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Abstract

This article presents a massively parallel and robust strategy to perform the simulation of turbulent incompressible

two-phase flows on unstructured grids in complex geometries. This strategy relies on a combination of a narrow-band

accurate conservative level set/ghost-fluid framework with isotropic adaptive mesh refinement. This combination en-

ables to accurately capture interface dynamics and topology, and the small physical scales at the liquid-gas interface are

resolved at an affordable cost. In the accurate conservative level set framework, presented first in [O. Desjardins et al, J.

Comput. Phys. 227 (2008) 8395-8416], the interface is defined as the iso-contour of a hyperbolic tangent function, which

is advected by the fluid, and then reshaped using a reinitialization equation. Several forms of this reinitialization exist:

the original ACLS form proposed by Desjardins et al. involves numerical estimation of the hyperbolic tangent gradient,

which is difficult to compute accurately on unstructured meshes. It is thus susceptible to induce artificial deformation

of the interface. A new form has been recently proposed in [R. Chiodi et al, J. Comput. Phys. 343 (2017) 186-200],

which takes advantage of a mapping onto a classical distance level set while much better preserving the interface shape.

Nevertheless, the implementation of this new form on unstructured grids requires special care. In this work, a robust

implementation of this new form on unstructured meshes is proposed and implemented in the YALES2 low-Mach flow

solver. In order to compute interface normals and curvature, the signed-distance function is reconstructed in parallel at

nodes in the narrow band around the interface using a Geometric-Projection Marker Method (GPMM). This method

relies on the triangulation of the level set iso-contour and exact geometric projection to the closest surface elements.

Spatial convergence, robustness and efficiency of the overall procedure are firstly demonstrated through classical interface

transport test cases and two-phase flow examples. Eventually, to emphasize the significant computational gain using

adaptive mesh refinement and the ability to compute complex turbulent flows with large density ratios, two Large-Eddy

Simulations (LES) of atomizing liquid jets in air are presented, each one at various resolutions. The first one is a low-

pressure water jet in quiescent air from a compound nozzle with full computation of the internal injector flow, while the

latter is a high-pressure kerosene jet in crossflow. Both simulations are validated against experiments, demonstrating

the potential of the method to access a deep numerical insight into jet instabilities and internal flow dynamics with 3D

unstructured meshes.

Keywords: Multiphase flows; Atomization; Unstructured grids; Incompressible flow LES; Conservative level set; Adaptive

mesh refinement

1 Introduction

Multiphase flows are ubiquitous in nature and in industrial systems, and understanding the formation of sprays
is crucial for designing complex injection technologies. More specifically, turbulent primary atomization is of
first importance in aeronautical combustors, into which fuel is injected in liquid form, goes under atomization,
evaporation, turbulent mixing and eventually combustion. All these physical processes are strongly dependent,
and thus improving numerical predictions of pollutant formation requires deep numerical insights into the
atomization process. This process designates the evolution of large liquid structures into small droplets and thus
governs the liquid droplet distribution in the combustor and the subsequent evaporation. Realistic industrial
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injector geometries for atomization simulations are very complex, including sharp edges and narrow corners,
which hinders the meshing task with cartesian grids: the use of unstructured meshes is thus well suited for this
type of simulations [1]. Although the literature remains limited about unstructured atomization computations,
previous studies on static meshes can be found, such as [2, 3, 4, 5, 6, 7, 8, 9] for Volume Of Fluid (VOF) interface
capturing techniques [10], or [11, 12, 13, 14, 15] for Level Set methods (LS) [16, 17].

Despite many years of study, high-performance atomization simulations remain a challenge: the wide range
of involved time and space scales leads to important calculation costs. To tackle this issue, the use of Adaptive
Mesh Refinement (AMR) is particularly helpful, allowing the allocation of computational resources to the
interface dynamics. A popular technique for solving incompressible two-phase flows on adaptive cartesian grids
is tree-based AMR (quad/octree), as in the work of Popinet [18, 19]. Regarding unstructured meshes, Dai
and Schmidt [20] proposed a moving-mesh algorithm to simulate free-surface flows with large deformations on
adaptive tetrahedral grids. Both studies are proposed in the context of VOF methods, and the meshes are
typically refined based on the local curvature of the interface. For classical Level Set methods on adaptive
tetrahedral grids, Morgan and Waltz [21] introduced a method to treat evolving fronts with specified velocity,
while Rodriguez et al. presented a parallel two-phase flow solver using a finite-element formulation in [22],
where the adaptive mesh is refined based on the distance to the interface.

In this work, the Accurate Conservative Level Set (ACLS) method is used to capture the interface on 2D
and 3D unstructured grids: this method accurately predicts the interface dynamics while conserving liquid
mass [23, 24, 25]. ACLS on unstructured grids has been proposed before in [12, 13] on static meshes, and
by Antepara et al. [26] for adaptive tetrahedral grids. In this latter, non-conforming AMR with an octree
data structure is used. In the present work, massively distributed adaptive conforming unstructured grids are
employed, and adapted using both metric-based and skewness-based quality criteria. We extend these previous
unstructured ACLS studies by including an adapted and improved reinitialization method, first introduced by
Chiodi and Desjardins for cartesian grids [27] and that has never been implemented to date for unstructured
grids. In particular, interface-merging properties of this reinitialization equation are discussed. Moreover, a
narrow band around the liquid-gas interface is built to compute interface features only in the area of interest [28],
allowing significant computational savings.

This article is organized as follows: the various parts of the procedure implemented in the YALES2 un-
structured low-Mach number code [29] are first presented, namely the ACLS interface-capturing technique,
the fractional-step integration of Navier-Stokes equations with explicit treatment of jump conditions, and the
dynamic mesh adaptation strategy. The accuracy, spatial convergence, and computational efficiency of the
unstructured ACLS method are assessed on classical interface transport test cases. The behavior of the overall
algorithm in the case of canonical capillary-driven two-phase flows is then verified. Finally, two LES simulations
in complex geometries are performed on adaptive tetrahedral meshes: the break-up of a turbulent liquid jet
from a low-pressure compound nozzle [30, 31] and of a non-reactive high-pressure liquid jet in crossflow are
shown at various resolutions, demonstrating the accessibility of jet instabilities with 3D adaptive unstructured
meshes. Results are validated against experiments performed in the same conditions [32, 33].

2 Mathematical formulation

2.1 Accurate Conservative Level Set framework

In the Accurate Conservative Level Set (ACLS) framework [25], the liquid-gas interface Γ is represented using
a hyperbolic tangent profile:

ψ(x, t) =
1

2

(
tanh

(
φ(x, t)

2ε

)
+ 1

)
(1)

where the parameter ε sets the thickness of the profile, and φ(x, t) = ±|x(t) − xΓ(t)| is the signed-distance
function.
Using ψ, the interface is located at the iso-level 1/2:

Γ(t) = {x ∈ R3|ψ(x, t) = 1/2} (2)

as depicted in the one-dimensional example of Fig. 1. In this figure, a characteristic profile thickness δψ is used,
computed based on the maximum gradient of ψ:

δψ =
1

max |∇ψ| = 4ε (3)

Assuming the flow velocity field u is divergence free, the scalar ψ is advected by the fluid:

∂ψ

∂t
+ ∇ · (ψu) = 0 (4)
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Figure 1: Interface capturing on a one-dimensional example using the ACLS method. xΓ = 0; δψ = 4ε.

and then reshaped using the reinitialization equation of [25]:

∂ψ

∂τ
= ∇ · ( ε(∇ψ · n)n︸ ︷︷ ︸

Diffusion

− ψ(1− ψ)n︸ ︷︷ ︸
Resharpening

) (5)

where τ is a pseudo-time, and n is the interface normal:

n =
∇φ

|∇φ| (6)

A new form of the reinitialization equation was recently proposed by Chiodi et al. in [27]:

∂ψ

∂τ
= ∇ ·


 1

4 cosh2
(
φmap

2ε

) (|∇φmap · n| − 1) n


 (7)

where φmap = ε ln (ψ/(1− ψ)) is an analytical signed-distance function, mapped for ψ ∈]0; 1[. More details
regarding the history of conservative level-set reinitialization equations can be found in [34].

The signed-distance function φ is reconstructed at nodes in the narrow band around the interface using a
Geometric-Projection Marker Method (GPMM), firstly introduced in [35], to estimate the smallest distance to
the interface. The mean curvature κ is computed directly from φ using Goldman’s formula [36]:

κ =
Tr (H(φ))− ∇φT

|∇φ| ·H (φ) · ∇φ
|∇φ|

|∇φ| (8)

where H(φ) is the Hessian matrix of the signed-distance function.
The ACLS method is not strictly conservative for two reasons. First, the approximate and exact enclosed

volumes of liquid are respectively:

Ṽl =

∫

V

ψ dV and Vl =

∫

V

H(ψ − 1/2) dV (9)

where H is the Heaviside function (0 in gas, 1 in liquid). In the ACLS method, the approximate volume Ṽl
is conserved, but differs from the exact volume Vl due to interface curvature, i.e. in the ubiquitous case of
non-straight interfaces.

A second reason for losing liquid mass on irregular meshes is the variation of the mesh resolution from fine
to coarse, which leads to the smoothing of ψ, and may imply a loss of the ψ = 1/2 iso-surface. In this case, the
interface is not detected anymore and gas can be set instead of liquid.

Finally, the reinitialization process on non-homogeneous meshes may also induce errors in the transport
speed: the profile thickness parameter ε is mesh dependant, typically set to ∆x/2. Spatial variations of this
parameter induce changes in the profile thickness, which in turn may induce errors on the transport velocity of
the ψ = 1/2 iso-surface.

Because of all these numerical errors on non-homogeneous meshes, special attention is needed when coupling
the ACLS procedure with dynamic mesh adaptation, so that the interface never encounters strong cell-size
gradients.
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2.2 Navier-Stokes equations

The momentum equation for an incompressible Newtonian fluid is written in each of the phases as:

∂u

∂t
+ ∇ · (u⊗ u) = −1

ρ
∇p+ ∇ · τ + g (10)

with ∇ · u = 0. The flow velocity is assumed continuous in both normal and tangential directions across
the liquid/gas interface Γ, and hence there is no velocity jump: [u]Γ = 0. However, pressure and density are
discontinuous across Γ [37]. Surface tension σ is embedded in the pressure jump [p]Γ, and, without Marangoni
forces, the pressure jump is written as:

[p]Γ = pl,Γ − pg,Γ = σκΓ + 2[µ]Γnt ·∇u · n (11)

It is numerically treated using the Ghost-Fluid Method (GFM) [38]. In Eq. (11), n is the interface normal
from Eq. (6), κΓ is the total interface curvature, pl,Γ and pg,Γ are the liquid and gas pressure at the interface,
respectively. The material properties are reconstructed as:

ρ(x, t) = ρg + (ρl − ρg)H(ψ(x, t)− 1/2) and µ(x, t) = µg + (µl − µg)ψ(x, t) (12)

for the density and the dynamic viscosity, respectively.
The linear solver used to solve the Poisson equation for pressure is the Deflated Preconditioned Conjugate

Gradient of [39].

3 Numerical formulation for unstructured grids

3.1 Accurate Conservative Level Set algorithm

3.1.1 Narrow-band ACLS

In order to reduce computational costs, interface features such as signed distance, normals, curvature and
reinitialization fluxes are computed in a restricted region around the interface, called ”narrow band” [28]. Each
node i belonging to the narrow band is identified with a signed integer bi (b > 0 in liquid and b < 0 in gas),
depending on the node layer it is part of. The flagging of the narrow band is illustrated in Fig. 2 (a). Using this

Figure 2: (a) Flagging of the narrow band around the interface Γ, here ik is a pair of nodes crossing the
interface; (b) Pair-based band-layer index Bik for data propagation in the Geometric-Projection Marker

Method (GPMM).

methodology, an edge ik crossing the interface verifies bibk = −1. In practice, the band width is set between 8
and 12 cells on each side of the interface: 8 ≤ |b|max ≤ 12.

3.1.2 Signed-distance function reconstruction: the GPMM algorithm

To compute the interface normals (Eq. (6)) and curvature (Eq. (8)), a reconstructed signed-distance function
φ is used. As detailed in [25], using this smooth function instead of ψ for the computation of normal avoids
spurious orientation of this normal vector, which is thus appropriate for the reinitialization equation. This
distance reconstruction is challenging on unstructured meshes, and very few massively parallel algorithms are
able to do it. In the work of Dapogny and Frey [40], the signed-distance function is reconstructed on unstructured
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Figure 3: Segmentation of the interface in 2D. PK(MI) is the K-th intersection point associated with the I-th
marker MI .

meshes from a triangulation of the interface using the unsteady Eikonal equation. In particular, the reduction of
triangulation-induced numerical errors when refining the mesh close to the interface is discussed and quantified.
In this work, the interface is also approximated by a triangulation before reconstructing the distance, but it
has been chosen to proceed geometrically using a pair-based Fast-Marching Method (FMM) for its computation
from the explicit surface. The methodology is the following: (i) a preliminary sorting of the node pairs in the
narrow band is performed to be able to sweep from the close-interface band layers to the ones further; (ii) a
segmentation (2D) or triangulation (3D) of the interface within grid cells is done; (iii) a Fast-Marching Method
(FMM) is then performed along the edges to build a collection of the closest segments (2D) or triangles (3D)
at each node of the band; (iv) the signed-distance function is computed from an exact geometric projection
at each node of the band. All these steps constitute the Geometric-Projection Marker Method (GPMM), first
introduced in [35] and presented here in more details.

Sorting of the node pairs In order to propagate data efficiently from the first band level |b| = 1 to the
furthest |b| = |b|max, sorting the pairs of nodes layer by layer in the narrow band is necessary. To do so, a
pair-based band-layer index Bik is defined as follows:

Bik =

{
1 if bibk = −1

min (|bi|, |bk|) + 1 if bibk 6= −1
(13)

with 1 ≤ Bik ≤ |b|max + 1. This index is depicted in Fig. 2 (b).

Determination of intersection points It is then needed to compute the position xP of the intersection
points P between the interface Γ and the edges ik crossing the interface (Bik = 1). Given the conservative
level-set functions ψi and ψk (Eq. (1)) at the nodes i and k belonging to a crossing pair ik, one can invert these
functions to build two distance functions to the interface φinv,i and φinv,k:

{
φinv,i = 2εiatanh (2ψi − 1)

φinv,k = 2εkatanh (2ψk − 1)
(14)

The level-set position θ on a pair ik crossing the interface is then calculated as:

θ =
φinv,i

φinv,i − φinv,k
(15)

which means that θ = 0 and θ = 1 correspond to Γ at nodes i and k, respectively. Thus, if the pair of nodes ik
verifies the condition (ψi − 0.5)(ψk − 0.5) < 0, the position of the intersection point is eventually computed by
interpolating the nodal coordinates as:

xP = xi + θ(xk − xi) = xi + θ∆xik (16)

Segmentation/Triangulation of the interface In order to compute the distance to an explicit interface,
noted Γ∗ in the following, a segmentation in 2D or a triangulation in 3D of the implicit interface Γ is first
performed. This step is illustrated in 2D in Fig. 3. The concept of marker stems from this procedure. A marker
M is an array containing the coordinates xK(M) = (xK(M), yK(M), zK(M)) of its associated intersection
points PK(M) seen in Fig. 3. Hence, for 2D triangular grids, each interface segment is defined by a set of
two intersection points (K = 1, 2) stored in a marker. For 3D tetrahedral meshes, there can be three or four
intersection points depending on how the interface intersects a tetrahedron. For a three-point intersection, the
interface within the cell is defined by a single triangle. In the case of a four-point intersection, the resulting
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quadrilateral is divided into four triangles to ease the storing of the surface elements, leading in both cases to
three points stored in one marker in 3D (K = 1, ..., 3).

Each node of the narrow band knows a maximum fixed number of markers NM defined by the user (I =
1, ..., NM ), which is usually set to 3 in 2D and 10 in 3D. Indeed, as studied in [35], propagating several markers
significantly improves the accuracy and spatial convergence of the method. A set of markers known by a node i
of the narrow band is a marker list. Each marker M , which is a node-based array Mi, also contains the absolute
distance d(Mi) from the node i to the associated surface element, and two identificators id1,2(Mi). id1 is the
processor number and id2 is the mesh element number in which the intersection points are. A 2D nodal marker
list is presented in Table 1.

Table 1: A 2D marker list for a node i of the narrow band: 2 identificators id1,2, 4 coordinates (K = 1, 2), 1
distance d.

M1,i ... MI,i ... MNM ,i

id1(M1,i) ... id1(MI,i) ... id1(MNM ,i)
id2(M1,i) ... id2(MI,i) ... id2(MNM ,i)
x1(M1,i) ... x1(MI,i) ... x1(MNM ,i)
y1(M1,i) ... y1(MI,i) ... y1(MNM ,i)
x2(M1,i) ... x2(MI,i) ... x2(MNM ,i)
y2(M1,i) ... y2(MI,i) ... y2(MNM ,i)
d(M1,i) ... d(MI,i) ... d(MNM ,i)

The markers will then be sorted by distance for each node i, within the marker list so that:

d(M1,i) < ... < d(MI,i) < ... < d(MNM ,i) (17)

Sorting of markers and distance computation When a marker is evaluated to update and fill marker
lists, a check is first performed based on the two marker identificators to identify whether the marker is already
present in the marker list or not. If not, the marker distance needs to be estimated to place the new marker in
the list. Two cases are then considered based on the nodal band-layer index bi, and a threshold |b|exact = 2: (i)
in the first two band levels, i.e. if |bi| ≤ |b|exact, the distance d is computed by performing an exact geometric
projection; (ii) for the furthest band levels, i.e. if |b|exact < |bi| ≤ |b|max, the distance is initially approximated
in order to speed-up the marker-sorting procedure. We focus on 2D triangular grids in the following for sake of
simplicity.

In case (i), the geometric projection algorithm is used, illustrated in Fig. 4. If the projection is inside

Figure 4: Projection algorithm to compute the exact geometric absolute distance d to the triangulated
interface Γ∗.

the element (Fig. 4 (a)), the distance to the segment [P1P2] stored in marker MI,i at node i is computed
geometrically as:

d(MI,i) =

∣∣∣(xi − xP1
) · nP1P2

∣∣∣
∣∣∣nP1P2

∣∣∣
(18)

where nP1P2 is the normal vector to the interface segment [P1P2]. Otherwise, if the projection is outside the
element (Fig. 4 (b)), the distance d is the distance between the node i and the closest intersection point PK :

d(MI,i) = min(|xi − xP1
|, |xi − xP2

|) (19)
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For case (ii), the distance is simply approximated for the sorting as:

d(MI,i) = min



∣∣∣xi − xP1

∣∣∣,
∣∣∣xi − xP2

∣∣∣,

∣∣∣(xi − xP1
) + (xi − xP2

)
∣∣∣

2


 (20)

Once the marker distance is estimated, it is then needed to sort the marker by distance and thus include
the new one in the nodal marker list. This procedure is presented in Algorithm 1.

Algorithm 1 Update of a marker list at a node i of the narrow band. The new marker to be included in the
list is M∗,i.

1: if d(M∗,i) ≤ d(M1,i) then
2: for I = NM − 1, 1,−1 do
3: MI+1,i = MI,i

4: end for
5: M1,i = M∗,i
6: else if d(M∗,i) ≥ d(MNM ,i) then
7: return
8: else
9: for I = 1, NM − 1 do

10: if d(M∗,i) < d(MI+1,i) then
11: for I ′ = NM − 1, 1 + I,−1 do
12: MI′+1,i = MI′,i

13: end for
14: MI+1,i = M∗,i
15: return
16: end if
17: end for
18: end if

Optimization and parallelization The present algorithm is iterative for parallelism purposes. YALES2
parallelization uses a double-domain decomposition: within a processor, grid elements are assembled in groups.
To optimize the algorithm, it is necessary to check local changes, within a cell group or a processor.

In addition to the marker list array, another array which contains marker flags F(M) (0 or 1) is created
before propagating data (i.e. after treating the first band level) in the narrow band. Fi(M) = 1 means that the
marker M is new in the list at node i: e.g. this flag would be turned to 1 right after lines 5 and 14 of Algorithm 1.
This operation allows to have updated information on the status of markers during data propagation, and thus
avoids unnecessary repetition of computational operations (e.g. redundant updates and sorting of markers).

Another optimization is to store the squared distance d2(MI,i) in marker lists instead of the distance d(MI,i),
to avoid many calculations of square roots, which have seen to be very expensive due to the large number of
distance computations in the present algorithm. Indeed, this minor change does not affect the comparison and
sorting of markers.

Final nodal signed-distance computation in the narrow band Once all markers are sorted, M1,i

contains the smallest squared distance d2(M1,i). The signed-distance is thus simply computed at node i as

φi = ±
√
d2(M1,i) if |bi| ≤ |b|exact, otherwise for the nodes where the distance d in markers has been only ap-

proximated for the sorting (|b|exact < |bi| ≤ |b|max), the distance φi is eventually computed using the projection
algorithm presented above (Fig. 4) onto the closest surface element, known thanks to the marker sorting.

3.1.3 Finite-volume framework for unstructured grids: spatial discretization and notations

YALES2 is a pair-based finite-volume low-Mach solver with node-centered control volumes [29]. These control
volumes Vi are based on the dual mesh, as shown in Fig. 5. The spatial discretization is ensured by 4th-order
central finite-volume schemes, written on the dual mesh constructed from edge and element centers (dual cells
connect centroids of cells to centroids of faces).

In this framework, second and fourth-order gradients of a quantity ζ are computed at a given node i using
the gradient theorem as:

∇ζ|i =
1

Vi

∑

k∈Ni

ζikdAik (21)
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Figure 5: Finite-volume pair-based discretization in YALES2, using node-centered control volumes Vi.

∇ζ|2nd
i =

1

Vi

∑

k∈Ni

(
ζi + ζk

2

)
dAik (22)

∇ζ|4th
i =

1

Vi

∑

k∈Ni

(
ζi + ζk

2
+

∇ζ|2nd
i −∇ζ|2nd

k

6
·∆xik

)
dAik (23)

with Ni the set of neighbors of node i, and ∆xik the direction of the pair ik. It is useful to define the unit pair
direction eik = ∆xik/∆xik, which will be used in the following sections. More details about the high-order
finite-volume framework used can be found in [41].

Using the divergence theorem, the divergence of a flux F writes:

∇ · F|i =
1

Vi

∑

k∈Ni

Fik · dAik (24)

with Fik the pair-based flux computed as in the gradient to either second or fourth order.

3.1.4 Interface normals and curvature computation

The interface normals and curvature are computed in the narrow band around the interface, using the recon-
structed signed-distance function φ from the GPMM algorithm presented above.

The interface normals are pair-based, and computed as:

nik = ∇φGPMM|4th
ik = (∇φGPMM|4th

i + ∇φGPMM|4th
k )/2 (25)

where ∇φGPMM|4th
i or k are fourth-order nodal gradients, computed using Eq. (23).

The interface curvature κΓ is computed in two steps: (i) the curvature is first estimated at nodes (κi) in the
narrow band using Eq. (8); (ii) for the node pairs crossing the interface (bibk = −1), a linear interpolation of
the nodal curvature radii Ri = 1/κi is performed to obtain κΓ.

Computation of curvature at nodes The local mean curvature at a node i is given by discretizing Eq. (8):

κi =

Tr (Hi(φGPMM))− ∇φT
GPMM|

2nd
i∣∣∣∇φGPMM|2nd
i

∣∣∣
·Hi (φGPMM) · ∇φGPMM|2ndi∣∣∣∇φGPMM|2ndi

∣∣∣
∣∣∣∇φGPMM|2nd

i

∣∣∣
(26)

where Hi(φGPMM) is the discretized Hessian operator at node i applied to the reconstructed signed-distance
function φGPMM. Two discretizations of the Hessian operator are studied in this work: compact and non-
compact. The compact Hessian computation necessitates only neighboring nodes (i.e. a compact stencil), and
is written as:

HC
i (φGPMM) =

1

Vi

∑

k∈Ni



φGPMM,k − φGPMM,i

∆xik
eik

︸ ︷︷ ︸
Aligned with ik

+∇φGPMM|2nd
ik −

(
∇φGPMM|2nd

ik · eik
)
eik︸ ︷︷ ︸

Orthogonal to ik


⊗dAik (27)

whereas the non-compact formulation is simply obtained by applying two consecutive second-order gradients,
leading to a non-compact stencil:

HNC
i (φGPMM) = ∇

(
∇φGPMM|2nd

)∣∣∣
2nd

i
(28)
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Interpolation for crossing pairs Once the nodal curvatures are computed, a linear interpolation of the
curvature radii is performed for the pairs ik crossing the interface Γ, resulting in a pair-based interface curvature:

κΓ,ik =
1

θRi + (1− θ)Rk
=

κiκk
θκk + (1− θ)κi

(29)

with θ the interpolation weight (0 < θ < 1), defined in Eq. (15), representing the position of the interface on
the crossing pair ik.

3.1.5 Discretization of the reinitialization equation

The reformulated reinitialization (Eq. (7)) is discretized using Eq. (24):

ψn
∗+1

i − ψn∗i
∆τ

=
1

Vi

∑

k∈Ni




1

4 cosh2

(
φn∗
map,ik

2εik

)
(
∇φmap|n

∗

ik · nik − nik · nik
)

nik · dAik (30)

where φmap,ik = (φmap,i+φmap,k)/2 and εik = (εi+εk)/2 are linearly interpolated interface distance and profile
thickness, respectively. ∇φmap|ik is computed using a compact term in the direction of the node pair as in
Eq. (27):

∇φmap|ik =
φmap,k − φmap,i

∆xik
eik +

∇φmap|2nd
i + ∇φmap|2nd

k

2
−
(
∇φmap|2nd

i + ∇φmap|2nd
k

2
· eik

)
eik (31)

where ∇φmap|2nd
i or k are second-order nodal gradients computed using Eq. (22).

The interface normals nik are computed with Eq. (25). It has been chosen to use non-unit normals, to avoid
spurious gradient orientations when several interfaces are close to each other, and thus improve the front-merging
properties of the implemented reinitialization.

Special attention has to be paid in regions of the narrow band where ψ is close to 0 and 1. In these regions,
φmap is difficult to estimate and two improvements in the reinitialization algorithm are introduced: (i) in order
to ensure a correct computation of ∇φmap|ik, which requires several nodal values of φmap, an under/overshoot
tag is attributed to all pairs with at least one node concerned by ψ falling outside ]0, 1[; (ii) the resharpening
term is removed so that the reinitialization becomes purely diffusive. Using the original isotropic diffusion term
of Olsson and Kreiss [23] in this case, the reinitialization then takes the form:

ψn
∗+1

i − ψn∗i
∆τ

=
1

Vi

∑

k∈Ni

εik∇ψ|n∗ik · dAik (32)

with ∇ψ|n∗ik discretized as in Eq. (31). Once the overshoots or undershoots of ψ disappear, the reinitialization
turns back to its main form given by Eq. (30).

Usually, 3 steps of reinitialization are performed and the pseudo-timestep of each reinitialization step is
simply determined by a Fourier condition on the diffusive part of the reinitialization. This stability condition
leads to:

∆τ = min
pairs ik

(
Fo.∆x2

ik

εik

)
(33)

where ∆xik stands for the length of the pair ik, and Fo is the Fourier number set to 0.5.

3.1.6 Transport of the ACLS function - Time integration

The ACLS function ψ is advected using Eq. (4). In YALES2, a 4th-order discretization is performed for
convective terms, leading to the following semi-discrete equation for a node i:

∂ψi
∂t

+ ∇ · (ψu)
∣∣∣
i

= 0 (34)

Then by applying Eq. (24):

∂ψi
∂t

+
1

Vi

∑

k∈Ni

ψikuik · dAik = 0 (35)
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Figure 6: Full ACLS procedure: the blue boxes represent computations in the narrow band.

Using a 4th-order spatial discretization as in Section 3.1.3, Eq. (35) yields:

∂ψi
∂t

+
1

Vi

∑

k∈Ni

(
ψi + ψk

2
+

∇ψ|2nd
i −∇ψ|2nd

k

6
·∆xik

)(
ui + uk

2
+

∇u|2nd
i −∇u|2nd

k

6
·∆xik

)
·dAik = 0 (36)

Time integration is performed using the TFV4A scheme of [42], which is a 4th-order, Runge-Kutta-like,
time-marching scheme. The timestep ∆t is computed from the classical explicit CFL stability criterion:

∆t = min
pairs ik

(
CFL|dAik|∆xik
|uik · dAik|

)
(37)

where ∆xik is the length of the pair ik. The full ACLS procedure is depicted in Fig. 6.

3.2 Low-Mach flow solver

3.2.1 Ghost-Fluid Method

The Ghost-Fluid Method [25, 38] is a robust and accurate way to explicitly deal with jump conditions. Let us
consider the jump at a liquid-gas interface in one dimension of a physical quantity ζ, written [ζ]Γ = [ζ](xΓ) =
ζl(xΓ) − ζg(xΓ) = ζl,Γ − ζg,Γ. The liquid and gas quantities in each phase can be extended in the other phase
by continuity:

ζl(x) = ζl,Γ + (x− xΓ)
∂ζ

∂x

∣∣∣
l,Γ

+O(x− xΓ)2 and ζg(x) = ζg,Γ + (x− xΓ)
∂ζ

∂x

∣∣∣
g,Γ

+O(x− xΓ)2 (38)

which leads to the expression of the jump everywhere in the fluid domain:

[ζ](x) = [ζ]Γ + (x− xΓ)

[
∂ζ

∂x

]

Γ

+O(x− xΓ)2 (39)

The extension to 3D is straightforward:

[ζ](x) = [ζ]Γ + (x− xΓ) · [∇ζ]Γ +O(x− xΓ)2 (40)

Fig. 7 illustrates the principle of the Ghost-Fluid Method. In the following, this methodology is used to discretize
the pressure gradient in the numerical framework of this study: pair-based finite-volume schemes.

10



Figure 7: Ghost-Fluid Method: extension of the jump of a physical quantity ζ.

Discretization of the pressure gradient A first-order finite-difference approximation of the pressure term
gives:

1

ρ

∂p

∂x

∣∣∣
l,i+ 1

2

=
1

ρl

pl,i+1 − pl,i
∆x

+O(∆x) (41)

Using the pressure jump at xi, the liquid pressure is pl,i = [p]i + pg,i and can be replaced as follows:

1

ρ

∂p

∂x

∣∣∣
l,i+ 1

2

=
1

ρl

pl,i+1 − [p]i − pg,i
∆x

+O(∆x) (42)

The expression for the pressure jump [p]i is given by Eq. (39):

[p]i = [p]Γ + (xi − xΓ)

[
∂p

∂x

]

Γ

+O(xi − xΓ)2 (43)

[p]Γ is a known quantity (Eq. (11)) but [∂p/∂x]Γ is unknown a priori. With the assumption that the velocity is
continuous across the interface, the pressure term in the momentum equation Eq. (10) should also be continuous:

[
1

ρ

∂p

∂x

]

Γ

= 0⇐⇒ 1

ρl

∂p

∂x

∣∣∣
l,Γ

=
1

ρg

∂p

∂x

∣∣∣
g,Γ

(44)

After many developments, which can be found in [25], the final form of the discretized pressure gradient for
finite differences is obtained, for Γ ∈ [xi;xi+1]:

1

ρ

∂p

∂x

∣∣∣
l,i+ 1

2

=
1

ρ

∂p

∂x

∣∣∣
g,i+ 1

2

=
1

ρ∗
pl,i+1 − pg,i

∆x
− 1

ρ∗
[p]Γ
∆x

+O(∆x) (45)

with ρ∗ = θρg + (1− θ)ρl a modified density, computed using the interpolation weight defined in Eq. (15).

Implementation in the Poisson solver YALES2 is a pair-based finite-volume solver, as a result imple-
mentation of finite-difference schemes can be performed on the pairs. The expression of the discretized pressure
term of the momentum equation written in Eq. (45) is integrated in the Poisson solver of YALES2 to account
for interfacial jump conditions.

To solve the incompressible Navier-Stokes equations, a projection method is employed [43]. The Poisson
equation, used to enforce the solenoidal nature of the velocity field un+1, is:

∇ ·
(

1

ρ
∇p

)
=

1

∆t
∇ · u∗ (46)

with u∗ the predicted velocity, estimated from un (see next section 3.2.2). Eq. (46) can be discretized as
presented in Section 3.1.3:

∑

k∈Ni

1

ρ
∇p
∣∣∣
ik
· dAik =

1

∆t

∑

k∈Ni

u∗ik · dAik (47)

in which the pressure gradient is computed at pairs. A linear system of the form Ap = b that includes the jump
conditions needs to be solved, and is written as:

∑

k∈Ni

1

ρ∗
pk − pi
∆xik

eik · dAik

︸ ︷︷ ︸
Ap

=
1

∆t

∑

k∈Ni

u∗ik · dAik +
∑

k∈Ni

1

ρ∗
[p]Γ

∆xik
eik · dAik

︸ ︷︷ ︸
b

(48)
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The second part of the RHS b, which contains the pressure jump, is added for all pairs ik crossing the interface.
The linear system is solved using the Deflated Preconditioned Conjugate Gradient of [39].

The correction step is written as:

un+1 − u∗

∆t
= −1

ρ
∇p
∣∣∣
i

(49)

in which the pressure gradient is calculated at nodes. For a pair of nodes which does not cross the interface (i.e.
within one incompressible phase, liquid or gas), the pressure gradient is simply discretized as in Section 3.1.3,
with a constant density ρ corresponding to the phase. For a crossing pair ik, the jump conditions need to be
accounted for:

1

ρ
∇p
∣∣∣
2nd

i
=

1

ρiVi

∑

k∈Ni

pi + pk + [p]k
2

dAik (50)

where the pressure jump is expressed from the developments above using the Ghost-Fluid Method:

[p]k =
ρi
ρ∗

[p]Γ +

(
1− ρi

ρ∗

)
(pi − pk) (51)

3.2.2 Velocity prediction with momentum correction

In order to avoid velocity mixing between liquid and gas, and thus limit spurious kinetic energy transfers at the
interface, Desjardins and Moureau introduced a momentum correction at the interface in [44]. In this section,
we only consider the convection term in Eq. (10) for convenience. The prediction step writes:

u∗ − un

∆t
= −∇ ·

(
un+1/2 ⊗ un+1/2

)
(52)

which can be rewritten in terms of momentum:

ρ∗∗u∗ − ρnun

∆t
= −∇ ·

(
ρn+1/2un+1/2 ⊗ un+1/2

)
(53)

where ρ∗∗ is a predicted density computed from the following step:

ρ∗∗ − ρn
∆t

= −∇ ·
(
ρn+1/2un+1/2

)
(54)

Eq. (54) can be discretized in space as:

ρ∗∗i − ρni
∆t

= − 1

Vi

∑

k∈Ni

ρ
n+1/2
ik uik · dAik (55)

with ρ
n+1/2
ik computed using a simple upwinded scheme to ensure the boundedness of the density flux at the

interface:

ρ
n+1/2
ik =





(1− Uik)
ρni + ρnk

2
+ Uikρni if uik · dAik ≥ 0

(1− Uik)
ρni + ρnk

2
+ Uikρnk if uik · dAik < 0

(56)

where the pair-based limiter U is computed as:

Uik = max

( |b|upw −min (|bi|, |bk|) + 1

|b|upw
, 0

)
(57)

with |b|upw = 5, meaning that the first five narrow-band levels from the interface are concerned by the upwinding.
A similar numerical strategy is applied for the conservative flux of Eq. (53):

ρ∗∗i u∗i − ρni uni
∆t

= − 1

Vi

∑

k∈Ni

ρu
∣∣∣
n+1/2

ik
uik · dAik (58)

with ρu
∣∣∣
n+1/2

ik
calculated to 4th-order as:

ρu
∣∣∣
n+1/2

ik
=





(1− Uik)
ρni uni + ρnkunk

2
+ Uikρni uni + ρ

n+1/2
ik

∇u|2nd
i −∇u|2nd

k

6
·∆xik if uik · dAik ≥ 0

(1− Uik)
ρni uni + ρnkunk

2
+ Uikρnkunk + ρ

n+1/2
ik

∇u|2nd
i −∇u|2nd

k

6
·∆xik if uik · dAik < 0

(59)
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3.2.3 Time integration - Full solution procedure

As in Section 3.1.6, time integration is performed using the TFV4A scheme of [42], which is a 4th-order,
Runge-Kutta-like, time-marching scheme. The timestep ∆t is computed from the explicit capillary constraint:

∆t = min
crossing pairs ik

√
STN2∆x2

ik min(ρg, ρl)

σ|κΓ,ik|
(60)

where STN is the surface tension number, usually set to 0.5.
The full solution procedure is here summarized:

(i) Using the unstructured ACLS algorithm, advance the interface implicitly through the ψ field with Eq. (36)
using un, then reinitialize ψ to reform the hyperbolic tangent profile with Eq. (30).

(ii) Set the new narrow band around the interface (Section 3.1.1).

(iii) Compute interface features in the narrow band: geometric signed distance φGPMM (Section 3.1.2), normals
n (Eq. (25)), curvature κΓ (Eq. (26) then Eq. (29)).

(iv) Predict the velocity field u∗ from un, using the momentum correction at the interface of [44] adapted to
unstructured meshes (Section 3.2.2).

(v) Project the velocity field by solving the Poisson equation, in which interface jump conditions are treated
with the Ghost-Fluid Method (Eq. (48)).

(vi) Correct the velocity, with the pressure gradient that includes the jump conditions using the Ghost-Fluid
Method (Eq. (49)), eventually leading to un+1 so that ∇ · un+1 = 0.

(vii) Grid adaptation (see next section 3.3).

3.3 Isotropic dynamic mesh adaptation strategy

To resolve the small physical scales at the interface on tetrahedral grids at a moderate cost, an isotropic
Adaptive Mesh Refinement (AMR) technique is used [45], employing the MMG library [46]. Special attention
is needed when coupling AMR with ACLS to avoid liquid mass loss, so that the interface never encounters
cell-size gradients. Thus, the mesh is refined around the interface based on the distance D = |φ| to it, so that Γ
always stays in a protected region of constant cell size ∆xmin (Fig. 8). It is important to stress that this metric
evolution ensures that the remeshing process always occurs upwind and downwind of the interface but never at
the interface itself. This strategy avoids any interpolation error at the interface location.

Figure 8: Adaptive mesh refinement strategy: refinement based on the distance D to the interface.

The width of this region is 2Np∆xmin, with Np a user-defined parameter, usually set between 6 and 12. Away
from this area, the metric evolution follows a linear law until it reaches the maximum cell size ∆xinit, allowing
only smooth and controlled cell-size gradients in the domain. The adaptation process is triggered automatically
when the interface approaches the edge of the protected region, leading to considerable computational savings
in remeshing.
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Figure 9: L2 and L∞ of the reconstructed signed-distance function φ with the 2D GPMM algorithm
(Geometric-Projection Marker Method), in first (a) and sixth (b) narrow-band levels |b|. The dashed and solid

lines are first and second-order convergence, respectively.
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Figure 10: L2 and L∞ of the reconstructed signed-distance function φ with the 3D GPMM algorithm
(Geometric-Projection Marker Method), in first (a) and sixth (b) narrow-band levels |b|.

4 Validation on unstructured grids

4.1 Accuracy of signed-distance and curvature computation

A 2D/3D static droplet of radius Rd is initialized on homogeneous triangular/tetrahedral grids to assess the
accuracy of the GPMM procedure, both in 2D and 3D, for the signed-distance reconstruction on irregular
meshes. Errors are calculated as follows:

L2(φ) =

√√√√ 1

Ni∈|b|

Ni∈|b|∑

i=1

(φth,i − φGPMM,i)
2

and L∞(φ) = max
i∈|b|

∣∣∣φth,i − φGPMM,i

∣∣∣ (61)

where |b| is the absolute narrow-band level, φth,i is the theoretical distance at node i to the circular/spherical
interface, and Ni∈|b| is the total number of nodes in the corresponding absolute narrow-band level. The calcu-
lations of L2 and L∞ are performed for nodes belonging to edges crossed by the interface (|b| = 1) and in the
sixth band level (|b| = 6, far from the interface). As homogeneous triangles/tetrahedra are used to tessellate
the domain, the mesh cell size is computed as ∆x =

√
Vi in 2D, and as ∆x = 3

√
Vi in 3D, where Vi is the control

volume based on the dual mesh around a node i. Results are shown in Fig. 9 and Fig. 10 for the 2D and 3D
cases, respectively.

It can be seen in Fig. 9 (a) that in the first band level (|b| = 1), i.e. close to the interface, the GPMM
procedure converges with second-order accuracy (L2 and L∞) with low error values, which is satisfactory for
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Figure 11: L2 and L∞ norms of the 2D (a) and 3D (b) interface curvature κΓ, considering two spatial
discretizations of the Hessian operator: with compact and non-compact stencils.

triangular grids. Fig. 9 (b) shows the results for the sixth band level (|b| = 6), i.e. far from the interface. Again,
as the resolution of the droplet increases, both L2 and L∞ errors exhibit second-order convergence. A similar
behavior is displayed for 3D tetrahedral meshes in Fig. 10. As several markers are propagated in the narrow
band (NM = 3 in 2D and NM = 10 in 3D, see Section 3.1.2), a sufficient amount of data is available at a node
far from the interface to compute the projected distance to the closest surface element. The advantage of the
GPMM algorithm, which is an exact geometric projection, is that the numerical errors are only induced by
segmentation (2D) or triangulation (3D): a perfect line (2D) or plane (3D) on an unstructured mesh lead to a
distance computed within machine accuracy.

On the same test case, the accuracy of the interface curvature κΓ (Eq. (29)) is evaluated in 2D and 3D using
the following error norms:

L2(κ) =
1

κΓ,th

√√√√ 1

Ncp

Ncp∑

ik=1

(κΓ,th − κΓ,ik)
2

and L∞(κ) =
1

κΓ,th
max

cp

∣∣∣κΓ,th − κΓ,ik

∣∣∣ (62)

where Ncp stands for the total number of node pairs crossing the interface Γ, κΓ,th is the constant theoretical
curvature of the circle/sphere, and κΓ,ik is the pair-based interface curvature, for a node pair ik among the
crossing pairs, obtained with Eq. (29). Results are shown in Fig. 11, for the two different discretizations of the
Hessian operator H (φGPMM) in Eq. (26). The non-compact discretization consists in applying two consecutive
second-order gradients to the reconstructed signed-distance function φGPMM (Eq. (28)), leading to a non-
compact stencil, wheareas a smaller stencil is used in the compact formulation: only direct-neighbor points are
used to compute the Hessian (Eq. (27)). Slight convergence of the L2-norm is observed for the 2D and 3D
interface curvatures computed using the non-compact Hessian matrix. However, using a compact stencil leads
to divergence of the curvature for both L2 and L∞ norms, in 2D and 3D. As a consequence, the non-compact
formulation will be used in the following.

4.2 Interface transport tests

In order to assess the accuracy, spatial convergence and robustness of the ACLS procedure, classical interface
transport tests are performed.

4.2.1 Static sphere on static tetrahedral grids

A 3D static sphere is initialized on a homogeneous tetrahedral mesh. The two reinitialization equations
Eq. (5) [25] and Eq. (7) [27] are compared at two grid resolutions: 6 and 12 points in the sphere radius,
and each of them is performed 50, 000 times throughout the runs. As homogeneous tetrahedra are used to
tessellate the domain, the mesh cell size is computed as ∆x = 3

√
Vi, where Vi is the control volume based on

the dual mesh around a node i. Results are presented in Fig. 12. As presented in [27] for cartesian meshes, it is
observed that the reformulated reinitialization Eq. (7) induces much less artificial deformation of the interface
at high levels of reinitialization, here on tetrahedral meshes. Thus, the conclusion of [27] can be extended to
unstructured meshes.
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Figure 12: 3D static sphere transport test on two tetrahedral grids: comparison between Eq. (5) (original
ACLS reinitialization) and Eq. (7) (reformulated reinitialization) after 50,000 iterations of reinitialization.

Figure 13: Interface contours after 10 rotations for various mesh resolutions. The thin line represents a
simulation performed with 400 points in the disk radius.

4.2.2 Rotation of a notched disk on static triangular grids

In order to assess the robustness of the methods presented above for the transport of interfaces with topology
that includes sharp edges and corners, the classical notched disk rotation case, introduced by S.T. Zalesak
in [47], is first run on homogeneous triangular grids. A two-dimensional disk of radius R = 0.15, with a notch of
width w = 0.05, is initialized at (x, y) = (0, 0.25) in a [−0.5; 0.5]2 square. Given the angular velocity Ω = 1rad/s
and the origin of the domain as the center of rotation (x0, y0) = (0, 0), the velocity field is:

u(x, y) =

(
−Ω(y − y0)
Ω(x− x0)

)
=

(
−y
x

)
(63)

Thus, the disk performs one rotation about the origin in T = 2π/Ω = 2πs. In the present paragraph, 10
rotations are done on triangular meshes with a CFL of 0.48, which in theory should not change the shape of
the slotted disk. Three reinitialization steps are done at each temporal iteration and ε = ∆x/2. The narrow
band is of width |b|max = 12 to ensure that |∇ψ| = 0 at the edge of the band and thus better preserve mass.

Final interface contours after 10 rotations are presented in Fig. 13 for various mesh resolutions. The results
are superimposed over a highly-resolved simulation (400 points in the disk radius). Good mesh convergence
properties for interface dynamics are demonstrated: at the highest resolution shown (100 points in the disk
radius), the initial shape is well retrieved. Fig. 14 shows two scalar fields, namely the signed narrow-band
levels b and the reconstructed signed-distance function using the GPMM algorithm φGPMM, after 10 rotations
for R/∆x = 50. These fields are seen to be smooth and well computed. Fig. 15 depicts the node normal vector
field around the interface in the same computational conditions: as detailed in Section 3.1.2, computing the
normals from a signed-distance function avoids spurious normal orientation.

To quantitatively assess the accuracy of the method, we use a methodology inspired by [48] to compute
boundedness, shape, and mass errors at the end of the runs t = T :

Ebound(T ) = max

(
− min
i=1...Ncv

(ψi(T )Vi), max
i=1...Ncv

((ψi(T )− 1)Vi)

)
(64)

Eshape(T ) =

Ncv∑

i=1

∣∣∣ψi(T )− ψi(0)
∣∣∣Vi (65)
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Figure 14: Scalar fields after 10 rotations with R/∆x = 50. (a) Signed narrow-band levels b; (b)
Reconstructed signed-distance function φGPMM. Black contours represent the interface.

Figure 15: Node normal vector field ni = ∇φGPMM

∣∣∣
4th

i
around the interface after 10 rotations with

R/∆x = 50, colored by the signed narrow-band levels b.

Emass(T ) =
∣∣∣
Ncv∑

i=1

ψi(T )Vi −
Ncv∑

i=1

ψi(0)Vi

∣∣∣ and mass loss [%] =
100
∣∣∣
∑Ncv

i=1 ψi(T )Vi −
∑Ncv

i=1 ψi(0)Vi

∣∣∣
∑Ncv

i=1 ψi(0)Vi
(66)

These errors allow the estimation of the largest overshoot/undershoot in the domain, the discrepancies in the
final shape compared to the initial shape, and the mass loss throughout the run, respectively. The computational
efficiency is measured through a reduced computational time RCT:

RCT =
WCT×Ncores

Niter ×Ncv
(67)

with WCT the Wall Clock Time. The results are presented in Table 2.
Although machine accuracy is not reached, the level of errors in mass remains very low for all resolutions.

Moreover, neither undershoot nor overshoot are present at the end of the simulation (10 rotations) for half of
the resolutions: some can be appear during these runs with an extremely small amplitude but are naturally
corrected over time, as the interface topology becomes smoother. The shape error is plotted in Fig. 16: the
method exhibits between first and second-order convergence on two-dimensional triangular meshes for this test
case. The parallel efficiency of the conservative level set solver is demonstrated through the RCT values, which
remain low for all calculations.

Table 2: Error norms for each mesh resolution at the end of the notched disk test, and computational cost of
the runs.

R/∆x Ebound(T ) Eshape(T ) Emass(T ) mass loss [%] Ncores RCT [µs]

12.5 4.562× 10−10 1.360× 10−2 1.410× 10−7 2.406× 10−4 1 3.3
25 0 7.544× 10−3 1.158× 10−7 1.986× 10−4 1 2.9
50 1.119× 10−11 2.226× 10−3 1.736× 10−9 2.980× 10−6 2 3.5
100 0 8.427× 10−4 1.874× 10−8 3.219× 10−5 8 4.9
200 1.274× 10−11 3.434× 10−4 3.473× 10−9 5.965× 10−6 28 5.8
400 0 1.224× 10−4 3.076× 10−9 5.284× 10−6 112 5.8
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Figure 16: Shape error Eshape after 10 rotations of the 2D notched disk (t = T ), for various mesh resolutions:
from 12.5 to 400 points in the disk radius. The dashed and solid lines are first and second-order convergence,

respectively.

4.2.3 Circle deformation in a vortex on static triangular grids

A two-dimensional deformation of a disk in a vortex is then run [49]. This test is used to evaluate the behaviour
of the algorithms at resolution limit, which is useful for two-phase flow simulations, as thin ligaments are present.
A disk of radius R = 0.15 is initially centered at (x, y) = (0, 0.25) in a 2D box of dimensions [−0.5; 0.5]2. The
disk is deformed by a swirling velocity field:

u(x, y, t) =

(
−2 sin2(πx) sin(πy) cos(πy) cos(πt/T )
2 sin2(πy) sin(πx) cos(πx) cos(πt/T )

)
(68)

The disk is first stretched for 0 ≤ t ≤ T/2, and then unstretched for T/2 ≤ t ≤ T . At t = T , the disk is
theoretically back to its original circular shape. The total simulation time is chosen as T = 8s. The initial CFL
number is 0.64 for all performed simulations of this paragraph. Three reinitialization steps are done at each
temporal iteration and ε = ∆x/2. The narrow band is of width |b|max = 12.

Maximum and final interface deformation, at t = T/2 and t = T respectively, are presented in Fig. 17 for
various mesh resolutions. The results are superimposed over a highly-resolved simulation (400 points in the disk
radius). Good mesh convergence properties are demonstrated: at the highest resolution shown (100 points in
the disk radius), the original circular shape is perfectly retrieved. It should also be observed that at resolution
limit, no locking phenomenon on the mesh nor artificial surface tension occur: the tail breaks up into small
circles.

Using the same methodology than in the previous section, boundedness, shape, and mass errors (Eq. (64)
to (66)) are computed at the end of the runs (t = T ). The results are presented in Table 3, with the reduced
computational times of the runs (Eq. (67)). Again, the levels of error in bound and mass remain very low. Good
mass conservation is ensured even at coarse grid resolutions. Convergence of the geometric error is displayed in
Fig. 18: the method exhibits between first and second-order convergence on two-dimensional triangular meshes.

Table 3: Error norms at the end of the circle deformation test, and computational cost of the runs.

R/∆x Ebound(T ) Eshape(T ) Emass(T ) mass loss [%] Ncores RCT [µs]

12.5 2.128× 10−7 3.642× 10−2 1.790× 10−9 2.518× 10−6 1 4.7
25 1.212× 10−7 8.452× 10−3 4.637× 10−8 6.551× 10−5 1 3.8
50 5.266× 10−8 1.970× 10−3 3.223× 10−8 4.558× 10−5 2 3.7
100 2.012× 10−8 6.016× 10−4 1.053× 10−8 1.490× 10−5 8 5.2
200 1.917× 10−9 2.719× 10−4 3.155× 10−9 4.464× 10−6 28 6.1
400 8.623× 10−10 1.289× 10−4 1.165× 10−9 1.649× 10−6 112 6.4
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Figure 17: Interface contours at maximum deformation (t = T/2; top) and final shape (t = T ; bottom) for
various mesh resolutions. The thin line represents a simulation performed with 400 points in the disk radius.
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Figure 18: Shape error Eshape at the end of the 2D circle deformation in a vortex test (t = T ), for various
mesh resolutions: from 12.5 to 400 points in the disk radius. The dashed and solid lines are first and

second-order convergence, respectively.
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Figure 19: Interface contours at maximum stretch (t = T/2; top) and final shape (t = T ; bottom) for various
mesh resolutions.

Figure 20: Tetrahedral cell size distribution at maximum stretch (t = T/2) for various mesh resolutions.

4.2.4 Sphere deformation in a vortex on adaptive tetrahedral grids

The previous test case can be extended to 3D [49]. A sphere of radius R = 0.15 is initialized at (x, y, z) =
(−0.15,−0.15,−0.15) in a [−0.5, 0.5]3 three-dimensional box. The advection velocity is specified as:

u(x, y, z, t) =




2 sin2(πx) sin(2πy) sin(2πz) cos(πt/T )
− sin(2πx) sin2(πy) sin(2πz) cos(πt/T )
− sin(2πx) sin(2πy) sin2(πz) cos(πt/T )


 (69)

The simulation time is chosen as T = 3s. At t = T , i.e. after one full stretch/unstretch cycle, the initial
sphere is supposed to be recovered. At maximum deformation (t = T/2), a thin sheet is formed and breaks up
numerically into small spheres if the mesh is not fine enough. Adaptive tetrahedral meshes are used for this test
case, dynamically and locally refined during the runs around the interface location, with a metric ∆xmin. Here,
it has been chosen to change the background mesh from one simulation to another so that ∆xmax/∆xmin = 5
for all runs. Larger ratios will be considered in the next sections of this article. For all calculations of this
section, the refined region is of half-width 10∆xmin (Np = 10, see Fig. 8), and AMR is triggered each time the
interface is closer than 5 cells from the border of this fine region. The narrow-band width |b|max is set to 10,
and the initial CFL number is 0.64.

Interface contours are seen in Fig. 19 and contours along with the tetrahedral cell-size distribution in Fig. 20:
good convergence is observed, and the final shape is almost retrieved for R/∆x = 60. The results are in
accordance with the ones obtained for the two-dimensional case.

The computational efficiency, measured through the reduced computational time RCT (Eq. (67)), is pre-
sented in Table 4. The increase in computational cost remains low when increasing the resolution, and is mainly
due to adaptive mesh refinement. The proposed ACLS procedure is scalable.
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Table 4: Computational costs of the sphere deformation simulations

R/∆xmin Ncores Ncells,ini/Ncores RCT [µs] RCTACLS [µs] RCTAMR [µs]

15 10 93,361 153.6 77.2 73.6
30 28 122,645 210.6 86.3 120.3
60 224 71,239 372.4 99.4 267.2

4.3 Capillary-driven flows

4.3.1 Damping of a capillary wave on static triangular grids

The damping of a two-dimensional surface wave is then studied. Two superposed immiscible viscous fluids at
rest are seperated by a flat interface, initially perturbed by a small-amplitude sinusoidal capillary wave. The
initial signed-distance function is written as:

φ0(x, y) = −y −A0 cos

(
2πx

λ

)
(70)

in a two-dimensional [−λ/2;λ/2]2 domain which is periodic in the x-direction, and with slip walls for top and
bottom boundaries. The initial wave amplitude is chosen as A0 = λ/100, with λ = 2π the wavelength of the
perturbation. The initial perturbation is damped over time due to viscous dissipation.

The results are compared to analytical solutions from Prosperetti’s theory [50], which quantifies the viscous
damping for vanishingly small amplitudes and infinite domains as an initial-value problem. The theoretical
solution for two fluids with equal kinematic viscosity ν and λ = 2π is:

Ath(t) =
4(1− 4β)ν2

8(1− 4β)ν2 + ω2
0

A0erfc
√
νt+

4∑

i=1

zi
Zi

(
A0ω

2
0

z2
i − ν

)
exp

(
(z2
i − ν)t

)
erfc

(
zi
√
t
)

(71)

where zi are the four roots - two pairs of conjugated complex numbers - of the following fourth-order polynomial
equation:

z4 − 4β
√
νz3 + 2(1− 6β)νz2 + 4(1− 3β)ν3/2z + (1− 4β)ν2 + ω2

0 = 0 (72)

and Zi =
∏4
j=1,j 6=i(zj − zi). In the case of equal density ρ, β = 1/4 and the normal-mode oscillation frequency

ω0 is computed from the dispersion relation as follows:

ω2
0 =

σ

2ρ
(73)

The non-dimensional time is t∗ = ω0t. The calculations are performed on three homogeneous triangular
grids (λ/∆x = 30; 100; 200) up to T ∗ = ω0T = 25, which corresponds to approximately 4 oscillations. The
unity density ratio case is investigated, gravity is neglected, and 3 steps of reinitialization are performed at each
timestep. The physical and numerical parameters of the runs are summarized in Table 5.

Table 5: Physical and numerical parameters for the viscous damping of a capillary wave case.

ρl/ρg µl/µg La = ρλσ/µ2 λ/∆x ∆t∗

1 1 3000 30; 100; 200 0.001

The temporal evolution of the wave amplitude over time is depicted in Fig. 21 (a). The damping is correctly
reproduced from 100 points in the wavelength λ in the case of equal densities. Fig. 21 (b) shows the instantaneous
relative amplitude error |A(t) − Ath(t)|/A0 and confirm the convergence properties. To quantify further the
differences between theory and numerical simulations, the following L2 norm is computed, as in [19]:

L2 =
1

λ

√
1

T ∗

∫ T∗

t∗=0

(A(t∗)−Ath(t∗))
2

dt∗ (74)

where A and Ath are the computed and theoretical wave amplitudes at a given instant, respectively. The
L2-norm values and the computational costs of the runs are presented in Table 6.
Again, the results show fair convergence and accordance with theoretical data in the case of unity density
ratio. It validates the overall algorithm robustness and physical meaning in the case of surface tension/viscosity
interactions on unstructured grids.
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Figure 21: (a) Temporal evolution of the dimensionless wave amplitude A/λ over non-dimensional time
t∗ = ω0t; (b) Instantaneous relative amplitude error |A−Ath|/A0.

Table 6: Error levels of the L2 norm (Eq. (74)) and reduced computational time (RCT; Eq. (67)) for each
resolution.

λ/∆x L2 Ncores Ncells/Ncores RCT [µs]

30 1.528× 10−4 1 2028 23.2
100 3.250× 10−5 1 22,476 13.3
200 1.647× 10−5 4 22,520 20.2

4.3.2 Spurious currents on static tetrahedral grids

This elementary test is used to assess the numerical errors induced by the surface tension computation procedure.
For a static droplet, it aims to show the capability of a method to predict Laplace’s law, i.e. the balance between
surface tension and pressure forces. For a droplet in equilibrium, the theoretical velocity is 0 and thus non-
physical velocities indicate the presence of spurious (or parasitic) currents. Exact balance (to within machine
accuracy) has been shown first on cartesian grids in [19].

Most past studies have been conducted with low Laplace numbers. In this work, we study spurious currents
to check the robustness and assess the numerical errors of the algorithms in physical conditions close to the ones
found in the range of the targeted practical applications, i.e. realistic liquid injection systems. To this mean, a
high Laplace number is investigated: La = 2, 000, 000.

To study their magnitude over time, the maximum Capillary number is used: Camax = µlumax/σ. Time
is normalized using a visco-capillary timescale: t∗ = t/τ , with τ = µlD/σ. A three-dimensional droplet of
diameter D = 2mm is initialized in a unit centimetric square box. The simulations are performed on three
static tetrahedral grids of resolutions ∆x = 200µm, 100µm, 50µm, up to t∗ = 10, 000. Three reinitialization
steps are performed at each iteration, and the explicit capillary time-step constraint STN in Eq. (60) is set to
0.71 for all resolutions. The physical and numerical parameters are presented in Table 7.

Table 7: Physical and numerical parameters for the measurements of spurious currents.

ρl/ρg µl/µg La = ρlσD/µ
2
l D/∆x

1000 50 2 × 106 10; 20; 40

Results are presented in Fig. 22. Reasonably low errors (Camax ∼ 10−3) are seen for all resolutions, and a
significant reduction of the spurious current magnitude is observed for D/∆x = 40. The spatial convergence of
the spurious currents, which dominate the solution in such physical conditions, is displayed, and the presented
procedure is demonstrated to be highly robust on unstructured grids.
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Figure 22: Spurious currents around a static droplet on tetrahedral meshes. La = 2, 000, 000. ρl/ρg = 1000.
µl/µg = 50.

4.3.3 Rayleigh-Plateau instability

In this section, following the studies of [19, 20, 25, 51], numerical predictions of the capillary instability are
performed on 3D static unstructured meshes and validated against Weber’s linear theory [52]. A static column
of water of density ρl, dynamic viscosity µl, and surface tension σ in quiescent air is considered. This column
is infinite in the x-direction and its radius is r0. A small axisymmetric perturbation wave is imposed at the
column surface. The solution is of the form:

r(x, t) = r0 + εr0 exp (ωt+ ikx) (75)

where ε is the perturbation, assumed to be small, k = 2π/λ is the wavenumber, and ω is the growth rate. Using
the non-dimensional wavenumber ξ = kr0 and growth rate ω0 =

√
σ/(2ρlr3

0), the equation for the growth rate
in Weber’s theory applied to static jets, for ξ < 1, is given by:

ω2 +
3µlξ

2

ρlr2
0

ω = ω2
0ξ

2(1− ξ2) (76)

The mathematical developments leading to this result can be found in [53].
The simulations are performed in a 3D, periodic in the x-direction, cylindrical domain of length [0;λ] and

radius [0; 3r0]. The signed-distance function is initialized as:

φ0(x, y, z) = r0 − εr0 cos (kx)−
√
y2 + z2 (77)

where r0 = (1/3)× 10−3m, and the initial velocity is set to 0. In order to keep the interface free from spurious
signals, the initial perturbation is set to be of the same order of magnitude than the homogeneous tetrahedral-
cell size: εr0 ∼ ∆x, here ε = 0.06. The runs are performed at various ξ values, ranging between 0 and 1
(unstable oscillatory solutions), and using an effective resolution of r0/∆x = 6. The definition of the cases can
be found in Table 8. For all cases, the narrow-band width is |b|max = 12 and 3 steps of reinitialization are

Table 8: Cases definition for the Rayleigh-Plateau instability simulations.

Case λ [mm] λ/r0 ξ = kr0 Ncells

1 16 48 0.13 2.5M
2 8 24 0.26 1.3M
3 4 12 0.52 637K
4 3.3 10 0.63 525K
5 2.8 8.5 0.74 453K
6 2.3 7 0.90 372K

performed at each timestep. Classical water/air parameters are used, and are summarized in Table 9. The
Laplace number is La = ρlr0σ/µ

2
l = 18, 530.

The interface contours for ξ = 0.52 (Case 3) can be seen in Fig. 23: implicit interface topology changes are
correctly predicted. The relative deformation based on the maximum radius is defined at x = λ/2 as:
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Table 9: Physical parameters for the Rayleigh-Plateau instability simulations.

ρl/ρg µl/µg La

829 62 18,530

Figure 23: Rayleigh-Plateau instability on a homogeneous tetrahedral mesh: interface contours at various
non-dimensional times t/tσ. La = 18, 530. ξ = kr0 = 0.52. r0/∆x = 6. tσ = 1/ω0.

rmax − r0

εr0
= exp (ωt) (78)

The characteristic time is tσ = 1/ω0 = 1.013ms. Using tσ, Eq. (78) becomes:

ln

(
rmax − r0

εr0

)
=

ω

ω0

t

tσ
(79)

This term is linear in time and the derivative is the non-dimensional growth rate. However, due to the use of
fully 3D tetrahedral meshes, several causes of inaccuracy might deteriorate the quality of the computed growth
rate: (i) the jet can be slightly off-centered in the radial direction, (ii) the maximum amplitude can be strongly
shifted from the middle of the jet in the longitudinal direction. While problem (ii) is solved by choosing an initial
perturbation of the same order of magnitude than the cell size, problem (i) requires a dedicated methodology.
To post-process the results, the jet is discretized into rings of chosen thickness δ = 80µm, and area A. For each
ring i of each temporal solution n, the mean radius is computed from the mean center:

r
∣∣∣
n

i
=

1

A

∫

A

√
(y − y)2 + (z − z)2 dA (80)

where y = (1/A)
∫
A
y dA and z = (1/A)

∫
A
z dA. The maximum mean radius r

∣∣∣
n

max
is then computed for each

temporal solution n. The temporal evolution of the relative deformation for ξ = 0.52 (Case 3) is plotted in
Fig. 24 (a). Despite a non-linear phase at the beginning of the calculation, remaining until the disturbance has
grown quite large, the non-dimensional growth rate ω/ω0 is correctly predicted. To quantify the growth rate
only in the linear part, a temporal mean is performed from t/tσ = 4 to the breakup. The standard deviation
SD of the growth-rate signal is also computed within the range considered:

SD =

√√√√ 1

N − 1

N−1∑

n=1

(
ω

ω0

∣∣∣
n
− ω

ω0

∣∣∣
mean

)2

(81)

where N is the total number of temporal solutions.
The theoretical and numerical growth rates for all computed non-dimensional wavenumbers ξ are presented

in Table 10 and depicted in the dispersion diagram of Fig. 24 (b). Larger standard deviations are obtained in
the second and sixth cases (ξ = 0.26 and ξ = 0.90 respectively): the linear regime is more oscillatory, less clear
to identify, in these two conducted simulations.

4.3.4 3D droplet collision using adaptive mesh refinement

This section aims to validate the unstructured discretization of the reformulated reinitialization equation in the
case of a interface merging scenario. This is a non-trivial case: a bad prediction of the resharpening term leads
to the locking of the interface on the grid, and as a consequence keeps the two interfaces of the two droplets from
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Figure 24: Rayleigh-Plateau instability. La = 18, 530. r0/∆x = 6. (a) Temporal evolution of the relative
deformation based on the maximum radius for ξ = kr0 = 0.52, tσ = 1/ω0. (b) Dispersion diagram; the error

bars represent the standard deviation SD of the growth-rate signal ±SD (see Eq. (81)).

Table 10: Numerically predicted mean growth rates versus theoretical growth rates from Weber’s theory, with
r0/∆x = 6.

Case ξ ω/ω0|mean ω/ω0|th Relative error Standard deviation SD

1 0.13 0.109 0.130 -16.2% 0.011
2 0.26 0.273 0.252 +8.3% 0.059
3 0.52 0.452 0.442 +2.3% 0.020
4 0.63 0.469 0.483 -2.9% 0.019
5 0.74 0.470 0.489 -3.9% 0.034
6 0.90 0.355 0.383 -7.3% 0.048

merging. In order to demonstrate that the presented procedure allows implicit topology changes, a head-on
collision of two equal-size droplets of water in air is computed.

The physical parameters involved in this process are the Weber number We = ρlu
2
rD/σ, with ur the relative

velocity of the two droplets; the Ohnesorge number Oh = µl/
√
σρlD; the non-dimensional impact parameter X,

which is 0 for a head-on collision; and the droplet diameter ratio ∆. The values are presented in Table 11 and
correspond to the experiment of [54], in the reflexive separation regime. The narrow-band width is |b|max = 10,
and the minimum cell size ∆xmin = 6µm is imposed in a refined region of half-width 10∆xmin (Np = 10, see
Fig. 8). The mesh adaptation process is triggered automatically when the interface is 5 cells away from the
border of the refined region, which leads to massive computational savings. Three steps of reinitialization are
performed at each iteration.

Instantaneous interface positions and meshes are presented in Fig. 25, and show good interface quality and
accuracy, even after a very large number of iterations (∆t ∼ 0.01µs). Despite the presence of an entrapped
bubble due to the lack of perfect symmetry with the unstructured grid, implicit topology changes are shown,
and fair overall dynamics is displayed compared to the experimental results of [54]. The computational efficiency
is presented in Table 12.

Table 11: Physical parameters for the water/air head-on droplet collision simulation.

We Oh ∆ X

23 0.0047 1 0
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Figure 25: Water/Air droplet collision. We = 23; Oh = 0.0047; X=0; ∆ = 1; D/∆xmin = 133.

Table 12: Computational performances of the water/air head-on droplet collision simulation.

D/∆xmin ∆xmax/∆xmin Ncells,ini Ncores RCTAMR [µs] RCT [µs]

133 17 36M 448 23.8 239.4

5 Application to injection systems

5.1 LES of a low-pressure water jet from a compound nozzle

This study follows the experiments of [30] and the simulations of [31]. A single low-pressure compound nozzle
is considered: three shifted cylinders are superimposed, as depicted in Fig. 26, from which water is injected in
quiescent air at Reynolds number Re = 3653, based on the discharge orifice diameter dinj = 180µm, and liquid
Weber number Wel = 1061. The shift of the disks induces non-axial velocity components, and a double-vortex
flow is formed, as illustrated in Fig. 27.

In these physical conditions, primary atomization is mainly driven by capillary effects such as ligament
breakup and jet forming by bubble burst, and enhanced by liquid turbulence. The issued water jet is slow,
and hence aerodynamic forces are negligible. As the injector geometry strongly conditions the primary breakup
process, the unsteady resolution of the internal flow is important, as mentioned in [31].

In this work, the whole flow is computed by the mean of one Large-Eddy Simulation (LES), from the internal
flow to the primary atomization process. The LES turbulence model is the dynamic Smagorinsky model [55, 56].
Adaptive tetrahedral meshes are used and two resolutions are investigated: ∆xmin = 5µm and ∆xmin = 2.5µm.
For the two simulations, the refined region is of half-width 10∆xmin (Np = 10, see Fig. 8), and AMR is triggered
each time the interface is 5 cells away from the edge of this region. The jet morphology and angle are studied,
and compared to the ones of [31].

5.1.1 Internal flow

As presented above, the adaptive mesh refinement strategy is based on interface displacement, and thus the
mesh size inside the injector, where only liquid is present, is the same for the two conducted calculations: the y+

field represented at the walls is shown in Fig. 28. Converged temporal statistics of the flow velocity projected
in the nozzle exit plane are shown in Fig. 29: the double-vortex secondary flow of the discharged disk (Disk 3
of Fig. 26) is clearly displayed.

Figure 26: Compound nozzle geometry: triple-disk injector.
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Figure 27: Illustration of the double-vortex internal flow in the cavity disk (Disk 2 in Fig. 26): velocity
magnitude along with streamlines.

Figure 28: y+ distribution represented at boundaries. dinj = 180µm. Re = 3653. Wel = 1061.

Figure 29: Velocity statistics: (a) Mean and (b) RMS velocity projected in the exit section. dinj = 180µm.
Re = 3653.
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Figure 30: Interface contours and Q-criterion of the water jet atomizing from a low-pressure compound nozzle
in quiescent air at the two investigated resolutions: (a) ∆xmin = 5µm and (b) ∆xmin = 2.5µm.

5.1.2 External flow

A comparison of interface topologies and vorticity-dominated regions at the two simulated resolutions are shown
in Fig. 30. A clear difference is seen in the appearance of jet instabilities: a closeup on some capillary effects,
especially the Rayleigh-Plateau instability is shown for the 2.5µm case in Fig. 31. It depicts the temporal
evolution of a ligament, circled in red in Fig. 31 (a), which is pinched off in Fig. 31 (b) until breakup (c) to
produce two droplets. These outcome drops later collide and merge. These observations are simply not accessible
with ∆xmin = 5µm. The jet topology in the 2.5µm case is close to the one obtained by a DNS simulation at
1.44µm, performed with a symmetry plane in [31]. This similarity is encouraging to target an even higher
resolution. Fig. 32 shows the mesh cell-size distribution for both computed resolutions. The background mesh
is kept identical for both, and it does not affect the quality of the solution: only smooth cell-size gradients are
present in the domain, even with a higher cell-size ratio ∆xmax/∆xmin = 22.8 in the 2.5µm case.

Eventually, the spray angle α is estimated at various distances z/dinj away from the nozzle exit for dinj/∆xmin =
72, in order to compare with the simulations and experiments of [31]. An image processing technique has been
employed on 250 frames, corresponding to 250µs of physical time, of the projected shadow of the spray to
obtain a single mean image: Fig. 33 (a). The angle values are presented in Fig. 33 (b): the angles are rather
overestimated, especially close to the nozzle, compared to the experimental values presented in [31], which lie
between 20◦ and 25◦. This could be explained by the lack of atomization close to the nozzle in our numerical
simulations. Nevertheless the overall behavior is correct, despite a more significant decrease of the angle with
the distance from the nozzle exit.

5.1.3 Computational performances

The computational cost and performances of the two conducted simulations on adaptive tetrahedral grids are
shown in Table 13. Good scalability of the unstructured ACLS/AMR procedure is displayed. The cost of the
simulations is moderate: in comparison, the same run at dinj/∆xmin = 72 on a static grid requires 8192 cores
and 1.62B cells. Hence, the present method allows huge computational savings for simulations on tetrahedral
grids.

Table 13: Computational costs and performances of the low-pressure compound injector simulations on
adaptive grids. The simulations have been conducted on 2nd Gen AMD EPYC processors.

dinj/∆xmin Ncores Ncells RCT [µs] RCTACLS [µs] RCTAMR [µs] RCTPoisson [µs] CPU time [h]/Phys. time [ms]

36 600 48M 342.3 99.7 137.2 50.7 52,174
72 1400 141M 610.0 142.0 208.6 199.2 915,531
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Figure 31: Closeup on some capillary effects during the atomization process of a water jet in quiescent air
from a low-pressure compound nozzle. dinj = 180µm. Re = 3653. Wel = 1061. ∆xmin = 2.5µm.

Figure 32: Mid-plane colored by cell size. dinj = 180µm. (a) ∆xmin = 5µm; (b) ∆xmin = 2.5µm.

Figure 33: Estimation of the spray angle α at different distances z/dinj from the nozzle exit. dinj/∆xmin = 72.
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Figure 34: Numerical domain and boundary conditions of the experimental test bench of Becker and
Hassa [32]: (a) complete domain, (b) detailed view of the injection nozzle. All dimensions are in mm.

5.2 LES of a high-pressure kerosene jet in crossflow

In order to test the capabilities of the algorithm for resolving atomization in aeronautical injection systems, a
non-reactive liquid kerosene jet in crossflow (JICF) injection has been simulated. Liquid is injected through a
nozzle into a plenum where a stream of air flows in the perpendicular direction to the liquid (the crossflow).
Then, the jet bends towards the air direction and atomizes due to the aerodynamic interaction. The chosen
configuration is the experimental test-bench by Becker and Hassa [32], which consists of a kerosene JICF
injected into a high-pressure environment representative of the ambient conditions found within aeronautical
gas turbines. The physics of the JICF is governed by the two following parameters: the kinetic energy ratio
between the liquid and gaseous phases q and the gaseous Weber number Weg. They are defined as follows:

q =
ρlu

2
l

ρgu2
g

and Weg =
ρgu

2
gdinj

σ
(82)

where ρ is the density, u is the bulk velocity of the flow, dinj is the liquid nozzle diameter (0.45mm in Fig. 34)
and σ is the surface tension coefficient. The subindexes l and g denote liquid and gaseous phases respectively.

5.2.1 Numerical setup

Fig. 34 (a) shows the numerical setup replicating the experiment from [32]. It consists of a plenum of dimensions
(Lx, Ly, Lz) = (270mm, 40mm, 25mm) and a tapered nozzle for liquid injection. A close-up view of the nozzle
is shown in Fig. 34 (b). The injected liquid is JET-A kerosene with density ρl = 795kg.m−3, dynamic viscosity
µl = 1.5 × 10−3kg.m−1.s−1 and surface tension σ = 22 × 10−3kg.s−2. The gaseous crossflow is pressurized
air at 6bar with density ρg = 7.21kg.m−3 and dynamic viscosity µg = 1.82 × 10−5kg.m−1.s−1. The density
and dynamic viscosity ratios are respectively ρl/ρg = 110 and µl/µg = 83. The Ohnesorge number is Oh =
µl/
√
ρlσdinj = 0.017. Two operating points studied experimentally by [32] are simulated. They are given

by the dimensionless numbers q and Weg shown in Table 14. Two interface resolutions are considered for
both operating points: ∆xmin = 20µm and 10µm, that can be expressed relative to the injection diameter as
dinj/∆xmin = 22.5 and 45 respectively. Therefore, a total of four JICF cases are computed. These simulations
are performed with LES where a dynamic Smagorinsky closure is used for modeling the unresolved turbulence
scales [55, 56].

Table 14: JICF operating points

Operating point ul[m.s
−1] ug[m.s

−1] q Weg dinj/∆xmin

1 17.5 75 6 830 22.5; 45
2 23.33 100 6 1470 22.5; 45

For kerosene injection, a Poiseuille profile is prescribed at the liquid inlet. The mean velocity of this profile
is equal to the bulk velocity ul given in Table 14. Regarding the gaseous phase, the experiments from [32] report
a gaseous boundary layer thickness of 5mm right upstream the injector. As the numerical domain is smaller
than the experimental test bench, a velocity profile with near-wall and outer regions is specified at the gaseous
inlet. The near-wall region is modeled considering that the gaseous phase evolves in the streamwise direction as
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a turbulent boundary layer along a flat plate. Its thickness is calculated following a 1/7th power law. The outer
part of the velocity profile follows a parabolic law. The injected mass flow rate is the same one as reported in
the experiments.

The initial mesh is the same for all simulations: it consists of 32M tetrahedral elements (Ncells =32M). The
number of cores Ncores allocated to each simulation ensures a constant ratio Ncells/Ncores between 100,000 and
150,000. For all simulations, the refined region is of half-width 10∆xmin (Np = 10, see Fig. 8), and AMR is
triggered each time the interface is 4 cells away from the edge of this region. Each case will yield different
meshes as function of the operating condition and mesh resolution, see Table 16. Therefore, the simulations
will have different costs, see Table 17. Physical running times simulated depend on the computational resources
available.

5.2.2 Vertical trajectory and experimental validation

Numerical simulations are validated with the experimental correlation obtained by [32] for the vertical jet
penetration. It has been obtained by testing experimentally several operating conditions, and has a standard
deviation of value 0.81. The correlation corresponds to the trajectory of the jet’s windward side, and is given
by:

z

dinj
= 1.57q0.36 ln

(
1 + 3.81

x

dinj

)
(83)

This trajectory is valid up to the streamwise position x/dinj = 22 and depends solely on the q factor, as the
authors state that the influence of the Weber number on the trajectory is negligible. Other experimental studies,
such as the one by Ragucci [33], provide experimental correlations with a dependence on We. While the role
of We on the trajectory is still an open question, the results of our simulations are only compared to the ones
of [32] (Eq. (83)).

The resulting mean trajectories are shown in Fig. 35. The experimental correlation is given by the black
solid line, and the shadowed area denotes its confidence region. The red and blue lines are the numerical mean
trajectories for the coarse and fine mesh resolutions, dinj/∆xmin = 22.5 and dinj/∆xmin = 45, respectively.
They are obtained by averaging the instantaneous trajectories of the windward side. Fig. 35 (a) shows the first
operating point from Table 14. It can be seen that the numerical penetration in the near-nozzle region is slightly
underestimated for both mesh resolutions. However, as the jet moves downstream its penetration fits into the
experimental limits. The effect of mesh resolution on the trajectory is not very significant for this operating
point. The second operating point, Fig. 35 (b), shows a larger difference in trajectory with the minimum cell
size. For the coarsest resolution dinj/∆xmin = 22.5, the trajectory is underestimated and does not fall within
the confidence interval of the correlation, although its tendency is similar to the experimental results. For
the finest resolution dinj/∆xmin = 45, the trajectory follows very closely the experimental correlation. This
discrepancy with respect to the other trajectories is due to liquid separation at the nozzle’s convergent exit
section in the fine cases. The effective area of the jet is reduced when injected to the plenum and, due to mass
conservation, its velocity increases. Consequently, the jet penetrates further than the one of the coarse mesh,
where liquid separation is not observed. Fig. 36 shows clearly this phenomenon. This difference is attributed
to the resolution of the detached boundary layer within the nozzle by the fine mesh, which is not resolved by
the coarse one. For the operating point at lower Weg, liquid separation is obtained for both mesh resolutions.
This can be explained by a lower liquid Reynolds number for this operating point, therefore the boundary layer
is thicker and can be captured by coarse mesh. These observations, where solutions with liquid detachment
match their trajectories to the experimental one, suggest that this phenomenon was actually occurring in the
experiments of [32].

The accuracy of the mean numerical trajectories can be quantitatively assessed by defining a L2 error as in
Eq. (84):

L2 =

√√√√ 1

N

N∑

i=1

(
z

dinj

∣∣∣
exp,i

− z

dinj

∣∣∣
num,i

)2

(84)

where N is the total number of sample points along the trajectory coordinate x/dinj. The values for each case
are shown in Table 15. As also observed in Fig. 35, the two resolutions for the operating point at low Weg have
very similar errors. For the high Weg simulations, the coarse mesh shows a larger error, while the fine mesh
yields the lowest error of all the simulations.

5.2.3 Jet topology and breakup

The effect of mesh resolution (see Table 16) is shown in the instantaneous snapshots of Fig. 36 for the operating
point Weg = 1470. The liquid-gas interface and the mesh at the plane y = 0 are displayed. Both pictures show
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Figure 35: Numerical mean jet trajectories for (a) Weg = 830 and (b) Weg = 1470 compared with the
experimental correlation from Becker [32]. The grey area represents the standard deviation.

Table 15: Error levels of the L2 norm (Eq. (84)) for jet in crossflow simulations

Weg dinj/∆xmin L2

830 22.5 1.079
830 45 0.661
1470 22.5 1.376
1470 45 0.442

the column and surface breakup features characteristic of jet in crossflow atomization [32]. The interface cell
size has a direct effect onto breakup and atomization. Both meshes capture different column breakup modes:
the coarse mesh shows Kelvin-Helmholtz instabilities developing in the windward side of the jet, while the fine
mesh displays Rayleigh-Taylor instability waves. This directly affects primary atomization, as it can be seen
from the different liquid ligaments and structures that result from the breakup of the liquid dense core. The
detachment of the liquid jet inside the nozzle observed for the finest resolution also affects the development
of surface instabilities that will eventually contribute to breakup. Subsequent secondary atomization is also
strongly affected by the resolution, as the finer mesh can capture smaller droplets than the coarse mesh (see
Table 16).

Regarding the operating point, Fig. 37 shows instantaneous snapshots of the liquid-gas interface for the
finest case (dinj/∆xmin = 45) for both values of Weg. The same time instant than in Fig. 36 is displayed. By
comparing the operating points, it is seen that both cases present similar column breakup features following
Rayleigh-Taylor instabilities. The simulation with Weg = 830 shows that ligaments formed during primary
atomization stretch and form lobes more pronounced than for Weg = 1470. Furthermore, the number of
wavelengths until breakup is lower for Weg = 1470 than for Weg = 830. This causes an earlier rupture of the
liquid ligaments.

5.2.4 Computational performances

Table 16 shows the number of cores, tetrahedral elements and droplets generated at t = 0.3ms for all simulations.
By comparing the mesh resolutions for each operating point, it is observed that six times more droplets are
generated when the minimum cell size is reduced twice. Thus, as more droplets are resolved, more cores are
needed to keep the ratio Ncells/Ncores constant for optimal performances: when the resolution increases twice, the
number of elements rises near tenfold. When the operating points are compared at identical mesh resolutions,
50% more droplets are present in the highest gaseous-Weber case. This is due to a higher crossflow velocity,
which increases the number of droplets generated by surface breakup.

The computational performances and costs are shown in Table 17. The Reduced Computational Times
(RCT) are calculated according to Eq. (67). In all cases, the time spent in the ACLS procedure is almost
constant and moderate despite the large liquid-gas surface to be resolved, demonstrating the high scalability of
the interface-capturing algorithm. Most of the total computational time is spent in the AMR routine: indeed,
the jet velocity is high and hence the AMR is automatically triggered much more frequently than in the low-
pressure jet simulations of Section 5.1. In general, jet in crossflow simulations are more expensive than the
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Figure 36: Lateral view of meshes and interface contours near the injector at time instant t = 0.3ms. q = 6.
Weg = 1470.

Figure 37: Instantaneous front (left) and lateral (right) views at time instant t = 0.3ms for the two operating
conditions. dinj/∆xmin = 45. q = 6. Weg = 830 (top), Weg = 1470 (bottom).
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low-pressure jet ones (see Table 13 for comparison): while this latter jet is governed by capillary forces and
aerodynamic effects are negligible, the jet in crossflow atomization is driven by aerodynamics and inertia (the
limiting timestep of the simulations is always due to the CFL number).

It can be concluded that most of the computational resources allocated to the jet in crossflow cases are used
for solving the AMR routine, making these computations highly expensive for cases where very small droplets
are generated and a higher resolution of the atomization is required. A promising solution to this problem is
coupling the presented methodology to a Lagrangian solver that could identify spherical droplets and convert
them to Lagrangian Point Particles (LPP). This Eulerian-Lagrangian two-way coupling would allow spherical
droplets to move following a ballistic motion and break up according to secondary atomization models. In this
way, droplets would not be resolved with the Eulerian mesh by the ACLS/AMR methodology, saving huge
computational resources.

Table 16: Number of computational cores, mesh cells and droplets generated for jet in crossflow simulations.
All values correspond to time instant t = 0.3ms.

Weg dinj/∆xmin Ncores Ncells Ndrops

830 22.5 560 78M 769
830 45 5120 734M 3961
1470 22.5 800 117M 1174
1470 45 5960 876M 6615

Table 17: Computational performances for jet in crossflow simulations at time instant t = 0.3ms.

Weg dinj/∆xmin RCT [µs] RCTACLS [µs] RCTAMR [µs] RCTPoisson [µs] CPU time [h]/Phys. time [ms]

830 22.5 836.1 88.9 586.8 97.4 76,800
830 45 1612.0 116.8 1151.2 167.2 922,100
1470 22.5 833.4 100.4 503.9 152.6 105,600
1470 45 2158.3 113.2 1660.8 190.8 1,200,000

6 Conclusion

An efficient and robust overall procedure for the computation of two-phase flows on unstructured meshes has
been presented. Spatial convergence and accuracy of the interface capturing technique have been first demon-
strated through well-known interface transport tests, both in 2D and 3D, and confirmed by the results obtained
on canonical two-phase flow examples. Capillary-driven flows are correctly computed on triangular and tetra-
hedral grids, despite the challenges that poses the use of these irregular meshes. The accuracy and convergence
of the numerical framework presented in this paper can be further improved by using the higher-order finite-
volume schemes of [41], which have proven to upgrade the operator discretization on unstructured grids and
hence the interface curvature computation.

Adaptive mesh refinement allows significant computational savings, especially in the case of complex turbu-
lent 3D flows: highly-resolved flows with large density ratios in complex geometries using unstructured meshes
are now accessible. The results obtained in the low-pressure compound nozzle case demonstrate the potential of
the method to access a deep numerical insight of jet instabilities and internal flow dynamics with 3D unstructured
meshes. This is a major progress for the computation of realistic industrial flows. To further increase the com-
putational gain, especially in the liquid jet in crossflow simulations where many droplets need to be resolved,
implementing an Eulerian-Lagrangian two-way coupling to treat small droplets as lagrangian point particles
(LPP) would allow local coarsening of the mesh. This coupling would thus result in much cheaper simulations
at equivalent resolutions. Eventually, this multiscale approach would pave the way to both extremely-resolved
liquid jet cores using unstructured meshes and accurate droplet statistics far from the injector.
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