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This paper describes a lightweight neural network architecture with an adversarial loss for generating a full light field from one single image. The method is able to estimate disparity maps and automatically identify occluded regions from one single image thanks to a disparity confidence map based on forward-backward consistency checks. The disparity confidence map also controls the use of an adversarial loss for occlusion handling. The approach outperforms reference methods when trained and tested on light field data. Besides, we also designed the method so that it can efficiently generate a full light field from one single image, even when trained only on stereo data. This allows us to generalize our approach for view synthesis to more diverse data and semantics.

Introduction

View synthesis has been a very active field of research in the computer vision and computer graphics communities for many years ( [START_REF] Woodford | On new view synthesis using multiview stereo[END_REF], [START_REF] Horry | Tour into the picture: using a spidery mesh interface to make animation from a single image[END_REF]), and it has known significant advances thanks to the emergence of deep learning techniques. In this paper, we tackle a specific case of this problem: to synthesize an entire light field from one single image. This problem has a variety of applications, such as generating several views of a scene, extracting depth and automatically identifying occluded regions from images captured with regular 2D cameras.

Working from one single image is a very challenging problem, for at test time, the approach lacks information, e.g. on scene geometry. The method hence needs strong priors on scene geometry and semantics. Learning-based methods are therefore very good candidates for these tasks, since priors can be automatically learnt from data. In this paper, we describe a method that is able to produce an entire light field, estimate scene depth and identify occluded regions from just one single image. This way, we can benefit from light field features without requiring a light field capture set-up, e.g., simulating perspective shift and postcapture digital re-focusing. We propose a lightweight architecture based on [START_REF] Evain | A lightweight neural network for monocular view generation with occlusion handling[END_REF]],

a This work has been funded by the EU H2020 Research and Innovation Programme under grant agreement No 694122 (ERC advanced grant CLIM). but enhanced to be able to generate an entire light field and to better handle occlusions using an adversarial approach. The network is trained on pairs of images and learns to perform a forward and backward view synthesis, with two independent branches, thanks to the estimation of two disparity maps. Checking the consistency of the two independent predictions allows us to identify occluded regions and compute a disparity confidence map. At test time, the network only needs one image to compute the two disparity maps that are then used to identify the occluded regions. This disparity confidence map is used to control the application of an adversarial technique for occlusion handling. We show that the network can be trained on light field data, and that it outperforms reference techniques trained on light field datasets, such as [START_REF] Srinivasan | Learning to synthesize a 4d rgbd light field from a single image[END_REF], in terms of reconstructed light field quality. Now, training on light field data as in [START_REF] Srinivasan | Learning to synthesize a 4d rgbd light field from a single image[END_REF] necessarily restricts the scope of the approach, as this requires a large amount of data that is not easy to capture. Besides, such monocular approaches are also bound a lot by semantics of the training data, making it hard to train a network that can be usable for a variety of scene geometry and semantics, unless a sufficient number of examples of diverse scenes is present in the training set. Existing light field datasets are in general too limited to meet that requirement. We show that the proposed architecture can be trained on stereo content. This drastically increases the amount of possible training data that can be exploited by our approach. We show that the proposed network produces very plausible and good-quality light fields even when trained from stereo images with large baselines as in the KITTI dataset [START_REF] Geiger | Are we ready for autonomous driving? the kitti vision benchmark suite[END_REF]), and this way produces light fields with large fields of view. In summary, our contributions are:

• A lightweight neural network based on [START_REF] Evain | A lightweight neural network for monocular view generation with occlusion handling[END_REF], extended to be able to generate a full light field from one single view, with occlusion handling relying on both a computed disparity confidence map and an adversarial approach.

• A light field synthesis method from one single image that not only outperforms reference methods when trained and tested on light field data, but that can also generalize to much more diverse scenes, thanks to its ability to be trained on stereo datasets. The method hence enables convincing light field features (e.g., digital refocusing, virtual camera motion) from only single 2D images.

1.1 Related work

Monocular stereo view synthesis

Monocular view synthesis refers to the generation of new views from one single image. This problem has been tackled before the emergence of deep learning techniques, however with some limitations, e.g. with extremely similar images [START_REF] Woodford | On new view synthesis using multiview stereo[END_REF]), or with scenes presenting very similar geometry [START_REF] Horry | Tour into the picture: using a spidery mesh interface to make animation from a single image[END_REF]). Solving this difficult problem requires strong scene priors, which can be efficiently learned from data by using deep learning techniques. The easiest set-up for monocular view synthesis is the stereo case: given a pair of images, the aim is to generate one image from the other. Usually, the two cameras are kept in the same set-up, e.g. in terms of relative distance between the cameras throughout the training dataset, and the network implicitly learns these set-up conditions. The pioneering work in the domain is deep3D ( [START_REF] Xie | Deep3d: Fully automatic 2d-to-3d video conversion with deep convolutional neural networks[END_REF]) with a network designed to work on a dataset of 3D movies. The approach automatically generates a 3D sequence from a 2D sequence. A soft measure of disparity is estimated from the input image and is used to warp the final prediction. This method produces images of convincing quality. However, the network is bound to one specific resolution, which implies training several networks for various resolutions. Besides, its number of parameters is very high (around 60 million parameters for a 512 × 256 resolution for the KITTI baseline), and the network is not able to accurately process occlusions. Finally, the produced images tend to be blurry. Other approaches, such as [START_REF] Evain | A lightweight neural network for monocular view generation with occlusion handling[END_REF], evolve over the concept by producing the final image by merging a disparity-based warped prediction and a prediction based on direct minimization. Even if the approach outperforms state-of-the-art in the stereo domain, its scope (stereo case only) is still limited. The authors in [START_REF] Ivan | Synthesizing a 4d spatio-angular consistent light field from a single image[END_REF] also utilize an appearance flow and spatio-angular consistent loss functions and show that their model can produce novel views of good quality in the case of densely sampled light fields as those captured by Lytro Illum cameras. Finally, we can also cite the approach in [START_REF] Shih | 3d photography using context-aware layered depth inpainting[END_REF] which converts a RGB-D input image into a layered depth image (LDI) representation with explicit pixel connectivity. The authors then use a learning-based inpainting model to synthesize content in the occluded regions. While the addressed problem has some similarities with ours, in particular concerning occlusion handling, the authors assume a RGB-D input image while we consider a simple RGB input image.

Light field view synthesis

Light field imaging is based on the principles of integral imaging pioneered by Lippmann ( [Lippmann, 1908]) in 1908. Due to technical challenges, it took several decades before having practical light field camera designs, e.g. with the work of [Ng, 2006].

Thanks to the ability to distinguish rays of light, light field cameras permit a planar change of viewpoint, as well as post-capture digital refocusing. Given how complex a light field set-up can be (notably in the case of camera arrays), and how memoryconsuming they are, view synthesis for light fields soon became an important field of research to cope with these issues. In [START_REF] Kalantari | Learning-based view synthesis for light field cameras[END_REF], the authors design a method to build a full light field from 4 corner images only. To do so, a cascade of two convolutional neural networks (one for disparity and one for color estimation) is employed, producing high-quality images.

In [START_REF] Mildenhall | Local light field fusion: Practical view synthesis with prescriptive sampling guidelines[END_REF], an approach is proposed based on the concept of Multi-Plane Image (MPI) representation, first introduced in [START_REF] Zhou | Stereo magnification: Learning view synthesis using multiplane images[END_REF], to reconstruct a light field from a set of unstructured image captures. The MPI representation is a stack of parallel planes, regularly sampled in disparity, with a measure of visibility depending, for every plane, on whether the pixel is at the foreground or the background. The results are impressive but require several input images (4 or 5) to be able to reconstruct the light field. In contrast, our method only requires one image to be able to generate light fields.

The authors in [START_REF] Srinivasan | Learning to synthesize a 4d rgbd light field from a single image[END_REF] tackle the issue of generating a full light field from one single image. The approach takes the central view of the light field as input, and seeks to generate the light field by respecting the epipolar consistency constraint. The presented results are good quality, but the overall approach comes with some limitations: it obtains its more significant results on the Flowers dataset, a dataset of images with very strong similarities in scene semantics and geometry. When the dataset gets a bit more complex and diverse, the approach encounters difficulties. Besides, working from the epipolar constraint also means that the approach gains from working with a large number of views with small baselines at training time, which makes the training process very long. More importantly, the method requires a light field dataset that should be large enough, and consistent enough in both semantics and geometry. This kind of dataset is very rare, and the method cannot be efficiently trained on other data than light fields. In contrast, our method is able to obtain very good results on the Flowers dataset, and thanks to its ability to be trained on stereo content, can also produce light fields with more generic and diverse scenes.

Finally, the problem of light field view synthesis from one single image has been recently addressed in [START_REF] Tucker | Single-view view synthesis with multiplane images[END_REF] where the authors first construct a MPI representation from the input image, and then warp this MPI to generate new light field viewpoints. While this approach gives good results, the network is quite heavy (around 47 million parameters).

Model-based view synthesis

Methods have also been developed to tackle monocular view synthesis with the help of models or camera set-up parameters. In [START_REF] Sun | Multi-view to novel view: Synthesizing novel views with self-learned confidence[END_REF], through the blending of two predictions, a 6 Degrees of Freedom vector is obtained from input set-up parameters. Even if the results are impressive for ranges of transformation that have been learnt and processed during training, when requiring a transformation which has not been studied by the network, the method is usually much less efficient. To tackle the goal of generating a light field from stereo content, the method is not adapted. Other methods [START_REF] Park | Transformation-grounded image generation network for novel 3d view synthesis[END_REF], [START_REF] Tulsiani | Layer-structured 3d scene inference via view synthesis[END_REF]) have been developed to generate new views by blending two predictions, including one to be applied only in occluded regions. While the method in [START_REF] Park | Transformation-grounded image generation network for novel 3d view synthesis[END_REF] is very efficient on 3D models, or very simple scenes, it is less efficient on natural images. Besides, it requires ground truth occlusion maps in the training set, which are not easy to capture. This reduces the amount of datasets that can be used for training. The authors in [START_REF] Tulsiani | Layer-structured 3d scene inference via view synthesis[END_REF] present a method able to distinguish the foreground from the background through learning. Even if the results are interesting, they require a significantly heavier architecture than ours in terms of number of parameters. In our case the occluded regions are automatically identified through forward-backward checks, and we use an adversarial loss to generate plausible content in occluded regions. GANs ( [START_REF] Goodfellow | Generative adversarial networks[END_REF]) have been shown to be very useful for inpainting, e.g. in [START_REF] Pathak | Context encoders: Feature learning by inpainting[END_REF] where the unknown region is completed with a mix of pixel-wise and adversarialbased predictions, as well as for video generation [START_REF] Clark | Adversarial video generation on complex datasets[END_REF]. Note that GANs have also been used in [START_REF] Ruan | Light field synthesis from a single image using improved wasserstein generative adversarial network[END_REF] to synthesize a light field from one single image, however the problem is posed as a problem of image super-resolution and the solution is therefore based on image super-resolution approaches. In our method, the use of the adversarial loss in the occluded regions is controlled by an estimated disparity confidence map. The authors in [START_REF] Mildenhall | Nerf: Representing scenes as neural radiance fields for view synthesis[END_REF] address the problem of view synthesis by first regressing from a continuous 5D representation of the scene to a volumetric representation with volume densities and view-dependent colors. This volumetric scene function is then used together with volume rendering techniques to generate novel light field views.

Description of the method

While the proposed method builds upon the architecture in [START_REF] Evain | A lightweight neural network for monocular view generation with occlusion handling[END_REF] designed for generating new views from one single image in a stereo setting, it is extended here in order to be able to generate an entire light field from one single input view. In addition, the network is designed in such a way that it can be trained either with stereo content or using pairs of light field views. While the network can be trained from stereo content as well as from pairs of light field views, when using classical stereo content to train the network, the pipeline is adapted to account for naturally missing information, e.g., related to scene geometry, through the resort to the Refiner, as explained in sections 2.3 and 2.5. ond part in each branch, the Decoder, produces a disparity map through upsampling layers and using skip-connections. Finally, a spatial transformer layer is used to warp the disparity map to predict a view. This first prediction is based on the warping of pixels, hence the result is usually sharp, but artifacts may remain due to disparity errors, in particular in occluded regions.

Estimating the prediction confidence

The next step consists in identifying the regions not well handled by DBP and the warping process. In order to compute the confidence we have in our first prediction, we use the already trained DBP, and we follow the protocol defined in figure 3. We send as input of our two branches the same input image I source . This will give us two independent predictions in disparity, centered on two different target views (d target1 and d target2 ). We then re-warp these disparities back onto the source view (giving us d source1 and d source2 ), and we take as confidence measure C γ their difference, using the following expression:

C γ = exp(-γ|d source1 -d source2 |) (1) 
We can note that in contrast with the method in [START_REF] Evain | A lightweight neural network for monocular view generation with occlusion handling[END_REF], the error is directly computed and not estimated using a trained network. Doing this simplifies the learning process, and allows us to reduce the number of parameters (a network can be removed when comparing with [START_REF] Evain | A lightweight neural network for monocular view generation with occlusion handling[END_REF]). It is also a way to improve the confidence map, so that occluded regions are better identified, as shown in the Results section.

Refiner based on a GAN

To correct errors in lower confidence regions, and to account for the fact that the corresponding information is not available at test time, we use a Refiner network trained using an adversarial loss combined with a pixel-wise metrics. This leads to plausible estimates of the pixels in the occluded regions. The refiner network is actually the generator of a Wasserstein GAN ( [START_REF] Arjovsky | Wasserstein gans. ICML[END_REF]), and adversarial learning is carried out only in regions of low confidence.

The refiner is built as an encoder-decoder structure with skip-connections. It is made up of a succession of Spectrally Normalized convolutional layers (as first described in [START_REF] Miyato | Spectral normalization for generative adversarial networks[END_REF]). The discriminator is also built using these layers. To make sure that the learned distribution remains faithful to the input and ground truth data, we also add pixelwise and gradientwise metrics besides the Wasserstein loss. This allows us to fill occluded regions with synthesized contents, which will be both realistic (thanks to the adversarial loss) and as faithful as possible (thanks to the pixelwise metrics).

At test time, we only use the generator part of the adversarial process to synthesize our view. It takes as input the warped prediction, as well as the estimated disparity map. The final predicted view V f in is obtained by combining the two predictions using the confidence map as

V f in = C γ V disp + (1 -C γ )V re f * (2)
where V disp is the output of DBP and an input to the refiner, and V re f the output of the refiner, and C γ the computed confidence map. The method can be tailored to be efficiently trained on both light fields and stereo content. There is one refiner per branch, which is applied in both learning and test time.

Training on light fields

When using light fields for training, we have access to both horizontal and vertical disparities, hence the DBP can be trained to estimate these two disparities and produce the corresponding horizontal and vertical warpings. We extract pairs of views by taking the center view as one of the two images of the pair, and the other one randomly within the light field. The maximum disparities of the light field are taken as reference. When working on views which are not extreme, and assuming a regular sampling of views in structured light fields, we estimate the disparity d int of an intermediate view by interpolation as

d int (x) = αd(x -(1 -α)d(x))
(3) where α represents the targeted position, and x the bidimensional coordinates. This allows us to obtain an interpolated disparity map for warping, that will tend to favor background disparity for occluded regions, and lead to more plausible results than when simply multiplying the disparity map.

Training on stereo content

The method can also be trained on stereo data, and be used to generate full light fields. In this case, we can only train the method with horizontal disparity, and have to infer vertical disparity at test time. We therefore add a simple module to infer the vertical disparity at test time, once the network was trained on stereo contents. The new, two-channel disparity map d new is obtained from the horizontal, predicted one, by applying the following transformation to the horizontal disparity map d hor :

d new (y, x) = αd hor (α y d hor (x), x -(1 -α x )d hor (x))) (4 
) where y accounts for vertical coordinates, while x accounts for horizontal coordinates, and α = (α y , α x ) is a set of parameters accounting for the relative position of the requested view relatively to the input view. Given that the warped disparity map may however contain errors especially in the foreground near the borders of the image, we improve it by applying an auto-regressive extrapolation along the vertical lines and from the 50 previous points. The rest of the network proceeds with the warped prediction, and refines and automatically improves the occluded regions at test time.

Summary

In summary, the procedure is as follows:

• From a pair of images, learning the disparity and warping from it through the DBP to generate one from the other. • Through a confidence computation obtained by inputting the same image in both branches, determining which regions are likely to be accurate. • In the regions with low-confidence, using a refiner with adversarial learning to improve the results.

Learning procedure

Let L DBP and R DBP be the DBP-based predictions, and L and R the ground truth images, and d L and d R the disparity maps for the warping towards predictions L and R. We first train the DBP using the metrics:

λ 0 (||L DBP -L|| 1 + ||R DBP -R|| 1 ) + λ 1 (||∇L DBP -∇L|| 1 + ||∇R DBP -∇R|| 1 ) (5) 
Before training the Refiner, we add a step of geometrical restructuring for the DBP. Finally, we freeze the weights of DBP, and train the Refiner in order to minimize the loss function

λ 4 (||L REF -L|| 1 ) + λ 5 (||∇L REF -∇L|| 1 ) + λ 6 (||L * -L|| 1 ) + λ 7 (||∇L * -∇L|| 1 + λ 8 L(L * , L) (6)
where L REF is the prediction performed by the Refiner, L the ground truth image, L * the final combined prediction and L the Wasserstein loss. The discriminator for the adversarial process is trained using only this Wasserstein loss. For the hyperparameters, we consider: γ = 0.08, λ 0 = 0.80, λ 1 = 0.20, λ 4 = 0.27, λ 5 = 0.054, λ 6 = 0.54, λ 7 = 0.135, λ 8 = 0.01. We optimize our approach using the Adam algorithm ( [Kingma and Lei Ba, 2015]), with β 1 = 0.9 and β 2 = 0.999. We use a learning rate of 0.0001 for the overall network (with 0.00001 for the discriminator during training). The work was implemented using TensorFlow ( [START_REF] Abadi | Ten-sorFlow: Large-scale machine learning on heterogeneous systems[END_REF]) and Keras ([Chollet et al., 2015]). The network was stopped when no improvement in the validation metrics was obtained after 20 epochs. The network is fully trained after only a few hours, and contains around 6 million parameters at training time.

L * = C γ L DBP + (1 - C γ )L REF ,
For the following experiments, our method for training took as input patches of resolution 256 * 256 (for the stereo case) or 256 * 512 (for the light field case), normalized between -1 and 1, with data augmentation in 20 % of the cases, with random gamma and brightness transformations. In this article, we used two datasets for comparison: Flowers ([ [START_REF] Srinivasan | Learning to synthesize a 4d rgbd light field from a single image[END_REF]) and KITTI ( [START_REF] Geiger | Are we ready for autonomous driving? the kitti vision benchmark suite[END_REF]). Flowers is a light field dataset, with rather small baselines, comprising around 3,000 light fields of flowers in similar geometrical configurations. We systematically pick the central view as one element of the pair, and we randomly choose another view as the other element of the pair. We adjust the value of α to account for the coordinate of the selected view. As a starting point, we only focus on one corner view as target that we arbitrarily choose as the reference disparity (α = (1, 1)). After 10 epochs, we add [START_REF] Srinivasan | Learning to synthesize a 4d rgbd light field from a single image[END_REF]), and our stereo-based method (Stereo). We display the mean PSNRs and SSIM on the 4 corner views (the most difficult ones to predict), as well as on the full light field.

the rest of the views as possible target views and the interpolation process described in section 2.4 is then applied. We perform a train-test-validation split, to be able to compare our approach. KITTI is a stereo dataset which depicts urban scenes, and contain pairs of images with a very significant disparity gap between them. In this work, we use 400 pairs of images randomly chosen as training elements.

Evaluation

We compare the proposed approach to several methods: LF4D ( [START_REF] Srinivasan | Learning to synthesize a 4d rgbd light field from a single image[END_REF]), a method able to predict a full light field from one single image, by enforcing epipolar constraints within the predicted light field, using the code provided by the authors. We also compare visually our approach with the method in [START_REF] Sun | Multi-view to novel view: Synthesizing novel views with self-learned confidence[END_REF], in the stereo case, using the network provided by the authors. We also compare our method to the recently published method [START_REF] Evain | A lightweight neural network for monocular view generation with occlusion handling[END_REF], and with the reference method [START_REF] Xie | Deep3d: Fully automatic 2d-to-3d video conversion with deep convolutional neural networks[END_REF], both focused on working in a stereo setting. To evaluate our stereobased approach, we also use it on Flowers by only training it from 2 aligned views on the central line of the light field ( [START_REF] Srinivasan | Learning to synthesize a 4d rgbd light field from a single image[END_REF]).

For evaluation, we use PSNR, SSIM and LPIPS ( [START_REF] Zhang | The unreasonable effectiveness of deep features as perceptual metric[END_REF]) as reference metrics. Due to the visual nature of the task, we strongly recommend the reader to take a look at the Supplementary video, which displays other examples of views synthesized using the proposed method.

Light Field View Synthesis Results

Training and testing with light field data We first focus on training and testing the network with light fields. For that, we use the Flowers dataset ( [START_REF] Srinivasan | Learning to synthesize a 4d rgbd light field from a single image[END_REF]). We evaluate predicted views in comparison with the reference method [START_REF] Srinivasan | Learning to synthesize a 4d rgbd light field from a single image[END_REF]) and the stereo version of our method. The errors were multiplied with a factor of 3 for better visualization.

Figure 5: Close-up views from figure 4. On the left side, our results, on the right side, the results obtained in [START_REF] Srinivasan | Learning to synthesize a 4d rgbd light field from a single image[END_REF]. We note that our results are sharper and structurally more consistent.

LF4D [START_REF] Srinivasan | Learning to synthesize a 4d rgbd light field from a single image[END_REF]), by applying an identical experimental protocol, in figures 4, 5 and 6, in table 1, as well as in the supplementary video. We see that our approach clearly outperforms LF4D, both metric-wise and visually.

We also use the Flowers dataset to evaluate our stereo-training based approach, i.e. by only training the network on stereo aligned pairs (extreme left-side view -center view and center view -extreme right-side view). The results (the last row of figure 4 and table 1) show that our method, even when trained on stereo content, manages to outperform the LF4D monocular light field synthesis method, and is able to produce high-quality light fields. This shows that our stereo to light fields adaptation module is very efficient.

Figure 6: Supplementary visual comparisons between our work (left-side) and [START_REF] Srinivasan | Learning to synthesize a 4d rgbd light field from a single image[END_REF] (right-side). We note that our images are sharper and better quality.

Figure 7: Visual comparison of two of our predictions with Sun's method, for similar geometrical transformations (from left to right, 2 sequences of: input, our prediction, and the prediction obtained from [START_REF] Sun | Multi-view to novel view: Synthesizing novel views with self-learned confidence[END_REF]). The views we produce are less blurry and have fewer distortions.

Training on stereo content We also train the network using the stereo KITTI dataset ( [START_REF] Geiger | Are we ready for autonomous driving? the kitti vision benchmark suite[END_REF]), in order to build a full light field. The views produced have no ground truth equivalent; only visual evaluation is possible in this case. Visual results are shown in figure 1 and in the supplementary video. To evaluate our approach, we compare it visually to the monocular part of the method in [START_REF] Sun | Multi-view to novel view: Synthesizing novel views with self-learned confidence[END_REF]. The network, also trained on KITTI, receives as input one image and a transformation vector expressing the relative coordinates of the target view. We specify to the pre-trained network a transformation vector similar to ours. We note that our approach clearly performs better visually on this data (see figure 7). This is probably because the vertical transformations are not present in the KITTI training set, and can thus not be learnt efficiently by the method in [START_REF] Sun | Multi-view to novel view: Synthesizing novel views with self-learned confidence[END_REF]. Given that our approach is optimized to generate the light field, we are able for this task to obtain more realistic results.

To evaluate metric-wise our predictions, we also compare them with stereo-based view synthesis methods [START_REF] Evain | A lightweight neural network for monocular view generation with occlusion handling[END_REF] and [START_REF] Xie | Deep3d: Fully automatic 2d-to-3d video conversion with deep convolutional neural networks[END_REF] in table 2, on the KITTI test set, in a stereo setting. We note that our approach significantly outperforms these two reference methods in the 3 chosen metrics. We can note that we obtain those results with a smaller number of parameters (notably, [START_REF] Evain | A lightweight neural network for monocular view generation with occlusion handling[END_REF] has 200,000 more parameters). We show in figure 8 a visual stereo prediction, associated with the L1 error. We can see that the predicted view is rather high-quality. [START_REF] Evain | A lightweight neural network for monocular view generation with occlusion handling[END_REF], [START_REF] Xie | Deep3d: Fully automatic 2d-to-3d video conversion with deep convolutional neural networks[END_REF]) in a stereo setting. For PSNR and SSIM, the higher, the better. For LPIPS, the lower, the better. Finally, we compare our confidence computation process with the one described in [START_REF] Evain | A lightweight neural network for monocular view generation with occlusion handling[END_REF] in figure 9. We note that our occlusion identification process is significantly more efficient.

Testing on natural images We can also test our network on natural images, captured using a smartphone. It allows us to produce a full light field from one single image. A visual example of it is shown in figure 10. From left to right: our prediction, confidence map returned by our approach, confidence map returned by [START_REF] Evain | A lightweight neural network for monocular view generation with occlusion handling[END_REF] in the same setting. We note that our way to compute the confidence map is significantly better at specifically capturing occluded regions. . The approach is tested on a natural image, captured using a smartphone. For a result with higher resolution, we advise the reader to check the supplementary video. 

Ablation study

Impact of the confidence-based refiner We evaluate the impact of the refiner on the result in tables 3 and 5. We can note that it significantly increases the performance both in PSNR and SSIM for both datasets. Its contribution is, though, more significant when working on KITTI, due to its more significant occluded regions. We also evaluate its positive contribution when training the approach on stereo contents, and using it to generate light fields in table 4. We note that the Refiner in this case also allows to significantly improve the performance of the approach.

Impact of adversarial learning We also evaluate the impact of our adversarial process on the result. We note that depending on the chosen dataset, we do not draw the same conclusions. When working on Flowers (see table 3), we note that the adversarial process does not really have a significant impact. The occluded regions in Flowers are indeed smaller and then easier to fill, reducing the usefulness of the adversarial loss.

On the other hand, when working on KITTI, we can see that the adversarial process is much more beneficial, giving an overall increase in PSNR and SSIM, but more importantly a significantly better LPIPS ( [START_REF] Zhang | The unreasonable effectiveness of deep features as perceptual metric[END_REF]), showing that it is an adequate way to improve the perceptiveness of our images.

Conclusion

In this article, we have described a method able to produce light fields, with a training from both light field datasets and stereo datasets. The proposed method allows us to generate high-quality light fields, from only one single input image and for diverse images and semantics. We manage to achieve good performance for producing these light fields, and are able to use stereo data to produce light fields with a wider variety of contents and semantics.

Figure 1 :

 1 Figure 1: A light field generated from one single image (input is the central view in the figure). The approach is trained on KITTI stereo contents, and is augmented using our method at test time to generate the light field.

Figure 2 :

 2 Figure 2: Outline of the DBP section of our architecture 2.1 Disparity-Based Predictor (DBP)

Figure 4 :

 4 Figure 4: Visual prediction for a top-left image from the Flowers test set, as well as the corresponding L1 errors, for, from left to right, our method, LF4D ([[START_REF] Srinivasan | Learning to synthesize a 4d rgbd light field from a single image[END_REF]) and the stereo version of our method. The errors were multiplied with a factor of 3 for better visualization.

Figure 8 :

 8 Figure 8: Result of our approach in a stereo setting, on the KITTI test set, for evaluation. From top to bottom: input image, our prediction, ground truth image, L1 error.

Figure 9 :

 9 Figure 9: Visual evaluation and comparison of the confidence map. Yellow means low-confidence.From left to right: our prediction, confidence map returned by our approach, confidence map returned by[START_REF] Evain | A lightweight neural network for monocular view generation with occlusion handling[END_REF] in the same setting. We note that our way to compute the confidence map is significantly better at specifically capturing occluded regions.

Figure 10 :

 10 Figure 10: A light field generated from one single image (input is the central view in the figure). The approach is tested on a natural image, captured using a smartphone. For a result with higher resolution, we advise the reader to check the supplementary video.

Table 2 :

 2 Comparison of the results of our approach with 2 reference methods ([

	KITTI Test Set	PSNR SSIM LPIPS
	Ours	19.96	0.76	0.130
	[Evain and Guillemot, 2020] 19.24	0.74	0.139
	Deep3D ([Xie et al., 2016])	19.08	0.74	0.220

Table 3 :

 3 Statistical comparisons for the ablation study on the Flowers test set. No Refiner only uses the warped prediction, No AL does not use adversarial learning

Table 4 :

 4 Statistical comparisons for the ablation study on the Flowers test set. Stereo ours is our stereo-based light field synthesis method, Stereo No Refiner evaluates the prediction when no refiner is used.

	Flowers Stereo ours Stereo No refiner
	PSNR	37.16	36.02
	SSIM	0.95	0.93

Table 5 :

 5 Statistical comparisons for the ablation study on the KITTI test set. No Refiner only uses the warped prediction, No AL does not use adversarial learning.