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In this work we propose to identify the relative role of the inclination of gravitational acceleration and friction
on the discharge flow rate of a granular media from a rectangular silo by varying the silo geometry thanks to
an inclined bottom which ends up at a lateral outlet. The study is motivated by a nuclear safety problem: a
fuel rod (modeled by an elongated silo) accidentally releases fuel fragments (modeled by grains). We performed
experiments where we independently measured the mass flow rate and the velocity profiles, together with discrete
particle simulations and continuum simulations with a frictional rheology described by a μ(I ) constitutive law
and taking into account the wall friction. We study monolayer flows and three-dimensional flows, and we propose
an analytical model that predicts the discharge flow rate of particles from a rectangular silo with an inclined
bottom according to its outlet aspect ratio and the bottom inclination angle.

DOI: 10.1103/PhysRevE.102.052902

I. INTRODUCTION

Silos are widely used in industry, and empirical predictions
of flow rate, based on scaling law, have existed for more than
a century [1–3]. Historically, the Hagen-Beverloo relation was
explained with the concept of a “free-fall arch” located at
the outlet of diameter D from which the particles fall freely,
leading to a velocity v0 ∼ √

gD at the outlet and a mass flow
rate

Q ∼ φbρp

√
gD5 (1)

(with φb the bulk volume fraction and ρp the particle density).
This relation does not depend on the exact cross-section shape
of the silo, either a circle of radius L or a square of length L.
In the case of a rectangular silo of width L and of thickness W
[4,5], with an orifice of size D spanning with the thickness
(see Fig. 1), it leads to a mass flow rate (consistent with
dimensional analysis [6])

Q = cDφbρpW
√

gD3, (2)

where cD is a coefficient without dimension. Thanks to the
development of new experimental techniques and numerical
simulations, this “free-fall arch” concept has been recently
questioned. Experimentally and with discrete simulations, it
has been shown [4,7] that the granular medium remains dense
and that the particles do not exactly undergo a free fall but
accelerate on a zone located at the outlet with a small dila-
tion. Moreover, continuum modeling with the so-called μ(I )
viscoplastic frictional rheology, based on a local constitutive
law between the local shear rate and the stress tensor [8], have
been successfully used to recover the Hagen-Beverloo scaling
as in Refs. [9–11], with very different numerical methods.

*pascale.aussillous@univ-amu.fr

Another way to test this concept is to consider nonconven-
tional geometry, for example, tilted silos [12] or silos with a
lateral orifice [6]. This last case has practical interest in the
context of safety studies of nuclear power plants. Considering
a hypothetical accident scenario, namely, a beyond design
basis control rod ejection, it would lead to the failure of the
cladding of some fuel rods and the ejection of fuel frag-
ments. The flow of fuel fragments determines the intensity of
some of the consequences of such failure: ejection of hot fuel
fragments within the reactor coolant flow leads to a violent
thermal interaction whose intensity scales with this flow rate.
The fuel fragments can be idealized as a granular media and
the fuel rod as an elongated silo. Due to the accident, the
lateral opening of the rod has a shape which is not a circle
of size D but which is idealized by a rectangular shape. This
simplified analogy has motivated this study. Interestingly, in
these geometries the Hagen-Beverloo scaling is seen to remain
valid, except for narrow rectangular silos (W � D), where
a new regime of flow appears [6]. In this paper it has been
shown that these two regimes of discharge can be simulated
thanks to a continuum modeling for the granular media with
the frictional rheology μ(I ) in two-dimensional (2D) compu-
tations where the wall friction force (along the front and rear
walls of the silo) is accounted for from a Hele-Shaw point of
view. In those simulations it was observed that U0, the norm
of the velocity on the central streamline, does not depend on
the lateral friction:

U0 = cE

√
gD (3)

(where cE is a coefficient of order one), which suggests that
the potential energy is transferred to kinetic energy in the
outlet area, whatever the outlet position. Then it has been
observed that the wall friction term mainly influences the
orientation of the internal flow of the granular media. For
lateral aperture, the granular flow, which is accelerated by the
vertical gravity, has to rotate toward the aperture. The wall
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FIG. 1. Sketch of the experimental setup with a zoom on the
aperture. Main discussed parameters in red: dp grain diameter, W
thickness of silo, L width of silo, hp height of grains, U0 velocity
on the central streamline, θ0 inclination of the central streamline at
the orifice of size D, and θi angle of inclination of the bottom wall.
Gravity is aligned with but opposite to the z axis.

friction term was shown to tend to align the flow toward the
direction of gravity, therefore reducing the horizontal com-
ponent of the flow velocity, normal to the aperture. Hence a
reduction of mass flow rate was observed as well as a new
regime controlled by the thickness of silo W . From the two
limiting cases W � D and W � D, Zhou et al. [6] proposed
an empirical model to predict the mass flow rate as a function
of the aperture aspect ratio,

Q

ρpφb

√
gW 5

= cD
(D/W )3/2

√
1 + γ D/W

, (4)

where cD is a numerical constant that can take into account
the particle diameter, which seems to play a role only in the
volume fraction around the aperture. This relation gives back
Eq. (2) for W � D. Then, from this, the angle of inclination
θ0 (see Fig. 1) of the central streamline at the orifice relative
to the horizontal is estimated as

cos θ0 = cθ0√
1 + γ D/W

, (5)

where cθ0 and γ are numerical constants.
The aim of this study is to validate and generalize these ob-

servations to better understand the physical processes leading
to the Hagen-Beverloo scaling. Thus we propose to identify
the relative role of the inclination of gravitational acceleration
and the friction (internal or due to the wall) on the discharge
flow rate of a granular media from a rectangular silo by vary-
ing the silo geometry thanks to an inclined bottom which ends
up at a lateral orifice. The methods are presented in Sec. II. We
performed experiments where we independently measure the
mass flow rate and the velocity profiles. We also performed 2D
discrete particle simulations and continuum simulations with
a frictional rheology described by a μ(I ) constitutive law and
taking into account the wall friction with a Hele-Shaw point of

TABLE I. Geometrical parameters for the experimental per-
formed runs where D is the outlet size, θi the angle of inclination
of the bottom wall, and dp the grain diameter. These parameters are
sketched in Fig. 1.

D (mm) W (mm) θi (deg) dp (μm)

10; 20; 30; 5; 10 0; 20; 40; Glass: 190; 375; 538;
40; 50 60; 70; 80 762; 1129; 1347

Ceramic: 4170

view. In Sec. III we study the monolayer flow and compare the
experimental results with the 2D discrete simulations. Thanks
to the experimental observations of the flow properties at the
outlet, we propose a simple analytical model to predict the
discharge flow. Then we focus on the three-dimensional (3D)
flow in Sec. IV, where we compare the experimental results
with the continuum simulations and we deduce an analytical
model that predicts the discharge flow rate of particles from a
rectangular silo with an inclined bottom according to its outlet
aspect ratio.

II. METHODS

A. Experiments

As shown in Fig. 1, the experimental setup consists of a
rectangular silo (of height H = 1 m, width L = 10 cm, and
thickness W which can be varied) made of two thin vertical
glass plates separated on the sides by Plexiglas plates. The
bottom of the silo is inclined thanks to a triangular Plexiglas
plate with an inclined angle θi to the horizontal, which can
be varied from 0 deg (corresponding to a horizontal bottom)
to 80 deg. This inclined bottom plate ends up at the lateral
orifice, and its vertical position delimits the orifice size D.
The granular material consists of smooth spherical glass beads
(density ρp = 2500 kg m−3) with different diameters dp from
190 to 1347 μm (with a dispersion of ±10%). The whole set
of geometrical data is given in Table I. We also use spherical
ceramic beads (density ρp = 6000 kg m−3) with a diameter
dp = 4170 μm in the thinner silo to study the flow of a mono-
layer case.

Once the silo is filled with a mass mp of particles, the
column height hp is measured, giving the initial bulk particle
volume fraction φb = 2mp/[W ρpL(2hp − L tan θi )]. Then the
outlet is quickly opened manually and the grains falling out
of the silo are collected in a vessel whose temporal evolution
of the mass is recorded using an electronic scale (Mettler
Toledo 6002S) with a precision of 0.1 g at 20 Hz. Each
experiment is repeated twice to validate the reproducibility
of the process. The instantaneous mass flow rate is obtained
by measuring the local slope of the mass versus time during
1 s. We observe a steady-state regime of discharge for all the
configurations explored, and the steady flow rate Q is obtained
by time averaging the instantaneous flow rate during this
stationary state with the dispersion evaluated by one standard
deviation.

The motion of particles at the front plate is recorded using
a high-speed camera (Photron FASTCAM APX RS with a
SIGMA zoom, 24–70 mm f2.8) with a spatial resolution of
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1024×1024 at a rate of 250 frames per second. The test
section is located at the bottom of the silo and is 15 cm
wide to permit both good visualization of the flow around the
outlet and good resolution of the particle imaging (see Figs. 4
and 12). It is illuminated by a lamp which has a continuous
blue bright field (M470L2-C5 blue collimated LED). Particle
velocities are measured by particle image velocimetry (PIV)
using the MATLAB software DPIVSOFT [13]. In practice, this
involves using a square interrogation region having a size
Sir = 32 pixels, with 60 boxes in both the horizontal and
vertical direction. The local particle displacement at each node
for each pair of consecutive images is measured using a direct
cross correlation. The velocities are built up by taking the
average of nine pairs of consecutive images which are picked
up every 0.04 s during the steady-state period of discharge.
The error is given by one standard error. The spatial resolution
of the measurement (given by the height of the interrogation
region) is ≈5 mm, while the velocity resolution (given by
the choice of the image pairs) is ≈0.004 m/s. Due to spatial
resolution, we are not able to obtain the velocity fields for the
small particles (dp < 500 μm) and for the small outlet size
(D cos θ < 5 mm). From the velocity fields, we compute the
streamlines for velocities of magnitude higher than 0.01 m/s
(see Figs. 4 and 12). With each experiment being done twice,
we verify the repeatability of the method and remove data
when the difference between the measured velocities at the
center of the outlet for the same condition is more than double
whereas the flow rate is the same. We also removed data for
which the standard deviation of the velocity at the center
of the outlet is higher than the magnitude of this velocity.
For clarity, in most of the graphs only some error bars are
shown.

In the monolayer case we also compute the particle volume
fraction. Using a threshold value, the images are made binary.
Then an image representing the particle volume fraction is
obtained by averaging 100 consecutive images corresponding
to 0.4 s during the stationary discharge period, as can be seen
in Fig. 6. We scale the pixel value in this image by using the
bulk volume fraction φb evaluated by averaging the image on a
zone far from the outlet and initially measured independently
using the column height. Finally, we average the value on the
same boxes than for the PIV processing.

B. Discrete simulations for 2D flows

We simulated an infinite thickness configuration using
the contact dynamics method implemented in the LMGC90
software [14]. With these simulations we aim to investigate
a true 2D flow, without the effect of the back and front
sidewalls. As shown in Fig. 2(a), the two-dimensional silo
consists of a rectangular silo of width L = 3D bounded by
two vertical walls and an inclined bottom with a variable
angle, θi ∈ [0; 20; 40; 60; 70] deg, which ends up at the right
wall delimiting the lateral orifice of size D which can be
varied (D ∈ [40; 45; 50; 55; 60] mm). The silo is initially filled
using a random deposition with a height hp = 18D of spher-
ical particles of mean size dp = 4.2 mm ±10% (density
ρps = 100 kg m−3). We considered that the particles are per-
fectly rigid and inelastic, and their contact dissipation is
modeled in terms of a friction coefficient that we set to

FIG. 2. Simulated silos with bottom inclination and lateral ori-
fice: (a) 2D discrete simulations and (b) averaged Hele-Shaw
continuum simulations.

μp = 0.4 between the particles and to μw = 0.5 between the
particles and the walls [15].

For comparison with the laboratory experiments, the data
are analyzed similarly to a monolayer flow in a silo of thick-
ness W = dp. After the preparation phase the initial bulk
particle volume fraction was obtained by considering the
surface average σ of the particle indicator function (whose
value is 1 on the particles and 0 otherwise) over the central
zone of the silo with φ = 2σ/3. Then the simulations are
run with a time step of δt = 5×10−4 s for a number of time
steps Nt = 8000. The computational domain is periodic in the
vertical direction to keep constant the number of particles (see
[16] for more details). A snapshot of all particle positions and
velocities was recorded every 20 time steps. From these snap-
shots the instantaneous flow rate was obtained by measuring
the surface of particles Sp leaving the silo during �t = 0.2 s
and calibrating with the experimental particle density:
Qi = ρp/ρps(

∑
�t 2Spdp)/(3�t ). Similarly to the experi-

ments, we observed a steady-state regime of discharge and we
measure the mean flow rate Q on this period.

To obtain the velocity and the volume fraction fields
at the outlet, the outlet area of dimension D×dmax, where
dmax is the maximum diameter of particles, is divided in
several smaller rectangular boxes of length a = 0.2dmax.
Following the ergodicity theory, the velocity profile of the
particle at the outlet is obtained by averaging the individual
particle velocity weighted by the intersection surfaces for
each time step and for each calculation box area, given by
vk = ∑Nt

i=1(
∑Np

j=1 si
jv

i
j )/

∑Nt
i=1(

∑Np

j=1 si
j ), where vi

j represents
the individual velocity of particle j at time step i, Nt represents
the number of time steps to average, Np represents the number
of particles intersecting with box k at time step i, and si

j
is its intersection surface. The volume fraction is given by
φk = ∑Nt

i=1(
∑Np

j=1 si
j )/

∑Nt
i=1 admax.
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C. Continuum modeling

Following Zhou et al. [6], we simulate the discharge flow
of a granular medium from a rectangular silo considering a
non-Newtonian incompressible Navier-Stokes system (equa-
tions are averaged across the thickness of the silo, leading to
a pseudo-3D simulation in the spirit of Hele-Shaw flows):

∂up
i

∂xi
= 0,

ρ

[
∂up

i

∂t
+ up

j

∂up
i

∂x j

]
= ∂σ

p
i j

∂x j
+ ρgi + fwi, (6)

where up
i is the averaged velocity across the thickness W of the

cell and where fwi = −2 μw pp

W
up

i

|up
i | represents Coulomb friction

on the front and back walls (with a coefficient of friction
μw = 0.1). The depth-averaged stress tensor of the par-
ticle phase σ

p
i j = −ppδi j + τ

p
i j comes only from direct

particle-particle interactions and can be described by a shear-
dependant frictional rheology [17,18]:

τ
p
i j = ηp(|γ̇ |, pp)γ̇i j with ηp(|γ̇ |, pp) = μ(I )pp

|γ̇ | , (7)

with I = |γ̇ |d/
√

pp/ρp, where γ̇i j = ∂up
i /∂x j + ∂up

j /∂xi is

the averaged strain-rate tensor and |γ̇ | =
√

1
2 γ̇i j γ̇i j its sec-

ond invariant. For the shear-dependent friction coefficient, we
take μ(I ) = μs + �μ/(I0/I + 1) with the constant I0 = 0.4,
μ1 = 0.4, and μ2 = 0.68 [19]. Note that this rheology is well
adapted to the silo geometry [6,9,20] but has several limits,
such as compressibility problems [21], ill-posed problems
[22], and tensorial formulation [23]. We have simulated an
averaged two-dimensional (Hele-Shaw) silo of width L and
height H = 4L with an inclined bottom at the angle θi towards
the horizontal which ends up at a lateral orifice of dimension
D [see Fig. 2(b)]. The equations are made dimensionless using
the silo width L as a length scale, ρgL as a stress scale,
and

√
L/g as a timescale. The Navier-Stokes simulations are

performed with the free software BASILISK [24], which uses a
finite-volume projection method. Note that we use a regular-
ization technique to avoid the divergence of the viscosity at
low shear (for more details see [6]). The mesh is such that the
width of the silo L is divided into 64 computation cells (which
is a good balance between precision and computational time).

Though a frictional boundary condition would be closer to
the experimental setup behavior, we impose a no-slip condi-
tion at the solid boundaries. This is due to the penalization
method used to solve the flow in complex geometries and
has only little impact on the main results. We impose a zero
pressure at the top and at the outlet. The dimensionless time
step δt̃ = 0.01 is applied for the simulations. During the sim-
ulation, the volume of granular media left inside the silo is
computed by following the granular surface every �t̃ = 0.1,
and the instantaneous mass flow rate of granular medium is
determined using the variation of volume during �t̃ = 0.5.
In addition, the different fields (velocity and stress) are saved
every �t̃ = 1. We performed a series of simulations for the
parameters given in Table II. The instantaneous flow rate
being stationary during the discharge, we measure the mean

TABLE II. Geometrical parameters for the continuum simulations.

D/L W/L θi (deg) dp/L

[0.44; 0.5; 0.56; 0.60; [0.25; 0.5; 0.75; [0; 10; 20; 30; 40; 1/90
0.63; 0.66; 0.69; 0.75] 1.0; 2.0] 50; 60; 70; 80]

flow rate Q2D and we define the equivalent 3D flow rate as
Q = W Q2D.

All the experimental and numerical data are available as
Supplemental Material in a text file and the full continuum
modeling simulation code used is available and discussed in
the Supplemental Material [25].

III. EFFECT OF THE BOTTOM INCLINATION
FOR MONOLAYER FLOWS

To study the influence of the bottom inclination angle on
the silo discharge, we first focus on the simplest 2D case
corresponding to the monolayer flow with the particles of
diameter dp = 4170 μm in a silo of thickness W = 5 mm. We
compare the experimental results with those of the discrete 2D
simulations, corresponding to an infinite thickness configura-
tion without back and front sidewall effects. We first discuss
the observation on the mass flow rate, and then we focus on
the velocity fields and the flow properties at the center of the
outlet which allow us to propose a simple model.

A. Mass flow rate

Figures 3(a) and 3(b) show the particle mass flow rate as a
function of the inclination angle θi for various aperture sizes
for (a) the experiments and (b) the 2D discrete simulations.
In each case we observe that increasing the inclination of
the bottom first tends to slightly increase the flow rate (until
≈40 deg for the experiments and ≈20 deg in the discrete
simulations), and then we observe a strong decrease of the
flow rate.

In a 2D flow, we expect the Hagen-Beverloo equation
[Eq. (2)] to be valid. We have plotted in Figs. 3(c) and 3(d)
the dimensionless mass flow rate Q/ρpφb

√
gW 5 as a function

of the dimensionless outlet size D/W varying the bottom
inclination for (c) the experiments and (d) the 2D discrete
simulations. We observe that each curve can be effectively
adjusted by Eq. (2), with a fitting parameter cD obtained
using the least squares method, which depends on the bottom
inclination θi. To understand this behavior we can now analyze
the velocity fields.

B. Velocity fields

The 2D experimental velocity fields of the granular flow
at the front wall of the silo are shown in Fig. 4 for the ex-
periments, with D = 40 mm for (a), (b) θi = 0 deg and (c),
(d) θi = 40 deg. In Figs. 4(a) and 4(c) we have drawn the
streamlines (calculated for velocities higher than 0.01 m/s).
For a horizontal bottom, θi = 0 deg, we observe a stagnant
zone and a large slipping zone close to the outlet, whereas
for θi = 40 deg all the particles are flowing and there is no
stagnant zone anymore. In both cases the flow is vertical far
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FIG. 3. Monolayer flow results for (a), (c) the experiments and (b), (d) the 2D discrete simulations. (a), (b) Mass flow rate of particles
as a function of the bottom angle of inclination θi for several outlet sizes D and (c), (d) mass flow rate of particles made dimensionless by
φbρp

√
gW 5 vs the dimensionless outlet size D/W . The full lines represent the Hagen-Beverloo equation (2) with the fitting parameters cD

which depend on θi.

FIG. 4. (a), (c) Experimental streamlines and (b), (d) velocity magnitude fields for the monolayer experiments with D = 40 mm for (a),
(b) θi = 0 deg and (c), (d) θi = 40 deg.
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FIG. 5. Normalized experimental profiles at the outlet vs the normalized vertical position, z/D, for several bottom inclination θi for (a),
(d) the horizontal velocity u, (b), (e) the volume fraction profiles φ, and (c), (f) φu for (a), (b), (c) the experiments with D = 40 mm and (d),
(e), (f) the 2D discrete simulations with D = 50 mm. The profiles are normalized with the corresponding value at the center of the outlet. The
vertical position z is oriented upward, and its origin is taken at the center of the outlet.

from the outlet, then rotates at the vicinity of the outlet. For an
inclined bottom with θi = 40 deg the streamlines at the outlet
appear to be quite aligned with the bottom.

The magnitude of the velocity in the front plane is illus-
trated by a color field in Figs. 4(b) and 4(d) for the same
data. It clearly illustrates the flow behavior along the silo,
with a zone of higher velocities at the very near region of the
outlet where the particle acceleration is localized related to the
flow cross-section reduction. We will then focus on the flow
velocity at the outlet.

The outlet being vertical, the flow rate corresponds to the
integral of the horizontal component of the velocity on the
outlet area Q = ρp

∫ D/2
−D/2

∫ W/2
−W/2 φudydz. Figures 5(a) and 5(d)

show the profiles of the horizontal velocity component at the
outlet, normalized by its value at the center of the outlet u0

for a given outlet size D and varying the angle of inclination
of the bottom θi for (a) the monolayer experiments and (d)
the 2D discrete simulations. We can first observe that the
horizontal velocity profile exhibits an asymmetry between
the top and the bottom of the outlet, certainly mainly due to
the sliding of the particles on the inclined bottom. A difference
between the experiments and the 2D discrete simulations is
that in the latter case the sliding velocity increases with the
bottom inclination. Except close to the bottom boundary, the
dimensionless profiles are found to be rather self-similar, as
observed experimentally by Janda et al. [4] for a bottom
orifice or numerically in a 2D discrete simulation by Zhou

et al. [6] for a lateral orifice. This self-similarity is observed
whatever the inclination angle of the bottom and the outlet
size.

The particle diameter not being negligible compared to the
outlet size, the volume fraction cannot be simply evaluated
using the bulk volume fraction φb. Using the recorded images,
we calculate the volume fraction, as can be seen in Fig. 6(a).
We observe that the particles being monosize, they tend to
crystallize far from the outlet. At the outlet this order is de-
stroyed due to the converging flow, and as described in the
literature [4–6], we observe that the particles tend to dilate,
lowering the volume fraction. Figures 5(b) and 5(e) show the
profile of the volume fraction across the outlet normalized by
its value at the center of the outlet φ0 for a given outlet size D
and varying the angle of inclination of the bottom θi for (b) the
monolayer experiments and (e) the 2D discrete simulations.
We observe that the profiles are relatively flat and seem to be
rather self-similar in both cases.

To predict the flow rate from the image processing, we
then verify in Figs. 5(c) and 5(f) that the quantity φu, cor-
responding to the volumetric flux of particles transported, is
also self-similar at the outlet varying the outlet size or the
bottom inclination for both the experiments and the 2D dis-
crete simulations. Then by averaging the profiles we evaluate
c = ∫ D/2

−D/2 φu/(φ0u0)dz, which is found to be rather constant
with c0 = 〈c〉 = 0.89 for the experiments and c0 = 〈c〉 =
0.78 for the 2D discrete simulations. Finally, Figs. 6(b) and
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FIG. 6. (a) Map of the volume fraction for θi = 40 deg and D = 40 mm. (b), (c) Flow rate vs c0φ0ρpu0W D for (a) the monolayer
experiments with c0 = 0.89 and (b) the 2D discrete simulations with c0 = 0.78. The dashed line represents Eq. (8).

6(c) show that the flow rate is reasonably given in both cases
by

Q = c0ρpφ0u0W D. (8)

The flow rate being controlled by the horizontal component
of the velocity u0 and the volume fraction φ0 at the center of
the outlet, let us now consider how these variables depend on
the control parameters of the experiments or the 2D simula-
tions.

C. Flow properties at the center of the outlet:
Towards a simple model

We first focus on the volume fraction at the center of the
outlet φ0. Following [4–6] we can expect that the dilation
at the outlet is due to a geometrical constraint, the particle
diameter not being negligible compare to the outlet size. For
a bottom orifice or a lateral orifice, those papers have shown
that the volume fraction at the outlet depends mainly on the
number of beads in the aperture D/dp, and is well described by
φ0 = φbG(D/dp) where G(x) = ξφ (1 − αe−βx ). However, in
our case, the bottom being inclined, the smaller dimension in
the silo is not the outlet D but the perpendicular at the bottom
which joins the top of the outlet, whose dimension is D cos θi.
In Fig. 7 we have plotted φ0/φb versus D cos θi/dp for both
(a) the experiments and (b) the 2D discrete simulations. We
find that the data seem to superimpose and can be reasonably
adjusted by

φ0 = φbξφ (1 − αe−βD cos θi/dp ), (9)

with ξφ = 0.9, α = 0.6, and β = 0.3 for the monolayer ex-
periments and ξφ = 0.95, α = 1.42, and β = 0.33 for the 2D
discrete simulations, in good agreement with previous work
[6]. We can, however, notice that the variation of φ0/φb stays
small in the range explored and is a second order effect on
the variation of the flow rate with the inclination angle of the
bottom.

We now turn to the horizontal component of the velocity
at the center of the outlet. Following Zhou et al. [6], we
characterize it using the magnitude of the velocity U0 and its

inclination θ0 toward the horizontal with

u0 = U0 cos θ0. (10)

We can first focus on the role of the inclination of the
bottom of the silo θi on the inclination of the flow at the central
streamline θ0, as illustrated in Fig. 8. In Fig. 8(a) we observe
that for a given bottom inclination the central streamline in-
clination does not depend on the outlet size D. In Fig. 8(b)
we have plotted the mean value of cos θ0 [corresponding to
the dashed horizontal lines in Fig. 8(a)] versus cos θi. We
observe that except for the horizontal bottom (θi = 0), the
inclination of the flow is strongly correlated to the bottom
inclination, the cosine of both angles being well adjusted by
a linear function, cos θ0 = ζ cos θi, with ζ = 0.92 (see the
dashed line in the figure). This correlation may be explained
by the profile of the streamline inclination at the outlet, which
is found to be quite linear between the bottom inclination and
a vertical inclination at the top (data not shown). For small
bottom inclinations, the central streamline seems to reach a
constant inclination that we denote θ

f
0 ≈ 36 deg. This regime

FIG. 7. Volume fraction at the center of the outlet φ0 normal-
ized by the bulk volume fraction φb vs the normalized outlet size,
D cos θi/dp, for various bottom inclinations for (a) the experiments
and (b) the 2D discrete simulations. The black line represents
Eq. (9), with (a) ξφ = 0.9, α = 0.6, and β = 0.3, and (b) ξφ = 0.95,
α = 1.42, and β = 0.33.
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FIG. 8. (a) Experiments: Inclination of the central streamline at the outlet, cos θ0, vs the outlet size D for various inclinations of the bottom
of the silo. The dashed lines represent the mean value plotted in (b) vs cos θi where the dashed black line represents Eq. (12) with ζ = 0.92
and the dashed dotted line represents cos θ

f
0 = 0.81. (c) 2D discrete simulations: Inclination of the central streamline at the outlet, cos θ0 vs

cos θi. The dashed black line represents Eq. (12) with ζ = 0.93.

of constant inclination may be due to the presence of an
angle of avalanche. If we suppose that the flow is unperturbed
by the bottom while the bottom inclination is smaller than
the streamline angle generated by a horizontal bottom, i.e.,
θ0 < θ

f
0 , we obtain a model for the streamline angle at the

center of the outlet:

if θi < θc, cos θ0 = cos θ
f

0 , (11)

else cos θ0 = ζ cos θi. (12)

We denoted θc = arccos(cos θ
f

0 /ζ ) ≈ 28 deg the critical an-
gle at which the transition occurs. This model suggests that
when the bottom inclination increases above a threshold θc,
the central streamline inclination is controlled by the bottom
inclination and not anymore by the internal friction. Thus the
flow rate will tend to decrease, the flow being less horizontal.
Concerning the 2D discrete simulations, when the bottom is
horizontal we measure θ

f
0 = 18.5 deg, a value that is close

to the angle of friction δ = atan(μp) = 21.8 deg. Then we
can see in Fig. 8(c) that, similarly to the experimental case,
the inclination of the flow is well described by Eq. (12) with
ζ = 0.93. However, we observe that cos θ

f
0 /ζ > 1. Thus we

will consider that there is no plateau regime in the simulation
corresponding to θc = 0.

We now turn to the magnitude of the velocity. For the
experiments, in Fig. 9(a) the normalized magnitude of the
velocity of the central streamline is plotted versus the normal-
ized orifice size for various bottom inclinations. As observed
numerically by Zhou et al. [6], the velocity magnitude is well
adjusted by a square root variation with respect to the opening
size given by Eq. (3). However, the fitting parameter appears
to depend strongly on the bottom inclination in this new con-
figuration. The scaling law suggests that velocity magnitude
U0 is controlled by a transfer from the potential energy to
kinetic energy in the characteristic length of the outlet size.
However, when the flow orientation is controlled by the bot-
tom inclination, we can suppose that the flow is not free to
rotate and the inclination at the central streamline is given by
Eq. (12). When reaching the dense granular zone, at a distance

s ∼ D, the potential energy then depends on the orientation
of the streamline, Ep ∼ ρpg sin θ0s. This potential energy is
transferred to kinetic energy at the outlet Ek ∼ ρpU 2

0 , thus
giving

U0 = cE

√
gD sin θ0, (13)

which predicts an increase of the velocity with the bottom
inclination, as seen in Fig. 9(a). In Fig. 9(b) we have plotted
the normalized velocity U0/

√
gL vs D sin θ0/L for all the data,

and we observe a good collapse. The data are well adjusted by
Eq. (13) with cE = 1.29. This effect tends to slightly counter-
balance the effect of the inclination of the streamline on the
flow rate. The main difference between the 2D discrete sim-
ulation and the monolayer experiments lies in the magnitude
of the velocity on the central streamline at the outlet. Indeed,
in Fig. 9(c) we can see that U0 does not sensitively depend on
θi. The data can be adjusted by Eq. (3) with cE = 1.45. This
difference may be linked to either the fact that the monolayer
flow is not a true 2D flow but encounters friction at the front
and rear wall, or to the boundary condition at the bottom
wall: we observe stronger sliding in the simulation than in
the experiments. New 2D discrete simulations testing these
hypotheses by simulating a true monolayer flow with back
and front sidewalls and by varying the wall friction coefficient
should answer this question.

From all the previous analysis, it is possible to deduce a
model for the flow-rate dependence on the bottom inclination
of the silo. Using Eqs. (8)–(13) we can write

if θi < θc : Q̃ = cD, (14)

else: Q̃ = cθ cos θi(1 − ζ 2 cos2 θi )
1/4, (15)

where Q̃ = Q/[ρpφbG(D cos θi/dp)DW
√

gD], with
G(x) = ξφ (1 − αe−βx ), θc = arccos (cos θ

f
0 /ζ ), cθ = c0cEζ ,

and cD = c0cE cos θ
f

0

√
sin θ

f
0 . For large bottom inclination

and large outlet size, Eq. (15) can be simplified to give
Eq. (16), with less than 15% of error for θi > 40◦, which also
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FIG. 9. Magnitude of the experimental velocity profiles at the center of the outlet U0 normalized by
√

gL vs the outlet size D normalized
by (a), (c) L and (b) L/ sin θ0 for several outlet inclinations θi for (a), (b) the experiments and (c) the 2D discrete simulations. The dashed lines
represent Eq. (3) with (a) adjustable coefficients which depends on θi and (c) cE = 1.45 obtained by the least squares method. The full line
represents Eq. (13) with cE = 1.29.

corresponds to the 2D discrete simulations case:

Q̃ = cθ cos θi. (16)

In Fig. 10 we compare the normalized flow rate versus the
angle of inclination with the model given by Eqs. (14) and
(15) (full line), and Eq. (16) (dashed line). The agreement is
fairly good, except for the experiment’s low bottom inclina-
tion (below θc), where the model predicts a plateau and not a
slight increase with θi. This may be due to a large sliding zone
at the bottom for low angles, as can be seen in Figs. 4(a) and
4(b). Even though this simple model does not finely capture
this particular behavior, it is able to predict the main physical
mechanism of the influence of the bottom inclination on the
flow rate for a 2D flow. The 2D discrete simulations reproduce
most of the behavior observed, except for the variation of U0

with θi. For future studies it may be an interesting tool to test
the effect of the front and back sidewalls, to see the effect of
the grain and wall parameters (μp and μw) on the flow rate
and to obtain information on the stress fields.

FIG. 10. Experimental mass flow rate normalized by
ρpφbG( D cos θi

dp
)DW

√
gD vs the bottom angle of inclination for

(a) the experiments and (b) the 2D discrete simulations. The full
line represents Eqs. (14) and (15), and the dashed lines represent
Eq. (16) with (a) ξφ = 0.9, α = 0.6, β = 0.3, ζ = 0.92, cE = 1.29,
c0 = 0.89, θc = 28◦, and cos θ

f
0 = 0.81, and (b) ξφ = 0.95,

α = 1.42, β = 0.33, ζ = 0.93, cE = 1.45, and c0 = 0.78.

In the next section we will study 3D effects with finite size
of the silo and explore how this configuration can change the
observed behaviors.

IV. ROLE OF THE BOTTOM INCLINATION
FOR 3D FLOWS

To study the role of the bottom inclination for 3D flows
we first focus on the experiments performed with one of
the smallest particle sizes having the velocity fields resolved,
dp = 538 μm. We compare the experimental results with
those of the continuum simulations and follow the same ap-
proach as for the 2D flow.

A. Mass flow rate

Figures 11(a) and 11(b) show the particle mass flow rate
as a function of the inclination angle θi for a given aperture
size and various silo thicknesses for (a) the experiments and
(b) the continuum simulations. In these 3D flows we observe
in both cases a large plateau where the mass flow rate does
not depend on the inclination of the bottom, much larger
than for the 2D case. For example, in the experiments for
a narrow silo of thickness W = 5 mm the inclination of the
bottom does not influence the flow for angles as large as
60 deg. In this low-θi regime we do not observe the same
increase as for the 2D configuration. Then above a critical
angle, which seems to depend on the silo thickness, the mass
flow rate starts to decrease. The flow rate of the plateau can
be evaluated by the value at θi = 0, which corresponds to a
rectangular silo with a lateral hole as studied by Zhou et al.
[6]. Following this work, we have plotted in Figs. 11(c) and
11(d) the dimensionless mass flow rate Q/(ρpφb

√
gW 5) as a

function of the aspect ratio A = D/W for several inclinations
of the bottom of the silo. As predicted by Zhou et al. [6], for
the horizontal silo (θi = 0 deg) the flow rate can be adjusted
by Eq. (4) (see the black lines) with respectively cD = 0.5
and γ = 0.44 for the experiments and cD = 0.8 and γ = 0.35
for the continuum simulations, in good agreement with the
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FIG. 11. 3D flow results for (a), (c) the experiments with
dp = 538μm and (b), (d) the continuum simulations. (a), (b) Mass
flow rate of particles as a function of the bottom angle of incli-
nation θi for several silo thicknesses W with (a) D = 30 mm and
(b) D = 0.75L. (c), (d) Mass flow rate of particles made dimension-
less by φbρp

√
gW 5 vs the dimensionless outlet size D/W for several

bottom inclinations θi explored. The solid line represents Eq. (4)
with (c) cD = 0.5 and γ = 0.44 and (d) cD = 0.8 and γ = 0.35. The
dashed line represents the Hagen-Beverloo regime [Eq. (2)] and the
dashed-dotted line represents the linear asymptotic regime of Eq. (4)
for D/W � 1.

values reported in Ref. [6]. We thus recover that the granular
flow can be separated into two regimes. For a small aperture
aspect ratio D/W � 1, on the left part of Figs. 11(c) and 11(d)
the data can be adjusted by the Hagen-Beverloo law given
by Eq. (2) corresponding to a flow controlled by the internal
friction. The second regime of granular flow is observed for
a large aperture aspect ratio D/W � 1. Indeed, on the right
part of Figs. 11(c) and 11(d) the results can be adjusted by
a linear law, corresponding to a flow controlled by the wall
friction (see the dashed-dotted lines). The transition between
these two regimes occurs at around D/W ≈ 2. The experi-
ments were mainly done in the transition zone between the
two regimes, whereas the continuum simulations were mainly
performed in the Hagen-Beverloo regime and at the beginning
of the transition zone, which gives imprecision on the deter-
mination of the coefficient γ . When we increase the bottom
inclination, we observe that for a large range of inclination
angles the data are superimposed with those of the horizontal
inclination; then we observe a departure which seems to begin
for the smaller aperture aspect ratio. In the following part, we
discuss the velocity fields.

B. Velocity fields

The 2D velocity fields of the granular flow at the front wall
of the silo are shown in Figs. 12(a) and 12(b) for the experi-
ments with the thinner silo, W = 5 mm, D = 40 mm, θi = 40
deg, and dp = 538 μm, and for Figs. 12(c) and 12(d) the
continuum simulations with W = 2L, D = 0.75L, and three
bottom inclinations. In Figs. 12(a) and 12(c) we have drawn
the streamlines, and we can see that the flow is quasivertical
far from the outlet, and then it rotates in the vicinity of the
outlet. Note in Fig. 12(a) that under the conditions of the
experiment, the inclination of the streamlines at the outlet
appears to be higher than the inclination of the bottom of the
silo. We can also observe a large stagnant zone located on
the left side of the silo. In the continuum simulations, we
observe that for a small inclination (θi = 20 deg) the incli-
nation of the streamlines is not perturbed compared to the
horizontal bottom (θi = 0 deg) except close to the inclined
bottom, leading to a reduce stagnant zone. For large incli-
nation (θi = 60 deg) the streamlines inclinations seem to be
controlled by the bottom inclination, and the stagnant zone
connects to the inclined bottom largely upward from the outlet
and tend to disappear.

Figures 12(b) and 12(d) show the magnitude of the velocity
in the front plane for the same data. Again, it illustrates the
flow behavior along the silo. A stagnant zone lies on the
left side, which is quite large in the experiment although we
imposed a significant angle of inclination. A zone of higher
velocities is observed at the very near region of the outlet
where the particle acceleration is localized. This may again
explain the plateau observed for the mass flow rate when
varying the angle of inclination (Fig. 11). In the zero incli-
nation bottom case, with the lateral aperture the stagnant zone
is confined in the left-hand side, bottom part of the silo, its
boundary having a given inclination with respect to the bottom
of the silo. The small inclination of the bottom only suppresses
particles within this zone, which would have no interaction
with the flow. It therefore does not impact the flow rate.
For larger bottom inclination, the flowing zone is constrained
by the silo geometry, which affects the flow orientation and
decreases the discharge flow rate. To test this hypothesis we
will focus again on the flow velocity at the center of the outlet,
but first we verify that the image processing at the front wall
is successful in predicting the flow rate in the 3D case. The
particles are small enough compared to the outlet dimensions
(D cos θi/dp > 10) to suppose the volume fraction at the outlet
constant φ ≈ φb [see Fig. 7(a)]; then if the profile of the
horizontal velocity is self-similar, the flow rate should read

Q = c0ρpφbu0W D. (17)

Figure 13 shows the profiles of the horizontal velocity
component at the outlet, normalized by its value at the cen-
ter of the outlet u0 for (a), (b) the experiments with dp =
538 μm and (d), (e) the continuum simulations, varying (a),
(d) the angle of inclination of the bottom and (b), (e) the
thickness of the silo for each graph, the other parameters
being kept constant. We observe that these profiles are rather
self-similar when varying all the parameters in both cases. In-
deed, the integral of the normalized profile c = ∫ D/2

−D/2 u/u0dz
is found to be rather constant, with c0 = 〈c〉 = 0.79 for
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FIG. 12. (a), (c) Streamlines and (b), (d) velocity magnitude fields for (a), (b) the 3D experiments with W = 5 mm, dp = 538 mm,
D = 40 mm, and θi = 40 deg, and (c), (d) the continuum simulation with W = 2L, D = 0.75L and from left to right θi = 0 deg, 20 deg,
and 60 deg.

the experiments and c0 = 〈c〉 = 0.81 for the continuum
simulation (data not shown). We can also observe that the
horizontal velocity profile exhibits an asymmetry between

the top and the bottom of the outlet but smaller than in the
2D case (see Fig. 5). Figure 13(c) shows the comparison
between the experimental flow rate obtained from the balance

FIG. 13. (a), (b), (d), (e) Horizontal velocity profiles at the outlet, u, normalized by the velocity at the center, u0, vs the vertical position
normalized by the outlet size z/D for (a), (b) the experiments with dp = 538 μm and (a) D = 40 mm, W = 10 mm and several bottom
inclinations θi, (b) θi = 0 deg, D = 40 mm, and several silo thicknesses W, and for (d), (e) the continuum simulations with (d) D = 0.68L,
W = 0.5L and several outlet inclinations θi, and (e) θi = 0 deg, D = 0.68L and several silo thicknesses W . (c), (f) Flow rate vs c0φbρpu0W D for
(c) the experiments with dp = 538 μm, W = 5 mm (closed symbols), and W = 10 mm (opened symbols), and (f) the continuum simulations
in a dimensionless representation. The dashed lines represent the equation y = x with (c) c0 = 0.79 and (f) c0 = 0.81.
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FIG. 14. Inclination of the central streamline at the outlet, cos θ0,
vs the inclination of the bottom of the silo, cos θi, for (a) the exper-
iments with dp = 538 μm and D = 30 mm and (b) the continuum
simulations with D = 0.75L. The dashed lines represent Eq. (12)
with (a) ζ = 0.9 and (b) ζ = 0.83.

measurement and Eq. (17) obtained from the image process-
ing. We can see that the data obtained by the image processing
are scattered (in particular when θi increases) but the agree-
ment is fairly good, with a small discrepancy for the larger
silo (opened symbols). This may be due to 3D effects, which
would tend to reduce the velocity at the front wall, leading
to Eq. (17) slightly underestimating the flow rate. Finally,
Fig. 13(e) shows that Eq. (17) is also valid for the continuum
simulation.

We can now turn to the study of the flow properties at the
center of the outlet, and following the previous part, we will
focus on the magnitude of the velocity U0 and its inclination
θ0, with u0 = U0 cos θ0.

C. Flow properties at the center of the outlet:
Generalization of the simple model

The variation of the inclination of the central streamline
with the bottom inclination is shown in Fig. 14 for a given out-
let size and various silo thicknesses, for both the experiments
and the continuum simulations. Similar to the monolayer ex-
periments, we recover that for large bottom inclinations (small
cos θi) the inclination of the flow is strongly correlated to the
bottom inclination, following Eq. (12) with ζ = 0.9 (resp.
0.83) for the experiments (resp. the continuum simulations).
For low bottom inclinations, the flow is not perturbed by the
inclined bottom and cos θ0 tends to a plateau, which depends
on the silo thickness W . We denote θ

f
0 the angle of inclination

of the central streamline at the outlet on the plateau, its value
being defined for the horizontal bottom case [cos(θi ) = 1]. In
Fig. 15 cos θ0 is plotted versus the outlet aspect ratio D/W .
As predicted by Zhou et al. [6], we observe that for θi = 0
the inclination clearly scales with D/W and is well adjusted
by Eq. (5) (see the black line) with cθ0 = 0.78 and γ = 0.44
(resp. cθ0 = 0.81 and γ = 0.35) for the experiments (resp.
continuum simulations), where cθ0 was obtained by the least
squares method keeping the same γ than obtained for the
flow-rate adjustment in Fig. 11. This observation confirms
experimentally that the friction (internal and on the wall)
controls the inclination of the streamlines and the presence
of a stagnant zone for a horizontal bottom.

FIG. 15. Inclination of the central streamline at the outlet, cos θ0,
for all the bottom inclinations vs the aspect ratio of the aperture D/W
for (a) the experiments with dp = 538 μm and (b) the continuum
simulations with D = 0.75L. The full lines represent Eq. (18) with
(a) cθ0 = 0.78 and γ = 0.44 and (b) cθ0 = 0.81 and γ = 0.35. The
dashed lines represent Eq. (19) with (a) ζ = 0.9 and (b) ζ = 0.83.

If we suppose that the flow is unperturbed by the bottom
while the streamline angle at the center of the outlet generated
by the bottom inclination θ0 is smaller than those generated by
a horizontal bottom θ

f
0 we can generalize the model obtained

previously for monolayer flow:

if θi < θc : cos θ0 = cos θ
f

0 = cθ0√
1 + γ D/W

, (18)

else: cos θ0 = ζ cos θi, (19)

where we denoted θc the critical angle at which the transition
occurs:

θc = arccos

(
cθ0

ζ
√

1 + γ D/W

)
. (20)

In Fig. 15 we compare Eqs. (18) and (19) (black line and
dashed lines) with the experimental results. The agreement is
fairly good even if this simple model does not finely describe
the transition between the two regimes (see, for example, the
data for θi = 60 deg for the experiments or θi = 30 deg for the
continuum simulations). This model shows that the transition
between a flow controlled by the bottom inclination and a free
flow from a lateral aperture strongly depends on D and W
on such a confined silo. Again, when the central streamline
inclination is controlled by the bottom inclination, the flow
rate tends to decrease, the flow being less horizontal.

We now turn to the magnitude of the velocity. In Fig. 16
we study how the magnitude of the velocity of the cen-
tral streamline at the outlet depends on various parameters.
Figure 16(a) corresponds to all the experimental data for dp =
538 μm varying the bottom inclination. The data are relatively
scattered, but as observe numerically by Zhou et al. [6], the
velocity magnitude seems not to depend on the silo thickness
and is well adjusted by a square root variation with respect to
the opening size given by Eq. (3) with cE = 0.81. This scaling
is not the same as that observed in the 2D case [Eq. (13)].
However, due to the silo confinement, the central stream-
line is already quite inclined, even for a horizontal bottom
[see Fig. 12(a)]. If we plot the data versus gD sin θ0, the
collapse of the data is comparable and the agreement with a
square root law [Eq. (13)] is also reasonable with cE = 0.84
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FIG. 16. Magnitude of the velocity profiles at the center of the outlet, U0, normalized by
√

gL for (a)–(c) the experiments with dp = 538 μm
and (d)–(f) the continuum simulations vs the outlet size D normalized by (a), (d), (e) the silo width L, (b) L/ sin θ0, (c), (f) L sin θ

f
0 / sin θ0 for

(a), (b), (c), (f) various bottom inclination and (d), (e) various silo thicknesses with (d) θi = 0 and (e) θi = 40 deg. The dashed lines represent
square root fit with adjustable coefficients obtained by the least squares method. The full lines represent Eq. (21) with (c) cE = 0.78 and (f)
cE = 1.19.

[see Fig. 16(b)]. This experiment does not allow a conclusion
on this point, so we turn to the continuum simulations. For a
horizontal bottom we can see in see Fig. 16(d) that, as shown
by Zhou et al. [6], the velocity magnitude does not depend
on the silo thickness and is well adjusted by a square root
variation with respect to the opening size given by Eq. (3) with
cE = 1.19. If we now consider a case where the inclination of
the central streamline is controlled by the bottom inclination,
as shown in Fig. 16(e) for θi = 40◦, we can see that the data do
not superimpose when varying the silo thickness, the velocity
increasing when increasing W . If we consider the variation of
the magnitude of the velocity with the bottom inclination for a
given thickness W (data not shown), we observe that the data
are superimposed for low θi, and then the velocity increases
when increasing θi. However, each curve is well adjusted by a
square root variation as given in Eq. (3), the coefficient cE now
depending on W and θi. This suggests that the flow behavior is
not the same when the stagnant zone develops freely or when
the flow is confined by the inclined bottom. For a free stagnant
zone, (i) the parietal friction controls the angle of inclination
of the central streamline θ

f
0 at the outlet, which depends on

W as given by Eq. (18), but (ii) the magnitude of the velocity
does not depend on the confinement and is only controlled
by the outlet size, giving U f

0 = cE
√

gD. This may be due to
the fact that the stagnant zone is rotating and when reaching
the dense granular zone the flow is nearly vertical. When the
flow orientation is controlled by the bottom inclination, (i) the
flow is not free to rotate, (ii) the inclination at the central
streamline is given by Eq. (19), and (iii) the magnitude of
the velocity follows U0 = ci

E

√
gD sin θ0. However, Fig. 16(e)

suggests that ci
E is not constant and depends on W . We match

both behaviors, writing

U0 = cE

√
gDsin θ0/sin θ

f
0 . (21)

In Fig. 16(f) the velocity normalized by
√

gL is plotted versus
the normalized outlet size Dsin θ0/(Lsin θ

f
0 ). The data are

well superimposed and adjusted by Eq. (21) with cE = 1.19.
This observation suggests that when the flow orientation is
controlled by the bottom inclination, the parietal friction still
played a role controlling the magnitude of the velocity at the
outlet. This effect will tend to counterbalance the decrease of
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FIG. 17. Mass flow rate normalized by ρpφbDW
√

gD for all the
bottom inclinations vs the normalized aperture size D/W for (a) the
continuum simulations and (b) the experiments with dp = 538 μm.
The full black lines represent Eq. (22), the full color lines represent
Eq. (23), and the dashed lines represent Eq. (15) with (a) cD = 0.8,
cθ0 = 0.81, γ = 0.35, and ζ = 0.83 and (b) cD = 0.5, cθ0 = 0.78,
γ = 0.44, and ζ = 0.9.

the flow rate a little bit due to the strong inclination of the
streamlines. In Fig. 16(c) we plot the data corresponding to the
experiments with dp = 538 μm in the same representation.
The collapse of the data and the agreement with Eq. (21) with
cE = 0.78 is equivalent to that previously found in Figs. 16(a)
and 16(b).

We can then generalize the analytical model, writing

if θi < θc : Q̃ = cD√
1 + γ D/W

, (22)

else: Q̃ = cθ cos θi

[
(1 − ζ 2 cos2 θi )(1 + γ D/W )

1 − c2
θ0

+ γ D/W

] 1
4

, (23)

with Q̃ = Q/(ρpφbDW
√

gD), cD = c0cE cθ0 , and cθ = c0cEζ .
When the silo is very thin (i.e., W � D), Eq. (23) reduces to
Eq. (15) corresponding to the monolayer case and to Eq. (16)
for inclination angles larger than 40◦ with an error less than
15%. To test this model, we can first compare the coefficient
cD = 0.5 (resp. 0.8) adjusted on the flow rate for the hor-
izontal bottom and the value of c0cE cθ0 = 0.48 (resp. 0.85)
obtained from the velocities measurement, which shows good
agreement in the experiments (respectively the continuum
simulations). Then in Fig. 17 we compare the model given
by Eqs. (22) and (23) with the mass flow rate normalized by
ρpφbDW

√
gD plotted versus the normalized aperture D/W ,

both for the simulations and the experiments. For the contin-
uum simulations [Fig. 17(a)] the agreement is very good. For
large bottom inclination (θi > 50 deg) the flow rate is com-
pletely controlled by the bottom, whereas for small bottom
inclination (θi < 20 deg) it is controlled by the friction (inter-
nal to the granular medium and with the walls). In between,
even when the inclination of the streamline is controlled by
the bottom, the model predicts that the flow rate stays close
to the unperturbed flow. For the experiments [Fig. 17(b)] the
agreement is also fairly good for large bottom inclination
(θi > 70 deg) or small bottom inclination (θi < 40 deg), but
the model fails to describe the data close to the transition
between the two regimes. In particular, it is interesting to
note that for θi = 60 deg the flow rate is superimposed to the

TABLE III. Experimentally measured fitting parameters with as-
sociated equation number: γ (5), cD (4), cθ0 (5), cE (21), ζ (12), and
cθ (15).

dp( μm) cD γ cθ0 cE ζ c0 c0cE cθ0 cθ

4170 (2D) 0.5 – 0.63 1.29 0.92 0.89 0.71 1.04
1347 0.41 0.28 0.81 0.94 0.92 0.85 0.65 0.74
1129 0.45 0.44 0.86 0.92 0.92 0.81 0.64 0.69
762 0.42 0.28 0.69 0.95 0.92 0.81 0.53 0.71
538 0.5 0.44 0.78 0.84 0.9 0.79 0.52 0.60
375 0.52 0.53 0.81 0.84 0.85 0.83 0.56 0.59

unperturbed flow rate, whereas the inclination of the central
streamline is already perturbed [see the red stars in Figs. 17(b)
and 15(a)]. We also observe that the simplified model corre-
sponding to Eq. (15) adjusts the data quite well (see the dashed
lines).

Even if this simple model does not intricately capture this
particular behavior, it succeeds to predict the flow rate in the
two asymptotic regimes where the flow is controlled either
by the silo confinement through the wall friction or by the
inclined bottom. Moreover, the continuum model appears to
reproduce the experimental behavior quite well, except at the
transition between the two regimes. This may be due to the
choice of the no-slip condition at the bottom, which may be
less realistic when the flow is perturbed by the inclined bottom
wall. In the next section we will compare the analytical model
with the other particles studied.

D. Comparisons and discussion

In Table III we have summed up the fitting parameters
deduced from the balance measurement and image processing
for all particles large enough to perform accurate particle
image velocimetry (dp � 375 μm). For particles larger than
1000 μm we obtain that c0cE cθ0 slightly overevaluates the
value of cD. We interpret such behavior as being related to
the small dilatation of the particles at the outlet, associated
with a low number of particles through the outlet. We observe
that except for the monolayer case, the parameters obtained
from the image processing seem to be rather constant, with
cθ0 ≈ 0.8, cE ≈ 0.9, ζ ≈ 0.9, c0 ≈ 0.8.

To evaluate the evolution of the flow rate with the bottom
inclination using the simplified Eq. (15), four parameters are
necessary: cD, γ , cθ , and ζ . We can deduce the two first
using flow-rate measurements with a horizontal bottom. From
Table III we evaluate cθ ≈ 0.7 and ζ ≈ 0.9. In Fig. 18 we have
plotted the flow rate for the smallest particles dp = 190 μm,
for which we have not performed image processing, and com-
pared it with the analytical model given by Eqs. (22) and
(15). We recover a good agreement for the asymptotic regimes
(small and large angle) and a discrepancy at the transition for
θi = 60 deg, where the model predicts a constant flow rate for
low D/W, whereas the flow rate continues to follow the same
variation than for a horizontal bottom.

This simple phenomenological model, which depends on
four fitting parameters, allows us to recover the main feature
of the dependence of the flow rate with the bottom inclination
in a rectangular silo with a lateral orifice.
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FIG. 18. Experiments with dp = 190 μm: Mass flow rate nor-
malized by ρpφbDW

√
gD for all the bottom inclinations vs the

normalized aperture size D/W . The full line represents Eq. (22) and
the dashed lines Eq. (15) with cD = 0.65, γ = 0.91, ξθ = 1.1.

V. CONCLUSION AND PERSPECTIVES

Using a nonconventional geometry (a rectangular silo with
an inclined bottom wall which ends up at a lateral orifice)
we have shown, thanks to laboratory experiments, contact dy-
namic simulations and a continuum model with a viscoplastic
frictional rheology μ(I ) that the flow rate is controlled by
two phenomena. First the orientation of the granular flow is
controlled by a competition between the friction terms and the
silo geometry. For small angles of inclination of the bottom,
the flow is not perturbed by the geometry and the central
streamline orientation is controlled by the outlet aspect ratio

D/W resulting from the competition between wall friction
and internal friction. For large angles the flow orientation
is imposed by the bottom inclination. Then we have shown
that the outlet corresponds to an area where the grains are
accelerated, the potential energy being transferred to kinetic
energy. The magnitude of the velocity still seems to depend
on the internal and wall friction for high bottom inclination.
However, this balance and thus the magnitude of the velocity
at the center of the outlet is found to be quite sensitive to the
boundary conditions. Finally, we present a simple analytical
model that predicts the discharge flow rate of particles from
a rectangular silo with an inclined bottom according to its
aperture aspect ratio with a good agreement in the asymptotic
regime and a small discrepancy in the transition zone.

The discrete simulation results should be enhanced, of
course, by fully 3D computations, but first with more study
of friction between grains and with a better description of the
lateral friction in the monolayer case. The continuum model-
ing is shown to be a good framework to describe the discharge
flow of a granular medium from a silo, and in future work
it will allow the performance of a full parametric study of
the influence of the rheological parameters on the adjustable
parameters of the analytical model in various geometries.
In particular, these results may have practical interest when
considering the effects of the hopper angle of an industrial
silo.
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