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We define and analyze an extention to the d-dimensional hyperbolic space of the Radial Spanning Tree (RST) introduced by Baccelli and Bordenave in the two-dimensional Euclidean space (2007). In particular, we will focus on the description of the infinite branches of the tree. The properties shown for the two-dimensional Euclidean RST are extended to the hyperbolic case in every dimension: almost surely, every infinite branch admits an asymptotic direction and each asymptotic direction is reached by at least one infinite branch. Moreover, the branch converging to any deterministic asymptotic direction is unique almost surely. Our strategy mainly relies on the two following ingredients. First, the hyperbolic metric allows us to control fluctuations of the branches in the hyperbolic DSF without using planarity arguments. Then, we couple the hyperbolic RST with the hyperbolic DSF introduced and studied in Flammant 2019.

Introduction

Geometric random trees are well studied in the literature since it interacts with many other fields, such as communication networks, particles systems or population dynamics. Several works have established scaling limits for two-dimensional radial trees [START_REF] Coupier | Directed, cylindric and radial brownian webs[END_REF][START_REF] Coletti | The radial brownian web[END_REF] and translation invariant forests [START_REF] Coupier | The 2d-directed spanning forest converges to the brownian web[END_REF][START_REF] Roy | Random directed forest and the brownian web[END_REF][START_REF] Gangopadhyay | Random oriented trees: a model of drainage networks[END_REF]. In addition, random spanning trees appear in the context or first passage percolation [START_REF] Howard | Geodesics and spanning trees for Euclidean first-passage percolation[END_REF]. A complete introduction to geometric random graphs is given in Penrose 2003 [START_REF] Penrose | Random geometric graphs[END_REF].

The Radial Spanning Tree (RST) is a random tree whose introduction in the two-dimensional Euclidean space has been motivated by applications for communication networks [START_REF] Baccelli | The radial spanning tree of a poisson point process[END_REF]. The set of vertices is given by a homogeneous Poisson Point Process (PPP) N of intensity λ in R 2 . The RST rooted at the origin 0 is the graph obtained by connecting each point z ∈ N to its parent A(z), defined as the closest point to z among all points z ∈ N ∪ {0} that are closer to the origin than z. This defines a random tree rooted at the origin with a radial structure. An infinite backward path is defined as a sequence of Poisson points (z n ) n≥0 ∈ (N ∪ {0})

N with z 0 = 0 and z n = A(z n+1 ) for any n ≥ 0. Given an infinite path, we will say that the forward direction is towards 0 and the backward direction is towards infinity.

The topological properties of the bi-dimensional Euclidean RST are well-understood. Baccelli and Bordenave showed that almost surely, any infinite backward path admits an asympotic direction; moreover, a.s., every asymptotic direction is reached by at least one infinite backward path and there exists a.s. a unique infinite path in any given deterministic asymptotic direction [START_REF] Baccelli | The radial spanning tree of a poisson point process[END_REF]. These results on the infinite paths are completed by Baccelli, Coupier & Tran [START_REF] Baccelli | Semi-infinite paths of the two-dimensional radial spanning tree[END_REF].

For any integer d ≥ 2, the hyperbolic space H d is a d-dimensional Riemannian manifold with constant negative curvature, that can be chosen equal to -1 without loss of generality. It admits a set of ideal boundary points ∂H d , and H d := H d ∪ ∂H d denotes the hyperbolic space endowed with its boundary. It is a non-amenable space, i.e. the measure of the boundary of a large subset is not negligible with respect to its volume. The hyperbolic space is defined in more details in [START_REF] Cannon | Hyperbolic geometry[END_REF] and [START_REF] Paupert | Introduction to hyperbolic geometry[END_REF].

There is a growing interest for the study of random models in a hyperbolic setting. Benjamini and Schramm establish percolation results on regular tilings and Voronoï tesselation in the hyperbolic plane [START_REF] Benjamini | Percolation in the hyperbolic plane[END_REF]. Mean characteristics of the Poisson-Voronoï tessellation have also been considered in a general Riemannian manifold by Calka et al. [START_REF] Calka | Mean asymptotics for a poisson-voronoi cell on a riemannian manifold[END_REF]. This interest is explained by at least two reasons. First, hyperbolic random graphs are well-fitted to modelize social networks [START_REF] Boguná | Sustaining the internet with hyperbolic mapping[END_REF]. In addition, strong differences have been noticed for properties of random models depending whether they are considered in an Euclidean or hyperbolic setting. Indeed, some hyperbolic random graphs admits a non-degenerate regime with infinitely many unbounded components in the hyperbolic space [START_REF] Tykesson | The number of unbounded components in the poisson boolean model of continuum percolation in hyperbolic space[END_REF][START_REF] Hutchcroft | Percolation on hyperbolic graphs[END_REF], which is generally not the case in the Euclidean space. In addition, behaviours of non-amenable spaces are well studied in a discrete context [START_REF] Benjamini | Percolation beyond zd, many questions and a few answers [mr1423907[END_REF][START_REF] Lyons | Probability on trees and networks[END_REF][START_REF] Pete | Lecture notes for a graduate course[END_REF].

Thus it is natural to consider and study the hyperbolic RST, which we define in the same way as the Euclidean RST. A simulation of the two-dimensional hyperbolic RST is given in Figure 1. In this paper, we extend the results of Baccelli and his coauthors to hyperbolic geometry in every dimension. Here is our main result: Theorem 1.1. For any dimension d ≥ 1 and any intensity λ, the following happens:

(i) almost surely, any infinite backward path (z n ) n∈N admits an asymptotic direction, i.e. there exists z ∞ ∈ ∂H d+1 such that lim n→∞ z n = z ∞ (in the sense of the topology of H d+1 );

(ii) almost surely, for any I ∈ ∂H d+1 , there exists an infinite backward path (z n ) with asymptotic direction I (i.e. such that lim n→∞ z n = I);

(iii) for any deterministic boundary point I ∈ ∂H d+1 , the path with asymptotic direction I is almost surely unique;

(iv) the set of boundary points with two infinite backward paths is dense in ∂H d+1 ;

(v) this set is moreover countable in the bi-dimensional case (i.e. d = 1).

Establishing the results announced in Theorem 1.1 in every dimension constitutes the main originality of this paper. For the two reasons explained further, the proofs of Baccelli and Bordenave in the 2D-Euclidean setting [START_REF] Baccelli | The radial spanning tree of a poisson point process[END_REF] cannot be generalised to higher dimensions.

In both contexts R 2 and H d+1 , for any d ≥ 1, the proofs of (i), (ii), (iv) and (v) of Theorem 1.1 follow the strategy of Howard and Newman [START_REF] Howard | Geodesics and spanning trees for Euclidean first-passage percolation[END_REF], which is to show that the tree is straight, that is, the descendents subtree of a vertex far from the origin is included in a thin cone. To prove that the 2D-Euclidean RST is straight, Baccelli and Bordenave used a translation invariant model derived from the RST: the Directed Spanning Forest (DSF), which constitutes a local approximation of the RST far from the origin [START_REF] Baccelli | The radial spanning tree of a poisson point process[END_REF]. They exploit the theory of Markov chains to upper-bound fluctuations of trajectories in the DSF and then, they deduce the straightness of the RST via planarity. This strategy cannot be generalised to higher dimensions. However, in H d , we manage to control the angular deviations of branches in the RST without resorting to an auxiliary model, which required planarity in the Euclidean setting. The hyperbolic metric guarantees that angular deviations decay exponentially fast with the distance to the origin, which is strong enough to show straightness.

In addition, in the Euclidean context, the uniqueness part (point (iii) in Theorem 1.1) is only proved in dimension 2 since it strongly uses planarity [START_REF] Howard | Geodesics and spanning trees for Euclidean first-passage percolation[END_REF][START_REF] Baccelli | The radial spanning tree of a poisson point process[END_REF], and the strategy of proof cannot be generalised to higher dimensions. To prove (iii) in H d , our strategy consists in exploiting the link existing between the hyperbolic RST and another random graph, the hyperbolic DSF, defined and studied in Flammant 2019 [START_REF] Coupier | The 2d-directed spanning forest is almost surely a tree[END_REF], which is the hyperbolic counterpart of the Euclidean DSF used by Baccelli and Bordenave. Roughly speaking, the hyperbolic DSF can be defined as the limit of the hyperbolic RST when the origin point tends to an ideal boundary point. Similarly to the Euclidean setting, it constitutes a local approximation of the RST far from the origin. The proof of (iii) exploits the coalescence of the hyperbolic DSF (i.e. it is almost surely a tree) [12, Theorem 1.1], which is a non-trivial fact obtained by exploiting the mass-transport principle, and a local coupling between the two models.

After defining the hyperbolic RST and giving its basic properties, we define two quantities that encode angular fluctuations along trajectories, the Cumulative angular Forward Deviations (CFD) and the Maximal Backward Deviations (MBD). We then establish upper-bounds of these quantities: first, we upper-bound the Maximal Backward Deviations in a thin annulus of width δ > 0 (Proposition 2.5) and then we deduce a global control of MBD in the whole space (Proposition 2.6), that roughly says that angular deviations decay exponentially fast with the distance to the origin. From this upper-bound, we deduce that the RST is straight in the sense of Howard & Newman (Proposition 2.7). The points (i), (ii), (iv) and (v) in Theorem 1.1 can be deduced from straightness and the upper-bound of MBD given by Proposition 2.6. The point (iii) (the uniqueness part) is done by exploiting a local coupling existing between the RST and the DSF far from the origin.

The rest of paper is organized as follows. In Section 2, we set some reminders of hyperbolic geometry and we define the hyperbolic RST. Then, we give its basic properties and a road-map of the proofs. We also announce the upper-bounds of angular deviations (Propositions 2.5 and 2.6) and the straightness property (Proposition 2.7). The proof of Theorem 1.1 is done in Section 3. Proposition 2.5 is proved in Section 4 and the proofs of Propositions 2.6 and 2.7 are done in Section 5.

Definitions, notations and basic properties

We denote by N the set of non-negative integers and by N * the set of positive integers. In the rest of the paper, c (resp. C) will be some small (resp. large) constant whose value can change from a line to another.

The hyperbolic space

We refer to [START_REF] Cannon | Hyperbolic geometry[END_REF] or [START_REF] Paupert | Introduction to hyperbolic geometry[END_REF] for a complete introduction to hyperbolic geometry. For d ∈ N * , the (d + 1)dimensional hyperbolic space, denoted by H d+1 , is a (d + 1)-dimensional Riemannian manifold of constant negative curvature -1 that can be defined by several isometric models. One of them is 

I = {(x 1 , ..., x d+1 ) ∈ R d+1 , x 2 1 + ... + x 2 d+1 < 1} (2.1)
endow with the following metric:

ds 2 I := 4 dx 2 1 + ... + dx 2 n+1 1 -x 2 1 -... -x 2 d+1 . (2.2)
This model is rotation invariant. The metric becomes smaller as we get closer to the boundary unit sphere ∂I, and this boundary is at infinite distance from the center 0.

The volume measure on (I, ds 2 I ), denoted by Vol I , is given by

dVol I = 2 d+1 dx 1 ...dx d+1 1 -x 2 1 -... -x 2 d+1 . (2.3)
In this model (I, ds 2 I ), the geodesics are of two types: the diameters of I and the arcs that are perpendicular to the boundary unit sphere ∂I. We refer to discussion [7, P.80] for a proof. Moreover, this model is conformal, which means that the hyperbolic angle between two geodesics corresponds to their Euclidean angle in the open-ball representation.

An important fact about hyperbolic geometry is that all points and all directions play the same role. More precisely, H d+1 is homogeneous and isotropic. It means that the group of isometries of H d+1 acts transitively on the unit tangent bundle of H d+1 : given two points x, y ∈ H d+1 and two unit tangent vectors u ∈ T x H d+1 , v ∈ T y H d+1 , there exists an isometry g of H d+1 such that g(x) = y and that pushes forward u on v. The notations T x , T y and the vocabulary relating to Riemannian geometry are defined in [START_REF] Lee | Riemannian manifolds: an introduction to curvature[END_REF]. We refer to [START_REF] Paupert | Introduction to hyperbolic geometry[END_REF], Proposition 1.2.1 p.5, for a proof. ] the geodesic between z 1 and z 2 . Moreover, we set the notations:

[z 1 , z 2 [:= [z 1 , z 2 ]\{z 2 }, ]z 1 , z 2 ] := [z 1 , z 2 ]\{z 1 }, ]z 1 , z 2 [\({z 2 } ∪ {z 2 }).
Let us denote by [z 1 , z 2 ) (resp. (z 1 , z 2 ]) the semi-geodesic passing threw z 2 (resp. z 1 ) and ending at z 1 (resp. z 2 ). For z 1 , z 2 , z 3 ∈ H d+1 , z 1 z 2 z 3 is the measure of the corresponding (non-oriented) hyperbolic angle. For any subset B ⊂ H d+1 , B denotes the closure of B in H d+1 . For any point z ∈ H d+1 and θ > 0, Cone(z, θ) := {z ∈ H d+1 , z0z ≤ θ} is defined as the cone of apex 0 and aperture θ (if θ ≥ π then Cone(z, θ) is the hole space H d+1 ). In addition, for r > 0 and z ∈ H d+1 , we define

B S(r) (z, θ) := Cone(z, θ) ∩ S(r). (2.4) 
Let 0 ∈ H d+1 be some arbitrary origin point (it can be thought as the center of the ball in the open-ball representation), which will plays the role of the root of the RST. For z ∈ H d+1 and r > 0, we denote by B(z, r) := {z ∈ H, d(z, z ) < r} (resp. S(z, r) := {z ∈ H, d(z, z ) = r}) the hyperbolic ball (resp. sphere) centered at z of radius r, and we set B(r) := B(0, r) (resp. S(r) := s(0, r)). For x ∈ R d and r > 0, let us also denote by B R d (x, r) := {x ∈ R d , x -x < r} the Euclidean ball centered at x of radius r.

Let us denote by S d the unit Euclidean sphere in R d+1 and by ν its d-dimensional volume measure. Since the RST is a rooted graph, a convenient way to represent points in H d+1 is to use polar coordinates. Recall that 0 is the origin point. For any point z ∈ H d+1 , we denote by z = (r; u) its polar coordinates w.r.t. 0: r is its distance to 0 and u ∈ U T 0 H d+1 S d is its direction (U T 0 H d+1 is the unitary tangent space of 0 in H d+1 ). In polar coordinates, the volume measure Vol is given by dVol(r; u) = sinh(r) d dr dν(u).

(2.5)

A direct consequence of this is that the volume of a ball of radius r is given by:

Vol(B(r)) = r 0 sinh(r) d dr dν(S d ) = S d sinh(r) d e dr when r → ∞, (2.6) 
where S d is the d-dimensional volume of S d .

The hyperbolic law of cosines [24, p.13] is a well adapted tool to compute distances using polar coordinates. Given z 1 = (r 1 ; u 1 ), z 2 = (r 2 , u 2 ) ∈ H d+1 , the hyperbolic law of cosines gives, cosh d(z 1 , z 2 ) = cosh(r 1 ) cosh(r 2 ) -u 1 , u 2 sinh(r 1 ) sinh(r 2 ).

(2.7)

The hyperbolic RST

In the rest of the paper, the dimension d and the intensity λ > 0 are fixed. Let N be a homogeneous PPP of intensity λ in H d+1 . The definition of the hyperbolic RST is similar to the Euclidean case.

The set of vertices is N ∪ {0}. Each vertex z ∈ N is connected to the closest Poisson point among those that are closer to the origin than z:

Definition 2.1 (Radial Spanning Tree in H d+1 ). For any z = (r; u) ∈ N , the parent of z is defined as

A(z) := argmin z ∈N ∩B(r) d(z , z).
We call Radial Spanning Tree (RST) in H d+1 rooted at 0 the oriented graph (V, E) where

V := N ∪ {0}, E := {(z, A(z)), z ∈ N }.
It is possible to assume that N ∪ {0} does not contain isosceles triangles, since this event has probability 1. Thus the ancestor A(z) is well-defined.

For z ∈ N ∪ {0} and k ∈ N, let us define By definition of the parent, B + (z) ∩ N = ∅ for all z ∈ N .

A (k) (z) = A • .. • A k times and A (-k) (z) = {z ∈ N , A (k) (z ) = z} (in particular A (-1) (z) is the set of daughters of z).
Definition 2.1 does not specify the shape of edges, but the results announced in Theorem 1.1 only concern the graph structure of the hyperbolic RST, so their veracity does not depend on the geometry of edges. It is more natural to represent edges with hyperbolic geodesics, but we do another choice which will appear more convenient for the proofs. Given

z 1 = (r 1 ; u 1 ), z 2 = (r 2 ; u 2 ) ∈ H d+1 such that 0 / ∈ [z 1 , z 2 ],
we define a path [z 1 , z 2 ] * , in an isotropic way, verifying the two following conditions: i) the distance to the origin 0 is monotonous along the path [z 1 , z 2 ] * , ii) the distance to z 1 is also monotonous along this path.

It will be necessary for the proofs that the shape of edges satisfy conditions (i) and (ii), and the geodesic [z 1 , z 2 ] does not verify condition (i) in general. Since 0 / ∈ [z 1 , z 2 ], u 1 and u 2 are not antipodal, thus one can consider the unique geodesic path γ u1,u2 : [0, 1] → U T 0 H d+1 on the sphere with constant speed connecting u 1 to u 2 . Hence we define the path [z 1 , z 2 ] * as

[0, 1] → H d+1 t → (1 -t)r 1 + tr 2 ; γ u1,u2 (φ r1,r2, u1,u2 (t)) , (2.8) 
where φ r1,r2, u1,u2 : [0, 1] → [0, 1] is defined as:

φ r1,r2, u1,u2 (t) := 1 u 1 , u 2 arccos (1 -t) sinh(r 1 ) + t cos( u 1 u 2 ) sinh(r 2 ) sinh((1 -t)r 1 + tr 2 ) .
This function φ r1,r2, u1,u2 is built to ensure that the distance to the origin z 1 is monotonous along the path [z 1 , z 2 ] * . Indeed, by the hyperbolic law of cosines (2.7),

cosh d z 1 , ((1 -t)r 1 + tr 2 ; γ u1,u2 (φ(t)) = cosh(r 1 ) cosh((1 -t)r 1 + tr 2 ) -cos(φ(t)( u 1 , u 2 )) sinh(r 1 ) sinh((1 -t)r 1 + tr 2 ) = t cosh(r 1 ) cosh(r 2 ) -cos( u 1 , u 2 ) sinh(r 1 ) sinh(r 2 ) is non-decreasing in t. We define [z 1 , z 2 [ * := [z 1 , z 2 ] * \{z 2 } and ]z 1 , z 2 ] * := [z 1 , z 2 ] * \{z 1 }. It is possible to assume that N does not contain two points z 1 , z 2 such that 0 ∈ [z 1 , z 2 ]
since this event has probability 1. Let us now define the random set RST by connecting each point z ∈ N to A(z) by the path [z, A(z)] * :

RST := z∈N [z, A(z)[ * .
It may exists some points z belonging to several paths

[z 1 , A(z 1 )[ * , ..., [z k , A(z k )[ * ; in that case, z is counted with multiplicity k in RST. Formally, RST = z∈N [z, A(z)[ * ×{z} ⊂ H d+1 × H d+1 ., i.e. an element z = (z , z ) ∈ RST is the data of a point z ∈ H d+1 and an edge [z , A(z )] * containing z . For z = (z , z ) ∈ RST, we define z ↓ = z , z ↑ = A(z ).
In the following, we will commit an abuse of notations by considering that RST ⊂ H d+1 and identifying an element z = (z , z ) ∈ RST to the corresponding point z ∈ H d+1 . Given z ∈ RST, let n := min{k ≥ 0, A (k) (z ↑ ) = 0} be the number of steps required to reach the origin from z ↑ ; we define the trajectory from z as

π(z) := [z, z ↑ ] * ∪ n-1 k=0 A (k) (z ↑ ), A (k+1) (z ↑ ) * .
For r > 0, we define the level r as L r := RST ∩ S(r).

For 0 < r ≤ r and for z ∈ L r , the ancestor at level r of z , denoted by A r r (z ) is the intersection point of π(z ) and S(r). For 0 < r ≤ r and for z ∈ L r , the set of descendents at level r is defined as D r r (z) := {z ∈ L r , z ∈ π(z )} (we extend the notation for z / ∈ L r by setting D r r (z) := ∅). For z = (r; u) ∈ RST, the descendents subtree of z is defined as D(z) := r ≥r D r r (z). In addition, we call infinite backward path a sequence

(z i ) i∈N ∈ H d+1 N such that z 0 = 0 and z i = A(z i+1 ) for all i ≥ 0.
Let us end this section with basic properties about RST proved in Appendix 6.

Proposition 2.2. The RST is a tree and it has finite degree a.s. Moreover, in the bi-dimensional case (d = 1), the representation of the RST obtained by connecting each vertex z ∈ N to its parent

A(z) by the geodesic [z, A(z)] (instead of [z, A(z)] * ) is planar, i.e. their is no two points z 1 , z 2 ∈ N such that [z 1 , A(z 1 )] ∩ [z 2 , A(z 2 )] = ∅.

Sketch of proofs

In order to prove our main result (Theorem 1.1), the key point is to upper-bound angular deviations of trajectories. We first introduce two quantities, the Cumulative Forward angular Deviations (CFD) and Maximal Backward Deviations (MBD) to quantify those fluctuations. 

0 r r z 2 ∈ L r z 1 ∈ L r A r r (z 1 ) D r r (z 2 )
       z 0z if z ↓ = z ↓ , z 0z ↑ + n-1 k=0 A (k) (z ↑ )0A (k+1) (z ↑ ) + z ↓ 0z else,
where n is the unique non negative integer such that

A (n) (z ↑ ) = z ↓ .
Definition 2.4 (Maximal Backward angular Deviations). Let 0 < r ≤ r and z ∈ S(r). We define the Maximal Backward angular Deviations between levels r and r as

MBD r r (z) :=    0 if z / ∈ RST, sup r ∈[r,r ] max z ∈D r r (z) CFD r r (z ) if z ∈ RST.
We extend the definition to r = ∞ by setting:

MBD ∞ r (z) := lim r →∞ MBD r r (z),
the limit exists since r → MBD r r (z) is non-decreasing.

These quantities will be upper-bounded in two steps. First, a percolation argument is used to control angular deviations in any annulus of width δ > 0 for some small δ > 0 (Proposition 2.5) and then we deduce a global control of angular deviations (Proposition 2.6). Recall that B S(r) (•, •) is defined in (2.4). Proposition 2.5. There exists δ > 0 such that, for any p ≥ 1, there exists C = C(d, p) > 0 such that for any r > 0, θ ≥ 0 and any direction u ∈ S d ,

E   z∈B S(r) (u,θ)∩RST MBD r+δ r (z) p   ≤ Cθ d e r(d-p) , (2.9) 
Proposition 2.6. For any p large enough, there exists some constant C fl > 0 such that, for any

0 < r 0 < ∞, A > 0 and any direction u ∈ S 1 , E   z∈B S(r 0 ) (u,Ae -r 0 )∩RST MBD ∞ r0 (z) p   ≤ C fl A d e -r0p .
These controls of angular deviations will be first used to show that the RST is straight (Proposition 2.7). The straightness property is the key to show (i), (ii) and (iv) in Theorem 1.1.

Proposition 2.7 (straightness property). Almost surely, the following happens. For any ε > 0, there exists some R 0 > 0, such that, for any radius r 0 ≥ R 0 , for any z ∈ RST with d(0, z) ≥ r 0 , the descendents subtree D(z) is contained in a cone of apex 0 and aperture e -(1-ε)r0 , i.e. for any

z , z ∈ D(z), z 0z ≤ e -(1-ε)r0 .
The proof of (iii) in Theorem 1.1 exploits the controls of angular deviations (Proposition 2.6) and the link existing between the RST and the hyperbolic Directed Spanning Forest introduced in [START_REF] Coupier | The 2d-directed spanning forest is almost surely a tree[END_REF]: the DSF approximates locally the RST far from the origin. The unicity of the infinite backward path with some given deterministic asymptotic direction has been shown for the DSF [START_REF] Flammant | The directed spanning forest in the hyperbolic space[END_REF], and the local coupling existing between the two models permits to show that this property remains true for the RST.

Proof of Theorem 1.1

Here we assume that Propositions 2.6 and 2.7 are proved and we show that it implies Theorem 1.1.

3.1

The existence part: proof of (i),(ii),(iv) and (v)

It will be shown in this section that any infinite backward path admits an asymptotic direction and that any ideal boundary point is the asymptotic direction of an infinite backward path (point (i) and (ii) in Theorem 1.1. The strategy consists, in exploiting the straightness property (Proposition 2.7):

Let (z n ) be an infinite backward path, we prove that (z n ) admits an asymptotic direction. For n ≥ 0, let us decompose z n in polar coordinates:

z n = (r n ; u n ). Proposition 2.7 immediately implies that the sequence (u n ) n≥0 is a Cauchy sequence in U T 0 H d+1 S d , thus it converges, so (z n ) converges to some boundary point z ∞ ∈ ∂H d+1 .
Let Ψ = {lim n→∞ z n , (z n ) is an infinite backward path} ⊂ ∂H d+1 be the set of asymptotic directions reached by at least one infinite backward path. In order to prove that Ψ = ∂H d+1 , we proceed in two steps: we first show that Ψ is dense in ∂H d+1 , then we show that Ψ is closed in ∂H d+1 . Since the RST is an infinite tree with finite degree a.s. (Proposition 2.2), there exists an infinite backward path from 0 and the corresponding infinite backward path converges to an ideal boundary point by the previous paragraph, thus Ψ = ∅ almost surely.

We denote by Stab(0) the set of isometries that fix 0, in particular it contains rotations centered at 0. Let B be an open subset of ∂H d+1 . Since ∂H d+1 S d is compact, there exists finitely many isometries γ 1 , ..., γ k ∈ Stab(0) such that i=1,...,k γ i B = ∂H d+1 . The random set RST is invariant in distribution by Stab(0), so the events {Ψ ∩ γ i B = ∅} all have the same probability. Since Ψ = ∅ almost surely, P i=1,...,k {Ψ ∩ γ i B = ∅} = 1 therefore P(Ψ ∩ B = ∅) > 0. In addition, for any neighborhood Φ ⊂ H d+1 of B, the event {Ψ ∩ B = ∅} is entirely determined by N ∩ Φ, therefore it has probability 0 or 1. Thus Ψ ∩ B = ∅ almost surely. Since the topology on ∂H d+1 admits a countable basis, Ψ is almost surely dense in ∂H d+1 .

It remains to show that Ψ is a closed subset of ∂H d+1 . Let I ∈ Ψ (recall that Ψ is the closure of Ψ in H d+1 ). We construct by induction a sequence (z n ) n≥1 ∈ N N * is an infinite backward path such that, for any i ∈ N, I ∈ D(z i ). Suppose 0, ..., z i-1 already defined such that z j = A(z j+1 ) for 0 ≤ j ≤ i -2 and I ∈ D(z i-1 ). Since the vertex z i-1 has finitely many daughters, there exists some z ∈ A (-1) (z i-1 ) such that I ∈ D(z). Thus we define z i as such a z.

We now use straightness to show that the infinite backward path (z n ) constructed above converges to I (and thus I ∈ Ψ). This infinite backward path converges to some I ∈ ∂H d+1 by (i). Let ε > 0, by Proposition 2.7 there exists some i ≥ 0 such that D(z i ) (and thus D(z i )) is contained in a cone of apex 0 and aperture at most ε. Since both I and I belong to D(z i ), I0I ≤ ε. Thus I = I , which achieves the proof of the existence part.

Proof of (iv) and (v) Let us denote by Ψ ⊂ ∂H d+1 the set of asymptotic directions with two infinite backward paths. To show (iv), we first show that, a.s. Ψ = ∅. For z ∈ RST, let us define Ψ z ⊂ ∂H d+1 as the set of asymptotic directions of infinite backward paths from z. By the same argument as in Step 2, Ψ z is a closed subset of ∂H d+1 . By (ii), a.s., there exists at least two infinite backward paths, so there exists a.s. some level r 0 > 0 with two points connected to infinity. Thus {Ψ z , z ∈ L(r 0 )} is a covering of ∂H d+1 by closed subsets, where at least two of them are nonempty. Since ∂H d+1 is connected, it implies that there exists

z 1 , z 2 ∈ L r0 such that Ψ z1 ∩ Ψ z2 = ∅. Thus Ψ = ∅ a.s.
We use the same argument as in Step 2 to deduce that Ψ is dense. Let B be an open subset of ∂H d+1 . Since ∂H d+1 S d is compact, there exists finitely many isometries γ 1 , ..., γ k ∈ Stab(0) such that i=1,...,k γ i B = ∂H d+1 . The random set RST is invariant in distribution by Stab(0), so the events Γ i := {Ψ ∩ γ i B = ∅} all have the same probability. Since Ψ = ∅ almost surely, P i=1,...,k Γ i = 1 therefore P(Γ i ) > 0. In addition, for any neighborhood Φ ⊂ H d+1 of B, the event Γ i is entirely determined by N ∩ Φ, therefore it has probability 0 or 1. Thus Ψ ∩ B = ∅ almost surely. Since the topology on ∂H d+1 admits a countable basis, Ψ is almost surely dense in ∂H d+1 .

The proof of (v) is done by exploiting the planarity in the bi-dimensional case (Proposition 2.2). Let us associate to any z ∞ ∈ Ψ a couple of vertices

P (z ∞ ) = (z 1 , z 2 ) ∈ N 2 with z 1 = z 2 such that z ∞ ∈ Ψ z1 ∩ Ψ z2 .
By planarity, such an application P must be injective. Indeed, if z ∞ = z ∞ are such that P (z ∞ ) = P (z ∞ ) = (z 1 , z 2 ), then there exists four distinct backward infinite paths joining z ∞ to z 1 , z ∞ to z 2 , z ∞ to z 1 and z ∞ to z 2 . This implies that two paths among them intersect each other, even if the representation of edges are replaced by geodesics, which contradicts planarity. Therefore Ψ is a.s. countable in the case d = 1.

The uniqueness part: proof of (iii)

The strategy is to exploit the link between the hyperbolic RST and the hyperbolic DSF. Let us consider the (d + 1)-dimensional half-space model (H, ds 2 ):

H = {(x 1 , ..., x d , y) ∈ R d+1 , y > 0}, ds 2 = dx 2 1 + ... + dx 2 d + dy 2 y 2 .
In the following, we will identify the point (x 1 , ..., x d+1 ) ∈ H with the couple

(x, y) ∈ R d × R * + with x := (x 1 , ..., x d ), y := x d+1 . (3.1)
The coordinate x is referred as the abscissa and y as the ordinate. Let us remind that, in the halfspace representation, the boundary set ∂H d+1 is identifyied as the boundary hyper-plane R d × {0}, plus an additinal point at infinity denoted by ∞, obtained by compactifying the closed half-space R d × R + . Let us define I ∞ as the boundary point represented by (0, 0) in H.

Let N be a PPP inside (H, ds 2 ), and, for any h ≥ 0, let us define RST(h) as the Radial Spanning Tree of N with origin O(h) := (0, e h ), and let us define DSF as the Directed Spanning Forest of N with direction ∞ (defined in [START_REF] Flammant | The directed spanning forest in the hyperbolic space[END_REF]). Given z ∈ N let A DSF (z) be the parent of z in DSF, and let A RST(h) (z) be the parent of z in RST(h). We will also consider, for any given h ≥ 0, the direction toward I ∞ defined as u := (0, ..., -1) ∈ U T O(h) H d+1 S d . The proof is based on the two following propositions. The next one asserts that the RST(h) and the DSF coincide in a given compact set when h is large enough. Proposition 3.1 (Coupling between RST and DSF). Let K ⊂ H d+1 be some compact set. Then

lim h→∞ P[∀z ∈ N ∩ K, A RST(h) (z) = A DSF (z)] = 1.
For A, a, h ≥ 0, let us define:

Vois(A, h) := Cone O(h) (I ∞ , Ae -h )\B(O(h), h), Vois (A, a, h) := (B(O(h), h + a) ∩ Cone O(h) (I ∞ , Ae -h ))\B(O(h), h), Vois (A, a, h) := Cone O(h) (I ∞ , Ae -h-a )\B(O(h), h + a),
where Cone z0 (z, θ) denotes the cone with apex z 0 , direction z and aperture θ. Let us also define: For A, h ≥ 0, let us define the event E(A, h) saying that every infinite backward path converging to I ∞ in RST(h) restricted to the annulus H d+1 \S(O(h), h) are contained in Vois(A, h):

Cyl(A) := B R d (0, A) × 0, 3 2 ⊂ H, Cyl (A, a) := B R d (0, A) × 1 2 e -a , 3 2 ⊂ H, Cyl (A, a) := B R d 0, Ae -a × 0, 3 2 
E(A, h) := {∀z ∈ RST(h) ∩ (H d+1 \S(O(h), h)), I ∞ ∈ D RST(h) (z) =⇒ z ∈ Vois(A, h)},
where D RST(h) (z) denotes the descendents subtree of z in RST(h). Let us also define, for A, h, a > 0, the event E (A, h, a) saying that every infinite backward path converging to I ∞ in RST(h) restricted to the annulus H d+1 \S(O(h), h + a) are contained in Vois (A, a, h):

E (A, a, h) := {∀z ∈ RST(h) ∩ (H d+1 \S(O(h), h + a)), I ∞ ∈ D RST(h) (z) =⇒ z ∈ Vois (A, a, h)}.
The following proposition asserts that, uniformly in h, the events E(A, h) and E(A, a, h) occur with high probability when A is large. 

P[E(A, h)] > 1 -q/4, P[E (A, a, h)] > 1 -q/4.
Then, by Proposition 3.1 applied to the compact set K := Cyl (A, a) and Lemma 3.2, h can be chosen large enough such that inclusions (3.2) hold and such that

P[CO(A, a, h)] > 1 -q/4, P[E(A, h)] ≥ 1 -q/4 and P[E (A, a, h)] ≥ 1 -q/4.
Let us define the event Z(a) as

Z(a) := U c ∩ E(A, h) ∩ E (A, a, h) ∩ CO(A, a, h),
and define

Z := a0>0 a≥a0 Z(a).
For the choices of q, h done before, P[Z(a)] ≥ q/4 and so P[Z] ≥ q/4 > 0. On the event Z(a), and because inclusion (3.2) holds, there exists two infinite backward paths in RST(h) whose restrictions to R d ×(0, 3/2] are contained in Cyl(A, a) and converging to I ∞ , and intersecting Cyl (A, a). These two infinite backward paths coincide with those of DSF inside Cyl (A, a). Thus, in DSF, there exists two infinite backward paths contained in Cyl(A, a) and intersecting Cyl (A, a). Therefore, since this is true for all a > 0, on the event Z, it is possible to construct two infinite backward paths converging to I ∞ in DSF using the fact that DSF is locally finite (it is true by [START_REF] Flammant | The directed spanning forest in the hyperbolic space[END_REF]Proposition 9]). However, by [START_REF] Flammant | The directed spanning forest in the hyperbolic space[END_REF]Theorem 3], there almost surely a unique infinite backward path converging to I ∞ in DSF. This leads to a contradiction, which achieves the proof.

Figure 4: Representation of the sets Vois(A, h), Vois (A, a, h), Vois (A, a, h) and Cyl(A), Cyl (A, a), Cyl (A, a). The backward paths of RST(h) converging to 0 (in blue) are all contained in Vois (A, a, h) up to level h + a and contained in Vois(A, a, h) up to level h. In the dashed area (Cyl (A, a)), the DSF and RST(h) coincide.

0 x ∈ R d y ∈ R O(h) Cyl (A, a) Cyl (A, a) Cyl(A)
Vois (A, a, h)

Vois(A, h)

Vois (A, a, h)

S(h) S(h + a)

Proof of Proposition 3.1. Let us define, for z = (x, y) ∈ N and h ≥ 0:

B + DSF (z) := B(z, d(z, A(z))) ∩ (R d × (y, ∞)), B + RST(h) (z) := B(z, d(z, A(z))) ∩ (y, ∞).
Let K ⊂ H d+1 be some compact set. For any given z

∈ N ∩ K, h ≥ 0, A DSF (z) = A RST(h) (z) if and only if N ∩ (B + DSF (z)∆B + RST(h) (z)) = ∅.
For any z ∈ H d+1 , Vol(B + DSF (z)∆B + RST(h) (z)) → 0 as h → ∞ (recall that Vol is the hyperbolic volume). Campbell formula [START_REF] Chiu | Stochastic geometry and its applications[END_REF] gives,

E #{z ∈ N ∩ B(z, d(z, A(z))), N ∩ (B + DSF (z)∆B + RST(h) (z )) = ∅} = λ B(z,d(z,A(z))) P N ∩ (B + DSF (z)∆B + RST(h) (z )) = ∅ dVol(z) = λ B(z,d(z,A(z))) 1 -exp(-λVol(B + DSF (z)∆B + RST(h) (z))) dVol(z) → 0 as h → ∞
by dominated convergence. Proposition 3.1 follows.

Proof of Proposition 3.3.

For n ∈ N and h ≥ 0, let us define the event

F n (h) := {∃z ∈ B S(h) (u, 2 n+1 e -h ), MBD ∞ h (z) > 2 n e -h }.
We now show that for n ∈ N and h ≥ 0, E(2 n , h) c ⊂ m≥n F n (h). If E(2 n , h) c does not occur, then there exists some z ∈ S(h)\B S(h) (u, 2 n e -h ) such that I ∞ ∈ D RST(h) (z), so, for the value

of m ∈ N ≥n such that 2 m ≤ z0I ∞ < 2 m+1 , z ∈ B S(h) (u, 2 m+1 e -h ) and MBD ∞ h (z) > 2 n e -h ≥ z0I ∞ ≥ 2 m , thus F m (h) occurs.
Therefore

P[E(2 n , h)] ≥ 1 - m≥n P[F n (h)].
We now upper-bound P[F n (h)]. On F n (h), the following occurs:

z∈B S(h) (u,2 n+1 e -h )∩RST MBD ∞ h (z) p > 2 np e -ph , (3.3) 
thus, by Markov inequality,

P [F n (h)] ≤ 2 -np e ph E   z∈B S(h) (u,2 n+1 e -h )∩RST MBD ∞ h (z) p   P rop.2.6 ≤ C fl 2 n(d-p)
for some C fl > 0 depending only on p. Combining this with (3.3) for some p > d leads to

P[E(2 n , h)] ≥ 1 -C fl 2 m(d-p) 1 -2 d-p ,
this proves the first part of Proposition 3.3. The second part be deduced from the first part by applying the dilation (x, y) → (e a x, e a y) (which is an isometry of (H, ds 2 )).

Proof of Lemma 3.2. Let A, a, h ≥ 0, and let z = (x, y) ∈ Vois(A, h). Considering the totally geodesic plane containing I ∞ , z and O(h) (represented by a half-plane in H), it is possible to suppose d = 1 without loss of generality. We apply the distance and angle formulas in (H, ds 2 ) (Propositions 7.1 and 7.2). Let z = (x, y) ∈ Vois(A, h). On the one hand, zO(h)I ∞ ≤ Ae -h , so, taking h large enough such that Ae -h < π/2, arctan 2xe h e 2h -x 2 -y 2 ≤ Ae -h , thus, for h large enough,

|x|e -h ≤ arctan |2xe -h | ≤ arctan 2xe h e 2h -x 2 -y 2 ≤ Ae -h , so |x| ≤ A.
On the other hand, d(O(h), z) ≥ h, so

2 tanh -1 1 - 4ye h A 2 + (y + e h ) 2 |x|≤A ≥ 2 tanh -1 1 - 4ye -h (xe -h ) 2 + (ye -h + 1) 2 = d(O(h), z) ≥ h, so e h ≤ 1 + 1 - 4ye h A 2 +(y+e h ) 2 1 -1 - 4ye h A 2 +(y+e h ) 2 = 2 1 -1 - 4ye h A 2 +(y+e h ) 2 -1 = e h y + o(e h ) when h → ∞,
for h large enough this implies y ≤ 3/2. The two other inclusions are shown by similar computations.

Proof of Proposition 2.5

We use a bloc control argument similar to [13, Section 6.3]. Let δ > 0 small and A > 0 large that will be chosen later. For r 0 ≥ 2 and z ∈ S(r 0 ), let us define

Ψ 1 (r 0 , z) := Cone(z, 3Ae -r0 ) ∩ (B(r 0 + δ)\B(r 0 )), Ψ 2 (r 0 , z) := Cone(z, Ae -r0 ) ∩ (B(r 0 )\B(r 0 -1)). (4.1) 
A point z ∈ S(r 0 ) is said to be good if the following event G(r 0 , z) occurs:

G(r 0 , z) := {N ∩ Ψ 1 (r 0 , z) = ∅ and N ∩ Ψ 2 (r 0 , z) = ∅} . (4.2)
A good point is represented in Figure 5.

Let us define the random subsets χ(r 0 ) ⊂ S(r 0 ) and χ(r 0 ) ⊂ H d+1 \{0} as

χ(r 0 ) := z∈S(r0), G(r0,z) occurs Cone(z, Ae -r0 ), χ(r 0 ) := z∈ χ(r0) ]0, z) ⊂ H d+1 \{0}. (4.3) 
The region χ(r 0 ) is the controlled region, where the cumulative forward deviations in the annulus S(r 0 + δ)\S(r 0 ) will be upper-bounded. This control of fluctuations are given by the following lemma:

Lemma 4.1. There exists some deterministic constant C geom > 0 such that for any r 0 ≥ 2, s ∈ [r 0 , r 0 + δ], and z ∈ L s ∩ χ(r 0 ), CFD s r0 (z) ≤ C geom e -r0 .

Lemma 4.1 will be proved in Section 4.4.

For any r 0 ≥ 2, we cover the sphere S(r 0 ) by balls of angular radius e -r0 such that the number of balls overlapping at a given point never exceeds some constant K. To proceed, we use the following lemma: Lemma 4.2. There exists K = K(d, p) ∈ N * such that, for any r 0 ≥ 2, there exist a non-negative integer N (r 0 ) ≥ 0 and a family of points z 1 , ..., z N (r0) ∈ S(r 0 ) such that:

0 ∈ N ∅ ∅ ∅ z S(r 0 -1) S(r 0 ) S(r 0 + δ) Ae -r0 Ψ 1 (r 0 , z) Ψ 2 (r 0 , z)
Figure 5: The point z is a good point; the fluctuations of trajectories crossing B S(r0) (z, Ae -r0 ) (in blue) are well controlled.

• 1≤i≤N (r0) B S(r0) (z i , e -r0 ) = S(r 0 ),

• ∀z ∈ S(r 0 ), #{1 ≤ i ≤ N (r 0 ), z ∈ B S(r0) (z i , e -r0 )} ≤ K.
Moreover, there exists C ball = C ball (K, d) > 0 such that, for any r 0 ≥ 2, z ∈ S(r 0 ) and A ≥ 1, the number of balls intersecting B S(r0) (z, Ae -r0 ) is upper-bounded by C ball A d :

∃C ball > 0, ∀r 0 ≥ 2, ∀z ∈ S(r 0 ), ∀A ≥ 1, #{1 ≤ i ≤ N (r 0 ), B S(r0) (z i , e -r0 ) ∩ B S(r0) (z, Ae -r0 ) = ∅} ≤ C ball A d .
We refer to Section 4.4 for the proof of Lemma 4.2.

For 1 ≤ i ≤ N (r 0 ), z i is said to be inhibited if the ball B S(r0) (z i , e -r0 ) intersects S(r 0 )\ χ, and the corresponding event is denoted by Inhib(i). Let Ψ(r 0 ) ⊂ 1, N (r 0 ) be the union of all inhibited balls:

Ψ(r 0 ) := 1≤i≤N (r0), B S(r 0 ) (zi,e -r 0 )∩(S(r0)\ χ) =∅ B S(r0) (z i , e -r0 ).
The region Ψ is the augmented uncontrolled region, that contains H d+1 \{0} \χ. For z ∈ S(r 0 ), let Ĉl(z) be the cluster of z in Ψ(r 0 ) and let us also define (recall that ]0, z) is the semi-geodesic starting at 0 and containing z, without 0):

Cl(z) = z∈ Ĉl(z) ]0, z) ⊂ H d+1 \{0}.
We define the angular radius of Cl(z) as Rad(z) := sup z ∈Cl(z) z 0z.

The next lemma asserts that the connected components of the augmented uncontrolled region Ψ are small (the radius admits exponential tail decay): Lemma 4.3. There exists δ > 0 small enough, A > 0 large enough and some constant c dec > 0 such that, for any B large enough, r 0 ≥ 2 and z ∈ S(r 0 ),

P [e r0 Rad(z) > B] ≤ e -c dec B . Lemma 4.3 is proved in Section 4.4.
In addition, we need a control of the number of points in a given region of a sphere S(r 0 ), which is given by the next lemma: Lemma 4.4. For any p ≥ 1, there exists a constant C = C(d, p) > 0 such that, for any r 0 ≥ 0 and any direction z ∈ B S(r0) ,

E # L r0 ∩ B S(r0) (z, e -r0 ) p ≤ C.
We refer to Section 4.4 for the proof of Lemma 4.4. Let us choose A, δ > 0 as in Lemma 4.3 and C geom as in Lemma 4.1.

4.1

Step 1: a deterministic upper-bound of MBD r 0 +δ r 0 (•)

For z ∈ S(r 0 ), let us define

M (z) := #N ∩ Cl(z) ∩ (S(r 0 + δ)\S(r 0 )). (4.4)
This step is devoted to the proof of the following upper-bound: almost surely, for any z ∈ S(r 0 ),

MBD r0+δ r0 (z) p ≤ 2 p-1 2 p Rad(z) p (M (z) + 1) p + C p geom e -pr0 . (4.5)
The quantity MBD r0+δ r0 (z) takes into account backward paths from z that ends (in the backward direction) before level r 0 + δ and backward paths reaching level r 0 + δ. For z ∈ S(r 0 ), we define Stop(z) as the set of ending points of backward paths from z stopping before level r 0 + δ (recall that D(z) := r≥r0 D r r0 (z)):

Stop(z) := {z = (r ; u ) ∈ N ∩ D(z), r 0 ≤ r < r 0 + δ, A (-1) (z ) = ∅}.
For any z ∈ D r0+δ r0 (z) ∪ Stop(z), one the two following cases occur. Either the branch from z to z stays inside Cl(z), or it crosses χ(r 0 ). Let us define C (resp. C ) as the set of couples (z, z ) such that the branch from z to z crosses χ(r 0 ) (resp. does not cross χ(r 0 )):

C := {(z, z ), z ∈ S(r 0 ), z ∈ D r0+δ r0 (z) ∪ Stop(z), ∃s ∈ [r 0 , r 0 + δ], A r0+δ s (z ) ∈ χ}, C := {(z, z ), z ∈ S(r 0 ), z ∈ D r0+δ r0 (z) ∪ Stop(z), ∀s ∈ [r 0 , r 0 + δ], A r0+δ s (z ) / ∈ χ}.
Moreover, for any (z, z ) ∈ C, we define hit(z, z ) as the highest level where the branch from z to z hits χ(r 0 ):

hit(z, z ) := max{s ∈ [r 0 , r 0 + δ], A r0+δ s (z ) ∈ χ},
where the max is over a set which is finite a.s.

Let

1 ≤ i ≤ N (r 0 ). Let z ∈ B S(r0) (z i , e -r0 ), z = (r ; u ) ∈ D r0+δ r0 (z) ∪ Stop(z)
, we now upperbound CFD r r0 (z ). Let us first consider the case where (z, z ) ∈ C (the branch between z and z does not cross χ(r 0 )). Then this branch stays inside Cl(z). Thus it crosses at most M (z) points of N , therefore CFD r r0 (z ) ≤ 2Rad(z)(M (z) + 1). In the other case, (z, z ) ∈ C, let z = (r ; u ) := hit(z, z ). Let p ≥ 1. Then, by Jensen inequality, 

CFD r r0 (z ) p ≤ CFD r r0 (z ) + CFD r0+δ r (z ) p ≤ 2 p-1 CFD r r0 (z ) p + CFD r0+δ r (z ) p

Step 2: a control of the tail decay of M (z)

Recall that, for z ∈ S(r 0 ), M (z) is defined in (4.4). In this step, it is shown that, for any z ∈ S(r 0 ):

E M (z) 4p ≤ C (4.7)
for some C = C(p) > 0.

The quantity M (z) is the number of Poisson points inside a random part of the thin annulus S(r 0 + δ)\S(r 0 ), whose diameter admits exponential tail decay (Lemma 4.3).

Let z ∈ S(r 0 ). For given R ≥ 0, let us define Reg(R) := Cone(z i , Re -r0 ) ∩ S(r 0 + δ)\S(r 0 ) .

For any R, m ≥ 0, for some constant C > 0 independent of r 0 , R, since Vol(S(r 0 + δ)) = O e dr0 by (2.6). Thus #(N ∩ Reg(R)) st P(CR d ). Thus Chernoff bound for the Poisson distribution [START_REF]Probability and computing: randomized algorithms and probabilistic analysis[END_REF] leads to:

{M (z) > m} ⊂ {Rad(z) > Re -r0 } ∪ {# (N ∩ Reg(R)) > m} thus P [M (z) > m] ≤ P Rad(z) > Re -r0 + P [# (N ∩ Reg(R)) > m] . ( 4 
P [#(N ∩ Reg(R)) ≥ m] ≤ e -CR d (CeR d ) m m m (4.10) 
for any m ≥ CR d . Let us chose R = (m/(2eC)) 1/d (thus m = 2eCR d ). It leads to:

P [#(N ∩ Reg(R)) ≥ m] ≤ e -1/(2e) 2 m ≤ 1 2 m . (4.11) 
Finally, we combine (4.8), Lemma 4.3 and (4.11) to obtain:

P [# (N ∩ Cl(z) ∩ (S(r 0 + δ)\S(r 0 ))) > m] ≤ e -c dec R + 1 2 m = exp -c dec (m/2eC) 1/d + 1 2 m ≤ exp(-cm 1/d ) (4.12) 
for some C > 0. Therefore:

E # (N ∩ Cl(z) ∩ (S(r 0 + δ)\S(r 0 ))) 4p = ∞ 0 P # (N ∩ Cl(z) ∩ (S(r 0 + δ)\S(r 0 ))) > m 1/(4p) dm (4.12) ≤ ∞ 0 exp(-cm 1/(4dp) ) dm < ∞,
which proves (4.7).

Step 3: conclusion

By (4.5), for any

1 ≤ i ≤ N (r 0 ), z∈B S(r 0 ) (zi,e -r 0 )∩RST MBD r0+δ r0 (z) p ≤ 2 p-1 #{RST ∩ B S(r0) (z i , e -r0 )} 2 p Rad(z) p (M (z) + 1) p + C p geom e -pr0 .
It follows by Cauchy-Schwartz and Minkowski that

E   z∈B S(r 0 ) (zi,e -r 0 )∩RST MBD r0+δ r0 (z) p   ≤ CE #{RST ∩ B S(r0) (z i , e -r0 )} 2 1/2 E Rad(z i ) p M (z) p + e -pr0 2 1/2 ≤ CE #{RST ∩ B S(r0) (z i , e -r0 )} 2 1/2 E Rad(z i ) 2p M (z) 2p 1/2 + e -pr0 ≤ CE #{RST ∩ B S(r0) (z i , e -r0 )} 2 1/2 × E Rad(z i ) 4p 1/4 E M (z) 4p 1/4 + e -pr0 (4.13) 
for some C = C(p) > 0. By Lemma 4.4 applied to p = 2,

E #{RST ∩ B S(r0) (z i , e -r0 )} 2 ≤ C, (4.14) 
for C independent of r 0 , z i . By Lemma 4.3,

E Rad(z i ) 4p = e -4pr0 ∞ 0 P e 4pr0 Rad(z i ) 4p > B dB = e -pr0 ∞ 0 P e 4r0 Rad(z i ) > B 1 4p dB ≤ e -4pr0 ∞ 0 e -c dec B 1 4p dB < ∞. (4.15) 
Then, by combining (4.13), (4.14), (4.15) and (4.7),

E   z∈B S(r 0 ) (zi,e -r 0 )∩RST MBD r0+δ r0 (z) p   ≤ Ce -pr0 , (4.16) 
for some C = C(p) > 0.

The final step is to sum over all i such that B S(r0) (z i , e -r0 ) intersects B S(r0) (u, θ) for any given u ∈ S d and θ > 0. Let θ > 0. By Lemma 4.2 it can be assumed that B S(r0

) (z i , e -r0 ) intersects B S(r0) (z i , θ) for at most C ball e dr0 θ d values of i ∈ 1, N (r 0 ) . Therefore E   z∈B S(r 0 ) (u,θ)∩RST MBD r0+δ r0 (z) p   = 1≤i≤N (r0), B S(r 0 ) (zi,e -r 0 ) ∩B S(r 0 ) (u,θ) =∅ E   z∈B S(r 0 ) (zi,e -r 0 )∩RST MBD r0+δ r0 (z) p   (4.16) ≤ Ce -pr0 #{1 ≤ i ≤ N (r 0 ), B S(r0) (z i , e -r0 ) ∩ B S(r0) (u, θ) = ∅} ≤ Ce (d-p)r0 θ d ,
which achieves the proof of Proposition 2.5. Lemmas 4.1,4.2,4.3,4.4 Proof of Lemma 4.1. Let r 0 ≤ s ≤ r 0 + δ and z 1 ∈ χ(r 0 ) ∩ L(s). Since z 1 ∈ χ(r 0 ), G(z 1 ) occurs. Let z 0 = (r 0 ; u 0 ) := z 1↓ , z 2 = (r 2 , u 2 ) := A r0 s (z 1 ), z 4 = (r 3 , u 3 ) := z 1↑ and z 3 ∈ [z 0 , z 4 ] * is such that z 1 0z 4 = 3Ae -r0 . Since G(z 1 ) occurs, there exists some z = (r ; u ) ∈ Ψ 2 (r 0 , z 1 ). Let us suppose that z 1 0z 2 ≥ 3Ae -r0 . It will be shown that

Proof of

d(z 0 , z ) ≤ d(z 0 , z 3 ). (4.17) 
It implies by construction of [z 0 , z 4 ] * that d(z 0 , z ) ≤ d(z 0 , z 4 ), which contradicts the fact that z 4 = A(z 0 ). It follows that z 1 z z 2 ≤ 3Ae -r0 , and since Ψ 1 (r 0 , z 1 ) ∩ N = ∅, it implies that CFD r0 s (z 1 ) ≤ 3Ae -r0 , so Lemma 4.1 holds with C geom = 3A. We move on to show (4.17). By the hyperbolic law of cosines (2.7),

cosh d(z 0 , z ) = cosh(r 0 ) cosh(r ) -cos( z 0 0z ) sinh(r 0 ) sinh(r ) = 1 + (1 -cos( z 0 0z )) sinh(r 0 ) sinh(r ) ≤ 1 + 1 -cos z 0 0z 1 + Ae -r0 sinh(r 0 ) sinh(r ) ≤ 1 + 1 -cos z 0 0z 1 + Ae -r0 sinh(r 0 ) 2 and cosh d(z 0 , z 3 ) = cosh(r 0 ) cosh(r 3 ) -cos( z 0 0z 3 ) sinh(r 0 ) sinh(r -3) = 1 + (1 -cos( z 0 0z 3 )) sinh(r 0 ) sinh(r 3 ) = 1 + 1 -cos z 0 0z 1 + z 1 0z 3 sinh(r 0 ) sinh(r 3 ) ≥ 1 + 1 -cos z 0 0z 1 + 3Ae -r0 sinh(r 0 ) sinh(r 3 ) ≥ 1 + 1 -cos z 0 0z 1 + Ae -r0 sinh(r 0 ) 2 .
This proves (4.17), which achieves the proof of Lemma 4.1.

Proof of Lemma 4.2. Proving the first part of Lemma 4.2 is equivalent to show that there exists some K ∈ N such that, for any ε > 0, the Euclidean unit sphere S d can be covered by balls of radius ε such that the number of balls overlapping some given point x ∈ S d is bounded by K, which is a standard fact.

We move on to show the second part, i.e. the existence of C ball > 0 such that, for any r 0 ≥ 2, z ∈ S(r 0 ) and A ≥ 1, the number of balls intersecting B S(r0) (z, Ae -r0 ) is upper-bounded by C ball A d . Let u ∈ S d be the direction of z and let A ≥ 1.

For i ∈ 1, N (r 0 ) , the ball B S(r0) (z i , e -r0 ) intersects B S(r0) (z, Ae -r0 ) if and only if z i 0z ≤ (A + 1)e -r0 . Thus         1≤i≤N (r0), B S(r 0 ) (zi,e -r 0 )∩ B S(r 0 ) (z,Ae -r 0 ) =∅ B S(r0) (z i , e -r0 )         ⊂ B S(r0) (z, (A + 2)e -r0 ).
Recall that ν denotes the d-dimensional volume measure on S d . There exists C > 0 such that, for any r 0 ≥ 2, ν{u, uu 0 ≤ e -r0 } ≥ Ce -r0d . Moreover, ν{u, uu 0 ≤ (A + 2)e -r0 } ≤ (A + 2)e -r0 d , thus the number of balls intersecting B S(r0) (z, Ae -r0 ) is upper-bounded by:

K ν{u, uu 0 ≤ (A + 2)e -r0 } ν{u, uu 0 ≤ e -r0 } ≤ K ((A + 2)e -r0 ) d ce -r0d A≥1 ≤ 3 d K c A d ,
the conclusion follows.

Proof of Lemma 4.3. Recall that, for

1 ≤ i ≤ N (r 0 ), B S(r0) (z i , e -r0
) is said to be inhibited if B S(r0) (z i , e -r0 ) ∩ (S(r 0 )\χ) = ∅. Let us first estimate the probability that a given z i is inhibited. Let 1 ≤ i ≤ N (r 0 ). Let us consider the following events:

E(i) := {N ∩ Cone(z i , (3A + 1)e -r0 ) ∩ (B(r 0 + δ)\B(r 0 )) = ∅}, E (i) := {N ∩ Cone(z i , (A -1)e -r0 ) ∩ (B(r 0 )\B(r 0 -1)) = ∅}.
We now show that

E(i) ∩ E (i) ⊂ Inhib(i) c . Let z ∈ B S(r0) (z i , e -r0
). By triangular inequality, Ψ 1 (r 0 , z) ⊂ Cone(z i , (3A + 1)e -r0 ) ∩ (B(r 0 + δ)\B(r 0 )) and Cone(z i , (A -1)e -r0 ) ∩ (B(r 0 + δ)\B(r 0 )) ⊂ Ψ 2 (r 0 , z).

Therefore, on the event E(i) ∩ E (i), z is good (i.e. G(r 0 , z) occurs). Thus, Inhib(i) c occurs, which shows that

E(i) ∩ E (i) ⊂ Inhib(i) c . It follows that P[Inhib(i)] ≤ P[E(i) c ] + P[E (i) c ]. Since Vol(Cone(z i , (3A + 1)e -r0 ) ∩ (B(r 0 + δ)\B(r 0 ))) = r0+δ r0 ν{u , u, u ≤ (3A + 1)e -r0 } sinh(r) d dr ≤ CδA d
for some C > 0 independent of A, r 0 , δ. Thus

P [E(i) c ] ≤ 1 -e -λcδA d
An analogous computation for E (i) leads to:

P [E (i) c ] ≤ e -λcA d
for some c > 0 independent of A, r 0 , δ.

We move on to show that A and δ can be chosen such that P[Inhib(i)] ≤ 2C -1 ball (6A + 4) -d /3 for any 1 ≤ i ≤ N (r 0 ). Indeed, let us first chose A such that e -λcA d C ball (6A + 4) d ≤ 1/3. Then let us chose δ such that 1 -e -λcδA d ≤ C -1 ball (6A + 4) -d /3. Hence

P[Inhib(z i )] ≤ P [E(i) c ] + P [E (i) c ] ≤ 1 -e -λcδA d + e -λcA d ≤ 2 3 C -1 ball (6A + 4) -d .
We finally show that, for this choice of A, δ, there exists c dec > 0 such that for any B large enough, r 0 ≥ 2 and z ∈ S(r 0 ),

P [e r0 Rad(z) > B] ≤ e -c dec B .
Fix r 0 ≥ 2 and z ∈ S(r 0 ). For given k, let us denote by P (k) the set of sequences

z i0 , • • • , z i k among the {z i , 1 ≤ i ≤ N (r 0 )} such that: 1. d(z i0 , z) ≤ e -r0 , 2. for any 0 ≤ j ≤ k -1, d(z ij , z ij+1 ) ≤ (6A + 4)e -r0 , 3. for any 0 ≤ j, j ≤ k, d(z ij , z i j ) ≥ (6A + 2)e -r0 .
Let us also denote by P (k) ⊂ P (k) the set of sequences z i0 , • • • , z i k verifying 1., 2., 3. and such that:

4. z i0 , • • • , z i k are inhibited.
It can be noticed that {Rad(z) ≥ k(6A + 4)} ⊂ { P (k) = ∅} for any k ∈ N, thus it is enough to upper-bound { P (k) = ∅} for any k ∈ N. Let (z i0 , • • • , z i k ) ∈ P (k). For 0 ≤ j ≤ k, the event Inhib(z ij ) only depends on the Poisson process N inside Cone(z ij , (3A + 1)e -r0 ), therefore, by 3. the events Inhib(z ij ) are mutually independent. Thus

P[(z i0 , • • • z i k ) ∈ P (k)] = P[Inhib(z i0 )] k+1 ≤ 2 3 k+1 C -(k+1) ball (6A + 4) -d(k+1) .
By Lemma 4.2, for any 1 ≤ i ≤ N (r 0 ), the number of balls intersecting B S(r0) (z, θ) is upperbounded by C ball e dr0 θ d . Thus k+1) .

#P (k) ≤ C k+1 ball (6A + 4) d(
It follows that Proof of Lemma 4.4. Let r 0 , M > 0 and z ∈ S(r 0 ). Let h ≥ 0 that will be fixed later. We divide the set L = {z ∈ N , [z , A(z )] * ∈ B S(r0) (z, e -r0 )} into two subsets L ≤h and L >h according to the length of [z , A(z )]:

P[Rad(z) ≥ k(6A + 4)] ≤ P[ P (k) = ∅] ≤ E[# P (k)] ≤ C k+1
L ≤h := {z ∈ L, d(z , z) ≤ h}, L >h := {z ∈ L, d(z , z) > h}. (4.18) 
Thus L = L ≤h ∪ L >h , and

P [#L ≥ M ] ≤ P [#L ≤h ≥ M ] + P [L >h = ∅] . (4.19) 
We first upper-bound P [#L ≤h ≥ M ]. Since L ≤h ⊂ B(z, h),

P [#L ≤h ≥ M ] ≤ P [# (N ∩ B(z, h)) ≥ M ] .
By (2.6), Vol(B(z, h) ≤ Ce dh , for some C > 0 independent of r 0 . So the random variable # (N ∩ B(z, h)) is stochastically dominated by a Poisson law with parameter Cλe dh , thus, by the Chernoff bound for the Poisson distribution [START_REF]Probability and computing: randomized algorithms and probabilistic analysis[END_REF], ≤ arcosh cosh(r 0 ) 2 -cos(e -r0 ) sinh(r 0 ) 2 = arcosh 1 + 1 -cos(e -r0 ) sinh(r 0 ) 2 ≤ C dis for some C dis > 0 independent of r 0 . Thus d(z , A(z )) ≥ d(z , z) -C dis , so B + (z, (d(z , z) -C dis ) + ) is empty of points. Therefore, by Campbell formula [START_REF] Chiu | Stochastic geometry and its applications[END_REF], 5 Proof of Propositions 2.6 and 2.7

P [#L ≤h ≥ M ] ≤ e -Cλe dh (Cλe dh ) M M M . ( 4 
P [L >h = ∅] ≤ E [#L >h ] = λ B(r0)\B(h) P [z ∈ L >h ] dz ≤ λ B(r0)\B(h) P B + (z, (d(z , z) -C dis ) + ) ∩ N = ∅ dz = λ B(r0)\B(h) P exp(-λVol(B + (z, (d(z , z) -C dis ) + )) dz (6.1) ≤ λ B(r0)\B(h) P exp(-λce -d(d(z ,z)-C dis )/2 ) dz (2.5) = λS(d)
We first prove Proposition 2.6.

Step 1: Let us fix p > 3d/2. For any r 0 > 0, n ∈ N, let us define

S n (A, r 0 ) := z∈B S(r 0 ) (u,Ae -r 0 )∩RST MBD r0+nδ r0 (z) 2p .
The strategy of the proof is to construct a family of non-negative random variables

(Y M n (A, r 0 )) r0,A,M ≥0,n∈N and (Y M (A, r 0 )) r0,A,M ≥0 such that (1) almost surely, Y M n (A, r 0 ) ↑ Y M (A, r 0 ) when n → ∞ for any M, A, r 0 ≥ 0; (2) sup A,r0 P Y M (A, r 0 ) ≥ M = O M -2/3 when M → ∞;
(3) the following implication holds almost surely:

S n (A, r 0 ) ≤ (M ∧ Y M n (A, r 0 ))A d e -2r0p =⇒ S n+1 (A, r 0 ) ≤ Y M n+1 (A, r 0 )A d e -2r0p
.

Let us suppose for the moment that such random variables Y M n (A, r 0 ) and Y M (A, r 0 ) exist. Let A, r 0 ≥ 0 and M ≥ 0. On the event {Y M (A, r 0 ) ≤ M }, it can be shown by induction that S n (A, r 0 ) ≤ M A d e -2r0p for any n ≥ 0. Indeed, S 0 = 0, and if S n (A, r 0 ) ≤ Y M n (A, r 0 )A d e -2r0p , then, using that

M ∧ Y M n (A, r 0 ) (1) 
≤ M ∧ Y M (A, r 0 ) ≤ Y M (A, r 0 ) since we are on the event {Y M (A, r 0 ) ≤ M }.

So S n+1 (A, r 0 ) ≤ Y M n+1 (A, r 0 )A d e -2r0p by (3), which achieves the induction. Thus, for any A, r 0 , M ≥ 0,

P[S n (A, r 0 ) ≥ M A d e -2r0p ] ≤ P[Y M (A, r 0 ) ≥ M ] ≤ CM -2/3 by (2).
(5.1)

for M large enough and some constant C > 0 independent of A, r 0 , M . It follows that

C : = sup A,r0 E S n (A, r 0 ) 1/2 A -d/2 e r0p = sup A,r0 ∞ 0 P[S n (A, r 0 ) 1/2 A -d/2 e r0p ≥ M ] dM = sup A,r0 ∞ 0 P S n (A, r 0 ) ≥ M 2 A d e -2r0p
(5.1)

≤ ∞ 0 CM -4/3 dM < ∞. (5.2) Let K := # N ∩ B S(r0) (u, Ae -r0
) . Let us apply Cauchy-Schwartz with the inner product defined by Since r → MBD r r0 (z) is non-decreasing for any z ∈ S(r),

X, Y = E [ i X i Y i ], E   z∈B S(r 0 ) (u,Ae -r 0 )∩RST MBD r0+nδ r0 (z) p   ≤ E   z∈B S(r 0 ) (u,Ae -r 0 )∩RST MBD r0+nδ r0 (z) 2p   1/2 E #B S(r0) (u, Ae -r0 ) 1/2 = E S n (A, r 0 ) 1/2 E #B S(r0) (u, Ae -r0 ) 1/2 (5.2) ≤ C A d/2 e -r0p E #B S(r0) (u, Ae -r0 ) ∩ RST 1/2 . ( 5 
z∈B S(r 0 ) (u,Ae -r 0 )∩RST MBD ∞ r0 (z) p = lim n→∞ ↑ z∈B S(r 0 ) (u,Ae -r 0 )∩RST MBD r0+nδ r0 (z) p . 
(5.5) Proposition 2.6 follows by (5.4) and by monotone convergence theorem.

Step 2: we build the random variables Y M n (A, r 0 ) and Y M (A, r 0 ). Let A, r 0 ≤ 0, let n ∈ N. The strategy is to upper-bound S n+1 in function of S n . Fix z ∈ B S(r0) (u, Ae -r0 ). The quantity MBD r0+nδ r0 takes into account finite backwards paths that stop before level r 0 + nδ and those (potentially infinite) that continue after level r 0 + nδ. Let us define the random set Stop(z) as the set of ending points (in the backward direction) of finite paths from z stopping before level r 0 + nδ: (z ) .

Stop(z) := {z = (r ; u ) ∈ N ∩ D(z), r 0 ≤ r ≤ r 0 + nδ, A -1 (z ) = ∅} ⊂ N .

By definition of MBD

For any p ≥ 1, a, b ≥ 0 and t ∈ [0, 1], Jensen inequality gives,

(a + b) p = t a t + (1 -t) b 1 -t p ≤ t a t p + (1 -t) a 1 -t p = t 1-p a p + (1 -t) 1-p b p . (5.8)
Applying (5.8) with t = 1/n 2 leads to:

MBD r0+(n+1)δ r0 (z) 2p (5.7) = max z =(r ;u )∈Stop(z) CFD r r0 (z ) 2p ∨ max z ∈D r 0 +nδ r 0 (z) CFD r0+nδ r0 (z ) + MBD r0+(n+1)δ r0+nδ (z ) 2p ≤ max z =(r ;u )∈Stop(z) CFD r r0 (z ) 2p ∨ max z ∈D r 0 +nδ r 0 (z) 1 - 1 n 2 1-2p CFD r0+nδ r0 (z ) 2p + n 4p-2 MBD r0+(n+1)δ r0+nδ (z ) 2p ≤ 1 - 1 n 2 1-2p max z =(r ;u )∈Stop(z) CFD r r0 (z ) 2p ∨ max z ∈D r 0 +nδ r 0 (z) CFD r0+nδ r0 (z ) 2p +n 4p-2 max z ∈D r 0 +nδ r 0 (z) MBD r0+(n+1)δ r0+nδ (z ) 2p (5.6) = 1 - 1 n 2 1-2p MBD r0+nδ r0 (z) 2p + n 4p-2 max z ∈D r 0 +nδ r 0 (z) MBD r0+(n+1)δ r0+nδ (z ) 2p . (5.9) 
Summing (5.9) over all z ∈ B S(r0) (u, Ae -r0 ) leads to:

S n+1 ≤ 1 - 1 n 2 1-2p S n + n 4p-2       z∈B S(r 0 ) (u,Ae -r 0 ) z ∈D r 0 +nδ r 0 (z) MBD r0+(n+1)δ r0+nδ (z ) 2p       . (5.10)
Let us place on the event {S n ≤ M A d e -2r0p }. Then, for any z ∈ B S(r0) (u, Ae -r0 ),

MBD r0+nδ r0 (z) 2p ≤ S n ≤ M A d e -2r0p , so, for any z ∈ D r0+nδ r0 (z), z 0z ≤ M 1/2p A d/(2p) e -r0 , so z 0I ∞ ≤ z 0z + z0I ∞ ≤ M d 2p A d 2p e -r0 + Ae -r0 since z ∈ B S(r0) (u, Ae -r0 ) ≤ Ae -r0 M d 2p + 1 since d 2p ≤ 1.
Therefore, for any z ∈ B S(r0) (u, Ae -r0 ), Define R 0 such that, for any r 0 ≥ R 0 , e (1-ε)r0 max z∈Lr 0 MBD ∞ r0 (z) ≤ 1/2. For any r 0 ≥ R 0 , z ∈ L r0 , z 1 , z 2 ∈ D(z), defining r 1 := d(0, z 1 ) and r 2 := d(0, z 2 ), z 1 0z 2 ≤ z 1 0z + z0z 2 ≤ CFD r1 r0 (z 1 ) + CFD r2 r0 (z 2 ) ≤ MBD r1 r0 (z) + MBD r2 r0 (z) ≤ 2MBD ∞ r0 (z) ≤ 2 max z ∈Lr 0 MBD ∞ r0 (z ) ≤ e -(1-ε)r0 . (5.22) This achieves the proof of Proposition 2.7.

D r0+nδ r0 (z) ⊂ B S(r0+nδ) u, Ae -r0 M d 2p + 1 . ( 5 
6 Appendix A: proof of Proposition 2.2

We first show that the RST is a tree. If the RST contains some loop z 0 , • • • , z n , then the furthest vertex to the origin in the loop, say z i , must have two parents, which contradicts the definition of the RST. Moreover, for some given vertex z ∈ N , the sequence d A (k) (z), 0 k is decreasing. In addition, since N ∩ B(r) is finite for any r ≥ 0, there is no infinite decreasing sequence d A (k) (z), 0 k . Thus A (k) (z) = 0 for some finite k ≥ 0. Therefore, the RST is a connected graph, so it is a tree.

We move on to show that the RST is locally finite. Let z 0 = (r 0 ; u 0 ) ∈ N ∪ {0}. Let us assume for the moment that, for any z = (r; u) ∈ H d+1 and r > 0, Vol(B + (z, r )) ≥ ce d(r ∧r)/2 . (6.1)

for some c independent of z, r. For z 0 = (r 0 ; u 0 ), z = (r; u) ∈ H d , let us define a(z, z 0 ) = 1 r>r0 1 B + (z,d(z,z0))∩N =∅ .

Thus, for any z 0 ∈ N , z 0 = A(z) if and only if a(z, z 0 ) = 1. By Campbell formula [START_REF] Chiu | Stochastic geometry and its applications[END_REF],

E #{z 0 ∈ N , #A (-1) (z 0 ) = ∞} = E It remains to show (6.1). Let ρ ≥ 0 and 0 ≤ r ≤ r 0 . Let z ∈ S(r ). Using the hyperbolic law of cosines in the triangle 0zz (2.7), z ∈ B + (z, ρ) ⇐⇒ d(z, z ) ≤ ρ ⇐⇒ cosh(ρ) ≥ cosh(r 0 ) cosh(r) -cos( z0z ) sinh(r 0 ) sinh(r) ⇐⇒ cos( z0z ) ≥ cosh(r 0 ) cosh(r) -cosh(ρ) sinh(r 0 ) sinh(r) .

A study of the function r → cosh(r0) cosh(r)-cosh(ρ) sinh(r0) sinh(r)

shows that, if ρ ≥ 1, then this quantity is non-decreasing when r 0 -1 ≤ r ≤ r 0 . Thus, for ρ ≥ 1 and 1 ≤ r 0 -1 ≤ r ≤ r 0 , cosh(r 0 ) cosh(r) -cosh(ρ) sinh(r 0 ) sinh(r) ≤ cosh(r 0 ) 2 -cosh(ρ) sinh(r 0 ) 2 = 1 -cosh(ρ) -1 sinh(r 0 ) 2 ≤ 1 -Ce ρ-2r0 is an isometry sending (0, 1) on (0, 0) [START_REF] Cannon | Hyperbolic geometry[END_REF]. Let us compose it with the dilation of factor e -h to build an isometry from H to I sending O(h) on (0, 0). We obtain the application φ defined as φ (x, y) = 1 (e -h x) 2 + (e -h y + 1) 2 (e -h x) 2 + (e -h y) 2 -1, -2e -h x = 1 x 2 + (y + e h ) 2 x 2 + y 2 -e 2h , -2xe h

The Poincare disc model is conform (i.e. the hyperbolic angles correspond to angles in the disc model), and the geodesics containing the origin (0, 0) are represented by straight lines, thus for any two points z 1 , z 2 ∈ I, the hyperbolic angle z 1 0z 2 coincides with the Euclidean one. For any z = (x, y) ∈ H, zO(h)I ∞ = φ (z)0φ (I ∞ ), where the second angle is taken in the disc model. Since φ (I ∞ ) = (-1, 0), if y < e h then z0(h)I ∞ < π 2 , thus zO(h)I ∞ = arctan 2xe h x 2 + y 2 -e 2h .

Figure 1 :

 1 Figure 1: Simulation of the two-dimensional hyperbolic RST, with λ = 30, in the Poincaré disc model. The edges are represented by geodesics. The different connected components of the RST (appart from the root) are represented with different colors.

Figure 2 :

 2 Figure 2: Geodesics in the open ball model

  For z ∈ N and r ≥ 0, let us define B + (z, r) := B(z, r) ∩ B(0, d(0, z)) and B + (z) := B + (z, d(z, A(z))).

Figure 3 :

 3 Figure 3: Representation of levels r and r , the ancestor A r r (•) and the set of descendents D r r (•)

Lemma 3 . 2 .

 32 e -a ⊂ H.The sets Vois(A, h), Vois (A, a, h), Vois (A, a, h) and Cyl(A), Cyl (A, a), Cyl (A, a) are represented in Figure4. We will use the following geometrical fact: For any A, a ≥ 0, h can be chosen large enough such that Vois(A, h) ⊂ Cyl(A), Vois (A, a, h) ⊂ Cyl (A, a), and Vois (A, a, h) ⊂ Cyl (A, a).(3.2)

  (A, a, h)] = 1 for any a ≥ 0.Let us assume Propositions 3.1, 3.3 and Lemma 3.2 for the moment and let us prove part (iii) of Theorem 1.1. For h ≥ 0, let us define the event U (h) := {there is a unique infinite backward path converging to I ∞ in RST(h)} By isometries invariance, P[U (h)] is independent of h, and let us suppose for contradiction that q := P[U (h) c ] > 0. For A, a, h ≥ 0, let us define the event CO(A, a, h) := {∀z ∈ N ∩ Cyl (A, a), A RST(h) (z) = A DSF (z)} By Proposition 3.3, A can be chosen such that lim inf h→∞

  By the same argument as in the previous case, CFD r r0 (z ) ≤ 2Rad(z)(M (z) + 1), and, by Lemma 4.1, CFD r0+δ r (z ) ≤ C geom e -r0 , since, by definition of z , the part of trajectory between z and z is included in Cl(z). Thus,CFD r r0 (z ) p ≤ 2 p-1 2 p Rad(z) p (M (z) + 1) p + C p geom e -pr0 .(4.6)The upper-bound (4.6) holds whatever (z, z ) belongs to C or C . It follows that (4.5) holds for any z ∈ S(r 0 ).

. 8 )

 8 By Lemma 4.3, P [Rad(z) > Re -r0 ] ≤ e -c dec R . The random variable # (N ∩ Reg(R))) is distributed according to the Poisson law with parameter λVol(Reg(R)). Recall that ν the d-dimensional volume measure on S d . Denoting by u the direction of z, λν(Reg(R)) = λν({u , u, u < Re -r0 })Vol((S(r 0 + δ)\S(r 0 )) ≤ CR d .(4.9)

ball 2 3 k+1( 3 k+1.

 33 6A + 4) d(k+1) C -(k+1) ball (6A + 4) -d(k+1) ≤2Lemma 4.3 follows.

. 20 )

 20 The second step is to upper-boundP [#L >h = ∅]. Recall that, for r ≥ 0, B + (z, r) := B(z, r) ∩ B(0, d(0, z)).For any z ∈ L >h , by triangular inequality, denoting by z * the meeting point of [z , A(z )] * and S(r 0 ), d(z , A(z )) ≥ d(z , z * ) ≥ d(z , z) -d(z * , z). The hyperbolic law of cosines (2.7) gives, d(z * , z) = arcosh cosh(r 0 ) 2 -cos( z * 0z) sinh(r 0 ) 2

  λce -rd/2 ) sinh(r) d dr, where S(d) denotes the surface area of the Euclidean unit ball S d . When r → ∞, exp(-λce -rd/2 ) sinh(r) d = o e -rd/3 e e -rd/3 thus λS(d) ∞ h exp(-λce -rd/2 ) sinh(r) d dr = o e -e -rd/3 , thus, for h large enough, and for any r 0 ≥ 0, P [L >h = ∅] ≤ e -e -hd/3 . (4.21) Finally, combining (4.19), (4.20) and (4.21) with h = -ln(M/(2Cλ))/d leads to Lemma 4.4.

. 3 )

 3 Let us show that E #B S(r0) (u, Ae -r0 ) ∩ RST ≤ CA d for some C > 0 independent of A, r 0 . We use the covering of S(r 0 ) by balls of radius e -r0 introduced by Lemma 4.2 in Section 4. For any 1 ≤ i ≤ N (r 0 ), by Proposition 4.4 applied with p = 1, E[#RST ∩ B S(r0 (z i , 1)] ≤ C for C independent of r 0 , z i . By Lemma 4.2, the number of balls intersecting B S(r0 (z i , 1) is bound byC ball A d . It follows that E #B S(r0) (u, Ae -r0 ) ∩ RST ≤ CA d .Thus, by (5.3), E   z∈B S(r 0 ) (u,Ae -r 0 )∩RST

  r0+nδ 

  r0 (z) (resp. MBD r0+(n+1)δ r0 (z)) (Definition 2.4), MBD r0+nδ r0 (z) = max z =(r ;u )∈Stop(z) CFD r r0 (z ) ∨ max z ∈D

. 11 ) 1 dPn∈N

 111 Let us defineZ n (A, r 0 ) := z ∈B S(r 0 +(n+1)δ) (u,Ae -r 0 (M 1/(2p) +1))∩RST MBD r0+(n+1)δ r0+nδ (z ) 2p .(5.12) assertion is clear for n = 0 and, for n ≥ 0,E[Y M n+1 (A, r 0 )] = 1n (A, r 0 ) + n 4p-2 A -d e 2r0p E [Z n (A, r 0 )] = p(n)E[Y M n (A, r 0 )] + A -d e 2r0p-n(d-2p)δ q(n)E [Z n (A, r 0 )] n)P (n)Q(n) + q(n)] by induction hypothesis (n + 1)Q(n + 1) since P (n + 1) ≤ 1,(5.19)which achieves the induction. Thus, there exists some constant C > 0 such that, for any M, A, r 0 ≥ 0, for anyn ∈ N, E Y M n (A, r 0 ) ≤ C M 1/(2p) + 1 d . By monotone convergence, E Y M (A, r 0 ) ≤ C M 1/(2p) + 1 d .Thus,for any M, A, r 0 ≥ 0, Markov inequality gives,P Y M (A, r 0 ) ≥ M ≤ C M 1/(2p) + 1 d M = O(M -2/3 ) since 2p > 3d.Thus the family of random variables Y M (A, r 0 ) verifies (2). This achieves the proof.Proof of Proposition 2.7. This is a direct consequence of Proposition 2.6. Let ε > 0 and let us choose p such that d/p < ε. Applying Proposition 2.6 with A = πe r0 gives that, for any r 0 ≥ 0,Ce n((d-p)+(1-ε)p) < ∞ since ε < d/p. Therefore, a.s.,lim n→∞ e (1-ε)n max z∈Ln MBD ∞ n (z) → 0 as n → ∞.Moreover, r 0 → max z∈Lr 0 MBD ∞ r0 is non-increasing, so for any n ≤ r 0 < n + 1,e (1-ε)r0 max z∈Lr 0 MBD ∞ r0 (z) ≤ max z∈Ln MBD ∞ n (z)e (1-ε)r0 ≤ e 1-ε max z∈Ln MBD ∞ n (z)e(1-ε)n , e (1-ε)r0 → 0 as r 0 → ∞.

z0∈N 1

 1 z∈N a(z,z0)=∞ + P z∈N a(z, 0) = ∞ = P z∈N a(z, 0) = ∞ + λ H d+1 P z∈N a(z, z 0 ) = ∞ dz 0 , thus it suffices to show that P z∈N a(z, z 0 ) = ∞ = 0 for any z 0 ∈ H d+1 . Let z 0 = (r 0 ; u 0 ) ∈ H d+1 . Note that, if d(z, z 0 ) ≥ r 0 , then 0 ∈ B + (z, d(z, z 0 )) so a(z, z 0 ) = 0. Thus, Campbell formula gives, E z∈N a(z, z 0 ) = λ H d+1 E [a(z, z 0 )] dz ≤ λ H d+1 1 d(z,z0)<r0 P[B + (z, d(z, z 0 )) ∩ N = ∅] dz = λ H d+1 1 d(z,z0)<r0 P exp(-λVol(B + (z, d(z, z 0 ))) dz(6.1)≤ λH d+1 P exp(-λce -d/2 d(z,z0) ) dz (2.5) = λS(d) ∞ 0 exp(-λce -rd/2 ) sinh(r) d dr, < ∞,where S(d) denotes the surface area of the Euclidean unit ball S d . Thus P z∈N a(z, z 0 ) = ∞ = 0.
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By (5.11), z∈B S(r 0 ) (u,Ae -r 0 ) z ∈D r 0 +nδ r 0 (z) MBD r0+(n+1)δ r0+nδ

(z ) 2p ≤ Z n (A, r 0 ), (5.13) thus, combining (5.10) and (5.13), on the event {S n ≤ M A d e -2r0p },

S n + n 4p-2 Z n . (5.14) This upper-bound of S n+1 suggests the following definition of the random variables Y M n (A, r 0 ). We set Y M 0 (A, r 0 ) := 0, and for any n ≥ 0,

Let us also define

Thus the random variables Y M n (A, r 0 ) verify (3). We move on to show that (Y M n (A, r 0 )) n,M,A,r0 and (Y M (A, r 0 )) M,A,r0 also verify [START_REF] Baccelli | Semi-infinite paths of the two-dimensional radial spanning tree[END_REF]. To proceed, we upper-bound E[Y M n (A, r 0 )] by induction on n.

For any M, A, r 0 , n, Proposition 2.5 applied for θ = Ae -r0 M 1/(2p) + 1 gives,

Let us define, for any n ∈ N,

and

(5.17)

with the convention P (0) = 1 and Q(0) = 0. It can be noticed that

Let us show by induction on

The for some C > 0 independent of r 0 , r, ρ. Thus, there exists C > 0 independent of r 0 , r, ρ such that, if ρ ≥ 1 and 1 ≤ r 0 -1 ≤ r ≤ r 0 , if z0z ≤ Ce ρ/2-r0 then z ∈ B + (z, ρ). Therefore, by (2.5), if ρ ≥ 1 then (recall that ν is the d-dimensional volume measure on S d and u is the direction of z),

Therefore, the RST has finite degree a.s.

It remains to show that the geodesics [z, A(z)] for z ∈ N do not cross a.s. in the bi-dimensional case (d = 1). Let us suppose that there are no two points z 1 , z 2 with d(0, z 1 ) = d(0, z 2 ) (this happens with probability 0). Let z 1 = (r 1 ; u 1 ), z 2 = (r 2 ; u 2 ) ∈ N and let us set A(z 1 ) := (r 1 ; u 1 ), A(z 2 ) := (r 2 ; u 2 ). Suppose that [z 1 , A(z 1 )] and [z 2 , A(z 2 )] meet at some point P hyp := (r hyp ; u hyp ). We have r 1 < r hyp < r 2 , thus by definition of the parent,

so d(P hyp , A(z 2 )) < d(P hyp , A(z 1 )). On the other hand, interchanging z 1 and z 2 in the previous calculation leads to d(P hyp , A(z 1 )) < d(P hyp , A(z 2 )). This is a contradiction. Therefore [z 1 , A(z 1 )]∩ [z 2 , A(z 2 )] = ∅. This achieves the proof of Proposition 2.2.

7 Appendix B: computing distances and angles in the half-space model 

We refer to [13, Proposition 5] for a proof.

Proposition 7.2 (Angle formula). Let z = (x, y) ∈ H and let h ≥ 0. Recall that O(h) = (0, e h ) and I ∞ = (0, 0). If y < e h , then

Proof of Proposition 7.2. The proof is done by considering the isometry that sends the half-space model on the Poincaré disc model [START_REF] Cannon | Hyperbolic geometry[END_REF]. The Poincaré disc model is defined as:

endowed with the following metric:

2)

The application φ : H → I defined as:

(x, y) → 1 x 2 + (y + 1) 2 x 2 + y 2 -1, -2x