French Program Investissements d’Avenir.

REFERENCES

[1] E. Barka, C. A. Kerrache, H. Benkraouda, K. Shuaib, F. Ahmad,
and F. Kurugollu, “Towards a trusted unmanned aerial system using
blockchain for the protection of critical infrastructure,” Transactions on
Emerging Telecommunications Technologies, p. e3706, 2019.

[2] A. Durand, E. Anceaume, and R. Ludinard, “Stakecube: Combining
sharding and proof-of-stake to build fork-free secure permissionless dis-
tributed ledgers,” in Networked Systems - 7th International Conference,
NETYS 2019, Marrakech, Morocco, June 19-21, 2019, Revised Selected
Papers, ser. Lecture Notes in Computer Science, vol. 11704. Springer,
2019, pp. 148–165.

[3] E. Anceaume, R. Ludinard, A. Ravoaja, and F. Brasileiro, “PeerCube:
A Hypercube-Based P2P Overlay Robust against Collusion and Churn,”
in IEEE International Conference on Self-Adaptive and Self-Organizing
Systems (SASO), 2008.

[4] J. Chen, S. Gorbunov, S. Micali, and G. Vlachos, “Algorand agreement:
Super Fast and Partition Resilient Byzantine Agreement,” Cryptology
ePrint Archive, Report 2018/377, Tech. Rep., 2018.

[5] J. Horta, D. Kofman, D. Menga, and A. Silva, “Novel market approach
for locally balancing renewable energy production and flexible demand,”
in 2017 IEEE International Conference on Smart Grid Communications,
SmartGridComm 2017, Dresden, Germany, October 23-27, 2017. IEEE,
2017, pp. 533–539.

7



[6] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich, “Algorand:
Scaling Byzantine Agreements for Cryptocurrencies,” in Symposium on
Operating Systems Principles (SOSP), 2017.

[7] L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert, and P. Saxena,
“A secure sharding protocol for open blockchains,” in Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications
Security, Vienna, Austria, October 24-28, 2016. ACM, 2016, pp. 17–30.

[8] T. Crain, C. Natoli, and V. Gramoli, “Evaluating the red belly
blockchain,” CoRR, vol. abs/1812.11747, 2018. [Online]. Available:
http://arxiv.org/abs/1812.11747

[9] R. Han, G. Shapiro, V. Gramoli, and X. Xu, “On the performance of
distributed ledgers for internet of things,” Internet of Things, p. 100087,
2019.

[10] P. Thakkar, S. Nathan, and B. Viswanathan, “Performance benchmarking
and optimizing hyperledger fabric blockchain platform,” in MASCOTS
2018, Milwaukee, WI, USA, September 25-28, 2018, pp. 264–276.

[11] Q. Nasir, I. A. Qasse, M. W. A. Talib, and A. B. Nassif, “Performance
analysis of hyperledger fabric platforms,” Security and Communication
Networks, vol. 2018, pp. 3 976 093:1–3 976 093:14, 2018.

[12] H. Sukhwani, N. Wang, K. S. Trivedi, and A. Rindos, “Performance

modeling of hyperledger fabric (permissioned blockchain network),”
in 17th IEEE International Symposium on Network Computing and
Applications, NCA 2018, Cambridge, MA, USA, November 1-3, 2018.
IEEE, 2018, pp. 1–8.

[13] T. L. Fundation, “Hyperledger caliper,” accessed April 2020. [Online].
Available: https://www.hyperledger.org/projects/caliper

[14] T. T. A. Dinh, J. Wang, G. Chen, R. Liu, B. C. Ooi, and K. Tan,
“BLOCKBENCH: A framework for analyzing private blockchains,” in
Proceedings of the ACM SIGMOD Conference 2017, Chicago, IL, USA,
May 14-19. ACM, 2017, pp. 1085–1100.

[15] E. Anceaume, R. Ludinard, and B. Sericola, “Performance evaluation of
large-scale dynamic systems,” ACM SIGMETRICS Performance Evalu-
ation Review, vol. 39, no. 4, 2012.

[16] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich, “Algorand:
Scaling byzantine agreements for cryptocurrencies,” in Proceedings of
the 26th Symposium on Operating Systems Principles. ACM, 2017,
pp. 51–68.

[17] K. Brousmichc, A. Anoaica, O. Dib, T. Abdellatif, and G. Deleuze,
“Blockchain energy market place evaluation: An agent-based approach,”
in IEEE IEMCON, 2018, pp. 321–327.

8

http://arxiv.org/abs/1812.11747
https://www. hyperledger. org/projects/caliper

