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This paper describes a lightweight neural network architecture with an adversarial loss for generating a full

light field from one single image. The method is able to estimate disparity maps and automatically identify
occluded regions from one single image thanks to a disparity confidence map based on forward-backward
consistency checks. The disparity confidence map also controls the use of an adversarial loss for occlusion
handling. The approach outperforms reference methods when trained and tested on light field data. Besides,
we also designed the method so that it can efficiently generate a full light field from one single image, even
when trained only on stereo data. This allows us to generalize our approach for view synthesis to more diverse

data and semantics.

1 Introduction

View synthesis has been a very active field
of research in the computer vision and com-
puter graphics communities for many years
([Woodford et al., 2007], [Horry et al., 1997]),
and it has known significant advances thanks to
the emergence of deep learning techniques. In this
paper, we tackle a specific case of this problem: to
synthesize an entire light field from one single image.
This problem has a variety of applications, such as
generating several views of a scene, extracting depth
and automatically identifying occluded regions from
images captured with regular 2D cameras.

Working from one single image is a very challeng-
ing problem, for at test time, the approach lacks infor-
mation, e.g. on scene geometry. The method hence
needs strong priors on scene geometry and semantics.
Learning-based methods are therefore very good can-
didates for these tasks, since priors can be automat-
ically learnt from data. In this paper, we describe a
method that is able to produce an entire light field, es-
timate scene depth and identify occluded regions from
just one single image. This way, we can benefit from
light field features without requiring a light field cap-
ture set-up, e.g., simulating perspective shift and post-
capture digital re-focusing. We propose a lightweight
architecture based on [Evain and Guillemot, 2020],

4This work has been funded by the EU H2020 Re-
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but enhanced to be able to generate an entire light field
and to better handle occlusions using an adversarial
approach. The network is trained on pairs of images
and learns to perform a forward and backward view
synthesis, with two independent branches, thanks to
the estimation of two disparity maps. Checking the
consistency of the two independent predictions al-
lows us to identify occluded regions and compute a
disparity confidence map. At test time, the network
only needs one image to compute the two disparity
maps that are then used to identify the occluded re-
gions. This disparity confidence map is used to con-
trol the application of an adversarial technique for oc-
clusion handling. We show that the network can be
trained on light field data, and that it outperforms ref-
erence techniques trained on light field datasets, such
as [Srinivasan et al., 2017], in terms of reconstructed
light field quality.

Now, training on light field data as in
[Srinivasan et al., 2017] necessarily restricts the
scope of the approach, as this requires a large
amount of data that is not easy to capture. Besides,
such monocular approaches are also bound a lot by
semantics of the training data, making it hard to train
a network that can be usable for a variety of scene
geometry and semantics, unless a sufficient number
of examples of diverse scenes is present in the train-
ing set. Existing light field datasets are in general too
limited to meet that requirement. We show that the
proposed architecture can be trained on stereo con-
tent. This drastically increases the amount of possible



training data that can be exploited by our approach.
We show that the proposed network produces very
plausible and good-quality light fields even when
trained from stereo images with large baselines as
in the KITTI dataset ([Geiger et al., 2012]), and this
way produces light fields with large fields of view. In
summary, our contributions are:

* A lightweight neural network based on
[Evain and Guillemot, 2020], extended to be
able to generate a full light field from one single
view, with occlusion handling relying on both
a computed disparity confidence map and an
adversarial approach.

* A light field synthesis method from one single
image that not only outperforms reference meth-
ods when trained and tested on light field data,
but that can also generalize to much more diverse
scenes, thanks to its ability to be trained on stereo
datasets. The method hence enables convincing
light field features (e.g., digital refocusing, virtual
camera motion) from only single 2D images.

1.1 Related work
1.1.1 Monocular stereo view synthesis

Monocular view synthesis refers to the generation of
new views from one single image. This problem has
been tackled before the emergence of deep learning
techniques, however with some limitations, e.g. with
extremely similar images ([Woodford et al., 2007]),
or with scenes presenting very similar geometry
([Horry et al., 1997]). Solving this difficult problem
requires strong scene priors, which can be efficiently
learned from data by using deep learning techniques.

The easiest set-up for monocular view synthe-
sis is the stereo case: given a pair of images, the
aim is to generate one image from the other. Usu-
ally, the two cameras are kept in the same set-up,
e.g. in terms of relative distance between the cam-
eras throughout the training dataset, and the network
implicitly learns these set-up conditions. The pioneer-
ing work in the domain is deep3D ([Xie et al., 2016])
with a network designed to work on a dataset of 3D
movies. The approach automatically generates a 3D
sequence from a 2D sequence. A soft measure of
disparity is estimated from the input image and is
used to warp the final prediction. This method pro-
duces images of convincing quality. However, the
network is bound to one specific resolution, which
implies training several networks for various resolu-
tions. Besides, its number of parameters is very high
(around 60 million parameters for a 512 x 256 res-
olution for the KITTI baseline), and the network is

not able to accurately process occlusions. Finally, the
produced images tend to be blurry. Other approaches,
such as [Evain and Guillemot, 2020], evolve over the
concept by producing the final image by merging a
disparity-based warped prediction and a prediction
based on direct minimization. Even if the approach
outperforms state-of-the-art in the stereo domain, its
scope (stereo case only) is still limited. The authors
in [Ivan et al., 2019] also utilize an appearance flow
and spatio-angular consistent loss functions and show
that their model can produce novel views of good
quality in the case of densely sampled light fields as
those captured by Lytro Illum cameras. Finally, we
can also cite the approach in [Shih et al., 2020] which
converts a RGB-D input image into a layered depth
image (LDI) representation with explicit pixel con-
nectivity. The authors then use a learning-based in-
painting model to synthesize content in the occluded
regions. While the addressed problem has some sim-
ilarities with ours, in particular concerning occlusion
handling, the authors assume a RGB-D input image
while we consider a simple RGB input image.

1.1.2 Light field view synthesis

Light field imaging is based on the princi-
ples of integral imaging pioneered by Lippmann
([Lippmann, 1908]) in 1908. Due to technical chal-
lenges, it took several decades before having practi-
cal light field camera designs, e.g. with the work of
[Ng, 2006].

Thanks to the ability to distinguish rays of light,
light field cameras permit a planar change of view-
point, as well as post-capture digital refocusing.
Given how complex a light field set-up can be (no-
tably in the case of camera arrays), and how memory-
consuming they are, view synthesis for light fields
soon became an important field of research to cope
with these issues. In [Kalantari et al., 2016], the au-
thors design a method to build a full light field from 4
corner images only. To do so, a cascade of two convo-
lutional neural networks (one for disparity and one for
color estimation) is employed, producing high-quality
images.

In [Mildenhall et al., 2019], an approach is
proposed based on the concept of Multi-Plane
Image (MPI) representation, first introduced in
[Zhou et al., 2018], to reconstruct a light field from
a set of unstructured image captures. The MPI
representation is a stack of parallel planes, regularly
sampled in disparity, with a measure of visibility
depending, for every plane, on whether the pixel is
at the foreground or the background. The results are
impressive but require several input images (4 or 5)
to be able to reconstruct the light field. In contrast,



our method only requires one image to be able to
generate light fields.

The authors in [Srinivasan et al., 2017] tackle the
issue of generating a full light field from one sin-
gle image. The approach takes the central view of
the light field as input, and seeks to generate the
light field by respecting the epipolar consistency con-
straint. The presented results are good quality, but
the overall approach comes with some limitations:
it obtains its more significant results on the Flowers
dataset, a dataset of images with very strong simi-
larities in scene semantics and geometry. When the
dataset gets a bit more complex and diverse, the ap-
proach encounters difficulties. Besides, working from
the epipolar constraint also means that the approach
gains from working with a large number of views
with small baselines at training time, which makes
the training process very long. More importantly, the
method requires a light field dataset that should be
large enough, and consistent enough in both seman-
tics and geometry. This kind of dataset is very rare,
and the method cannot be efficiently trained on other
data than light fields. In contrast, our method is able
to obtain very good results on the Flowers dataset, and
thanks to its ability to be trained on stereo content,
can also produce light fields with more generic and
diverse scenes.

Finally, the problem of light field view synthesis
from one single image has been recently addressed
in [Tucker and Snavely, 2020] where the authors first
construct a MPI representation from the input image,
and then warp this MPI to generate new light field
viewpoints. While this approach gives good results,
the network is quite heavy (around 47 million param-
eters).

1.1.3 Model-based view synthesis

Methods have also been developed to tackle monoc-
ular view synthesis with the help of models or cam-
era set-up parameters. In [Sun et al., 2018], through
the blending of two predictions, a 6 Degrees of Free-
dom vector is obtained from input set-up parameters.
Even if the results are impressive for ranges of trans-
formation that have been learnt and processed during
training, when requiring a transformation which has
not been studied by the network, the method is usu-
ally much less efficient. To tackle the goal of gen-
erating a light field from stereo content, the method
is not adapted. Other methods ([Park et al., 2017],
[Tulsiani et al., 2018]) have been developed to gen-
erate new views by blending two predictions, in-
cluding one to be applied only in occluded regions.
While the method in [Park et al., 2017] is very ef-
ficient on 3D models, or very simple scenes, it is

less efficient on natural images. Besides, it requires
ground truth occlusion maps in the training set, which
are not easy to capture. This reduces the amount
of datasets that can be used for training. The au-
thors in [Tulsiani et al., 2018] present a method able
to distinguish the foreground from the background
through learning. Even if the results are interest-
ing, they require a significantly heavier architecture
than ours in terms of number of parameters. In our
case the occluded regions are automatically identi-
fied through forward-backward checks, and we use
an adversarial loss to generate plausible content in
occluded regions. GANs ([Goodfellow et al., 2014])
have been shown to be very useful for inpainting, e.g.
in [Pathak et al., 2016] where the unknown region is
completed with a mix of pixel-wise and adversarial-
based predictions, as well as for video generation
[Clark et al., 2019]. Note that GANs have also been
used in [Ruan et al., 2018] to synthesize a light field
from one single image, however the problem is posed
as a problem of image super-resolution and the so-
lution is therefore based on image super-resolution
approaches. In our method, the use of the adversar-
ial loss in the occluded regions is controlled by an
estimated disparity confidence map. The authors in
[Mildenhall et al., 2020] address the problem of view
synthesis by first regressing from a continuous 5D
representation of the scene to a volumetric represen-
tation with volume densities and view-dependent col-
ors. This volumetric scene function is then used to-
gether with volume rendering techniques to generate
novel light field views.

2 Description of the method

While the proposed method builds upon the archi-
tecture in [Evain and Guillemot, 2020] designed for
generating new views from one single image in a
stereo setting, it is extended here in order to be able
to generate an entire light field from one single input
view. In addition, the network is designed in such a
way that it can be trained either with stereo content or
using pairs of light field views. While the network can
be trained from stereo content as well as from pairs
of light field views, when using classical stereo con-
tent to train the network, the pipeline is adapted to ac-
count for naturally missing information, e.g., related
to scene geometry, through the resort to the Refiner,
as explained in sections 2.3 and 2.5.



Figure 1: A light field generated from one single image
(input is the central view in the figure). The approach is
trained on KITTI stereo contents, and is augmented using
our method at test time to generate the light field.
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Figure 2: Outline of the DBP section of our architecture

2.1 Disparity-Based Predictor (DBP)

The Disparity-Based Predictor (DBP) is a neural
network made up of two branches, accounting for
both the Feature Extractor and the Decoder, as shown
in figure 2. It receives one single input image and
estimates a disparity map. Trained with a pair of
views, the two branches of the DBP take one im-
age of the pair as input, and consider the other im-
age as ground truth. In each branch, the Feature Ex-
tractor is used to extract features of the input image,
using a MobileNet architecture, with weights shared
with the other branch. The weights are initialized
with ImageNet ([Deng et al., 2009]) weights. A sec-
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Figure 3: Diagram depicting the employed confidence
method.

ond part in each branch, the Decoder, produces a
disparity map through upsampling layers and using
skip-connections. Finally, a spatial transformer layer
is used to warp the disparity map to predict a view.
This first prediction is based on the warping of pixels,
hence the result is usually sharp, but artifacts may re-
main due to disparity errors, in particular in occluded
regions.

2.2 Estimating the prediction
confidence

The next step consists in identifying the regions not
well handled by DBP and the warping process. In
order to compute the confidence we have in our first
prediction, we use the already trained DBP, and we
follow the protocol defined in figure 3. We send as in-
put of our two branches the same input image 5oy -
This will give us two independent predictions in dis-
parity, centered on two different target views (dyarger1
and d;grger2). We then re-warp these disparities back
onto the source view (giving us dsourcel and dgource2),
and we take as confidence measure Cy their difference,
using the following expression:

Cy = eXP(—Y| dsourcel — dsource2|) (D

We can note that in contrast with the method
in [Evain and Guillemot, 2020], the error is directly
computed and not estimated using a trained net-
work. Doing this simplifies the learning process,
and allows us to reduce the number of parameters
(a network can be removed when comparing with
[Evain and Guillemot, 2020]). It is also a way to im-
prove the confidence map, so that occluded regions
are better identified, as shown in the Results section.



2.3 Refiner based on a GAN

To correct errors in lower confidence regions, and
to account for the fact that the corresponding in-
formation is not available at test time, we use a
Refiner network trained using an adversarial loss
combined with a pixel-wise metrics. This leads to
plausible estimates of the pixels in the occluded
regions. The refiner network is actually the generator
of a Wasserstein GAN ([Arjovsky et al., 2017]), and
adversarial learning is carried out only in regions of
low confidence.

The refiner is built as an encoder-decoder structure
with skip-connections. It is made up of a succession
of Spectrally Normalized convolutional layers (as first
described in [Miyato et al., 2018]). The discriminator
is also built using these layers. To make sure that the
learned distribution remains faithful to the input and
ground truth data, we also add pixelwise and gradient-
wise metrics besides the Wasserstein loss. This allows
us to fill occluded regions with synthesized contents,
which will be both realistic (thanks to the adversarial
loss) and as faithful as possible (thanks to the pixel-
wise metrics).

At test time, we only use the generator part of the
adversarial process to synthesize our view. It takes
as input the warped prediction, as well as the esti-
mated disparity map. The final predicted view Vi,
is obtained by combining the two predictions using
the confidence map as

Viin = CyVaisp + (1- CY)Vref* 2

where Vs, is the output of DBP and an input to the
refiner, and V,.r the output of the refiner, and Cy the
computed confidence map.

The method can be tailored to be efficiently
trained on both light fields and stereo content. There
is one refiner per branch, which is applied in both
learning and test time.

2.4 Training on light fields

When using light fields for training, we have access
to both horizontal and vertical disparities, hence the
DBP can be trained to estimate these two disparities
and produce the corresponding horizontal and vertical
warpings. We extract pairs of views by taking the cen-
ter view as one of the two images of the pair, and the
other one randomly within the light field. The max-
imum disparities of the light field are taken as refer-
ence. When working on views which are not extreme,
and assuming a regular sampling of views in struc-
tured light fields, we estimate the disparity d;,,; of an

intermediate view by interpolation as
dit(x) = 0d(x— (1 —o)d(x)) 3)
where o represents the targeted position, and x the
bidimensional coordinates. This allows us to obtain
an interpolated disparity map for warping, that will
tend to favor background disparity for occluded re-
gions, and lead to more plausible results than when

simply multiplying the disparity map.

2.5 Training on stereo content

The method can also be trained on stereo data, and be
used to generate full light fields. In this case, we can
only train the method with horizontal disparity, and
have to infer vertical disparity at test time. We there-
fore add a simple module to infer the vertical disparity
at test time, once the network was trained on stereo
contents. The new, two-channel disparity map d.,
is obtained from the horizontal, predicted one, by ap-
plying the following transformation to the horizontal
disparity map dp,:
dnew (yax) = Ocdhor(aydhor(x)ax - (1 - ax)dhar(x)))
“)
where y accounts for vertical coordinates, while x ac-
counts for horizontal coordinates, and o = (0, 0) is
a set of parameters accounting for the relative posi-
tion of the requested view relatively to the input view.
Given that the warped disparity map may however
contain errors especially in the foreground near the
borders of the image, we improve it by applying an
auto-regressive extrapolation along the vertical lines
and from the 50 previous points. The rest of the net-
work proceeds with the warped prediction, and refines
and automatically improves the occluded regions at
test time.

2.6 Summary

In summary, the procedure is as follows:
* From a pair of images, learning the disparity and
warping from it through the DBP to generate one
from the other.

* Through a confidence computation obtained by
inputting the same image in both branches, deter-
mining which regions are likely to be accurate.

* In the regions with low-confidence, using a refiner
with adversarial learning to improve the results.

3 Learning procedure

Let Lppp and Rppp be the DBP-based predictions,
and L and R the ground truth images, and d; and



dp the disparity maps for the warping towards pre-
dictions L and R. We first train the DBP using the
metrics:

Xo([|Lpsp — L|1 +||Rpsp — R||1)

)
+ A (||VLpgp — VL||1 +||VRper — VR||1)

Before training the Refiner, we add a step of ge-
ometrical restructuring for the DBP. Finally, we
freeze the weights of DBP, and train the Refiner
in order to minimize the loss function

M (|[LrerF — LI|1) +As(||VLrer — VL]|1)
+A6([[L" —L[1) + A7 (||[VL* = VL[| (6)
+AsL(L*,L)

where Lggr is the prediction performed by the
Refiner, L the ground truth image, L* the fi-
nal combined prediction L* = CyLpgp + (1 —
CY)LREF, and L the Wasserstein loss. The dis-
criminator for the adversarial process is trained
using only this Wasserstein loss. For the hy-
perparameters, we consider: y = 0.08, Ay =
0.80, A1 = 0.20, Ay = 0.27, As = 0.054, As =
0.54, A7 = 0.135, Ag = 0.01. We opti-
mize our approach using the Adam algorithm
([Kingma and Lei Ba, 2015]), with f; = 0.9 and
B2 =0.999. We use a learning rate of 0.0001
for the overall network (with 0.00001 for the dis-
criminator during training). The work was imple-
mented using TensorFlow ([Abadi et al., 2015])
and Keras ([Chollet et al., 2015]). The network
was stopped when no improvement in the valida-
tion metrics was obtained after 20 epochs. The
network is fully trained after only a few hours, and
contains around 6 million parameters at training
time.

For the following experiments, our method for
training took as input patches of resolution 256 x
256 (for the stereo case) or 256 x 512 (for the
light field case), normalized between -1 and 1,
with data augmentation in 20 % of the cases, with
random gamma and brightness transformations.
In this article, we used two datasets for com-
parison: Flowers ([Srinivasan et al., 2017]) and
KITTI ([Geiger et al., 2012]). Flowers is a light
field dataset, with rather small baselines, compris-
ing around 3,000 light fields of flowers in simi-
lar geometrical configurations. We systematically
pick the central view as one element of the pair,
and we randomly choose another view as the other
element of the pair. We adjust the value of o to ac-
count for the coordinate of the selected view. As
a starting point, we only focus on one corner view
as target that we arbitrarily choose as the reference
disparity (oo = (1,1)). After 10 epochs, we add

PSNR/SSIM Ours LF4D Stereo
4 corners 34.97/0.94 | 31.61/0.89 | 33.54/0.93
Full LF 38.41/0.96 | 35.10/0.94 | 37.16/0.95

Table 1: Statistical comparisons between our method
trained on light field data (Ours), reference method LF4D
([Srinivasan et al., 2017]), and our stereo-based method
(Stereo). We display the mean PSNRs and SSIM on the
4 corner views (the most difficult ones to predict), as well
as on the full light field.

the rest of the views as possible target views and
the interpolation process described in section 2.4
is then applied. We perform a train-test-validation
split, to be able to compare our approach. KITTI
is a stereo dataset which depicts urban scenes, and
contain pairs of images with a very significant dis-
parity gap between them. In this work, we use 400
pairs of images randomly chosen as training ele-
ments.

4 Evaluation

We compare the proposed approach to sev-
eral methods: LF4D ([Srinivasan et al., 2017]),
a method able to predict a full light field from
one single image, by enforcing epipolar con-
straints within the predicted light field, using the
code provided by the authors. We also com-
pare visually our approach with the method in
[Sun et al., 2018], in the stereo case, using the
network provided by the authors. We also com-
pare our method to the recently published method
[Evain and Guillemot, 2020], and with the refer-
ence method [Xie et al., 2016], both focused on
working in a stereo setting. To evaluate our stereo-
based approach, we also use it on Flowers by only
training it from 2 aligned views on the central
line of the light field ([Srinivasan et al., 2017]).
For evaluation, we use PSNR, SSIM and LPIPS
([Zhang et al., 2018]) as reference metrics. Due
to the visual nature of the task, we strongly rec-
ommend the reader to take a look at the Supple-
mentary video, which displays other examples of
views synthesized using the proposed method.

4.1 Light Field View Synthesis
Results

Training and testing with light field data We
first focus on training and testing the network with
light fields. For that, we use the Flowers dataset
([Srinivasan et al., 2017]). We evaluate predicted
views in comparison with the reference method



Figure 4: Visual prediction for a top-left image from
the Flowers test set, as well as the corresponding L1
errors, for, from left to right, our method, LF4D
([Srinivasan et al., 2017]) and the stereo version of our

method. The errors were multiplied with a factor of 3 for
better visualization.

Figure 5: Close-up views from figure 4. On the left
side, our results, on the right side, the results obtained
in [Srinivasan et al., 2017]. We note that our results are
sharper and structurally more consistent.

LFAD ([Srinivasan et al., 2017]), by applying an
identical experimental protocol, in figures 4, 5
and 6, in table 1, as well as in the supplementary
video. We see that our approach clearly outper-
forms LF4D, both metric-wise and visually.

We also use the Flowers dataset to evaluate our
stereo-training based approach, i.e. by only train-
ing the network on stereo aligned pairs (extreme
left-side view - center view and center view - ex-
treme right-side view). The results (the last row of
figure 4 and table 1) show that our method, even
when trained on stereo content, manages to out-
perform the LF4D monocular light field synthesis
method, and is able to produce high-quality light
fields. This shows that our stereo to light fields
adaptation module is very efficient.

Figure 6: Supplementary visual comparisons between our
work (left-side) and [Srinivasan et al., 2017] (right-side).
We note that our images are sharper and better quality.

Figure 7: Visual comparison of two of our predictions
with Sun’s method, for similar geometrical transformations
(from left to right, 2 sequences of: input, our prediction, and
the prediction obtained from [Sun et al., 2018]). The views
we produce are less blurry and have fewer distortions.

Training on stereo content We also train
the network using the stereo KITTI dataset
([Geiger et al., 2012]), in order to build a full light
field. The views produced have no ground truth
equivalent; only visual evaluation is possible in
this case. Visual results are shown in figure 1 and
in the supplementary video. To evaluate our ap-
proach, we compare it visually to the monocular
part of the method in [Sun et al., 2018]. The net-
work, also trained on KITTI, receives as input one
image and a transformation vector expressing the
relative coordinates of the target view. We specify
to the pre-trained network a transformation vector
similar to ours.

We note that our approach clearly performs
better visually on this data (see figure 7). This
is probably because the vertical transformations
are not present in the KITTI training set, and
can thus not be learnt efficiently by the method
in [Sun et al., 2018]. Given that our approach is
optimized to generate the light field, we are able
for this task to obtain more realistic results.

To evaluate metric-wise our predictions, we
also compare them with stereo-based view syn-
thesis methods [Evain and Guillemot, 2020] and
[Xie et al., 2016] in table 2, on the KITTI test set,
in a stereo setting. We note that our approach sig-
nificantly outperforms these two reference meth-
ods in the 3 chosen metrics. We can note that
we obtain those results with a smaller number of
parameters (notably, [Evain and Guillemot, 2020]
has 200,000 more parameters). We show in figure
8 a visual stereo prediction, associated with the L1
error. We can see that the predicted view is rather
high-quality.



KITTI Test Set PSNR | SSIM | LPIPS

Ours 19.96 0.76 0.130

[Evain and Guillemot, 2020] | 19.24 | 0.74 0.139
Deep3D ([Xie et al., 2016]) | 19.08 | 0.74 0.220 &

Table 2: Comparison of the results of our approach
with 2 reference methods ([Evain and Guillemot, 2020],
[Xie et al., 2016]) in a stereo setting. For PSNR and SSIM,
the higher, the better. For LPIPS, the lower, the better.

Figure 8: Result of our approach in a stereo setting, on the
KITTI test set, for evaluation. From top to bottom: input
image, our prediction, ground truth image, L1 error.

Finally, we compare our confidence com-
putation process with the one described in
[Evain and Guillemot, 2020] in figure 9. We note
that our occlusion identification process is signif-
icantly more efficient.

Testing on natural images We can also test
our network on natural images, captured using a
smartphone. It allows us to produce a full light
field from one single image. A visual example of
it is shown in figure 10.

’--

Figure 9: Visual evaluation and comparison of the con-
fidence map. Yellow means low-confidence. From
left to right: our prediction, confidence map re-
turned by our approach, confidence map returned by
[Evain and Guillemot, 2020] in the same setting. We note
that our way to compute the confidence map is significantly
better at specifically capturing occluded regions.

Figure 10: A light field generated from one single image
(input is the central view in the figure). The approach is
tested on a natural image, captured using a smartphone. For
aresult with higher resolution, we advise the reader to check
the supplementary video.

Flowers | Ours | No AL | No Refiner
PSNR | 38.41 | 38.40 37.59
SSIM 0.96 0.96 0.95

Table 3: Statistical comparisons for the ablation study on
the Flowers test set. No Refiner only uses the warped pre-
diction, No AL does not use adversarial learning

4.2 Ablation study

Impact of the confidence-based refiner We
evaluate the impact of the refiner on the result in
tables 3 and 5. We can note that it significantly in-
creases the performance both in PSNR and SSIM
for both datasets. Its contribution is, though, more
significant when working on KITTI, due to its
more significant occluded regions. We also evalu-
ate its positive contribution when training the ap-
proach on stereo contents, and using it to generate
light fields in table 4. We note that the Refiner in
this case also allows to significantly improve the
performance of the approach.

Flowers | Stereo ours | Stereo No refiner
PSNR 37.16 36.02
SSIM 0.95 0.93

Table 4: Statistical comparisons for the ablation study on
the Flowers test set. Stereo ours is our stereo-based light
field synthesis method, Stereo No Refiner evaluates the pre-
diction when no refiner is used.



KITTI Test Set | Ours | No AL | No refiner
PSNR 19.96 | 19.85 18.87
SSIM 0.76 0.75 0.74
LPIPS 0.130 | 0.135 0.144

Table 5: Statistical comparisons for the ablation study on
the KITTI test set. No Refiner only uses the warped predic-
tion, No AL does not use adversarial learning.

Impact of adversarial learning We also
evaluate the impact of our adversarial process on
the result. We note that depending on the chosen
dataset, we do not draw the same conclusions.
When working on Flowers (see table 3), we note
that the adversarial process does not really have
a significant impact. The occluded regions in
Flowers are indeed smaller and then easier to
fill, reducing the usefulness of the adversarial loss.

On the other hand, when working on KITTI, we
can see that the adversarial process is much more
beneficial, giving an overall increase in PSNR and
SSIM, but more importantly a significantly bet-
ter LPIPS ([Zhang et al., 2018]), showing that it
is an adequate way to improve the perceptiveness
of our images. A visual example of such an im-
provement on KITTI is displayed in figure 11.

o
=

Figure 11: Contribution of adversarial learning. From left
to right, input image, prediction without adversarial learn-
ing, prediction with adversarial learning. We note that the
approach with adversarial learning is able to fill in these oc-
cluded regions more realistically (highlighted in red).

5 Conclusion

In this article, we have described a method able
to produce light fields, with a training from both
light field datasets and stereo datasets. The pro-

posed method allows us to generate high-quality
light fields, from only one single input image and
for diverse images and semantics. We manage
to achieve good performance for producing these
light fields, and are able to use stereo data to pro-
duce light fields with a wider variety of contents
and semantics.
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