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Abstract—Currently, energy management within buildings is
essential to mitigate climate change. To this end, buildings are
increasingly equipped with sensors to assist the building manager.
Yet, the heterogeneity and the large amount of generated data
make this task quite difficult. The SANDMAN multi-agent
system, described in this paper, aims to assist in the automatic
detection, in constrained time, of several types of anomalies
using raw and heterogeneous data. SANDMAN features a semi-
supervised learning by considering some feedback from an expert
in the field. The results show that SANDMAN detects different
types of anomalies, is resilient to noise and is scalable.

Index Terms—Self-Adaptive Multi-Agent System, Anomaly
Detection, Smart Buildings

I. INTRODUCTION

Buildings account for more 30% of worldwide final energy
consumption, this figure rising to over 40% in developed
countries. However, much of this energy is wasted - 30 % in
the United States and Europe. Among other reasons, this waste
comes from poor building management, such as the failure to
quickly detect problems.

The objective of the work presented in this article is to
detect anomalies in energy data issued from smart buildings
to quickly solve the problems and minimise the energy waste.

With the advent of IoT (Internet of Things), the number
of sensors in existing and new buildings have sharply risen
due to their lower costs and the obvious benefit of using
them for building management. Sensors can easily be added
to buildings or replaced by others. Therefore, managing these
sensors and the data they generate is a complex system for
building managers.

However, an accurate control of these data is necessary for
the proper management of buildings, including their energy
performance. This is why a tool for automatic detection of
anomalies is an important asset for building managers. This
tool must process the data in constrained time to allow to act
as soon as possible, which is an essential issue in the detection
of anomalies. Because of the large amount of data, the spaces
for searching for anomalies also become very large: this is
the reason why the system must learn to raise anomalies in a
semi-supervised manner thanks to the feedback of an expert of
the field. The system detects and gives the found anomalies to
the expert and the expert gives feedback to allow the system
to learn throughout its life.

The article is composed as follows. Section I presents the
characteristics required for anomaly detection systems and
defines the notions of anomalies. Section II describes the main
existing anomalies detection systems. Section III explains the
architecture of the proposed multi-agent system, SANDMAN
(Semi-Supervised ANomaly Detection with Multi-AgeNt sys-
tems). Section IV is devoted to SANDMAN’s experiments and
results. Finally, Section V concludes and proposes perspectives
to the presented work.

A. Required Characteristics for an Anomaly Detection System

An intelligent building equipped with sensors generates a
large amount of available data that must be analysed to im-
prove energy management. For example, the SGE (Service de
Gestion et d’Exploitation in charge of energy management for
the campus of University of Toulouse III-P. Sabatier) manages
about 6000 sensors measuring at least one value per hour.
Thus, the design of a smart building anomaly detection system
must ideally take into account the following characteristics:
• interaction with an expert,
• constrained time detection,
• detection of several types of anomalies,
• use of raw data,
• use of heterogeneous data,
• openness,
• scaling,
• genericity.

B. Categorisation of the Anomalies

Each sensor provides timestamped data. For each one, the
actual value is the measured data. A nominal value is
calculated from a profile based on the values usually provided
by the sensor. The location of the sensors is unknown, as well
as any other metadata (type of sensor, acquisition frequency,
etc.). As the lack of information on the sensors is a common
problem [1], it is necessary to take them all into account in
the method of anomaly detection.

Chandola et al. [2] define an anomaly as an unexpected or
undesirable behaviour in a system. The authors define 3 kinds
of anomalies:
• point: a measure is outside of an acceptable range for

the sensor,



• contextual: a measure is inside an acceptable range for
the sensor but anomalous in some context (example: high
heating consumption during summer),

• collective: a collection of measures is anomalous with
respect to the entire data set although the individual
measures may not be anomalous in themselves.

TABLE I
EXAMPLE OF DATA AND EXPERT’S FEEDBACK

Table I illustrates the 3 types of anomalies defined above. They
are indicated by the letter A in the last column. Row 1 is
considered anomalous by the expert. Sensor 4 has a value of
-5, which is far from the nominal value of 11. This is a point
anomaly.

Row 8 is an anomaly because of the values of sensors 1
to 4. Although taken individually, none of these values would
be considered an anomaly, together they generate a collective
anomaly.

The last anomaly in row 13 appears at 13:00 and only then.
This is due to the fact that the actual values of sensor 3 are
disparate from line 9 to line 13. In real life, an expert may have
noticed a problem at 13:00 due to the constant accumulation
of small differences in the previous 4 lines. This is called a
contextual anomaly because it is necessary to take into account
the recent past to detect it.

Row 5 is not an anomaly even if the value of 400 in sensor 5
is very far from the nominal value of 65. It is not considered
as an anomaly by the expert, because this sensor is either
irrelevant for the detection of anomalies or that the variation
is not large enough for an expert to consider it as an anomaly.

II. STATE OF THE ART OF ANOMALY DETECTION IN
SMART-BUILDINGS

Given the real challenge of detecting anomalies in buildings,
the field of research in this area is rapidly expanding. Multi-
agent system (MAS) has been introduced in building physics
over the last ten years or so, but their applications are almost
entirely dedicated to optimising system management (heating,
cooling, ventilation) or the entire building [3]. No study, to
our knowledge, has been conducted for an application in the
detection of anomalies in building data, even though MASs
have been used to detect anomalies in other domains [4] [5].

Methods used in the literature include physical models,
which require modeling the system or building and comparing

it with measured data. These methods are quickly limited,
given the complexity of the systems to be modeled [6].

Unsupervised and statistical classification methods have
been used to detect anomalies in building data [7] [8] [9].
However, these studies are only based on a small amount of
data and do not show that scaling is possible. They are also
based on the assumption that the number of anomalies is small
relative to the total number of data.

Neural networks are tools widely used in building studies,
but rarely for the detection of anomalies [10] [11]. Although
neural networks can detect anomalies in real time, a large set
of labeled data is required to train the networks. However,
this step seems impossible to perform for the size of systems
considered in this study and it does not correspond to what
actually happens in building management.

The methods of data mining are used to detect anomalies
in building data [12] [13] [14]. However, a data pre-processing
step is required, as well as an expert for the selection of
relevant data during scaling.

III. SANDMAN ARCHITECTURE

A. Definitions of Situation and Sensor Profile

SANDMAN works with all the available sensor types and
thanks to the feedback given by a human expert. For example,
in Table I, SANDMAN has access to the values of the 5
sensors. We define the notion of situation as the set of
values measured by all these sensors over 24 hours and we
call current situation the last situation encountered. The last
measurement of all the sensors is called instantaneous values
of the sensors: this corresponds to the last row in Table I,
containing the instantaneous values of the 5 sensors at 23:00.
The situations encountered by SANDMAN are stored in a
situation history.

Each sensor is associated with a profile, consisting of 24
measured values, one for each hour of the day. This profile
indicates the value expected at any time of the day for the
sensor in question. It is updated by SANDMAN throughout
the life of the system.

Fig. 1. 2 sets of measured values from the same sensors over 24h



Figure 1 shows the profile of one sensor as a function of time
over a period of 24 hours. The measured values values 1 are
a possible example of measured values for this sensor and
the measured values values 2 are another possible example of
measured values for this sensor. The measured values values 1
and the measured values values 2 are examples and of course
cannot be measured at the same time for the same sensor. It
can be seen that the measured values values 1 are close to the
expected 24-hour profile while the measured values values 2
are considered anomalous.

B. Detection of Anomalies by SANDMAN

Since all available sensors are used and the expert may only
be interested in certain faults, and since each sensor has its own
interval and value range, profile learning alone is not sufficient
to detect anomalies. Indeed, some sensors may not be relevant
for the detection of anomalies. This is the case, for example, of
sensors located in a building that the expert is not interested in,
or if the expert is only interested in power consumption then an
air quality sensor will not be relevant. Lastly, for sensors that
are actually useful, depending on the sensors, some deviations
from expected values are greater than others. This is due to the
fact that their values are not normalised because SANDMAN
uses raw data.

To raise or not to raise an anomaly at each new current
situation, SANDMAN uses both the measured values of the
sensors over 24 hours and the profiles of the associated
sensors. To do this, SANDMAN calculates the disparity of
a sensor which is the sum of all the differences between the
sensor profile and the sensor measured values over the last 24
hours, i.e. for the current situation (Eq.(1)).

Disparityts =

t−23∑
ti=t

∣∣realV aluetis − nominalV aluetis ∣∣ (1)

with :
• s: sensor s;
• t: time t of the current situation;
• realV aluetis : real value of sensor s at time ti;
• nominalV aluetis : nominal value of sensor s at time ti;
The period under consideration is a sliding 24-hour window.

If the time of the current situation is 15:00, all data from 16:00
of the previous day to 15:00 of the current day are considered
for the profile. SANDMAN then calculates the Degree of
Anomaly (DA) of the current situation which is the weighted
sum of the measured values of all sensors (Eq. (2)).

DA(Situationt) =

S∑
s=1

Disparityts ∗Weights (2)

with :
• Situationt: Situation at time t;
• S: number of sensors;
• Disparityts: Disparity of the sensor s at time t;

• Weights: Weight of the sensor s.

Thus thanks to the degree of anomaly, SANDMAN classi-
fies the current situation, i.e. labels it ”normal” or ”anoma-
lous” by algorithm 1. The threshold used is a static number

Algorithm 1 Algorithm of classification or anomalies detec-
tion

1: for each new current situation do
2: if DA < Threshold then
3: SANDMAN returns : ”the situation is normal”
4: else
5: SANDMAN returns : ”the situation is anomalous”
6: end if
7: end for

chosen arbitrarily (1000 for SANDMAN). The calculation of
each weight adjusts to the threshold whatever its value, and
SANDMAN classifies the situation (on the correct side of the
threshold) according to the value of this weight. Therefore,
the DA also depends of the threshold value.

To correctly detect anomalies, the Weightsi associated with
the sensors must therefore have the correct values. A sensor
has only one associated weight that is used to calculate the
degree of anomaly for all situations in the situation history.

C. Learning by SANDMAN

Once SANDMAN has classified a situation, i.e. labeled it
as ”normal” or ”anomalous”, and received feedback from the
expert, it performs a resolution cycle in which it analyses
whether or not it should learn. SANDMAN therefore analyses
the following cases:

1) For a situation classified as ”anomalous” by SANDMAN
and ”anomalous” by the expert,

a) SANDMAN does nothing
2) For a situation classified as ”normal” by SANDMAN

and ”anomalous” by the expert,
a) SANDMAN creates and adds a new ”anomalous”

situation to the situation history
b) SANDMAN self-adapts the weights

3) For a situation classified as ”anomalous” by SANDMAN
and ”normal” by the expert,

a) SANDMAN updates the sensor profiles
b) SANDMAN creates and adds a new ”normal”

situation to the situation history
c) SANDMAN self-adapts the weights

4) For a situation classified as ”normal” by SANDMAN
and ”normal” by the expert,

a) SANDMAN updates the sensor profiles.
The main steps for updating profiles, adding a situation in

the history and self-adjusting weights are described below.
Profile updates. They are only updated if the situation is

labelled ”normal” by the expert (steps 3a and 4a), because the
sensor values in anomalous situations are not reliable and do



not represent the expected values. The update formula applied
to each sensor profile is as follows (Eq.(3)) :

val′tprofile = (1− λ) ∗ valtprofile + λ ∗ valtsensor (3)

with

• t : time of the current situation,
• λ ∈ ]0, 1[ represents the importance of the new value

versus the previously learned profile value,
• valtprofile : the value previously learned and stored in the

profile at time t
• valtsensor : the real value measured at time t
• val′tprofile : the new value learned and stored in the profile

at time t.

Each sensor profile modifies one of its 24 values corresponding
to the time t of the current situation using the measured value
valtsensor of the current situation.

Adding a situation to the situations history. This op-
eration, performed in steps 2a and 3b, initiates SANDMAN
resolution cycles that occur until all situations in the history
are correctly and evenly classified. A situation is classified
correctly if its degree of anomaly (DA) enables to deduce the
correct classification (normal or anomalous) of the situation.
Situations have to be classified in a balanced manner: thus
the degree of anomaly of the ”normal” situation closest to
the threshold and the degree of anomaly of the ”abnormal”
situation also closest to the threshold are, in absolute value, at
the same distance from the given threshold. This is illustrated
in Figure 2, where the points respectively above and below
the threshold Threshold and closest to the threshold are at
equal distance from the threshold.

Fig. 2. Example of 8 classified situations

Each situation is assigned a criticality value according to
its degree of anomaly and its classification given by the
expert. Criticality represents the degree of satisfaction of the
situation with respect to its objective. A situation labeled
”normal” aims at a degree of anomaly as low as possible with
respect to the Threshold threshold, while a situation labeled
”anomalous” aims at a high degree of anomaly with respect
to the Threshold threshold. The criticality Crit is calculated

as for a ”normal” situation (Eq.(4)) and for an ”anomalous”
situation (Eq.(5)).

CritSituationt = DA(Situationt)− Threshold (4)

CritSituationt = Threshold−DA(Situationt) (5)

Every situation wants to minimise its criticality, a negative
criticality meaning that the situation is correctly classified.
Since disparities and weights are always positive, situations
labeled ”normal” and situations labeled ”anomalous” have
antagonistic objectives, wanting respectively higher or lower
weights. When a resolution cycle is performed, each situation
sends a message to each weight agent with:
• the desired direction of weight change (lower for ”nor-

mal” situations, higher for ”anomalous” situations);
• the criticality of the situation;
• the influence of the weight in the degree of anomaly.

The influence Influ of a sensor s in a situation t corresponds
to the importance of the sensor weight on the sum of the
weight of all the sensors for this situation, as shown in eq.(6):

Influts =
Weights ∗Disparityts
DA(Situationt)

(6)

A resolution cycle starts when situations require the weights
to adjust. The cycle ends when the weights have self-adjusted.

Self-adapting weights. Each weight is represented by a
weight agent. The goal of the multi-agent weight system is
that each weight agent finds its value by cooperating with the
others. During a resolution cycle, all situations require weight
adjustments (steps 2b and 3c) and the weight agents self-adapt
as described in the algorithm 2, then each situation calculates
its new degree of anomaly using the updated weights.

On receiving the parameters sent by the situations (direction,
criticality and influence), the weight agents decide, or not, to
update independently and simultaneously their weights. To do
so, they follow the algorithm 2.

Algorithm 2 Self-adaptation of the Weight agent of the sensor
s
Require: Direction,Crit, Influ of all situations

1: Select the most critical ”normal” situation NS
2: Select the most critical ”anomalous” situation AS
3: if Crit(NS) > Crit(AS) then
4: if InfluNS

s > InfluAS
s then

5: The Weight agent reduces its weight
6: end if
7: if InfluAS

s > InfluNS
s then

8: The Weight agent raises its weight
9: end if

10: end if

The cooperation between the weight agents guarantees
that at least one weight agent updates its weight and that
each update cycle of the weight agents results in a better
general state where the most critical weight agent decreases
its criticality [15]. After each updating cycle of the weight



agents, the situations calculate their new criticality by taking
into account the new values of the weight agents. This process
is repeated until the most critical situations labeled ”normal”
and ”anomalous” have their respective criticalities both equal
(within a small margin of error) and negative. This ensures
that all situations are correctly classified and that the following
situations have a better chance of being classified accordingly
by SANDMAN. Indeed, the best way to reduce the rate of
false negatives and false positives [2], and thus to have a robust
system, is to keep the most critical known situations (saved in
the history) as far from the threshold as possible.

IV. EXPERIMENTATIONS

A. Description of the Experimental Framework

The data used to conduct the experiments were generated
using the TSimulus time series generator [16]. These time
series include a signed value for each sensor for each hour.
Each sensor has its own range of values. The values for each
sensor are cyclical, with or without noise over a 24-hour
period, i.e. the value of a sensor (without noise) at 3 p.m. is the
same every day. These simulated data are modified by a human
expert to introduce anomalies of different types. SANDMAN
processes the data in constrained time and the expert gives his
opinion a posteriori in an asynchronous way.

All the experiments were performed on a 4-core processor
with a 2.6 GHz frequency. The data sets used in the following
experiments feature one value for each sensor every hour
over one month, for a total of 744 hours. The number of
sensors depends on the experiment. Four separate data files
are used to show the ability of SANDMAN to 1) detect
point anomalies and mitigate noise, 2) detect collective and
contextual anomalies, 3) adapt the profiles of sensors, 4) scale.

In the experiments, we chose to duplicate the one-month
data set in order to show the improvement granted by the
learning of SANDMAN. Thus, the results are presented after
one month and two months, as the number of:
• TP: True Positive, TN: True Negative,
• FN: False Negative, FP: False Positive,
• t/sit : calculation time for processed situation in ms.

B. Point Anomalies and Noise Mitigation

Point anomalies are the type of anomaly most often detected
in the literature, as both univariate and multivariate approaches
can detect them.

In this experiment, we study the efficiency of SANDMAN
in detecting point anomalies in noisy data with different levels
of noise. The data file contains 20 sensors, i.e. 20 x 744
= 14880 data. 58 point anomalies were added manually by
an expert. Three experiments have been conducted, with the
noiseless data, 1%-level data and 5%-level data.

The noise is simulated by applying a uniform distribution
to each sensor with the following formula (Eq (7)):

V aluenoise = V aluenoNoise −
|MIN(s)−MAX(s)|

2
+rand[0,1] ∗ interval ∗ noise

(7)

Month 1 Month 2
Noise TP TN FN FP TP TN FN FP
No noise 40 686 18 0 58 686 0 0
1% 40 686 18 0 58 686 0 0
5% 58 655 0 31 58 679 0 7

TABLE II
RESULTS OF POINT ANOMALIES DETECTION WITH NOISY DATA

Month 1 Month 2
nb TP FN TP FN

Point 6 2 4 6 0
Collective 5 1 4 5 0
Contextual 3 1 2 3 0
Total 14 4 10 14 0

TABLE III
RESULTS OF ANOMALY DETECTION PER KIND OF ANOMALY

with noise : quantity of noise, respectively 0%, 1% and 5%
in the experiments.

Table II shows the results of the 3 experiments after month
1 and month 2. We can see that SANDMAN improves
its detection with time. After month 2, it detects the right
anomalies (58 TP) when the data have a low noise level.
However, a higher noise level leads to a higher false positive
rate (7 FP after month 2 in the case of 5% noise). SANDMAN
reduced this false positive rate along time by creating normal
situations, and thus by learning lower weights, as shown in
Algorithm 2.

C. Collective and Contextual Anomalies

In this experiment, we want to study the ability of SAND-
MAN in detecting different types of anomalies, such as point,
contextual and collective anomalies. Contextual anomalies
occur when a sensor value is unusual several times in a row.
Collective anomalies occur when several sensor values are
unusual at the same time, but not so unusual that only one
of them causes a single point anomaly. In this experiment, the
data file contains the values of 20 sensors over one month,
and the results are presented after months 1 and 2. The 3
types of anomalies (point, collective and contextual) have been
manually added in the data file, for a total of 14 anomalies.
The data have 1% of noise.

Table III shows the results of this experiment. The numbers
of each type of anomaly, as well as the anomalies detected
after the month 1 and then after the month 2. After month 2,
SANDMAN detected the right anomalies. There are no false
positives in the results of this experiment. SANDMAN created
and added to the history the situations corresponding to the
misclassified situations during the month 1 to classify them
without error during the month 2, regardless of the type of
anomaly.

D. Updating Profile on Sliding Data

In previous experiments, the profile of each sensor was
stored and contributed to the detection of anomalies, but the



Month 1 Month 2
TP TN FN FP TP TN FN FP

Sliding values 46 686 12 0 58 686 0 0

TABLE IV
RESULTS OF PROFILE ADAPTATION

Number of sensors Month 1 t/sit (ms) Month 2 t/sit (ms)
20 2.7 1.7
40 4.8 3.5
100 22 20
200 48 45
400 102 100
800 185 180

TABLE V
RESULTS OF SCALING

data was cyclical on a daily basis. In this experiment, the
measured values of the sensors are modified so that each
measured value is 1% higher each day, so that over a 31-day
month, each sensor has measured values that are 31% higher
than the control data. The test file contains 58 point anomalies
and each of the 20 sensors causes an anomaly at least once.
Table IV presents the results of the experiment. The update of
the sensor profile is sufficiently reactive to allow SANDMAN
to classify anomalies when the measured values of the sensors
change over time.

E. Scaling

In this experiment, an increasing number of sensors is used
to measure this effect on the computing time. To do this, a
data set of 20 separate sensors is duplicated to obtain up to
800 sensors. The data used is the same as for the previous
experiment on rolling data without the change in values of
1% per day. Table V shows the calculation time per situation
as a function of the number of sensors. The calculation time of
month 2 is always shorter than the calculation time of month
1 because the learning of the weights is only carried out in
month 1. We also note that the resolution time is proportional
to the number of sensors used and that the time difference
between the two months is constant. This is due to the fact
that most of the execution time comes from reading the raw
data from a database, which has a fixed cost per sensor.

V. CONCLUSION AND PERSPECTIVES

For the management of energy-related data in an intelligent
building, several types of anomalies must be detected. They
can be point, collective, or contextual anomalies. The detection
of these different types of anomalies is absent from the state
of the art methods for which data pre-processing is mandatory.

We, therefore, proposed SANDMAN, a semi-supervised
real-time anomaly detection system that uses raw data as input
and classifies anomalies by learning from the expert’s feed-
back. SANDMAN is able to detect three kinds of anomalies
in a generic way and is well suited to a growing number
of sensors. The feedback from the expert is reduced to a

minimum because it is optional and SANDMAN can be
operated without prior labelling.

In future works, after an anomaly occurs the system must be
able to observe the return to nominal values of the sensors to
inhibit instantaneously the anomalies. This is the improvement
we are currently developing. SANDMAN will also have to be
able to learn several sets of profiles for the sensors, in order
to take into account the different behaviours of building users
(for example, weekdays and weekend periods).
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[15] J.-P. Georgé, M.-P. Gleizes, and V. Camps, “Cooperation,” in
Self-organising Software (G. Di Marzo Serugendo, M.-P. Gleizes,
and A. Karageorgos, eds.), Natural Computing Series, pp. 193–226,
http://www.springerlink.com: Springer, 2011.

[16] “Tsimulus.” https://tsimulus.readthedocs.io/en/latest/. Accessed: 2019-
12-18.


