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Abstract
Background and aims Monitoring root water uptake
dynamics under water deficit (WD) conditions in fields
are crucial to assess plant drought tolerance. In this
study, we investigate the ability of Electrical Resistivity
Tomography (ERT) to capture specific soil water deple-
tion induced by root water uptake.

Methods A combination of surface and depth electrodes
with a high spatial resolution (10 cm) was used to map 2-
D changes of bulk soil electrical conductivity (EC) in an
agronomic trial with different herbaceous species. A
synthetic experiment was performed with a mechanistic
model to assess the ability of the electrode configuration
to discriminate abstraction patterns due to roots. The
impact of root segments was incorporated in the forward
electrical model using the power-law mixing model.
Results The time-lapse analysis of the synthetic ERT
experiment shows that different root water uptake patterns
can be delineated for measurements collected under WD
conditions but not under wet conditions. Three indices
were found (depletion amount, maximum depth, and
spread), which allow capturing plant-specific water signa-
tures based moisture profile changes derived from EC
profiles.When root electrical properties were incorporated
in the synthetic experiments, it led to the wrong estimation
of the amount of water depletion, but a correct ranking of
plants depletion depth. When applied to the filed data, our
indices showed that Cocksfoot and Ryegrass had
shallower soil water depletion zones than white clover
and white clover combined with Ryegrass. However, in
terms of water depletion amount, Cocksfoot consumed
the largest amount of water, followed by White Clover,
Ryegrass+White Clover mixture, and Ryegrass.
Conclusion ERT is a well-suited method for phenotyp-
ing root water uptake ability in field trials under WD
conditions.

Keywords Electrical resistivity tomography. Soil-root
modeling. Hydrogeophysics. Crop imaging. Geophysi-
cal inversion
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Abbreviations
ERT Electrical Resistivity Tomography
WD Water deficit
TDR Time Domain Reflectometry
C Cocksfoot (C)
R +WC Ryegrass+White clover mixture
WC White clover (WC)
R Ryegrass
RND Root number density
VGM Van-Genuchten Mualem
ET0 Evapotranspiration
rrms Root mean square error

Introduction

Developing and characterizing crops tolerant to drought
and able to keep high yields under limited soil water
resources are key challenges to face increasing global
food demand in a changing environment. Root systems
control plant access to soil water and are thus key organs
for drought tolerance. Plant breeders are interested to
optimize plant performances by understanding the soil
exploration dynamics of roots, their reaction to the
spatial distribution of soil water, and root hydraulic
properties between root orders and age (Meunier et al.
2020). Yet, the ability to accurately, and extensively
characterize root traits or phenes (i.e. characteristic fea-
tures) is a major challenge in the field of root biology
(Meister et al. 2014). Novel root phenotyping tech-
niques, i.e., tools to characterize root system properties
and functions in situ (Atkinson et al. 2019) are instru-
mental to develop these new genotypes. Typically, most
of the current root phenotyping is performed on young
plants grown in aeroponics, or small containers filled
with non-natural substrates. Plant’s ability to deal with
the heterogeneous environment is therefore difficult to
assess. Recognizing the limiting interest of root pheno-
typing in pots, Passioura (2012) suggested that field
phenotyping is needed to ensure that plant genotypes
can deal with the natural temporal and spatial variability
of the environment.

Root water uptake distribution is a key factor to
assess plant tolerance and adaptation to water deficit
(WD) conditions. Root water uptake is not the only
function of root system architecture and soil water avail-
ability, but also of root hydraulics (Leitner et al. 2014;
Meunier et al. 2017). Hence, the dynamics of root water

uptake reveals plant functioning, in particular under
WD. Yet, root water fluxes are impossible to monitor
in the field, and often soil water depletion resulting from
root uptake is measured instead. However, soil water
depletion patterns cannot always be linked to root water
uptake distribution due to soil water movements
(Vandoorne et al. 2012). In wet conductive soils, water
uptake can take place without a change of soil moisture,
for instance. To associate water depletion to uptake
patterns, soil water fluxes must be limited.

Recently Cimpoiaşu et al. (2020) reviewed specific
advantages and limitations of geoelectrical methods to
monitor root zone processes and structure and showed
that Electrical Resistivity Tomography (ERT) is well
suited to monitor soil water content evolution and thus
soil water depletion patterns in situ. High-resolution
root-zone soil moisture monitoring can reveal the dif-
ferences between the root system of different species
under varying climatic conditions. For example, moni-
toring soil water depletion patterns via ERT has shown
to provide useful information on root density (Amato
et al. 2008; Paglis 2013), soil compaction due to tillage
(Besson et al. 2004), soil water content (Michot et al.
2003; Garré et al. 2011; Beff et al. 2013; Dahlin et al.
2014) thereby promising itself as a valuable tool to
monitor soil-root system.

Most studies usually analyzed absolute resistivity
obtained from surface ERT. For example, Panissod
et al. (2008) demonstrated that 2D ERT obtained resis-
tivity information could be used to investigate soil water
patterns in maize fields. Brillante et al. (2015) applied
ERT to identify water movements and active uptake
zones in a vineyard. Ain-Lhout et al. (2016) monitored
soil moisture in the root zone system of a tree. Mares
et al. (2016) studied the evolution of soil and tree water
content using 2-D ERT. Monitoring temporal change of
resistivity using ERT instead of absolute resistivity has
some advantages in eliminating artifacts due to bad
contact electrodes and is being used in the number of
soil-root studies. Boaga et al. (2013) used time-lapse
ERT to study water uptake dynamics in the apple or-
chard farm. Jayawickreme et al. (2008) used temporal
changes in resistivity to compare forest with grasslands.
Garré et al. (2013) showed that in an inter-cropped field,
the ERT method could distinguish the depth of soil
water depletion for different plant species and also
differentiate fertilized and unfertilized treatments when
analyzed in temporal changes of water content instead
of absolute resistivity. Srayeddin and Doussan (2009)
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used ERT to compare soil water depletion patterns of
maize and Sorghum and found Sorghum to be more
efficient in water extraction as compared to Maize. In
their studies only when the temporal difference in resis-
tivity or water content were analyzed the comparison
between species became apparent. However, in water
stress treatment, the water uptake front could not be
quantified beyond 50–60 cm depth due to poor sensi-
tivity of surface electrode configuration (Srayeddin and
Doussan 2009). Recently, Benjamin et al. (2020) used
time-lapse electrical resistivity tomography and mise-à-
la-masse to monitor root distributions in a vineyard.
More recently, Whalley et al. (2017) successfully used
surface ERT at field scale to distinguish wheat geno-
types based on their soil water profile evolution. They
concluded that ERT was a promising tool for phenotyp-
ing because of its ability to characterize deep changes of
electrical resistivity, and its higher sensitivity to dry soil.

However, ERT faces several challenges when used
for field phenotyping. Small differences in rooting or
water uptake depths between genotypes might result in
large differences in terms of drought tolerance
(Manschadi et al. 2006), which means that high spatial
resolution is needed. Therefore, the contrast between
uptake patterns of different genotypes is not always
visible with ERT (Whalley et al. 2017). Also, the sensi-
tivity of ERT measurements to root and soil water de-
pletion is not always sufficient (Rao et al. 2019), and can
even be decreased by additional processes such as solute
distribution or too wet soil conditions. Furthermore,
commonly used surface electrode configuration may
not be suitable for phenotyping roots that need higher
spatial resolution in the sub-meter scale where differ-
ences between different root systems occur (Srayeddin
and Doussan 2009). Because of the ill-posed nature of
ERT inversion, it is necessary to differentiate the chang-
es observed in ERT inversions in terms of artifacts and
physiology of plants to have meaningful results.

In this study, our general objective is to investigate
the ability of ERT to detect slight differences in deple-
tion depths between plant species in a quantitative way.
Our specific questions were (i) how to analyze ERT
field data to detect slight changes in water depletion?
(ii) what is the spatial resolution that is needed and that
can be achieved to discriminate plant uptake behaviors?
To answer these questions, we develop a new quantita-
tive approach to discriminate soil water abstraction
amount, depth, and spread based on a synthetic experi-
ment with a process-based model in which we included

the uncertainty in petrophysical relation (Rao et al.
2019). This methodology was then used to interpret 2-
D ERT field data in an agronomic field trial comparing
different herbaceous species, with potentially different
root systems functioning as a test for our method.

Materials and methods

Field trial description

The experimental field is located in Corroy-le-Grand
(Belgium), in the De Marbais University farm. A
random-block field trial was established in 2012 for com-
paring combinations of three herbaceous species under
two contrasted treatments: control (normal weather con-
ditions) and WD through a shelter preventing rainfall for
six weeks. The whole field trial was organized in blocks
(7.2 m × 7 m) made of four plots (1.5 m width × 7 m
length each) with a separation of 30 cm between plots
(Fig. 1). In this study, we focused on four plots with the
following species: cocksfoot (C), ryegrass+white clover
mixture (R +WC), white clover (WC) and ryegrass (R).
Cocksfoot (Dactylis glomerata) and ryegrass (Lolium
perenne) are both deep-rooted perennial grasses. White
clover (Trifolium repense) is a perennial legume plant
commonly grown in mixture with ryegrass in pastures. It
is typically described as a shallow-rooted plant but its root
system can reach 1 m-depth (Nichols et al. 2016).

The soil type is a luvisol (loamy soil developed on
loess) with 6 different soil horizons: Ap1, Ap2, Ap3,
Bt1, Bt2, and C in WD treatment and 5 soil horizons in
control (all except Bt2) as shown in Fig. 1b. Due to
natural heterogeneity, the WD and control treatment
zones had slightly different soil horizons as revealed
by soil trenches (Fig. 1b). Soil trenches were dug to
estimate root distribution profiles for each species in
each plot using the Tardieu profile method (Tardieu
1988). We used a grid of 5 cm × 5 cm to count the root
numbers to obtain a 2-D distribution of Root Number
Density (RND) at the end of the season.

The soil hydraulic properties were characterized
using the evaporation method (Bezerra-Coelho et al.
2018) on 250 cm3 undisturbed soil cores sampled from
the different horizon and the Hyprop-fit software
(Pertassek et al. 2015) to fit the experimental data with
the Van-Genuchten-Mualem (VGM) soil hydraulic
model. A nearby weather station provided the potential
evapotranspiration (ET0) and precipitation data. The
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potential evapotranspiration, precipitation, and root
number density distributions are shown in Fig. 2.

Field ERT

ERT data acquisition

In 2016, surface and depth ERT electrodes were
installed regularly along 2-D planes, each of them cross-
ing the middle of four plots (see Fig. 1a): one inWD, the
other one in control conditions.

For ERT data acquisition, we used 123 electrodes,
including 48 placed on the surface (with a separation of
0.15 m) and 75 electrodes distributed along 13 bore-
holes (Fig. 3). Boreholes were made of PVC sticks, with
embedded stainless-steel rings used as electrodes, with a
diameter of 46 mm for each ring (same as Beff et al.
2013), the separation between electrodes increases with
depth (Fig. 1a). Between each pair of boreholes, we
placed four surface electrodes.

The ERT data was collected using an ARES II 10-
channel automatic resistivity system (from GF instru-
ments®). ERT monitoring data set consisted of three-
time stamps (denoted by t1 to t3), with data collected
along the experimental block every week along three
consecutive weeks. The exact dates of measurements
were t1: 03/08/2017, t2: 09/08/2017, and t3:16/08/2017.
For the ERT measurements, we used current injections
with 100% duty cycle, with a pulse length of 300 ms,
and stacking varying between 3 and 4 repetitions.

The injection scheme comprised of 3084 quadru-
poles, out of which 450 quadrupoles were reciprocal
readings (collection of the same quadrupole after
interchanging the current and potential dipoles). To
describe the configuration in the injection scheme, we
denote current injecting electrodes as AB and potential
measuring electrodes asMN. The injection scheme used
in the experiment is categorized into:

a) Scheme 1 (Surface measurements only): Gradient
(Schlumberger) and dipole-dipole configuration
(Dahlin and Zhou 2006) among the 48 surface
electrodes spanning 7.2 m representing 20% of total
quadrupoles. The dipole-dipole scheme consisted of
skip-0 (dipole spacing of one electrode or 15 cm),
skip-1 (dipole spacing of two electrodes or 30 cm),
and skip-2 (dipole spacing of three electrodes or
45 cm) protocols. Each current injection consisted
of five potential measurements with a separation

varying from 15 to 45 cm. Gradient configuration
had a maximum current electrode separation dis-
tance of 60 cm and each current injection had 5
simultaneous potential measurements with a dipole
spacing of 1 to 3 electrodes (15 to 45 cm).

b) Scheme 2 (Boreholes only): (i) AB on a given
borehole and MN on its adjacent borehole, and (ii)
AM on a given borehole and BN on its adjacent
borehole. Only two adjacent boreholes were used in
the injection scheme, i.e., there was no measure-
ment or injection between the first and third bore-
hole. This scheme represented about 20% of the
total quadrupoles.

c) Scheme 3 (Surface-borehole interacting scheme):
AB (or MN) on surface electrodes located between
any two borehole sticks and MN (or AB) on bore-
holes situated directly below surface electrodes with
a dipole spacing of one or two for current injection
and for each AB we had five to seven MN’s with
skip-0 and skip-1 spacing. This scheme represented
the remaining 60% of the total quadrupoles.

ERT inversion theory

We used the pyGIMLi software (Rücker et al. 2017) for
the inversion of the ERT data sets. In the inversion
algorithm, the Gauss-Newton scheme is used to itera-
tively minimize the objective function (ϕ):

ϕ ¼ ϕd þ λϕm

¼ ‖
d − f mð Þ

log 1þ Emodelð Þ ‖
2
2 þ λ‖W m −m 0ð Þ‖22 ð1Þ

where ϕd corresponds to the data misfit between the

measured data vector (d ) and the data estimated by the
model ( f mð Þ) down-weighted by the error model
(Emodel). ϕm represents the model misfit and is multi-
plied by the regularization parameter λ determining the

weighting of the model versus data misfits. d stands for
the log of measured apparent resistivities from real/
numerical experiments, m 0 is a homogeneous starting
model vector, W is a first-order smoothness regulariza-
tion matrix used to stabilize the inverse problem that is
inherently ill-posed. An L2-norm is adopted as
smoothed shapes of the subsurface properties are in-
ferred. The regularization is made anisotropic by having
a smaller value for smoothness in the vertical direction
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as compared to the horizontal direction for resolving
horizontal layering of soil horizons.

We quantified field data error using the analysis of
normal-reciprocal misfit, first described by LaBrecque
et al. (LaBrecque et al. 1996). In our measurements, we
computed an absolute error of 0.04 Ω and a relative
error of 12% (see supplement S2 for details). The
optimum regularization constant λ was determined
using L-curve analysis (Hansen 1992; Bergmann
et al. 2017). For different values of λ ranging from
5 to 1000, we computed ϕd and ϕm. The λ value for
which the ϕd vs ϕm curve has a minimum distance to

the origin is chosen as the optimum value (see sup-
plement S3 for details).

The ratio by which λ is reduced for vertical contrast
is determined by Zw that is fixed to 0.5 meaning that the
smoothness regularization strength in the vertical direc-
tion is half of the horizontal one.We chose Zw of 0.5 and
a λ of 150 for the inversion of synthetic data. We found
that the choice of Zw played an important role in reduc-
ing inversion artifacts and the chosen value of 0.5 pro-
duced least artifacts when visually as well as quantita-
tively compared with the original model (see supple-
ment S4 for details).

Fig. 1 a) A schematic view of an individual block showing the
ERT electrodes at the center plane (y = 0) used for two-
dimensional ERT imaging. The black dots represent the surface
point electrodes while the black squares are the borehole ring
electrodes. Inside the ERT block, one binary mixture (R +WC:

ryegrass+white clover) and three monocultures (C: cocksfoot;
WC: white clover; R: ryegrass) are present. Location of TDR
probes (triangles) installed at different depths in the ryegrass plot.
Different soil-horizons are indicated along with TDR locations
(triangles) for b) control and c) water deficit treatments
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We used the relative root mean square error (rrms) and
chi-square χ2 value to assess the quality of inversion:

rrms ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑ d − f mð Þ

d

h i2
N

vuut
:100% ð2Þ

χ2 ¼
∑ d − f mð Þ

Emodel

h i2
N

ð3Þ

where N is the length of the data vector (d ). Here
the inversion is stopped when the rrms value
reaches 2% or χ2 is around 5 to 8 (Günther and
Rücker 2006). Optimized resistivity fields were
then temperature-corrected at 25 °C (Luo et al.
2019) based on field thermometers (see next sec-
tion) assuming homogeneous lateral temperature
distribution and linear depth interpolation.

Fig. 2 a) Log of root number densitymeasured in the field, b) weather condition in the control plot and c) weather condition inwater deficit plot
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Time domain Reflectometry (TDR) and Petrophysical
model

Besides ERT, we installed nine TDR probes along with
the ryegrass plant plot at different depths (i.e., soil
horizons) for monitoring on an hourly basis soil water
content (θTDR) and electrical resistivity (ρTDR) from 29/
05/2018 to 26/10/2018. Temperature sensors were
installed at the same depths as the TDR for electrical
resistivity temperature correction. We followed a 2%

decrease in electrical resistivity per degree centigrade
(Beff et al. 2013; Whalley et al. 2017; Luo et al. 2019).

A median filter with a window size of 3 h was used to
filter out the outliers in ρTDR and θTDR. The filtered data
were combined per groups of the pedological horizon
(Ap and Bt) for WD and control conditions and used to
characterize soil petrophysical functions per horizon, by
fitting the following model:

θ ¼ a log10 ρð Þb þ θr ð4Þ

Fig. 3 Combined TDR measurements in 2018 for water deficit
and control conditions (electrical conductivity (σTDR) versus water
content θ)) at different soil horizons: a) Ap layer, b) Bt layer, and

c) C layer. The color in the scatter plot indicates the depth of the
TDR probes and n is the no. of probes. The red line represents the
empirical model fit [Eq.4] to the data
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where a and b are the fitting parameters, θr is the
residual water content. The fitting parameters for each
soil horizons along with RMSE of fits are given in
Table 1, and θr is 0 except for the C layer (Table 2).
The fits along with the TDR data are shown in Fig. 3.

Numerical experiments

We conducted a synthetic experiment with the follow-
ing objectives: (1) to evaluate the reliability of the ERT
injection scheme to capture the variability of subsurface
resistivity in terms of coverage; (2) to investigate the
ability of ERT to discriminate different root water up-
take pattern evolutions; (3) to formulate ERT-derived
indices, able to quantify the uptake behavior of plants
and (4) to investigate how petrophysical relation includ-
ing root electrical properties might impact our results.
Figure 4 describes the detailed workflow for the numer-
ical experiment and its connection to real field data
interpretation. We combined water-flow simulations
(blue in Fig. 4) with forward and inverse ERT simula-
tions (red in Fig. 4) to generate synthetic experiments
representing potential ERT field observations to later
compare with real field data.

Water flow simulations

We used the mechanistic soil-plant water flowmodel R-
SWMS (Javaux et al. 2008, 2013) to simulate the evo-
lution of soil water content distributions in the field trial
for 3 weeks (between 03/08/2017 and 16/08/2017). R-
SWMS is a validated process-based model (Koch et al.
2019), which predicts plant actual transpiration and 3-D
root and soil water uptake fluxes based on soil and plant
hydraulic properties and a potential evapotranspiration
demand (ET0). The simulation domain is a block of
7.2 m × 0.1 m × 1.5 m crossing the middle of the 4 plots
corresponding to the location of the vertical ERT elec-
trode plane. Two simulations were run: one for the

control and one for the WD conditions, with the corre-
sponding, observed rainfall, irrigation and evapotrans-
piration times series.

The soil domain consisted of five layers correspond-
ing to the observed soil horizons shown in Fig. 1b and c
(control and WD treatments have a slightly different
horizon distribution). Soil hydraulic properties of each
layer are parameterized with the VGM model (see
Table S1 in the supplement S5).

The soil boundary conditions for the control treat-
ment consisted of the precipitation time series from
weather station complemented by manual irrigation
(Fig. 2c). Free drainage was used as a soil bottom
boundary condition. For WD treatment, a no-flux soil
top boundary condition was used as neither rainfall nor
irrigation happened during the simulation period. Evap-
oration fluxes between plots were neglected. To gener-
ate realistic 3-D initial conditions at the beginning of our
experimental period, we ran the warm-up for 30 days.
The initial soil condition at time − 30 days was hydro-
static equilibrium with a saturated soil at the depth of
−316 cm.

Root water uptake of the different plant species was
simulated using the macroscopic parameterization pro-
posed by Couvreur et al. (2012). We normalized the
measured RND of the 4 plots as a proxy for soil uptake
fraction (SUF) distribution (Fig. 2b). We assumed that
the equivalent conductance of the root system (Krs)
equals the compensatory root water uptake conductance
(Kcomp) (see Table S2 of supplementary material).

Table 1 Empirical fitting parameters found using non-linear op-
timization presented in Eq. [4] for different soil horizon and their
corresponding RMSE.

Horizon a b θr RMSE

Ap (Ap1, Ap2, Ap3) 0.4528 −1.7299 0 0.017

Bt (Bt1, Bt2) 1.107 −3.619 0 0.025

C 18.8792 −9.0224 0.1 0.012

Table 2 Relative percentage error of Gaussian fit parameters
between R-SWMS simulated change of water content (δθfwd)
and ERT inverted change of water content (δθinv) for different
scenarios

Scenario Gaussian fit
parameters δθfwd−δθinv

δθfwd

��� ���%
1 Aδθ C R+WC WC R

3.18314 33.8091 7.79448 17.653

μz,δθ 0.021121 6.41863 3.32526 4.00994

σz,δθ 19.408 13.2332 12.6652 43.2708

2 Aδθ 17.1256 20.1984 4.55819 15.5163

μz,δθ 3.96602 6.29113 4.44595 4.05132

σz,δθ 20.3411 12.8036 5.41698 42.8032

3 Aδθ 42.3186 39.3282 40.0956 19.3176

μz,δθ 2.33008 12.7311 7.78745 5.07675

σz,δθ 2.33873 28.8829 6.44379 33.5639
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With this assumption, differences between root water
uptake patterns will only be due to the difference be-
tween RND distributions and available water in the soil.
This means that no differences between the root hydrau-
lic properties of the different species were considered.
The ET0 estimated from the weather station data was
used as a plant flux boundary condition.

ERT simulations - generation of synthetic resistivity
distributions

Modeled water content maps were transformed to elec-
trical resistivity fields using Eq. 4. The pyGIMLi soft-
ware was used for ERT forward simulations on the

synthetic resistivity model, which solves Poisson’s
equation in 2.5-D to compute the modeled ERT data
with the same injection scheme than in reality. The
forward modeled ERT measurements were contaminat-
ed with Gaussian noise with an amplitude defined by the
error model quantified for field data. Inversion of the
modeled ERT data was performed using the same meth-
odology as in the field. Different meshes were used for
forward and inverse calculation to avoid inverse crime.

Gaussian fits

In WD treatment, any increase in electrical resistivity is
supposed to be due to a water content decreased

Fig. 4 Methodology for synthetic experiment and its relation to the field experiment, the blue area corresponds to water-flow simulations
and the red area shows the ERT simulations. The region outside the red and blue areas corresponds to real field experiments
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generated by plant water uptake. The 2-D distributions
of water content at t3 and t1 denoted by θ (t3) and θ (t1)
are obtained by applying petrophysical relation (Eq. 4)
to 2-D distributions of electrical resistivity at t3 and t1
denoted by ρ(t3) and ρ(t1). To characterize plant-
specific depletion patterns, we compute the 2-D time
difference of resistivity and water content defined as:

δρ ¼ log ρ t3ð Þð Þ−log ρ t1ð Þð Þ
and the change of water content between t1 and t3 is
defined as

δθ ¼ θ t3ð Þ−θ t1ð Þ
The 1-D medians at each depth from 2-D distribu-

tions of δρ and δθ was computed for each plant and a
Gaussian curve was fitted to the 1-D medians of δρ and
δθ profiles (δρfit and δθfit):

δρfit ¼ aδρ*exp
− δρ−μZ;δρ

� �2
2*σZ;δρ

2

 !
ð5Þ

δθfit ¼ aδθ*exp
− δθ−μZ;δθ

� �2
2*σZ;δθ

2

 !
ð6Þ

From the fitted Gaussian function, the six parameters
of a Gaussian function were then optimized to fit these
1-D profiles: aδρ, aδθ, μZ, δρ, μZ, δθ, σZ, δρ and σZ, δθ. The
mean parameter μZ, δρ or μZ, δθ represents the depth at
which depletion is the largest (maximum depletion
depth) while σZ, δρ or σZ, δθ represents the spread of
the depletion as illustrated in Fig. 5a. The product of the

amplitude parameter (
ffiffiffiffiffiffi
2π

p
aδθ) with the spread (σZ, δθ)

represents the amount of abstracted soil water, which
will be denoted by Aδθ [m].

Uncertainty in the petrophysical relation due
to the presence of roots

To account for the uncertainty brought by the presence
of roots on the petrophysical relation (Rao et al. 2019),
we ran additional synthetic scenarios including the im-
pact of root-specific electrical conductivity on the bulk
conductivity map (Fig. 6). First, we transformed R-
SWMS-simulated water content maps (θR − SWMS) into
forward electrical resistivity map ρsoil using the soil-
specific petrophysical relation of Eq. 4. Second, the
impact of root segments is added to the forward

electrical resistivity map using the mixing model ap-
proach of Winchen et al. (2009). We do not consider
root explicit architecture as in Rao et al. (2019) due to
computational constraints at the field scale. Instead, a
two-phase mixing model (Winchen et al. 2009) is used
to compute the effective electrical conductivity bulk
resistivity ρmm based on root resistivity (ρroot) and soil
resistivity maps (ρsoil(X,Z)):

ρmm ¼ f ρroot
αð Þ þ 1− fð Þ ρsoil

α X ; Zð Þð Þ½ � 1α ð7Þ
where f is the relative area of root segments to the total
area and (1 − f) is the relative area of the soil region. α is
an exponent describing the geometry of two phases (soil
and root): if soil and root component would be connect-
ed in series, then α would equal −1 and for perfectly
parallel connection, α = 1. In reality, the soil-root sys-
tem represents a mixture of series and parallel connec-
tions, and hence, α captures this complex connectivity
information. In this study, we assume α = 0.5 which we
obtained from a specific numerical experiment (see
supplement S6).

The root fraction map was estimated based on the
root number density map.We computed the root surface
density by assuming a constant root diameter of 0.03 cm
(Gibson 2009) and an averaged root length of 1,83 cm/
cm2 (Faye et al. 2019). Two scenarios were considered
for ρroot based on root measurements made by Ehosioke
et al. (Ehosioke et al. 2018): 10 Ωm and 100 Ωm. Three
scenarios were defined:

a) Scenario 1: ρsoil derived from θR − SWMS is not con-
taminated with ρroot in synthetic ERT experiment.

b) Scenario 2: ρsoil derived from θR − SWMS is contam-
inated with ρroot = 10Ωm in synthetic ERT
experiment.

c) Scenario 3: ρsoil derived from θR − SWMS is contam-
inated with ρroot = 100Ωm in synthetic ERT
experiment.

Results

ERT field experiment results: Qualitative comparison
between WD and control conditions

In Fig. 6a and b, we show the inversion results of field
data under control and WD conditions, respectively.
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The inversion converged after 3 to 5 iterations with rrms
<2 and χ2 < 8 (see the textbox to the right of Fig. 6a).
Since we had higher measurement errors in the WD
treatment, the inversion has higher χ2 values as com-
pared to the control treatment. Since only small regions
show the log of resistivity higher than 2.2 or lower than
1.2 in both WD and control treatments, we cut our color
scale from 1.2 to 2.2 in Fig. 6a and b to compare both
treatments simultaneously.

Conspicuously, the impact of treatments WD versus
control is well captured by the ERT imaging. WD plots
are increasingly resistive from t1 to t3 whereas the
opposite scenario happens for the control treatment. In
the controlled plots, rainfall and soil infiltration decrease
the electrical resistivity of the surface layer as shown by
the fading red region in the top horizon (Z < 0.3 m) from
t1 to t3. On the contrary, in the WD treatment, the root
water uptake is the main driver of electrical resistivity
changes. Indeed, such a process is highlighted by the
widening drying front of the light green region (corre-
sponding to log(ρ) = 1.75 Ωm) from t1 to t3 in Fig. 6b
indicating a deeper root water uptake (Z < = −1 m).

Some differences between plants are visible in Fig. 6
a and b for both control and WD conditions. In control,
the region corresponding to log(ρ) = 1.56 to 1.65 Ωm
goes deeper (Z > 0.5 m) for plants R +WC and WC as
compared to the plants C and R (Fig. 6a). Similarly, in
WD, the region cor responding to log(ρ ) =
1.75 Ωm goes deeper (Z > 0.5 m) for the first three
plants (C, R +WC, and WC) compared to R (Fig. 6b).

The inversion results in both treatments show a
slightly shallower depletion zone of R as compared to
the first three plants (C, R +WC, and WC). However,
large variability in electrical resistivity is also visible
within plots, which makes the proper quantification of
the depletion depth difficult to assess.

Synthetic experiments

Forward simulations

In Fig. 7a and b, R-SWMS simulations show contrasted
soil water content patterns for control and WD treat-
ments. In both control and WD treatments, we observe
the effect of the root water uptake on the soil water
content (dark brown patches in Fig. 7a and b). The water
content distribution in the control treatment is quite
homogeneous at depths below 0.75 m (Fig. 7a) while
it is the opposite in the WD treatment (Fig. 7b). We see
the impact of root water uptake in the WD treatment up
to 1.5 m in depth (dark brown patches in Fig. 7b at Z >
1 m). In control treatment (Fig. 7a), regular rainfall
events between t1 and t3 (see Fig. 2b) fade out the soil
water depletion pattern in the top 25 cm of the soil
(increasing blue front in top 25 cm of Fig. 7a). In the
WD treatment, we see the impact of root water uptake in
the form of a deepening drying front between t1 and t3
(expansion of dark brown patches in Fig. 7b).

The differences between (C, R +WC, and WC) and
R are evident in both treatments. The plant R does not

Fig. 5 Illustration of Gaussian fits for discriminating plant uptake
behavior: a) plant uptake region is shallow but the spread is wide,
b) uptake region is deeper while the spread is narrow, and c)
uptake is shallow and spread is narrow. The yellow line indicates

possible ERT observation while the blue line is the Gaussian fit.
The gray shade indicates the uptake spread (σZ, δρ or σZ, δθ) while
dotted line indicates maximum depletion depth (μZ, δρ or μZ, δθ)
and the amplitude of the Gaussian peak is the depletion amount a
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go deeper than 30 cm while other plants influence the
soil water content much below 30 cm (Fig. 7a). Al-
though slight differences between species can be

observed for the control treatment (Fig. 7b), the soil
water content pattern evolution is mainly controlled by
rain and not root characteristics.

Fig. 6 Inversion results of field data at different times for a) control and b) water deficit treatments. Inversion quality parameters are shown
to the right. The black dotted line represents the positions of different plants
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Figure 7c and d show the corresponding electrical
resistivity fields for the control and the WD treatments,
respectively obtained with the petrophysical relations
(Fig. 3). Similar to the field data in Fig. 6, only small
regions in our synthetic experiment showed the log of
resistivity higher than 2.2 or lower than 1.2 in both
treatments. Therefore, we cut our color scale from 1.2
to 2.2 in Fig. 7c and d to compare both treatments
simultaneously. Although the objective of the synthetic
experiment was not to fit the field observations, we can
still make a qualitative comparison of the observed
patterns. The fading of the high resistive region
(log(ρ) > = 2.2) in the top horizon of the control condi-
tion in Fig. 7c closely resembles the experimental results
of Fig. 6a. However, in the WD condition, comparing
Figs. 7d and 6b show that field data are more resistive
especially at depth 0.5 m < Z < 1 m and structurally
more heterogeneous in terms of uptake front. These
differences in resistivity magnitude in simulations and
experiments can arise due to uncertainty in the
petrophysical function used to convert R-SWMS water
content to electrical resistivity.

ERT inversion

Figure 8 (a, c, e, g) shows the forward and inverted
electrical resistivity (expressed as logρ) at t3 for the
control treatment and the three scenarios under WD.
We focused only on the first-meter depth, where the
sensitivity is higher (see supplement material section C).
In general, it is observed that the inverted log(ρ) field
generally keeps the main features of the forward simu-
lations. In general, the high-resistivity zones are re-
trieved for both treatments and all (combinations of)
plant species. However, while the difference between
species is visible in the control treatment, no obvious
difference between patterns seems to appear in the WD
treatment. Figures 8(e and f) show the forward and
inverse resistivity maps for Scenario 2 and 3 in WD
condition, where the impact of root resistivity was in-
corporated using a mixing model. Comparing Figs. 8b,
e, and f, we see that the presence of roots increases
electrical resistivity in some regions: for the yellow
region (log(ρ) = 1.65) in Fig. 8b to light green (log(ρ) =
1.75) in Fig. 8e for Scenario 2 (ρroot = 10 Ωm) and to
dark green (log(ρ) = 1.84) for Scenario 3 (ρroot =
100 Ωm).

Figures 8(b, d, f, h) show the time difference or the
change of log resistivity between t1 and t3 (δρ) of the

forward and inverted datasets for control and the three
scenarios ofWD. Areas with a positive δρ correspond to
zones from which soil water is extracted. Forward sim-
ulations for the control treatment show no increase in
electrical resistivity (Fig. 8b), probably due to the rain-
fall events. Even if, in general, the inversion recovered
well the main patterns, no information on root water
uptake depths can be inferred from the control
treatment.

In the WD treatment, differences between species are
much clearer in δρ (Fig. 8d) than in log(ρ) (Fig. 8c).
Moreover, not only the magnitude of δρ but also its
spatial distribution are affected by plant species. Al-
though the sharp boundary of depleted zones is blurred
in the inversion results in Fig. 8d, possibly due to the
smoothness constraint in the ERT inversion, the ranking
of plants uptake depth seems to remain. For example,
notice the differences between (C, R +WC, and WC)
and R in Fig. 8d. Comparing δρ of the three scenarios
(Fig. 8 d, f, h) underWD show no significant differences
illustrating the importance of using time-lapse to reduce
uncertainty due to the presence of roots.

Using ERT to recover plant-specific depletion zones

Synthetic experiments

To better visualize differences between plant behaviors
under WD conditions, plant-specific median profiles of
several variables related to water depletion andGaussian
fit parameters are shown in Fig. 9 for scenario 1 (no
additional impact of root segments in electrical resistiv-
ity forward map). The water depletion δθ profiles of the
forward simulations (dashed black lines) is compared to
inverted δρ profiles (dashed red profile) and to water
depletion profile δθ obtained from inverted ERT
(dashed blue line). Besides, the fits of a Gaussian distri-
bution function on ERT-inverted δθ and δρ profiles are
shown in the same colors (solid lines).

The use of a Gaussian function seems to be adequate
to fit the depletion profiles in δθ or δρ, as observed in
Fig. 9a, which supports its use for further statistics. The
comparison between forwarding δθ and inverse δρ pro-
files (black and red dashed lines) show some discrepan-
cies. However, when pedophysical relations are used to
retrieve δθ profiles (blue lines), the match to forward
δθ (dashed black lines) improve significantly especially
for WC and R. We observe that in general, inversely
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retrieved δθ are more dispersed than direct δθ profiles,
with lower peaks.

We used the Gaussian function parameters (Aδθ, μZ,

δρ, μZ, δθ, σZ, δρ and σZ, δθ) and to compare the 1-D
profiles in terms of water uptake, maximum depletion
depth, and depletion zone spread, respectively. These
statistics are shown in Fig. 9b and c for each (combina-
tion of) species and compared to the forward δθ statis-
tics. Our forward simulations show a maximum deple-
tion depth generally below 0.25 m with the following
ranking: R < C < R +WC<WC. If we compare the μZ,

δθ to the μZ, δρ obtained by inversion, we observe that
the ranking between species is retrieved for all species.
In general, the difference between forward and inverted
maximum depletion depth is always lower than 10 cm.
In terms of depletion spread, it is observed that ERT-
retrieved σZ, δρ always overestimate forward σZ, δθ. On
the opposite, the match between forward and inverse σZ,

δθ is remarkably good (less than 5 cm difference). The
amount of depletion (Aδθ) is retrieved well for C, WC

and R but for R +WC we see that Aδθ is underestimated
in Fig. 9f. The nonlinearity of the petrophysical relation
explains why sometimes the use of δρ leads to the wrong
estimate of μZ, δθ or σZ, δθ or Aδθ.

Uncertainty in Gaussian parameters

How the presence of electrically resistive roots affects
the δθ profiles when we use a petrophysical relation that
is valid for soil only is shown in Fig. 10a. As expected
the more resistive the roots the larger the impact on the
computed δθ (compare yellow curves to green curves in
Fig. 10a). Interestingly, due to the nonlinearity of the
petrophysical relation and the difference in the soil and
roots resistivity maps, the impact of roots differs be-
tween species. Ryegrass (R) δθ profile is less affected by
the presence of roots than the other (combination of)
species. On the opposite, the impact of the presence
roots on Cocksfoot (C) δθ profile is much bigger (with
an error of around 4% of volumetric water content at the

Fig. 7 Simulated evolution of water content (θ) distribution from
t1 to t3: a) control treatment and b) water deficit treatment and its
corresponding evolution of electrical resistivity (ρ): c) control

treatment and d) water deficit treatment. The black dotted line
represents the positions of different plants
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peak). In terms of δρ (not shown here) the maximum
error induced by the presence of roots is 0.026 for
scenario 2 and 0.08 for scenario 3.

The fitted Gaussian parameters (depletion depth,
spread and amount) in water content namely μZ, δθ, σZ,
δθ andAδθ are shown in Fig. 10 for our three scenarios and
compared to the forward R-SWMS parameters. In gen-
eral, the presence of roots does not affect much the
depletion depth (less than 5 cm between the 3 scenarios).
The spread is a bit more affected (maximum error around
9 cm) and the depletion amount is the most sensitive
parameter to the root presence, especially for scenario 3
(ρroot = 100 Ωm). Despite these impacts, the ranking of
species in terms of μZ, δθ and σZ, δθ remains the same for

the three scenarios, which indicates the robustness of our
methodology. However, the impact of including roots on
the amount of depletion Aδθ (Fig. 10c) is so large for
scenario 3 that the ranking between species is not right
anymore. Inclusion of root specific electrical property in
the forward ERT tends to underestimate the water deple-
tion in inversion, which is even enhanced with more
resistive roots (scenario 3/ yellow bars).

In Table 2, we provide the relative percentage error in
the Gaussian fit parameters between forward and ERT
inversion for the three scenarios which varied between
0.02% to 43%. In scenario 1, the relative percentage
error between forward and inverse indicates uncertainty
arising due to ERT inversion only. The depletion spread

Fig. 8 Comparison of R-SWMS simulated forward data (first
row) and ERT inversion of R-SWMS simulated data (second
row). a) log(ρ) at t3 in control treatment for Scenario 1, b) The
change of log resistivity between t1 and t3 (δρ) in control treatment
for Scenario 1, c) log(ρ) at t3 inwater deficit treatment for Scenario
1, d) The change of log resistivity between t1 and t3 (δρ) in water
deficit treatment for Scenario 1, e) log(ρ) at t3 in water deficit

treatment for Scenario 2, f) The change of log resistivity between
t1 and t3 (δρ) in water deficit treatment for Scenario 2, g) log(ρ) at
t3 in water deficit treatment for Scenario 3, and h) The change of
log resistivity between t1 and t3 (δρ) in water deficit treatment for
Scenario 3. The color bar in Figs. (a, c, e and g) has been cut at
specified scale for visualization purposes. The black dotted line
represents the positions of different plants
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(σZ, δθ) showed the highest uncertainty followed by
depletion amount (Aδθ) and depletion depth (μZ, δθ).
The ryegrass had the highest uncertainty of 17% in Aδθ
and 43% in σZ, δθ. In scenarios 2 and 3, the relative error
between forward and inverse indicates not only the
uncertainty due to ERT inversion but also due to the
contamination of petrophysical relation by root seg-
ments. In general, the uncertainty is higher in scenarios
2 and 3 than scenario 1. Comparing the uncertainty in

Aδθ, it is evident that electrical conduction via root
segments can lead to inaccurate water content estima-
tion (up to 42%) when using bare soil petrophysical
relation.

Field data

Figure 11a and b show the retrieved δρ distributions of
the field data for the control and the WD conditions. In

Fig. 9 a) 1D median of the change of log resistivity between t1
and t3 (δρ) and negative of the change of water content between t1
and t3 (δθ) for different plants in water deficit condition (dashed
lines) and the Gaussian fit (solid line). The blue dotted lines
represent -δθ derived from ERT inversion while the black dashed
line represents the R-SWMS forward modeled -δθ (ground truth)
b) maximum depletion depth of 1D median of δρ and -δθ as a
function of plant species. The red solid lines represent μZ, δρ

derived from Gaussian fit to ERT derived δρ, the blue solid lines
represent μZ, δθ derived from Gaussian fit to ERT derived -δθ,
while the black represents the maximum depletion depth of 1D

median of R-SWMS forward modeled -δθ. c) depletion spread of
1D median of δρ and -δθ as a function of plant species. The red
solid lines represent σZ, δρ derived from Gaussian fit to ERT
derived δρ, the blue solid lines represent σZ, δθ derived from
Gaussian fit to ERT derived -δθ, while the black dashed line
represents σZ, δθ derived from Gaussian fit to R-SWMS forward
modeled -δθ.d) depletion amount of 1D median of -δθ as a
function of plant species [cm]. The blue solid lines repre-
sent Aδθ derived from Gaussian fit to ERT derived -δθ,
while the black line represents Aδθ derived from Gaussian
fit to R-SWMS forward modeled -δθ

Plant Soil (2020) 454:261–281276



agreement with the synthetic experiment, depletion
zones are hardly visible in the control treatment. Root
water uptake depletion zones are compensated by water
infiltration and hide thereby plant-specific uptake pat-
terns (Fig. 11a). We will, therefore, focus on the WD
treatment data.

The comparison of Fig. 11b to Fig. 9d, reveals that
resistivity change patterns in the field images are much
patchier than those computed in the synthetic experi-
ment. This can partly be associated with the inversion,
which already generated patches in the synthetic exper-
iment, as evidenced in Fig. 9d (bottom subplot). Also,
variability in the actual soil hydraulic and petrophysical
properties might have further increased the variability in
δρ spatial field due to their nonlinearity.

Our synthetic experiments demonstrated that a 1-D
profile of temporal changes helps visualize differences
between species. We applied this method here to the δρ
and δθ fields per plant (after using petrophysical rela-
tions). Figure 11c shows the δρ and δθ 1-D median
profiles, together with the corresponding Gaussian fits.
Large changes of resistivity are observed in the upper

soil horizon (between 0 and 20 cm depth) of all plant
plots. Yet, when we use the petrophysical relations to
transform ρ to θ, these large δρ changes translate into
much lower changes in terms of δθ (blue dashed lines in
Fig. 11c). These large changes in resistivity observed in
experiments (not observed in the model) are probably
due to evaporation, which was not included in our
synthetic experiment. To discriminate water uptake
from evaporation impact on water depletion, we fitted
the Gaussian relations on the δρ and δθ profiles only
below 20 cm depth and above 0.8 m in depth due to poor
sensitivity of ERT below 0.8 m depth (horizontal dashed
lines in Fig. 11c).

Figure 11d and e show the parameters of the Gauss-
ian fits: μZ, δρ, μZ, δθ, σZ, δρ and σZ, δθ. The depths of
maximum uptake zone μZ differ of maximum 5 cm
between δρ and δθ. Two groups of maximum uptake
depths can be seen in Fig. 11d: shallower uptake for R
and deeper uptake for C, WC, and R +WC. These
maxima all occur below 0.5 m depth, where the root
density (green curve in Fig. 11c) is relatively low. This
is expected considering that in WD conditions, root

Fig. 10 Comparison between forward (R-SWMS) in black and
ERT-derived 1D median of -δθ for the three scenarios (blue:
Scenario 1, green: Scenario 2 and yellow: Scenario 3) as a function

of plant species: a) 1-D median of negative change of water
content between t1 and t3 (δθ),b) depletion depth [m], c) depletion
spread [m] and d) depletion amount [m]
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water uptake not only depends on root density but also
on soil water availability, which is larger below the dry
root zone. We can conclude from this trial that Cocks-
foot (C), White clover (WC), and their combination
(WC +R) have deeper depletion zones than ryegrass.
However, the relatively flat measured δθ theta profile for
R (Fig. 11c) casts some doubt on its representativity.
The observed changes are probably in the range of
uncertainty of the petrophysical model caused due to
roots. Besides, in the synthetic study, the only difference
between simulated species was their root distribution. In
reality, there are a lot of other plant characteristics,
which might affect their water uptake distribution, like
plant root conductance, distribution of their hydraulic
properties between root types, or their stomatal
regulation.

In terms of uptake spread σZ, it is observed that R has
a much higher spread than WC, WC+R, and C in δρ
but not in δθ. On the opposite of the synthetic experi-
ment, we see that in general σZ, δθ is larger than σZ, δρ
except for R. We conclude that Ryegrass has a much
smoother and uniform uptake depth range than the other

species. However, when we consider the amount of
water depletion (Aδθ), C is the highest water consumer
followed by WC, R +WC and R consumed the lowest
water (Fig. 11f).

Discussions

We conducted a high-resolution ERT study on an
intercropped field trial with 3 different herbaceous spe-
cies and one mixture subject to two different treatments
(control and water deficit). The main aim of the study
was to map the plant uptake response to drought (water
deficit, WD) and investigate the sensitivity of ERT in
capturing differences in water depletion patterns be-
tween species.

The synthetic analysis demonstrated that, despite
higher smoothness due to inversion, the forward and
inverse dry zones were relatively well retrieved in terms
of the electrical resistivity (expressed in terms of the
log ρ). However, differences between species were
hardly visible. One-dimensional profiles of temporal

Fig. 11 Change of log resistivity between t1 and t3 of field
inverted data (δρ) for control and water deficit treatments. a) δρ
in control treatment, b) δρ in water deficit treatment. The black
dotted line represents limits between each plot/species. c) The 1-D
median of δρ and -δθ for different plants in water deficit condition
(dotted lines) and the Gaussian fit (solid line) and normalized root
length densities (green line). The black dotted line represents the
depth (Z = 0.25) above which data is discarded for Gaussian fit. d)
maximum depletion depth of 1-D median of δρ and -δθ as a

function of plant species. The red solid lines represent μZ, δρ

derived from Gaussian fit to ERT derived δρ, the blue solid lines
represent μZ, δθ derived from Gaussian fit to ERT derived -δθ. e)
depletion spread of 1-Dmedian of δρ and -δθ as a function of plant
species. The red solid lines represent σZ, δρ derived from Gaussian
fit to ERT derived δρ, the blue solid lines represent σZ, δθ derived
from Gaussian fit to ERT derived -δθ. f) depletion amount of 1D
median of -δθ as a function of plant species [m]. The blue solid
lines represent Aδθ derived from Gaussian fit to ERT derived -δθ

Plant Soil (2020) 454:261–281278



changes in median ρ or θ made the difference in deple-
tion zones between species clearer. The ERT-retrieved
δθ 1-D profiles were shown to match relatively well the
actual depletion profiles. We fitted a Gaussian function
to the 1-D profiles under WD conditions to retrieve five
parameters: Aδθ, μZ, δρ, μZ, δθ, σZ, δρ and σZ, δθ. While
the maximum depletion depths (μZ, δθ) were generally
well retrieved in terms of δθ or δρ (maximum error of
10 cm) the spread of the depletion zone (σZ) was much
better recovered using δθ (max error of 6 cm) than δρ
(max error of 20 cm), demonstrating the importance of
using petrophysical relations. These mean and standard
deviations parameters in δθ were proved to adequately
represent respectively the maximum depletion depth
and the spread of the depletion zone. Uncertainty of
the Gaussian parameters due to the presence of resistive
roots was analyzed using synthetic experiments. We
found that the presence of root segments might lead to
the underestimation of about 40% of the amount of
water depletion (Aδθ). Yet, the ranking of species in
terms of depletion depth and spread seemed to be unaf-
fected by the presence of roots, showing the robustness
of the approach for field phenotyping. This shows the
importance of analyzing time-lapse water depletion in-
formation as against absolute electrical resistivity infor-
mation. Therefore, we could use the fitted Gaussian
parameters namely depletion amount, depletion depth
and depletion spread as root phenotyping parameters in
quantifying the water uptake ability of a plant in WD
conditions. However, extending this approach to diverse
crops, soils, and environments are needed to establish
the methodology presented here. Also, the robustness of
the method should be further investigated by including
additional sources of uncertainty due to the regulariza-
tion parameters in the ERT inversion, amongst others.

A very resistive and heterogeneous zone was ob-
served in the upper soil horizon (between 0 and 20 cm
depth) of all plots under WD condition. We attributed
this effect on heterogeneous soil structure, surface evap-
oration, or increase in soil water salinity induced by
evaporation. Future studies should focus on the variabil-
ity of the petrophysical relation due to soil structure and
changing pore water salinity.

When we use Gaussian fit indices for our real field
data, we conclude that white clover (WC) (alone or in
combination with Ryegrass) takes up water in deeper
regions than the two other plants (Ryegrass and Cocks-
foot).We also observe that Ryegrass has a more uniform
water depletion (and hence uptake) profile, although the

change in δθ is so small that it is within the uncertainty
range of petrophysical relation due to roots (~ 0.01). In
terms of the amount of water depletion, Cocksfoot con-
sumes the largest amount of water despite having shal-
low roots followed by white clover, the combination of
ryegrass and white clover, and ryegrass alone. This
methodology should be tested on more plant species
and at different scales.

The synthetic study also showed that differences
between the plant uptake dynamics could better be
characterized inWD conditions. Hence, plant phenotyp-
ing with ERT should ideally be realized under WD
conditions. Yet, this study was performed for a relative-
ly short (but realistic) WD period of three weeks. We
expect that longer WD periods will enhance even more
differences between species. Despite depth electrodes,
we observe that the coverage is still low below 0.8 m
depth. The installation of deeper electrodes and careful-
ly optimized injection scheme is potentially needed to
see deep root water uptake. Soon, we will use these
Gaussian fit indices to assess their application on the
whole field trial that includes additional species and
their replicates.
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