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Abstract. 12 

Continuous N2O flux acquisition is crucial to enrich our knowledge of the complex 13 

mechanisms underlying the annual greenhouse gas budget and to refine their estimation. N2O 14 

flux measurement methodologies at high temporal resolution, i.e. micro-meteorology 15 

methodologies, are still scarce and may exacerbate the lack of important data, especially during 16 

the night if the required turbulent conditions are not met. The static and automated chamber 17 

methodologies also lead to numerous gaps in a time series due to low sampling frequency, 18 

hardware malfunctions, chambers removal during field operations or filtering of low-quality 19 

measurements. There is a strong need to define a generic and realistic N2O flux gap-filling 20 

methodology, especially since there is no consensus on the methodology to be used. 21 

In this study, we investigated the effect of using either the traditional linear interpolation 22 

methodology alone, either an Artificial Neural Networks (ANN) methodology alone or the 23 

combination of both on gap-filled daily N2O flux dynamics and annual budget. All three 24 

methodologies were tested on daily N2O flux time series measured with automated chambers 25 
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over 5 years from 2012 to 2016 on a southwestern France crop site following a wheat – maize 26 

rotation.  27 

On average over the studied period, the results showed better statistical scores using the ANN 28 

methodology alone than using the linear interpolation methodology alone, with R² and RMSE of 29 

0.84 and 12.4 gN ha
-1 

d
-1 

and of 0.68 and 17.4 gN ha
-1 

d
-1

, respectively. However, whereas the use 30 

of ANN methodology reproduced well high measured N2O fluxes, it induced overestimation on 31 

low measured N2O fluxes where the use of the linear interpolation methodology was relevant. To 32 

overcome that issue and to take advantages of both methodologies we propose a new one which 33 

mixes both. On average, using the mixed methodology did not increase statistical scores 34 

compared to the ANN one, with a R² and a RMSE of 0.84 and 12.4 gN ha
-1

 d
-1

 respectively for 35 

both, but for periods with low measured N2O fluxes using the mixed methodology improved the 36 

statistical scores and the observed daily flux dynamic. 37 

  38 



 39 

1. Introduction 40 

 41 

Nitrous oxide (N2O) is an important greenhouse gas as it presents a high global warming 42 

potential, around 300-fold higher than carbon dioxide (CO2), for an approximate residence time 43 

of 120 years in the atmosphere (Intergovernmental Panel on Climate Change (IPCC), 2013). 44 

Moreover, N2O participates in stratospheric ozone depletion (Ravishankara et al., 2009). At the 45 

global scale, N2O is responsible for 6% of the current global warming, its atmospheric 46 

concentration has increased at a rate of 0.93 ppb per year from 2007 to 2017 (WMO Greenhouse 47 

gas bulletin, 2018) and represents 46% of the total greenhouse gas (GHG) emissions from 48 

agriculture  (United Nations Environment Program (UNEP), 2012). Agricultural soils constitute 49 

the main anthropogenic source of N2O, mostly because of an increase in land conversion for 50 

agriculture and the intensified use of nitrogen fertilizers (Ussiri and Lal, 2013; Lognoul et al., 51 

2017; Davidson, 2009; Snyder et al., 2009). The formation of N2O in agricultural soils is mainly 52 

due to two microbial processes: nitrification and denitrification. Ammonium (NH4
+
) and nitrate 53 

(NO3
-
) concentrations together with soil water content, temperature, organic matter and pH, are 54 

the principal physical-chemical factors modulating the production of N2O from agricultural soils 55 

(Hénault et al., 2005; Li et al, 2000; Parsons et al, 1993; Wiljer et Delwiche, 1954). N2O 56 

emissions are thus determined by a combination of factors. The magnitude of each of these direct 57 

controls is subject to its own set of biological and abiotic controls (agricultural practices), 58 

showing the non-linearity of N2O emissions.  59 

In the aim of mitigating climate change by reducing N2O emissions from soils, it is important 60 

to determine and understand N2O flux dynamics in response to variability in the climate and 61 

agricultural practices. To this end, different technologies have been developed and it is common 62 



to find studies with low sampling frequency for measuring N2O fluxes. The static chamber 63 

method has been widely used (Reeves and Wang, 2015) as it presents the advantages of: (1) 64 

having low initial set-up costs, (2) being easily deployable from site to site and (3) being usable 65 

in small experimental plots, but it is also very demanding in manpower and offers a lower, more 66 

discontinuous sampling frequency than automated chambers (Zhang et al., 2014; Tellez-Rio et 67 

al., 2015; Reeves et al., 2016; Delon et al., 2017; Vinzent et al., 2017; Tallec et al., 2019). The 68 

use of a static chamber requires the operator to be well synchronized with N2O flux events, which 69 

are not known a priori. Automated chambers have been developed to increase sampling 70 

frequency (e.g. four times a day) and to reduce the uncertainty related to temporal N2O flux 71 

variability (Peyrard et al., 2016; Tallec et al., 2019). Nevertheless, due to field operations, 72 

instrument failure and/or quality control filtering, long periods of data loss may occur as for the 73 

static chamber method. Although the recent development of eddy-covariance methodology to 74 

measure N2O fluxes (Nemitz et al., 2018) presents the advantage of sampling at very high 75 

frequency (with a half-hourly time step) and at larger scale (from several m² to several hectares) 76 

than with chambers, it also presents the disadvantage of losing a lot of data because of low 77 

turbulence, especially during the night (Tallec et al., 2019). So, whatever the methodology used, 78 

data loss is inevitable, which could be critical for studies of how the ecosystems function and for 79 

the calculation of annual N2O budget. While standardized methodologies for CO2 flux gap-filling 80 

(mean diurnal variation, look up table, regression application) are well recognized and validated 81 

thanks to clear, robust relationships between the fluxes and drivers, those for N2O flux remain 82 

challenging and non-consensual (Nemitz et al., 2018). The methodologies applied are often site-83 

specific and depend on the availability of ancillary data. A widely used gap-filling method in 84 

N2O emission studies is the linear interpolation technique (Tellez-Rio et al., 2015; Vinzent et al., 85 

2017). However, N2O fluxes have high temporal variability (Tallec et al., 2019) and sporadic 86 



events can lead to dynamics totally different from the smoother diurnal variation observed for 87 

CO2. N2O flux dynamics are too complex to use the same gap-filling methodology as that applied 88 

for CO2 fluxes. Low sampling frequency of N2O fluxes combined with a linear interpolation gap-89 

filling method may thus result in the real N2O flux dynamics being missed, under- or 90 

overestimation of the annual N2O budget and misinterpretation of the effects of climate and 91 

management.  92 

To overcome this issue, and in the context of the ICOS (Integrated Carbon Observation 93 

System; Franz et al., 2018) network, Nemitz et al. (2018) suggested using and testing the 94 

Artificial Neural Networks (ANN) methodology that had proved to perform well for CH4 and 95 

CO2 flux gap-filling (Papale and Valentini, 2003; Melesse and Hanley, 2005; Moffat et al., 2007, 96 

Dengel et al., 2013). Moffat et al. (2007), who reviewed 15 different techniques tested on a 97 

dataset compiled from six different European forest sites to fill gaps in values of the half-hourly 98 

Net Ecosystem Exchange (NEE), showed that ANN had a consistently good gap-filling 99 

performance and low annual sum bias, with R² between 0.41 to 0.90, and recommended its use 100 

even in different ecosystems. Melesse and Hanley (2005) tested ANN to gap-fill hourly CO2 101 

fluxes from three different ecosystems (forest, wheat, grassland) in the United States. They found 102 

that this technique could successfully predict observed values with R² values between 0.75 to 103 

0.94 and therefore considered it reliable, efficient and highly significant to estimate CO2 fluxes. 104 

However, the very fleeting N2O fluxes are more difficult to simulate and gap-fill as, unlike CO2 105 

fluxes, they do not present any diurnal dynamics (Tallec et al., 2019). ANN is a statistical method 106 

that provides a relatively easy way to approach non-linear functions. It has the advantage of being 107 

usable without any knowledge of the processes that have an impact on the targeted variable(s). 108 

Some knowledge on the key drivers for thematic applications, as for N2O fluxes gap-filling, is 109 

still needed. Today, few studies have used and evaluated the performance of ANN methodology 110 



with other methodologies simulating N2O fluxes (Ryan et al., 2004; Villa-Vialaneix et al., 2012; 111 

Taki et al., 2018). Ryan et al. (2004) undertook to simulate daily N2O emissions from an intensive 112 

grassland ecosystem in New Zealand using ANN methodology and obtained good statistical 113 

results, with R² ranging from 0.67 to 0.85. Taki et al. (2018) compared the use of ANN and linear 114 

interpolation methodologies to gap-fill a 6 years time series of N2O flux measured on a Canadian 115 

crop site following a corn/soybean/winter wheat rotation. On average, whatever the cropping 116 

year, they found a lower R² with the use of ANN than Ryan et al. (2004). Depending on the 117 

cropping year and the crop species, R² ranged from 0.19 (for a soybean crop) to 0.65 (for a maize 118 

crop). This strong variation in the ANN performance may question the relevance of using that 119 

methodology and underlines the need to more investigate it in different context and 120 

configuration. However, Taki et al. (2018) recommended the use of ANN instead of the classical 121 

interpolation method, as on average the former scored a higher R² (0.41) than the latter (0.34) 122 

when considering the entire studied period.  123 

The study proposed here is part of this dynamics, as comparisons between gap-filling 124 

procedures on N2O fluxes are still lacking. Its objectives are twofold: (1) to evaluate and compare 125 

linear interpolation and ANN as gap-filling methodologies to reproduce daily low and high N2O 126 

fluxes and (2) to propose a third gap-filling approach combining both methodologies using a 127 

criterion on the method’s choice, either linear interpolation or ANN, based on the duration of the 128 

missing data period and the N2O flux magnitude. All three methodologies were tested on a long 129 

time series of measurements taken on an agricultural plot (maize/wheat rotation) in the south-130 

west of France from 2012 to 2016 and compared together according to each crop plot functioning 131 

period (bare soil, growing season, low or high N2O fluxes intensity, etc.). The effect of the 132 

methodology’s choice on the estimated annual N2O budget is discussed.  133 

  134 



2. Materials 135 

2.1 Experimental site 136 

The study is based on a dataset collected at the Lamasquère site (FR-Lam) in the South West 137 

of France (43°29’47’’N, 1°14’16’’E, 180 m elevation). This crop site is part of an experimental 138 

dairy farm (Domaine de Lamothe, Instituts Nationaux Polytechniques). The site is located in a 139 

plain having an oceanic climate with Mediterranean and continental influences, a mean annual 140 

rainfall of 680 mm and a mean annual temperature of 12.6 °C. The soil is mainly clayey (50.3% 141 

clay, 35.8% silt, 11.2% sand, 2.8% organic matter). The plot is located near the river Touch, a 142 

tributary of the river Garonne, in the Adour-Garonne water catchment area. 143 

This experimental plot is part of the Regional Spatial Observatory, the regional ZA PYGAR 144 

(Zone Atelier Pyrénées-Garonne), the national research infrastructure OZCAR (Critical Zone 145 

Observatories: Research and Applications; Gaillardet et al., 2018) and the European network 146 

ICOS (Integrated Carbon Observation System). The site is therefore fully equipped with 147 

instruments to monitor greenhouse gas fluxes, meteorological, radiation and soil variables (Béziat 148 

et al, 2009; Tallec et al, 2013). Vegetation dynamics are also monitored in detail with green area, 149 

biomass and height measurements.  150 

Management of the crop plot is intensive, with exportation of all aboveground biomass for 151 

mulching the cowsheds and/or feeding the herd. An annual irrigation of approximately 150 mm is 152 

applied when maize is cultivated. The total amount of nitrogen (N) applied varies from 100 to 153 

200 kgN ha
-1

 and 110 to 145 kgN ha
-1

 for mineral and organic fertilization respectively. Input 154 

modalities vary according to the crop species. Mineral fertilization is split into 3 applications for 155 

wheat and applied once for maize. The FR-Lam site occupation followed the rotation maize 156 

(2012), wheat (2013), cover crop (CC) (2013), maize (2014), maize (2015), wheat (2016), CC 157 

(2016). 158 



 159 

2.2 N2O flux measurement 160 

To measure N2O emissions, 6 stainless steel automated chambers (covering an area of 0.161 161 

m²) were installed on the plot according to a closed dynamic set-up. The chambers were 162 

elongated (70cm×23cm×10cm) so as to be easily inserted in the crop inter-rows, where they were 163 

placed at a 10 cm soil depth. A previous comparison study between automated chambers and 164 

eddy-covariance methodologies (Tallec et al. 2019) on the same site showed that a set of 6 165 

automated chambers was sufficient to integrate spatial heterogeneity of the site and to well 166 

capture the mean daily N2O flux dynamics. The set-up measured N2O accumulation in each 167 

chamber alternately during 17.5 minutes every 6 hours, i.e. four cycles a day (00:00, 06:00, 168 

12:00, 18:00). A pump maintained continuous air circulation in and out of the chamber at a 169 

constant flow rate (1 L.min
-1

). Sampled air was supplied from the chamber to a gas analyser that 170 

measure N2O molar fraction every 10 seconds (Thermofisher 46i, Megatec, France). The 171 

calculated N2O fluxes (exponential fitting) were filtered by means of a mixture of goodness-of-fit 172 

statistics and visual inspection (Tallec et al., 2019). A fan also enabled air homogeneity in the 173 

chamber.  174 

Daily N2O fluxes were calculated as the mean value of all available fluxes during the day. 175 

The choice to work at a daily timescale was made as no significant diurnal N2O flux intensity 176 

variation was found on FR-Lam site in a previous study (Tallec et al., 2019). Because of 177 

hardware dysfunction and/or technical operations, such as tillage and harvest, chambers were 178 

removed many times, leading to missing data which means that the number of available N2O flux 179 

measurement per day to calculate a daily N2O flux varied from 0 to 24. In this study, in order to 180 

maximize the size of the dataset for the need of that study we kept all available daily fluxes, even 181 

if calculated with only one measurement a day. Finally, from 2012 to 2016, out of 1827 daily 182 



N2O flux values, 1442 were acquired. The whole dataset included 63% of “highly” representative 183 

daily values (calculated with 12 to 24 measurements a day), 22% of “moderately” representative 184 

daily values (calculated with 6 to 12 measurements a day) and 13% of potentially “poorly” 185 

representative daily values (calculated with 1 to 6 measurements a day).   186 

 187 

2.3 Meteorology, soil variables and ancillary data measurements  188 

The rich dataset acquired on FR-Lam offers the possibility to test different combinations of 189 

possible explanatory variables for the input layer in the ANN and to choose the most explanatory 190 

(see section 3.1.2.3). Matter and energy fluxes, meteorological data, radiation and soil variables 191 

were available at a half-hourly time step and are described in Table 1. The measurement 192 

methodology for each variable is described in Beziat et al. (2009) and Tallec et al. (2013). Each 193 

variable was aggregated at a daily time scale. Vegetation data were collected from 5 to 6 times a 194 

year during the growing season and a simple linear interpolation was applied to obtain the daily 195 

dynamics. 196 

  197 



 198 

Table 1. Description of variables potentially available for gap-filling 199 

 200 

  201 



Unfortunately, soil mineral nitrogen content was not available for all years and with low 202 

temporal resolution. Thus, to include the fertilization effect on N2O emissions in the ANN 203 

construction, a decreasing exponential function Nt (Eq. 1) was developed to account for the effect 204 

of fertilizer on N2O fluxes. The choice of coefficient 0.10 was determined based on the 205 

visualisation of the function’s temporal dynamic. The aim of this function is to memorize a 206 

fertilisation event over multiple days after a fertilisation as we noticed, based on observations, 207 

that N2O fluxes appears several days after a fertilisation event if the environmental conditions are 208 

met. No optimisation process was undertaken to find the most accurate coefficient value. 209 

                 (1) 210 

 211 

Here t represents the number of days after fertilization, Nt is the nitrogen function value at 212 

day t after fertilization (kgN ha
-1

) and N0 is the quantity of nitrogen fertilizer applied by the 213 

farmer on day 0 (kgN ha
-1

). 214 

 215 

3. Methods 216 

3.1 ANN gap-filling methodology 217 

3.1.1 General principle 218 

In this study, the ANNs created are based on the algorithm proposed by Bishop (1995) (i.e., 219 

multi-layer perceptrons implemented in the nnet R package) and are composed of three layers of 220 

neurons (input, hidden and output) connected by synapses (Fig. 1). The input layer represents the 221 

predictive variables selected by the user to explain the targeted variables of the output layer. The 222 

number of input parameters and hidden neurons is determinant in the creation of a neural network 223 

and to avoid over fitting. Not enough hidden neurons will make it difficult to reach an accurate 224 



estimation of the targeted variable, while too many will lead to noisy estimates (Delon et al., 225 

2007). The relationship between input and output variables is modelled by sigmoid functions 226 

connecting neurons, the weights of interactions being determined through an iterative procedure.  227 

 228 

 229 

During the model training, nnet uses supervised learning algorithms. The synapse weights are 230 

modified to fit the network in order to reduce an error function (i.e., Sum of Squared Errors 231 

(SSE)) corresponding to the difference between predicted and observed output (Guenther and 232 

Fritsch, 2010; Ryan et al, 2004) following the Broyden-Fletcher-Goldfarb-Shanno algorithm. The 233 

values of the weights are initialized with random values and progressively adjusted. 234 

 235 

3.1.2 Creation of the neural network step by step 236 

3.1.2.1 Neural Network performances 237 

The data preparation procedure is established in accordance with the following studies Lek et 238 

al. 1966 and Olden et al. 2002, which recommend: (1) to standardize the measurement scales of 239 

the network inputs (by subtracting the mean value and dividing by the standard deviation) 240 

especially when the measurements are of different orders of magnitude, and (2) to convert the 241 

Fig. 1. Schematic MLP with 4 input variables, 3 hidden neurons and 1 output variable 



range of the output variable to the interval [0-1] to conform to the interval of variation of the 242 

sigmoid transfer function (by subtracting the minimal value and dividing by the range of 243 

variation). 244 

After normalization, the data set was randomly partitioned into two independent sets of equal 245 

data amount, 50% of the data to train and 50% of the data to test the created ANN, that enables to 246 

test the ANNs generalisation efficiency on an important amount of data. This 50/50 partitioning 247 

operation was repeated 40 times with the objective of obtaining 40 different random draws and 248 

selecting the draw with the highest performance.  249 

The performance levels of the ANNs were evaluated using the determination coefficient (R², 250 

Eq. 2.), the Root Mean Squared Error (RMSE, Eq. 3.) and the Relative Root Mean Squared Error 251 

(RRMSE, Eq. 4.). 252 

R² =  
                      

 
   

          
 
              

 
    

  (2) 253 

RMSE =    
          

 
   

 
  (3) 254 

RRMSE = 
    

  
      (4) 255 

With   the number of observed values,    the observed value,    the predicted value and    and    256 

the mean of observed and predicted data, respectively.  257 

Different ANN configurations were tested. An overall neural network was implemented first 258 

on the whole dataset and then by discriminating each crop growing season and bare soil periods. 259 

 260 

3.1.2.2. Early stopping procedure 261 

In order to avoid over or under fitting during ANN training, an early stopping procedure was 262 

setup to determine the best number of iterations required to build the ANN model. For every 40 263 



draws, ANNs were created and trained throughout 1 000 iterations and saved every 10 iterations 264 

(in total 4000 created ANNs for one functioning period). Then the 4000 trained ANNs were 265 

tested on the testing datasets. The R² and RMSE between observations and simulations on the 266 

training and testing dataset were also saved every 10 iterations for the 40 draws. The number of 267 

required iterations to build the best ANN model and select the best draw was determined in 268 

function of the minimum value of RMSE obtained on the testing datasets. Fig. 2 illustrates the 269 

case of draw number 5 for maize 2012 period.  270 

 271 

 272 

For that draw, the ANN created after 770 iterations was selected as it corresponds to the 273 

minimum RMSE of the testing dataset. Below or above that value the ANNs may be under or 274 

overfitted. 275 

Fig. 2. RMSE (gN ha
-1 

d
-1

) between ANN training (black) and testing (grey) 

datasets in function of iterations for draw number 5 during maize 2012 period. 

Here the minimum RMSE for the test simulation is reached after 770 iterations. 



The best ANN determined from the iteration procedure was then kept and saved for every 40 276 

draws of each functioning period. Then a classification of the 40 random draws was done in 277 

function of R² in order to select the draw showing the best R². A final test to select the best ANN 278 

for a functioning period was then made by comparing the ANN simulation on the test dataset 279 

with the corresponding observations dynamic. If this visual dynamic comparison was not 280 

satisfying, the second ANN and draw set with the best R² result was chosen, and so on. 281 

 282 

3.1.2.3 Selection of input variables 283 

The methodology used to select the most appropriate combination of variables for each period 284 

is presented in Fig. 3. Only input variables (Table 1) without any missing values were considered. 285 

A linear regression calculation between each variable and N2O fluxes was then performed to 286 

select a combination of variables showing the highest correlation with N2O fluxes (highest R² 287 

values). Afterwards, numerous ANNs were created by testing different combinations of the 288 

selected variables for each functioning period. The final input combination was selected based on 289 

the previously described process using the criterion R
2
, RMSE and visual checking. Finally, a 290 

specific ANN was built for each functioning period using a combination of 4 or 5 input variables, 291 

and 3 hidden neurons to fit the output variable, i.e. the daily soil N2O fluxes. Increasing the 292 

number of input parameters and/or hidden neurons did not improve the results significantly (data 293 

not shown). 294 



 295 

 296 

 297 

3.2 Comparison between ANN and linear interpolation gap-filling methodologies 298 

In order to evaluate the linear interpolation methodology and compare it with the ANN 299 

methodology on exactly the same days of observations, artificial gaps were created into the 300 

dataset used for the testing procedure (Fig. 4) for each functioning period. Each artificial gap was 301 

then filled using the linear interpolation method between the surrounding training values. The 302 

linear interpolation methodology was evaluated statistically using the same indices as described 303 

in section 3.1.2.1 (R², RMSE, RRMSE).  304 

Fig. 3. Diagram outlining the successive steps to implement the ANN methodology. 

 



 305 

 306 

3.3 Determination of the GMD (Gap Magnitude and Duration) coefficient 307 

The comparison between ANN and linear interpolation methodologies showed that each 308 

technique may have benefits and limitations depending on the gap condition (see section 4.5). 309 

Therefore, the best gap-filling approach would be to combine the two techniques with the help of 310 

a new criterion, the coefficient GMD (Eq. 5) which would allow the most suitable methodology 311 

to be chosen. The value of GMD depends on the length of the gap and on the difference between 312 

the N2O fluxes intensity bracketing the gap. GMD thus allows the best gap-filling methodology 313 

to be chosen between linear interpolation and ANN.  314 

 315 

GMD                                        (5) 316 

Where   is the number of consecutive missing days in the gap and                and 317 

              are the N2O flux values observed at the beginning and the end of the gap, 318 

respectively. 319 

Fig. 4. Method used to create and linearly interpolate artificial gaps 

from the N2O observations. 



A decision tree to guide the choice to use either the linear interpolation or the ANN gap-320 

filling methodology to fill a specific gap, depending on the GMD value, is developed in Fig. 5. 321 

 322 

 323 

3.4 Estimating annual N2O budget uncertainty due to gap-filling 324 

The uncertainty of the annual N2O budget related to the gap-filling was investigated using a 325 

methodology adapted from Richardson and Hollinger (2007). This methodology is usually used 326 

to estimate annual NEE gap-filling uncertainty (Richardson and Hollinger, 2007; Schmidt et al., 327 

2012). It is calculated by adding random gaps as actually observed in each real site–year of data 328 

gaps and then by adding small and long gaps (the maximum gap length is 8 days). However, in 329 

this methodology, the data set specificity is not taken into account, i.e. the number, length and 330 

locations of gaps are not respected. To include this information, a new methodology was 331 

Fig. 5. Decision tree helping to select the more suitable gap-filling method according to GMD value. 



proposed as follows (Fig. 6): (1) the N2O datasets were first gap-filled according to each 332 

functioning period by using the combined methodology exposed in section 3.3; (2) new artificial 333 

random gaps were then created on the gap-filled data sets to test the effect of different locations 334 

of missing data while ensuring the reproduction of the exact number and size of each gap for each 335 

annual period (for example, the year 2013 had exactly 3 gaps of 1, 6 and 1 consecutive days of 336 

missing N2O fluxes). No artificial gaps were created on previous real gap locations to avoid 337 

replacement of a former gap-filled location by the same value; (3) afterwards, gap-filling was 338 

again applied to the N2O flux dataset containing the new gaps; (4) this operation was repeated 339 

100 times on the whole period and allowed 100 annual N2O budgets to be calculated for each 340 

year. The standard deviations calculated over the 100 repetitions indicated the uncertainty related 341 

to the gap-filling on each annual N2O budget.  342 

  343 



 344 

4. Results and Discussion 345 

4.1 N2O flux range and dynamic at FR-Lam crop site 346 

Over the five years of monitoring, the magnitude and timing of measured N2O fluxes varied 347 

according to the soil occupation, the agricultural practices and the climatic year (Fig. 8). Typical 348 

variability of N2O fluxes occurred according to rain, irrigation and fertilisation events. Wheat, 349 

cover crops and bare soil periods emitted less N2O, on average (from 6.6 to 13.0 gN ha
-1

 d
-1

), 350 

than the maize periods (16.3 to 42.9 gN ha
-1

 d
-1

) (Table 2). Intensity of N2O fluxes was also 351 

higher in the maize periods than in the others, with maximum values ranging between 160 and 352 

399, compared to 33 and 133 gN ha
-1

 d
-1

 (Table 2, Fig. 8). Maximum fluxes measured on maize 353 

2012 (174 gN ha
-1

 d
-1

), maize 2015 (160 gN ha
-1

 d
-1

) and wheat 2013 (33 gN ha
-1

 d
-1

) were in the 354 

Fig. 6. Diagram outlining the successive steps to calculate the uncertainty due to gap-filing 

methodology. 



range of those given for wheat – irrigated maize crop rotations in Dhadli et al. (2016) for northern 355 

India on a loamy sand soil site (143 and 50 gN ha
-1

 d
-1 

for maize and wheat respectively) and in 356 

Han et al. (2016) for northern China (96 and 50 gN ha
-1

 d
-1 

for maize and wheat respectively). 357 

Maximum fluxes measured on wheat 2016 (100 gN ha
-1

 d
-1

) and maize 2014 (399 gN ha
-1

 d
-1

) 358 

were significantly above those generally reported in the literature. Taki et al. (2018) nevertheless 359 

measured a maximum N2O flux of 225 gN ha
-1 

d
-1

 on a maize crop, which is still half that of 360 

maize 2014 in this study. The strong N2O flux peak observed at the end of June 2014 could be 361 

explained by optimal conditions for N2O production: the field operations during that period 362 

resulted in easily available N substrate, with two considerable mineral fertilization of 102 and 72 363 

kgN ha
-1

 applied at an interval of only one week, and high soil water content, with two irrigation 364 

events one week after N application. We can assume that N2O fluxes on our site were within the 365 

average range of other wheat-maize crop rotation sites but atypical management practices or 366 

climate may have led to temporally unusual and important N2O fluxes.   367 

The bare soil and wheat 2013 periods were the ones with the most and the least missing data, 368 

21% and 1% respectively. The number of consecutive missing daily N2O fluxes varied from 1 to 369 

62, with a minimum of 1 to 2 on wheat 2013 and a maximum of 1 to 62 on bare soil periods 370 

(Table 2). These gaps were due to the removal of chambers for field operations or disturbance of 371 

the aero-dynamic conditions, leading to a filtering of the data. 372 

 373 



 374 

  375 

Fig. 7. Daily N2O fluxes dynamic observed (cross) and gap-filled (dot) at FR-Lam from 2012 to 2016. M: maize; B: bare soil; W: wheat; C: cover crop; N: nitrogen 

application (kgN ha
-1

); I: irrigation. 



 376 

 377 

Vegetation 

periods 

Mean daily 

N2O flux 
 (gN ha

-1
 d

-1
) 

Maximum  
daily N2O flux  

(gN ha
-1

 d
-1

) 

Period 

length 

(days) 

Number of 

daily N2O 

fluxes missing 

Length of 

consecutive 

missing daily 

N2O fluxes 

Maize 2012 25.6 (± 30.0) 174 119 15 (13%) 1 - 10 

Maize 2014 42.9 (± 67.0) 399 124 14 (11%) 1 - 7 

Maize 2015 16.3 (± 36.2) 160 127 63 (50%) 17 - 25 

Wheat 2013 6.6 (± 6.4) 33 257 3 (1%) 1 - 2 

Wheat 2016 7.9 (± 16.7) 100 254 7 (3%) 1 - 5 

CC 2013 9.3 (± 18.1) 93 90 6 (7%) 6 

CC 2016 13.0 (± 22.8) 109 118 25 (21%) 1 - 17 

Bare soil 

periods 
7.5 (± 20.7) 133 738 252 (34%) 1 – 62 

Lamasquère 

2012-2016 
12.3 (± 28.8) 399 1 827 385 (21%) 1 - 62 

Table 2. Description of the daily N2O flux dataset at FR-Lam per functioning period. 378 

 379 

4.2 ANN simulation and selected variables 380 

The selected input variables varied among the study periods (Table 3). Whatever the 381 

combination, all input variables selected for gap-filling (Table 3) had a direct or indirect 382 

influence on N2O emissions (Robertson et al., 1989). Fig. 8 illustrates connections between input 383 

variables and the direct proximal factors of denitrification regulation (inspired from Robertson et 384 

al., 1989). 385 

  386 



 387 

 388 

Variables related to vegetation structure make the greatest contribution to modulating 389 

proximal factors and thus to N2O emission modulation. LAI and h_veg are naturally related to the 390 

soil mineral nitrogen availability. These also modulate and reflect the soil dioxygen content via 391 

root respiration, the soil water content via potential evapotranspiration (ETP) and the soil carbon 392 

content via rhizodeposition and physical disruption by the roots, etc. Net radiation (Rn) 393 

corresponds to the available radiative energy in the top of soil – top of canopy continuum, which 394 

naturally depends on Rg but also on the crop coverage and structure, and it potentially modulates 395 

the heat fluxes that are implicated in soil water loss and soil heating. Sensible heat flux (H) may 396 

be linked to soil temperature as an increasing H is associated with surface heating coming from 397 

water stress. Finally, the fertilization parameter uses the function established in Eq. 1. to 398 

Fig. 8. Illustration of the possible interactions between selected variables and proximal factors of N2O emissions. 

Variables in grey italics were not measured or not available. 



represent nitrogen application in the field. Taki et al. (2018) partly used the same parameters in 399 

all their single-year ANNs, together with air temperature, soil temperature, soil water content, 400 

NO3
- 
concentration, NH4

+
 concentration with snow depth, rainfall, the season and the time of the 401 

year. In contrast with Ryan et al. (2004) and Taki et al. (2018) who both used rainfall as 402 

controlling factor, waterfall (rain and irrigation), even tested in applying a lagtime from 0 to 5 403 

days, did not appear to be a significant input parameter in the ANN constructions at FR-Lam. 404 

SWC at 50 cm depth appeared more explanatory than rainfall. Moreover, since the water table 405 

rose frequently near the soil surface at FR-Lam, SWC at 50 cm parameter reflects environmental 406 

conditions’ variation related to sub-ground phenomenon on that site in addition to being 407 

integrative of the rainfall/irrigation amount. The season and the time of the year were not 408 

necessary parameters, as we separated our dataset according to the functioning period, and snow 409 

depth was not useful as no significant snowfall occurred during the monitoring. NO3
- 
and NH4

+
 410 

concentrations would have been valuable as determining parameters in the formation of N2O 411 

(Fig. 8) but they were not continuously monitored.  412 

 413 

An ANN using LAI, Ta_mean, Rn, ETP and SWC_50 as input variables was first tested for 414 

the whole period from 2012 to 2016 and led to poor statistical scores with an R² of 0.28, an 415 

RMSE of 23 gN ha
-1

 d
-1

 and an RRMSE of 189%. We thus separated the data set according to the 416 

functioning periods (Table 3) to create a neural network specific to each crop growing season 417 

period and a single one combining all bare soil periods with the most explanatory variables. The 418 

combination of variables giving the best estimation of N2O emissions varied from one period to 419 

another (Table 3). 420 

 421 

 422 



 423 

 424 

 425 

4.3. ANN performances 426 

Creating ANNs relating to each functioning period proved to be relevant, with R², RMSE and 427 

RRMSE ranging from 0.54 to 0.94, from 4.0 to 33.9 gN ha
-1

 d
-1

 and from 62 to 115, respectively 428 

(Table 4), far better than the single ANN over the whole period. The R² scores are highly 429 

improved compared to those of Taki et al. (2018) who found on average R² values ranging from 430 

0.19 to 0.65, depending on the cropping year. Two main reasons can explain that important 431 

improvement. First, in our study, an ANN model was built specifically for each functioning 432 

period and by discriminating bare soil from growing season periods, whereas Taki et al. (2018) 433 

built ANN model without discriminating functioning periods. Even if discriminating functioning 434 

period makes more difficult the genericity of the ANN algorithm, it is in favour of improving the 435 

fineness of the gap-filling. Then, Taki et al. (2018) used scores and results averaged over 44 436 

Table 3 Summary of the selected variables used to develop the different 

neuronal network at FR-Lam. 



scenarios for each cropping year whereas in our study, only the best ANN model was kept from 437 

the 40 random draws for each studied period and shown here. 438 

Considerable disparity occurred on statistical results according to the functioning period 439 

(Table 4). The RRMSE appeared to be high when looking at all functioning periods together and 440 

highlighted the fact that the RMSE was of the same magnitude as the average N2O fluxes in 441 

average. With R² ranging from 0.85 to 0.94, periods with maize or cover crop showed better 442 

performance than periods with wheat or bare soil, showing an R² ranging from 0.54 to 0.66. Even 443 

though wheat 2016 and bare soils had an RMSE of the same order of magnitude as the other 444 

periods, the difference between the observations and the test simulations turned out to be 445 

significant during these two periods when related to the average N2O fluxes with the highest 446 

RRMSE values, 115 and 114 % respectively. Wheat and bare soil periods also corresponded to 447 

the lowest mean daily N2O fluxes: 6.6 – 7.5 gN ha
-1

 d
-1

 against 9.3 – 42.0 gN ha
-1

 d
-1 

during 448 

maize/cover crop periods (Table 2). These results show that the ANN method would simulate 449 

fluxes with high intensity variation, as observed in maize crops, better than fluxes with low 450 

intensity variation as observed in winter wheat. However, these scores are close to those reported 451 

in the literature for CO2 flux gap-filling on a forest site (Melesse and Hanley, 2005; Moffat et al., 452 

2007). Accordingly, ANN performances for N2O flux estimation proved to be relevant even 453 

without any diurnal cycle when compared to other CO2 flux modelling studies. 454 



 455 

 456 

4.4 Evaluation of ANN and linear interpolation methodologies gap-filling performances  457 

Considering all functioning periods together, ANN methodology gave better statistical scores 458 

(see Table 4) than the linear interpolation with higher R² (0.84 vs 0.68) and lower RMSE (12.4 vs 459 

17.4 gN ha
-1

 d
-1

) and RRMSE (101 vs 141 %). In the same trend, Taki et al. (2018) obtained 460 

better statistical scores for the ANN methodology than with the linear interpolation methodology, 461 

finding an average R² of 0.41 and 0.34 respectively.  462 

Table 4. R² and RMSE calculated on testing dataset for ANN, linear interpolation and both methodologies 

combined for each functioning period. 



Even if the linear interpolation might give comparable scores, i.e. for maize in 2012 and 463 

2015, it proved to perform better when the averaged N2O fluxes were the lowest, i. e. wheat 464 

2013, wheat 2016 and bare soil periods. 465 

 466 

4.5 Effect of gap-filling methodologies on mean N2O emissions according to functioning period 467 

To analyse the effects of the two different gap-filling methodologies on the mean N2O fluxes 468 

per period, we applied them separately to gap-fill the real gaps from the studied data set from 469 

2012 to 2016. In the case of the ANN methodology, there are no significant differences on the 470 

means and standard deviations of the N2O fluxes before and after gap-filling whatever the period 471 

considered, which shows no large N2O flux variability was created after gap-filling (Table 5). In 472 

contrast, large variability appears after gap-filling when the linear interpolation method is used 473 

during maize 2014 and bare soil periods : the mean N2O flux for the maize 2014 period before 474 

gap-filling is 42.9 ± 77.7 gN ha
-1

 d
-1

 and becomes 64.5 ± 107.2 gN ha
-1

 d
-1

 after gap-filling; for 475 

the bare soil periods, the mean and standard deviations are 7.5 ± 15.0 gN ha
-1

 d
-1

 before gap-476 

filling and 21.3 ± 58.0 gN ha
-1

 d
-1

 after gap-filling. In both cases, the linear interpolation 477 

methodology tends to increase mean N2O fluxes. Based on these results, it appears that either the 478 

ANN underestimates, or the linear interpolation overestimates N2O fluxes, or both are wrong. 479 

However, it questions the use of one methodology or the other. To explain these strong 480 

differences between the two methodologies, we analysed these specific periods in greater detail. 481 

 482 



 483 

 484 

In some specific case, applying a linear interpolation gap-filling on the bare soil periods 485 

would introduce an unrealistic continuity such like the period from 06. March 2014 to 19. May 486 

2014 as shown in Fig. 9 (since maize 2014 begins on the 20. May and would have been gap-filled 487 

with ANN methodology). It could be explained by the presence of a very long gap of 69 days ( 488 

from 19. March to 26. May 2014) surrounded by two periods with high N2O flux amplitudes: 6.7 489 

gN ha
-1

 d
-1

 on 18. March 2014 and 394.6 gN ha
-1

 d
-1

 on 27. May 2014. The linear interpolation 490 

dynamics is clearly not suitable during this period. Even if the ANN gap-filling can be wrong, it 491 

is more consistent with the dynamics of the observations, in particular since ANN takes the 492 

environmental conditions into account, especially since environmental conditions (data not 493 

Table 5. Effect of ANN and linear interpolation gap-filling methodologies on mean N2O emissions (gN ha
-1

 d
-1

). 



shown) were not in favour of N2O production: only 75 mm of rain in 67 days, where the ANN 494 

simulated very low N2O fluxes.  495 

 496 

 497 

4.6 Combination of ANN and linear interpolation methodologies 498 

As the linear interpolation method also gives satisfactory statistical results (Table 4), it would 499 

have been a loss to set it aside since we have seen that, in some circumstances, this method is 500 

better than ANN, especially on periods with low averaged N2O fluxes. Moreover, in some 501 

specific case, like long period of missing data or period with environmental conditions in favour 502 

of N2O emissions, applying a linear interpolation gap-filling could introduce unrealistic N2O 503 

fluxes. In order to fix this, we propose to combine the two gap-filling methodologies depending 504 

on the value of GMD ((Eq. 5.), see section 3.3). The RMSE are then compared with GMD values, 505 

and used to highlight the potential threshold GMD values on which the selection of the best 506 

methodology to gap-fill the data could be based (Table 6).  507 

Fig. 9. N2O fluxes (+) gap-filled by ANN (o) and linear interpolation (Δ) on bare soil period from 

05/03/2014 to 19/05/2014 and on maize 2014 period from 20/05/2014 to 09/06/2014. 



 508 

 509 

Two GMD threshold values were highlighted (Table 6): when GMD < 14, the RMSE of the 510 

ANN method was higher than the one from linear interpolation; when 14 < GMD < 30, RMSE 511 

were quite similar for both; when GMD > 30, the RMSE of the ANN method was lower than 512 

linear interpolation one.  513 

These results suggest that the suitability of a methodology for gap-filling depends on the 514 

GMD value. The linear interpolation is preferable when GMD < 14 and the ANN method is 515 

preferable when GMD > 30. When 14 < GMD < 30, the use of either interpolation or ANN is 516 

possible as both methodologies give approximately the same score. We decided to use the ANN 517 

methodology in this case as it allowed capturing the effect of environmental variables on N2O 518 

fluxes. However, in the case of long gaps (when a gap contains more than 15 missing data) 519 

bracketed by two low N2O fluxes with GMD < 14, the decision would be to use the linear 520 

interpolation methodology. It would be wise to look at possible important environmental 521 

modifications during the gaps, such as heavy rain, irrigation or fertilization events, where it could 522 

be more accurate to use the ANN methodology instead. 523 

The combined methodology gave practically the same statistical results over the whole period 524 

as those from the ANN methodology with a R² and a RMSE of 0.84 and 12.4 gN ha
-1 

d
-1

 for both 525 

(Table 4). However, an improvement is seen on the three periods where the linear interpolation 526 

Table 6. RMSE according to gap-filling methodology and GMD coefficient. 



method has better statistical results with the combined methodology compared to the ANN one 527 

with a R², a RMSE and a RRMSE of 0.68, 8.6 and 113 and of 0.66, 8.6 and 114 respectively for 528 

bare soil periods, of 0.69, 7.8 and 102 and of 0.60, 8.8 and 115 respectively for wheat 2016 and 529 

of 0.67, 3.5 and 57 and of 0.54, 4.0 and 65 respectively for wheat 2013. These results support the 530 

use of a combined methodology instead of applying either the linear interpolation alone or the 531 

ANN methodology alone for gap-filling. 532 

 533 

4.7 Comparison of the three gap-filling methodologies: linear interpolation, ANN and the 534 

combination of both 535 

The simulated N2O flux dynamic were compared between the three methodologies applied 536 

for maize 2014 period (Fig. 10). It showed that the ANN methodology gave on average better 537 

statistical scores than the linear interpolation (Table 4) and better reproduced the important peak 538 

than did the linear interpolation around the 29 June 2014. However, ANN over estimated low 539 

N2O fluxes measured in early July (Fig. 10 a. and b) where the linear interpolation reproduced 540 

much better their low intensity (Fig. 10 b). Although the combined methodology gave 541 

approximately the same statistical scores than those of ANN alone (Table 4), it allowed a better 542 

catching of N2O flux dynamic (Fig. 10 c). 543 

In the same way, during periods where the linear interpolation methodology gave better 544 

results than the ANN one (Table 4), combining both methodologies helped to better reproduce 545 

low fluxes (Fig. 11) and to improve statistical results compared to the ANN with a R², a RMSE 546 

and a RRMSE of 0.69, 7.8 gN ha
-1

 d
-1

 and 102 for wheat 2016, respectively. 547 

The ANN and the combined methodologies gave on average comparable statistical scores 548 

whatever the functioning period probably due to a control by high N2O flux values. However, 549 



because the combined methodology proved to be more efficient to capture N2O intensity dynamic 550 

it was used to gap-fill missing data from 2012 to 2016 (Fig. 7).  551 

  552 



 553 

Fig. 10. Comparison between observed (cross) and simulated (dot) N2O fluxes dynamic according to 

gap-filling methodology ANN (a), linear interpolation (b) and mixed methodology (c) on Maize 

2014. Only the days used for the test dataset are shown here. 



 554 



 555 

Fig. 11. Comparison between observed (cross) and simulated (dot) N2O fluxes dynamic according to 

gap-filling methodology ANN (a), linear interpolation (b) and mixed methodology (c) on Wheat 

2016. Only the days used for the test dataset are shown here. 



  556 



5. Evaluation of gap-filling uncertainty on N2O budget 557 

The uncertainties on the N2O annual budget related to the gap-filling varied between ± 25 and 558 

± 198 gN ha
-1

 among years, and between 0.9 and 4.1 % when looking at the relative uncertainty 559 

(Table 7) calculated via the methodology described in section 3.4. Gap-filling had a particularly 560 

low impact on year 2013 (Table 7) as there were only few gaps during this period: 3 gaps with 561 

respectively 1, 6 and 1 missing value(s). These results are relatively low compared to the annual 562 

uncertainties calculated by Taki et al. (2018), who obtained an uncertainty variation among years 563 

of ± 70 to ± 810 gN ha
-1

 and 7 to 24 % when looking at the relative uncertainty using ANN as 564 

gap-filling method, and an uncertainty variation among years of ± 40 to ± 470 gN ha
-1

 and 5 to 15 565 

% when looking at the relative uncertainty using linear interpolation as the gap-filling method. 566 

These differences with our results could be explained by the different methods adopted. Their 567 

results also prove that a combination of both methodologies may improve the gap-filling as their 568 

N2O annual budget uncertainties were lower with the linear interpolation than with the ANN 569 

methodology, despite the fact that they found a better R² for the ANN. These uncertainty 570 

differences among years can be explained by the disparities in the number and size of gaps and in 571 

the intensity of N2O emissions among years: years with a high N2O budget (related to high N2O 572 

fluxes), especially observed during maize periods, and with a small number of gaps lead to a low 573 

gap-filling uncertainty whereas the uncertainty increases when the length of gaps increases and 574 

N2O flux intensity is low, especially for wheat and bare soil periods. Nevertheless, the results 575 

show that the proposed mixed gap-filling methodology performs well when used on annual N2O 576 

flux datasets with a relative uncertainty below 5 % for each year.  577 

 578 

 579 

 580 



 581 

 582 

 583 

 584 

Conclusion 585 

Three different gap-filling methodologies were examined with respect to their performance 586 

for filling gaps in long-term N2O flux data series. This study has demonstrated that the use of an 587 

artificial neural network could be a helpful tool to gap-fill daily N2O fluxes as already 588 

recommended for other greenhouse gases such as CO2 and CH4. On average, ANN proved to give 589 

better gap-filling performance than linear interpolation when looking at the R² and RMSE scores, 590 

even though linear interpolation performed better when gap-filling N2O fluxes of low intensity. 591 

Thus, the study proposes a new approach to gap-fill N2O emissions by combining the advantages 592 

of both methodologies. Such a procedure, which is not very costly in computing time and in 593 

requested variables (4 to 5 in our case), may be very helpful for future works on N2O emission 594 

analysis, especially on sites where numerous continuous variables are monitored (fluxnet and 595 

ICOS sites for example). In particular, it may improve the calculated N2O budget with limited 596 

gap-filling uncertainty, below 5% in this study. Moreover, given the strong non-linearity of N2O 597 

emissions due to multiple interactions between controlling environmental variables, ANN has the 598 

advantage of reproducing a complex process without any a priori knowledge of the system, and is 599 

Table 7. N2O budget gap-filling uncertainty per civil year. Mean and standard deviation were 

calculated using the 100 repetitions. 



flexible and easy to use. The GMD thresholds developed in this study figures to be site specific 600 

as they highly depend on the ANNs performances and thus on quality and number of explanatory 601 

variables that may strongly vary among study sites. That saying, as the eddy covariance 602 

methodology is becoming more and more used across agricultural sites and for processes studies, 603 

besides the fact that higher available dataset could improve the methodology performance, further 604 

evaluation of the mixed gap-filling methodology should be carried out for N2O fluxes measured 605 

and compiled at higher resolution than the day (e.g. 6-hourly data).  606 

 607 
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