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Network-aware Controller Design with Performance Guarantees for Linear Wireless Systems

We investigate discrete-time closed-loop dynamics consisting of a linear plant, a linear controller and a wireless network that connects the sensors and the actuators to the control unit. The objective, and the main contribution of this work, is the static output feedback control synthesis under given network specifications. Precisely, the network features are formulated in terms of stochastic allowable transmission interval (SATI) which is a concept well-suited for the time-triggered control of wireless network control systems (WNCS). Given SATI parameters, we provide sufficient conditions in terms of linear matrix inequalities (LMIs) under which we can design a static output feedback controller that stabilizes the closed-loop WNCS in mean-square sense. Moreover, we guarantee that a quadratic control cost is less than a given bound. Consequently, the results can be used to ensure not only stability but also desired control performances for the WNCS and its SATI characteristics.

I. INTRODUCTION

Wireless networks are increasingly employed in control architectures, leading to the so-called wireless networked control system (WNCS), due to their flexible architectures, reduced costs, ease of implementation and maintenance, to name a few, see, e.g., [START_REF] Hespanha | A survey of recent results in networked control systems[END_REF], [START_REF] Zhang | Network-induced constraints in networked control systems: A survey[END_REF]. The drawback is that they introduce transmission imperfections that could degrade performance and may even lead to instability. Specifically, the random nature of the communication over wireless networks caused by channel fading, shadowing, and collisions need to be carefully handled when designing and implementing the controller, see, e.g., [START_REF] Hespanha | A survey of recent results in networked control systems[END_REF], [START_REF] Heemels | Stability and stabilization of networked control systems[END_REF], [START_REF] Zhang | Stability of networked control systems with time-varying transmission period[END_REF] and the references therein.

Transmissions over networks are commonly generated by a clock, we talk about time-triggered control in this case. In the deterministic setting, the Maximum Allowable Transmission Interval (MATI) plays a key role for the analysis of the WNCS, see, e.g., [START_REF] Nešić | Input-output stability properties of networked control systems[END_REF], [START_REF] Jentzen | An improved maximum allowable transfer interval for Lp-stability of networked control systems[END_REF], [START_REF] Donkers | Stability analysis of networked control systems using a switched linear systems approach[END_REF], [START_REF] Postoyan | Time-triggered control of nonlinear discretetime systems[END_REF]. The MATI is a maximum time allowed between two successful transmissions. Due to the stochastic nature of the transmissions in WNCS, it is very hard, not to say impossible, to ensure that the MATI is upper bounded by a fixed value N . To overcome this limitation, a stochastic notion of the MATI, called Stochastic Allowable Transmission Interval (SATI), was introduced in [START_REF] Varma | Stochastic maximum allowable transmission intervals for the stability of linear wireless networked control systems[END_REF], [START_REF] Varma | Energy-efficient time-triggered communication policies for wireless networked control systems[END_REF]. There, the transmission policy is characterized not only by N , a given number of steps since the last successful transmission, but also by η, the cumulative probability of transmitting before N steps have elapsed, and after N , δ the maximum probability of successful transmission, which is related to the physical limitations of the wireless network. In that way, the time between two successful transmissions is allowed to be larger than N . The notion of SATI is motivated by the design of energy-efficient transmission policies for WNCS, see [START_REF] Varma | Stochastic maximum allowable transmission intervals for the stability of linear wireless networked control systems[END_REF], [START_REF] Varma | Energy-efficient time-triggered communication policies for wireless networked control systems[END_REF]. Indeed, the power used to send data directly impacts the probability of a successful transmission [START_REF] Ozarow | Information theoretic considerations for cellular mobile radio[END_REF]. This is the main difference with the related works of the literature e.g. [START_REF] Schenato | To zero or to hold control inputs with lossy links[END_REF], [START_REF] Park | Wireless networked control system co-design[END_REF], which typically assume that packet drops occur with i.i.d random variables. Given the SATI parameters, we can then optimize the power used to send data over the network, while ensuring the control objectives in terms of stability and performance [START_REF] Varma | Energy-efficient time-triggered communication policies for wireless networked control systems[END_REF]. In [START_REF] Varma | Stochastic maximum allowable transmission intervals for the stability of linear wireless networked control systems[END_REF], [START_REF] Varma | Energy-efficient time-triggered communication policies for wireless networked control systems[END_REF], the control of WNCS was addressed based on emulation, that is, a controller that stabilizes the origin of the plant without the network is provided as a starting point, and then conditions on the SATI parameters, namely N , η and δ, are derived to ensure stability and performance for the closed-loop system. A limitation of the design strategy employed in [START_REF] Varma | Stochastic maximum allowable transmission intervals for the stability of linear wireless networked control systems[END_REF], [START_REF] Varma | Energy-efficient time-triggered communication policies for wireless networked control systems[END_REF] is the choice of the controller that may lead to strict requirements on the SATI parameters.

In this paper, we focus instead on network-aware design of static output feedback controllers, that is, we aim at designing the controller under given network characteristics. Regarding the network effects, we focus on packet drops, and we ignore delays, quantization, and scheduling. We adopt the zeroing strategy as in [START_REF] Schenato | To zero or to hold control inputs with lossy links[END_REF] in which no control is applied to the plant in the case of a packet dropout. Since it is not possible to directly design the controller through the conditions of [START_REF] Varma | Energy-efficient time-triggered communication policies for wireless networked control systems[END_REF] due to non-linearities that arise by considering the controller as a decision variable, we present new linear matrix inequality (LMI) design conditions for the synthesis of static output feedback controllers. Standard techniques cannot be applied "off the shelf" for this purpose because we deal with static output feedback control which does not have an exact (convex) solution. To address this challenge, we exploit properties of the problem structure in order to apply a discrete-time version of the technique recently developed in [START_REF] Stadtmann | Exponential hidden markov models for H∞ control of jumping systems[END_REF]. The controllers computed by the proposed technique ensure mean square stability of the origin of the closed-loop system and guarantee that a given control cost is less than a desired bound. As a consequence, given the SATI parameters, we can optimize the communication energy used to transmit the packets as explained in [START_REF] Varma | Energy-efficient time-triggered communication policies for wireless networked control systems[END_REF].

Related literature concerning network-aware design for NCS can be found in e.g. [START_REF] Schenato | To zero or to hold control inputs with lossy links[END_REF], [START_REF] Park | Wireless networked control system co-design[END_REF], [START_REF] Gatsis | Optimal power management in wireless control systems[END_REF], [START_REF] Dačić | Quadratic stabilization of linear networked control systems via simultaneous protocol and controller design[END_REF], and the references therein. In [START_REF] Gatsis | Optimal power management in wireless control systems[END_REF], the network-aware design problem consists in finding static state feedback controllers by applying dynamic programming to minimize the sum of the control and communication costs, the channel gains taken as i.i.d. random variables. That is a different approach with respect to our paper as (i) we deal with static output feedback control; (ii) we address a time-triggered control problem as opposed to eventtriggered control as in [START_REF] Heemels | Periodic eventtriggered control for linear systems[END_REF] and the references therein; (iii) we rely on LMI conditions, which can easily be checked off-line.

In [START_REF] Dačić | Quadratic stabilization of linear networked control systems via simultaneous protocol and controller design[END_REF], the network-aware design for dynamic output feedback controllers is addressed for linear deterministic systems under MATI constraints, while we tackle stochastic WNCS through the SATI concept.

Compared to the preliminary version of this work [START_REF] De Oliveira | Network-aware design of statefeedback controllers for linear wireless networked control systems[END_REF], we not only study the stabilization of the closed-loop system, but also the problem of quadratic performance through SATI. Moreover, we address the static output feedback control and not only state feedback controllers, which is much more challenging. Furthermore, we also compare the performance of the controller obtained with our conditions to the ones calculated through [START_REF] Schenato | To zero or to hold control inputs with lossy links[END_REF] in the zeroing case and we show that we retrieve the controller of [START_REF] Schenato | To zero or to hold control inputs with lossy links[END_REF] as a special case.

The rest of the paper is organized as follows. In Section II, we describe the system, the SATI modeling, the control cost, as well as some tools for achieving our results. The main results are presented in Section III. In Section IV, we provide an illustrative example. We conclude the work with final remarks in Section V. The proofs can be found in the appendix. Notation. For a square matrix M ∈ R n×n , the notation M = M T > (≥) 0 indicates that all eigenvalues of M are positive (non-negative). For symmetric matrices, • represents a symmetric block. I n is the identity matrix of size n×n, 0 n×m , the zero matrix of dimension n × m, and for simplicity, we set 0 n 0 n×n . For a square matrix M , Her(M ) M + M T and tr(M ) denotes the trace of M . The expected value operator is represented by E(•) and the probability of an event A is given by Prob(A).

II. PROBLEM STATEMENT

A. Preliminaries

We consider the following discrete-time plant

P :        x(k + 1) = Ax(k) + B û(k) y(k) = Cx(k) z(k) = C z x(k) + D z û(k) x(0) = x 0 , (1) 
where

k ∈ Z ≥0 is the time, x(k) ∈ R n is the state, û(k) ∈ R m
is the networked version of the control signal u(k) ∈ R m , y(k) ∈ R q is the measured output, z(k) ∈ R r is the controlled output, and x 0 ∈ R n is the initial condition. We make the next assumption on C. Assumption 1: C is full row rank and q ≤ n. In the system setup shown in Figure 1, we consider that there is a wireless network connecting the plant and the controller. The measured output signal y is transmitted through the network which introduces packet dropouts between the sensor and the plant. In this sense, the controller has access only to a networked version of the measured output denoted by ŷ. Similarly the controller output u is transmitted through the same network that also introduces packet drops so that the signal available to the plant is the networked version of u, represented by û. The packet dropout occurs if the information does not arrive or if it arrives too late or in reversed order to the plant.
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Wireless Network u û y ŷ A zeroing strategy is considered so that, if a packet dropout occurs, then the information is lost to the controller and set to zero [START_REF] Schenato | To zero or to hold control inputs with lossy links[END_REF]. For modeling this behavior, we define two variables, σ y (k) and σ u (k), that represents the information loss of y and u, respectively. For the transmissions between the sensors and the controller in Figure 1, we set

σ y (k) = 1, successful transmission of y 0, otherwise. (2) 
For the transmissions between the controller and the actuators, we set

σ u (k) = 1, successful transmission of u 0, otherwise. (3) 
Then the networked versions of y and u are given by ŷ(k) σ y (k)y(k) and û(k) σ u (k)u(k). We aim at designing controller C defined as follows

C : u(k) = Lŷ(k) (4) 
that is, a static output feedback controller. By setting σ(k) σ y (k)σ u (k), the dynamics of the closed-loop system G c are given by

x(k + 1) = Ax(k) + BLσ u (k)ŷ(k) = (A + BLCσ(k))x(k) = A 1 x(k), successful transmission, A 0 x(k), otherwise (5) 
where

A 1 A + BLC, A 0 A. (6) 
Similarly, the controlled output is given by

z(k) = C z x(k) + D z Lσ u (k)ŷ(k) = (C z + D z LCσ(k))x(k) = C 1 x(k), successful transmission, C 0 x(k), otherwise (7) 
where

C 1 C z + D z LC, C 0 C z . (8) 
We now present in more detail the way we model the network.

Remark 1: The design of dynamic output feedback controllers is technically challenging in the context of nonswitching controllers as done in the paper. This extension is left for future work.

B. Stochastic Allowable Transmission Intervals (SATI)

First, we adopt the following assumption regarding the wireless network.

Assumption 2: The packet transmission status is known via an adequate acknowledgment scheme (ACK). Assumption 2 is often reasonable in practice and commonly employed in digital communication protocols, see, for instance, [START_REF] Grami | Introduction to Digital Networks[END_REF].

For implementing the network, we introduce the clock which counts the number of steps since the last successful communication σ(k) = 1,

τ (k + 1) = 1, successful communication, τ (k) + 1, failed communication, (9) 
for k ∈ Z ≥0 . Usually in the WNCS literature, packet dropouts are modeled through i.i.d Bernoulli random variables as in e.g. [START_REF] Schenato | To zero or to hold control inputs with lossy links[END_REF], [START_REF] Park | Wireless networked control system co-design[END_REF], [START_REF] Gatsis | Optimal power management in wireless control systems[END_REF]. In this work we do not make this assumption, instead we assume that the dropout probabilities depend on the clock τ (k). In other words, the dropout probability depends on the time elapsed since the last successful transmission instant, which is known in view of Assumption 2. Again, this is justified as we can often tune the power with which packets are sent according to τ (k), thereby impacting the dropout probabilities e.g., [START_REF] Ozarow | Information theoretic considerations for cellular mobile radio[END_REF]. In particular, we characterize the sequence of successful transmission instants using the concept of SATI.

The SATI is characterized by three parameters: (i) N ∈ Z >0 , which is a given bound on the number of steps since the last successful transmission; (ii) η, the cumulative probability that a successful transmission occurs as long as τ (k) ≤ N , given by

η 1 - N i=1 e(i); (10) 
where ē (e(1), . . . , e(N )) ∈ [0, 1 -δ] N are the dropout probabilities; (iii) the maximum probability of successful transmission at any given time. The idea is the following. When τ (k) ≤ N , transmissions may be attempted with less resources, which is represented by the cumulative probability η. If τ (k) becomes bigger than N , then we can no longer wait and we need to use the maximum resources we have to communicate to the plant, which leads to the maximum probability of transmission δ.

C. WNCS model

We model ( 5) and ( 7) as a Markov jump linear system (MJLS) whose Markov chain θ(k) of N + 1 states represents the clock values [START_REF] Varma | Stochastic maximum allowable transmission intervals for the stability of linear wireless networked control systems[END_REF]. For τ (k) ∈ {1, 2, . . . , N }, θ(k) = τ (k) and for τ (k) > N , θ(k) = N +1, since transmission is always attempted with the same maximum probability δ. Thus, the transition probability matrix is given by 

P(ē)      1 -e(1)
0 . . . 1 -δ      (11) 
where the dropout probabilities (e(1), . . . , e(N )) must respect [START_REF] Varma | Energy-efficient time-triggered communication policies for wireless networked control systems[END_REF]. Then the system ( 5) and ( 7) can be rewritten as the following MJLS

G c :    x(k + 1) = A σ(k) x(k), z(k) = C σ(k) x(k), x(0) = x 0 , θ(0) = θ 0 , (12) 
where

σ(k) = 1 if θ(k) = 1 and σ(k) = 0 if θ(k) > 1,
as well as A 0 and A 1 ∈ R n×n are given in [START_REF] Jentzen | An improved maximum allowable transfer interval for Lp-stability of networked control systems[END_REF], and C 0 and C 1 ∈ R r×n , in [START_REF] Postoyan | Time-triggered control of nonlinear discretetime systems[END_REF]. We consider that the initial time is a first successful transmission interval, that is, θ 0 = 1, unless stated otherwise.

D. Goals

We define L(N, η, δ) as the set of mean square stabilizing1 (MSS) controllers for a fixed (N, η, δ). We state the main goal next.

Problem 1:

Given δ ∈ (0, 1], S T = S > 0, find, if possible, triplets (N, η, L) with L ∈ L(N, η, δ) such that J (x 0 , θ 0 = 1, L) ∞ k=0 E( z(k) 2 ) ≤ x T 0 Sx 0 (13) 
for any x 0 ∈ R n . Problem 1 requires (12) to be mean square stable and that the quadratic cost in (13) less than a given upper bound which we can adjust through the freely selected matrix S. Of course, if S is "too small" loosely speaking, no solutions can be found. Guidelines on how to select S are provided in Section III. The constant δ is fixed as it typically depends on the maximum power available to transmit, which is often given. Note that θ 0 = 1 in (13) simply means that the initial time is a successful transmission time as already mentioned after [START_REF] Gatsis | Optimal power management in wireless control systems[END_REF]. Remark 2: Once (N, η, δ) and the controller C are calculated, we can resort to the numerical approach in [START_REF] Varma | Energy-efficient time-triggered communication policies for wireless networked control systems[END_REF] to optimize the power used to transmit packets.

Remark 3: An alternative setup to the one employed in this paper would be to use a time-varying Kalman filter that would compensate the missing samples, therefore leading to the design of full-order controllers. Since we are dealing with MJLS, the time-varying Kalman filter for this class of systems would be sample path dependent, see [START_REF] Costa | Discrete-Time Markov Jump Linear Systems[END_REF], [START_REF] Schenato | Foundations of control and estimation over lossy networks[END_REF], [START_REF] Chizeck | Optimal quadratic control of jump linear systems with Gaussian noise in discrete-time[END_REF], meaning that the filter gains may not converge and therefore must be computed on-line at each time step. In this case, mean square stability of the closed-loop system, which is required in Problem 1, is difficult to ensure, see [START_REF] Chizeck | Optimal quadratic control of jump linear systems with Gaussian noise in discrete-time[END_REF], [START_REF] Ji | Controllability, observability and discretetime Markovian jump linear quadratic control[END_REF]. Besides the aim of this work is to design static output feedback controllers depending on the aforementioned parameters N and η that could easily be implemented with low computational resources. Note also that in the case that the network is between the controller and the actuator, smart actuators capable of implementing the time-varying controller are needed, which are not necessary in our setting.

III. MAIN RESULTS

We first provide conditions for designing the controller in (4) for given N ∈ Z >0 , η ∈ [0, 1], and δ ∈ (0, 1] such that the closed-loop system is MSS and ( 13) holds. The network-aware design result is then derived in Theorem 1 and summarized in Algorithm 1. Afterwards we specialize our result to state feedback control and compare the controller performance with the classic discrete-time LQ control.

A. Controller Design

We propose and exploit a discrete-time version of the parametrization presented in [START_REF] Stadtmann | Exponential hidden markov models for H∞ control of jumping systems[END_REF] that makes use of slack variables to design the controller gain L in (4). In view of Assumption 1, there exists a non-singular T ∈ R n×n such that

U CT = C C C ⊥ = I q 0 q×(n-q) ( 14 
)
where C ∈ R n×q and C ⊥ ∈ R n×(n-q) . A straightforward choice for C in T shown in ( 14) is C = C T (CC T ) -1 and, for C ⊥ , a basis of the null space of C. Note that CC T is non singular due to Assumption 1.

For the slack variable G 1 ∈ R n×n , we set the following partition

G 1 G 11 0 q×n-q G 12 G 22 (15) 
where G 11 ∈ R q×q and G 22 ∈ R n-q×n-q . We introduce the following notation η d √ 1 -η, η n √ η, and

M 11     Her(T G 1 ) -Q 1 • • • η d A N -1 (AT G 1 + BY U ) Q N +1 • • η n (AT G 1 + BY U ) 0 X • C z T G 1 + D z Y U 0 0 I r     ,
as well as

M 21      C z (AT G 1 + BY U ) 0 r×2n+r C z A(AT G 1 + BY U ) 0 r×2n+r . . . . . . C z A N -2 (AT G 1 + BY U ) 0 r×2n+r     
for N > 1. We define the following matrices

Φ1 (N ) M 11 • M 21 I r(N -1) , (16) 
for N > 1 and Φ1 (1) M 11 . For

δ d √ 1 -δ and δ n √ δ, Φ2     Her(G N +1 ) -Q N +1 • • • δ d AG N +1 Q N +1 • • δ n AG N +1 0 Q 1 • C z G N +1 0 0 I r     , (17) 

Φ3i

Her(

H i ) -X • A i-1 H i Q 1 , i ∈ {1, . . . , N }, (18) 
Φ4 S • I n Q 1 , (19) 
for

G 1 , G N +1 , H i , Q 1 , Q N +1 , X, real square matrices of size n × n, and Y ∈ R m×q .
Given the SATI parameters N , δ, and η, the next proposition provides conditions to construct controller (4) so that ( 12) is MSS and (13) holds.

Proposition 1: Given a full rank matrix T as in [START_REF] Stadtmann | Exponential hidden markov models for H∞ control of jumping systems[END_REF],

N ∈ Z >0 , δ ∈ (0, 1], η ∈ [0, 1] and S T = S > 0, if there exist matrices G 1 , G N +1 , H i , Q T 1 = Q 1 > 0, Q T N +1 = Q N +1 > 0, X T = X > 0,
and Y such that Φ 1 (N ) > 0, Φ 2 > 0, Φ 3i > 0, for all i ∈ {1, . . . , N }, and Φ4 > 0, then by setting L = Y G -1 11 , we have that L ∈ L(N, η, δ) and J (x 0 , θ 0 = 1, L) ≤ x T 0 Sx 0 for all x 0 ∈ R n . Proposition 1 does not solve Problem 1 because we need to fix N and η in ( 16) and [START_REF] De Oliveira | Network-aware design of statefeedback controllers for linear wireless networked control systems[END_REF]. Algorithm 1 overcomes this limitation. After the design is carried out in Step 2 of Algorithm 1 Network-aware Design Algorithm Algorithm 1, we look for the minimum values of η min (N ) that guarantees stability for the range of cumulative probability [η min (N ), η max (N )] in Step 3. By doing so iteratively, we are able to establish a range of N in which the system is guaranteed to be MSS and the bound in ( 13) is satisfied. Define the set of all solutions of Problem 1 as S(S, δ)

{(N, η, L) ∈ Z >0 × [0, 1] × R m×q : (13) and L ∈ L(N, η, δ)}.
We have the following theorem linking Algorithm 1 and Problem 1.

Theorem 1: Consider that Algorithm 1 yields feasible

(N, η min (N ), η max (N ), L(N )), N ∈ {1, . . . , N max }. Then (N, η, L(N )) ∈ S(S, δ) for all N ∈ {1, . . . , N max }, where η ∈ [η min (N ), η max (N )].
Note that the result in Theorem 1 follows from Proposition 1 (Step 2) and from the SATI analysis conditions in Proposition 2 presented in the appendix (Step 3) that guarantees the MSS of ( 12) and the bound (13).

B. LQ Control

An interesting application of Theorem 1 occurs when y = x, so that the controller given by ( 4) can be rewritten in a state feedback form. Define

J LQR (x 0 ) ∞ k=0 [x(k) T Qx(k) + u(k) T Ru(k)] and u(k) = Lx(k), where Q T = Q ≥ 0 and R T = R > 0 are given matrices. Then J * LQR (x 0 ) =
x T 0 P LQR x 0 , where P T LQR = P LQR ≥ 0 is the solution of the discrete-time algebraic Riccati equation with andC T z D z = 0. Assuming that P LQR > 0, if we set S = µP LQR in [START_REF] Park | Wireless networked control system co-design[END_REF] with µ > 1 a design parameter, we are able to provide a sufficient design condition in which we do not degrade the original LQ cost J * LQR by more than the factor µ. This is formally stated in the next corollary.

Q = C T z C z , R = D T z D z ,
Corollary 1:

Consider that C = I n in (1). Given N ∈ Z >0 , δ ∈ (0, 1], η ∈ [0, 1], and µ > 1, by setting S = µP LQR > 0, in (19), if there exist matrices G 1 , G N +1 , H i , Q T 1 = Q 1 > 0, Q T N +1 = Q N +1 > 0, X T = X > 0, and Y such that Φ 1 (N ) > 0, Φ 2 > 0, Φ 3i > 0, i ∈ {1, . . . , N }, and Φ4 > 0, then by setting L = Y G -1
11 , we have that L ∈ L(N, η, δ) and J (x 0 , θ 0 = 1, L) ≤ µJ * LQR (x 0 ) for all x 0 ∈ R n . Remark 4: By taking N = 1, it directly follows from the definition of η that e(1) = 1 -η, hence we recover a MJLS without restrictions in the transition probabilities. Furthermore, if η = δ and Prob(θ 0 = 1) = δ, then the Markov chain becomes a Bernoulli process (see [START_REF] Schenato | To zero or to hold control inputs with lossy links[END_REF], [START_REF] Fioravanti | Optimal H 2 and H∞ mode-independent control for generalized Bernoulli jump systems[END_REF]), and we recover the results in [START_REF] Schenato | To zero or to hold control inputs with lossy links[END_REF] as illustrated in the next section.

IV. ILLUSTRATIVE EXAMPLE

We consider the exact discretization of the system of [START_REF] Li | Fault-tolerant control of Markovian jump stochastic systems via the augmented sliding mode observer approach[END_REF] with β(t) = 2 (author's notation), that is an unstable system, with sampling period of 50 ms, leading to the following system matrices We consider that C = I 2 0 2×1 . In this case, we take matrix T = I 3 in ( 14) so that CT = I 2 0 2×1 . We consider that δ = 0.6 and set S = µP r where P r is the solution of the iterative Riccati method presented in [START_REF] Rosinová | A necessary and sufficient condition for static output feedback stabilizability of linear discrete-time systems[END_REF] (Algorithm B) for network-free linear time-invariant systems, by taking C T z = C T 0 3×2 and D T z = 0 2×2 I 2 . We are thus designing controllers for which the quadratic costs in [START_REF] Park | Wireless networked control system co-design[END_REF] are less than µx T 0 P r x 0 . We apply Algorithm 1 by initially setting µ = 5 and get η min (N ) = 0 and η max (N ) = 1 for N ∈ {1, 2}. That is, for each N ∈ {1, 2}, the controllers are able to stabilize the origin of (1) for all possible values of η ∈ [0, 1]. On the other hand, if we increase µ to 8.0, we get that the origin of the closed-loop system is stabilized for η ∈ [0, 1], for N ∈ {1, 2, 3, 4}. That is, when we consider µ = 8.0, by allowing for a degradation on the control cost to be bigger, we get a larger set of values of N compared to the case in which µ = 5.0. In particular for N = 3, we have the following static output feedback controller L SATI = -1.0095 -3.6727 -3.1819 -7.9773 .

To compare the results of Section III-B with the results in [START_REF] Schenato | To zero or to hold control inputs with lossy links[END_REF] for the zeroing case, we now concentrate on the state feedback case by setting C = I 3 , C z = I 3 0 3×2 and D z = 0 2×3 I 2 . For that, we solve the discrete-time LQR problem in order to get P LQR and set S = µP LQR in [START_REF] Grami | Introduction to Digital Networks[END_REF]. We take δ = η = 0.9, and construct the controller using Proposition 1 by minimizing µ for N ∈ {1, . . . , 5}. We resort to the algorithm presented in [START_REF] Varma | Energy-efficient time-triggered communication policies for wireless networked control systems[END_REF] that optimizes the communication power to calculate the transition (dropout) probabilities ē. Given ē = (e 1 , . . . , e N ), we calculate the frequency of successful communication π 1 from the stationary distribution π of the Markov chain for all N ∈ {1, . . . , 5}. We show in Table I the dropout probabilities ē calculated through the conditions presented in [START_REF] Varma | Energy-efficient time-triggered communication policies for wireless networked control systems[END_REF] and π 1 for N ∈ {1, . . . , 5}. For the simulations of the SATI controller, we set the initial distribution of the Markov chain as the stationary distribution π so that P (θ(k) = 1) = π 1 for all k. On the other hand, for calculating the controller in [START_REF] Schenato | To zero or to hold control inputs with lossy links[END_REF], we consider that the probability of packet dropout is equal to ν = 1 -π 1 with the notation of [START_REF] Schenato | To zero or to hold control inputs with lossy links[END_REF], for π 1 taken from Table I for N ∈ {1, . . . , 5}. By doing so we get that the frequency of successful communication is equal for both the SATI and [START_REF] Schenato | To zero or to hold control inputs with lossy links[END_REF] controllers. For each N ∈ {1, . . . , 5}, we perform a Monte Carlo simulation of 2000 rounds for the controllers calculated through Proposition 1 and [START_REF] Schenato | To zero or to hold control inputs with lossy links[END_REF], by sampling x 0 from a standard Gaussian distribution, that is, x 0 ∼ N 4 (v, Σ), for v = 0 4×1 and Σ = I 4 . The quadratic costs J (x 0 , θ 0 , L) obtained in the simulations are shown in Figure 2 against π 1 . We note that for N = 1 (π 1 = 0.9), the costs yielded by the Fig. 2. Control costs for the proposed design and [START_REF] Schenato | To zero or to hold control inputs with lossy links[END_REF] against the frequency of successful communication π 1 . The dashed gray line shows the critical loss probability of [START_REF] Schenato | To zero or to hold control inputs with lossy links[END_REF]. controller in [START_REF] Schenato | To zero or to hold control inputs with lossy links[END_REF] and the one obtained through Proposition 1 are very close. However as we decrease the frequency of successful communication, the controllers from Proposition 1 performs better than the ones calculated through [START_REF] Schenato | To zero or to hold control inputs with lossy links[END_REF]. For smaller values of π 1 , we note that the costs for [START_REF] Schenato | To zero or to hold control inputs with lossy links[END_REF] start to increase abruptly due to the proximity of ν to the socalled critical loss probability, see [START_REF] Schenato | To zero or to hold control inputs with lossy links[END_REF]. Even though the costs obtained through the proposed technique also rise, the degradation is not so important as the one yielded by the controllers in [START_REF] Schenato | To zero or to hold control inputs with lossy links[END_REF].

Finally, if we take N = 1 and η = δ, which is the case explained in Remark 4, we get by minimizing tr(W ) subject to ( 16)-( 18) and W > δQ

-1 1 + (1 -δ)Q -1 2 that L SATI ≈ L [12]
. Besides, by taking δ → 1, we get that L SATI ≈ L LQR .

V. CONCLUSION

We presented a time-triggered network-aware design procedure for linear wireless networked control systems considering the so-called SATI formulation. We provided design conditions for static-output feedback controllers that guarantees meansquare stability of the closed-loop system and an upper bound on a quadratic cost. Further, we performed a comparison on an example with the performance yielded by the SATI controller obtained by our conditions and the optimal Bernoulli state feedback controller.

Proof of Proposition 1: Given that ( 16)-( 19) are positive definite, we first show that G 11 is non-singular. Note from [START_REF] Dačić | Quadratic stabilization of linear networked control systems via simultaneous protocol and controller design[END_REF] that Her(T G 1 ) > Q 1 > 0 that implies that T G 1 is nonsingular. Since T is assumed to be full rank, we get that G 1 is invertible see, for instance, [START_REF] Stadtmann | Exponential hidden markov models for H∞ control of jumping systems[END_REF]. Due to the lower-triangular block structure of G 1 in [START_REF] Gatsis | Optimal power management in wireless control systems[END_REF], then G 11 is also non-singular.

Concerning [START_REF] Dačić | Quadratic stabilization of linear networked control systems via simultaneous protocol and controller design[END_REF], recalling the definition of the blocks of G 1 in (15), U in ( 14), Assumption 1, and that Y = LG 11 , we get that AT G 1 + BY U = AT G 1 + BL G 11 0 q×n-q = A 1 T G 1 , where A 1 is the closedloop matrix presented in [START_REF] Jentzen | An improved maximum allowable transfer interval for Lp-stability of networked control systems[END_REF]. Besides, C z T G 1 + D z Y U = C z T G 1 + D z L G 11 0 q×n-q = C 1 T G 1 , where C 1 is the closed-loop output matrix in [START_REF] Postoyan | Time-triggered control of nonlinear discretetime systems[END_REF]. Thus, we can rewrite [START_REF] Dačić | Quadratic stabilization of linear networked control systems via simultaneous protocol and controller design[END_REF], by also recalling that (T G 1 ) T Q -1

1 T G 1 ≥ Her(T G 1 ) -Q 1 (see, for instance, [START_REF] De Oliveira | A new discrete-time robust stability condition[END_REF]) as follows

           (T G 1 ) T Q -1 1 T G 1 • • • • • • η d A N -1 A 1 T G 1 Q N +1 • • • • • η n A 1 T G 1 0 X • • • • C 1 T G 1 0 0 I • • • C z A 1 T G 1 0 0 0 I • • . . . . . . . . . . . . . . . . . . • C z A N -2 A 1 T G 1 0 0 0 0 0 I            > 0.
By applying the congruence transformation diag((T G 1 ) -1 , I) to the resulting inequality, as well as the Schur complement, we get [START_REF] Costa | Discrete-Time Markov Jump Linear Systems[END_REF] for

P 1 = Q -1 1 , P N +1 = Q -1 N +1
, and V = X -1 . Through ( 17) and [START_REF] De Oliveira | Network-aware design of statefeedback controllers for linear wireless networked control systems[END_REF], by performing the similar steps applied to [START_REF] Dačić | Quadratic stabilization of linear networked control systems via simultaneous protocol and controller design[END_REF], we get ( 21)- [START_REF] Chizeck | Optimal quadratic control of jump linear systems with Gaussian noise in discrete-time[END_REF]. Thus, by Proposition 2, we get that L ∈ L(N, η, δ) for all x 0 and ē such that (10) holds. Finally, we get by applying the Schur complement to [START_REF] Grami | Introduction to Digital Networks[END_REF] that P 1 = Q -1 1 < S. It follows that J (x 0 , θ 0 = 1, L) = x T 0 P * 1 x 0 ≤ x T 0 P 1 x 0 ≤ x T 0 Sx 0 for all x 0 ∈ R n . Remark 5: Suppose x 0 is a random initial condition with E(x 0 ) = 0 and E(x 0 x T 0 ) = Σ, and that σ(0) = 1. In this case, we proved in Proposition 1 that J (x 0 , θ 0 = 1, L) ≤ E(x T 0 P 1 x 0 ) ≤ E(x T 0 Sx 0 ). Note that E(x T 0 P 1 x 0 ) = E tr(x 0 x T 0 P 1 ) = tr E(x 0 x 0 ) T P 1 = tr(ΣP 1 ). Thus, J (x 0 , θ 0 = 1, L) ≤ tr(ΣP 1 ) ≤ tr(ΣS). In particular, if Σ = I n , then J (x 0 , θ 0 = 1, L) ≤ tr(S).

Proof of Corollary 1: Recalling that J * LQR (x 0 ) = x T 0 P LQR x 0 for any x 0 ∈ R n , then by setting S = µP LQR in Proposition 1, we get that J (x 0 , θ 0 = 1, L) ≤ x T 0 Sx 0 = µx T 0 P LQR x 0 = µJ * LQR (x 0 ) for all x 0 ∈ R n .

Fig. 1 .

 1 Fig. 1. Schematic of the closed-loop WNCS.

1 :

 1 Choose T , S = S T > 0, and set N = 1. 2: Calculate the minimum η through a line search procedure in η ∈ [0, 1] such that Φ 1 (N ) > 0, Φ 2 > 0, Φ 3i > 0, for all i ∈ {1, . . . , N }, and Φ4 > 0. If there exists a feasible solution, set η min (N ) ← η and L(N ) ← Y G -1 11 and goto Step 3; else set η min (N ) ← [] and L(N ) ← [] and goto Step 4. 3: Calculate the maximum η ∈ [η min (N ), 1] and minimum η ∈ [0, η min (N )] such that (20)-(23) and P 1 < S hold with L ← L(N ) through bisection algorithms. Store η max (N ) ← η and η min (N ) ← η, N ← N + 1, and goto Step 2. 4: Store the feasible (N, η min (N ), η max (N ), L(N )), N ∈ {1, 2, . . . , N max }, where N max is the biggest N such that L(N ) is non-empty.

  e(1) . . .

				0
	. . .	. . .	. . .	. . .
	1 -e(N )	0	. . . e(N )
	δ			

TABLE I DROPOUT

 I PROBABILITIES ē AND π 1 FOR N ∈ {1, . . . , 5}

	N	1	2	3	4	5
	ē	(0.1) (0.60, 0.17) (1, 0.5, 0.2) (1, 0.8, 0.5, 0.2)	(*)
	π 1	0.90	0.59	0.38	0.30	0.24
					(*) (1, 1, 0.76, 0.51, 0.26)

See[START_REF] Costa | Discrete-Time Markov Jump Linear Systems[END_REF] Definition 3.8] for the definition of mean square stability.
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APPENDIX

By defining Q N N -2 i=0 (A T 0 ) i C T 0 C 0 A i 0 , we introduce the following auxiliary result adapted from [START_REF] Varma | Energy-efficient time-triggered communication policies for wireless networked control systems[END_REF].

Proposition 2: Given L, N ∈ Z ≥0 , δ ∈ (0, 1] and η ∈ [0, 1], if there exists P 1 > 0, P N +1 > 0, and V > 0 such that

hold for all i ∈ {1, . . . , N }. Then L ∈ L(N, η, δ) and P 1 ≥ P * 1 for all ē such that (10) holds, where

In particular, if (20)-( 22) holds along with

with η ∈ [η, 1], then L ∈ L(N, η, δ) and P 1 ≥ P * 1 for all η ∈ [η, η].

Proof: The first part of Proposition 2 was proved in [START_REF] Varma | Energy-efficient time-triggered communication policies for wireless networked control systems[END_REF]. The last part follows by taking the convex combination of ( 20) and ( 23) with η = αη + (1 -α)η, 0 ≤ α ≤ 1.