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ASYMPTOTICS OF k DIMENSIONAL SPHERICAL INTEGRALS AND
APPLICATIONS

ALICE GUIONNET AND JONATHAN HUSSON

Abstract
In this article, we prove that k-dimensional spherical integrals are asymptotically equiv-

alent to the product of 1-dimensional spherical integrals. This allows us to generalize
several large deviations principles in random matrix theory known before only in a one-
dimensional case. As examples, we study the universality of the large deviations for k
extreme eigenvalues of Wigner matrices (resp. Wishart matrices, resp. matrices with
general variance profiles) with sharp sub-Gaussian entries, as well as large deviations
principles for extreme eigenvalues of Gaussian Wigner and Wishart matrices with a finite
dimensional perturbation.

1. Introduction

Spherical integrals are integrals over the unitary or orthogonal group which can be seen
as natural Fourier (or Laplace transforms) over matrices. As such, they play a central
role in random matrix theory. They can for instance be used to express the density of
the distribution of random matrices [7, 22]. In the unitary case (and more generally when
one integrates over a compact, connected, semisimple Lie group), Harish-Chandra [14]
and Itzykson and Zuber [17] derived formulas for such integrals. However, these formulas
do not allow to estimate in general their asymptotics as the dimension goes to infinity
because they are given in terms of a determinant, so a signed sum of diverging terms. It
is however crucial to estimate such asymptotics in random matrix theory to derive law
of large numbers for matrix models or large deviations principles. Such asymptotics also
permit to see the R-transform as the limit of spherical transforms, and thus of natural
Laplace transform in the space of matrices [10]. Such natural representation was recently
generalized to the S-transform [21]. In the case of a one dimensional spherical integral
where one integrates over a uniformly distributed vector on the sphere, such asymptotics
where derived in [10] (see also [9]). The case where the spherical integral is taken over the
whole unitary or orthogonal group was adressed in [12]. In the case where the exponent
is small enough, and the spherical integral is k dimensional, with k much smaller of the
dimension, the spherical integrals was shown to be equivalent to a product of one dimen-
sional spherical integrals when k is finite [10], or going to infinity in a mesoscopic regime
where k grows like a power of the dimension [5, 15]. In this article, we show that when k is
finite, this property remains true for all ranges of parameters. Indeed, we prove that the
limit of k-dimensional spherical integrals is equivalent to the sum of one dimensional inte-
grals which are evaluated at the successive largest eigenvalues. For instance, as foreseen in
[19], the limit of a 2-dimensional spherical integral depends on the two largest outliers in
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the large parameters regime, and not only the top one. As a consequence, k-dimensional
spherical integrals allow us to study the universality of the large deviations for k extreme
eigenvalues of Wigner matrices with sharp sub-Gaussian entries, hence generalizing the
results of [13] to finitely many extreme eigenvalues. Similarly, we extend the universality
of large deviations for Wishart matrices [13] and matrices with general variance profile
[16] with sharp sub-Gaussian tails to finitely many extreme eigenvalues. We also prove
large deviations principles for extreme eigenvalues of Gaussian Wigner and Wishart ma-
trices with a finite dimensional perturbation. This generalizes the one-dimensional case
derived in [18]. The large deviations rate functions of these large deviations principles
simply decompose as a sum of the one dimensional rate functions.

The approach of this paper differs from the arguments used in [10] in the one-dimensional
case which relied heavily on the representation of the uniform law on the sphere in terms
of Gaussian variables. Instead, it is based on considering first spherical integrals of ma-
trices with finitely many different eigenvalues where the uniform law on the sphere can
be easily described by Beta-distribution and where rate functions can be more simply
described as maximum over real numbers, see section 3. We then generalize our results
to matrices with continuous spectrum by density, see section 4. Applications to large
deviations principles for extreme eigenvalues of random matrices are given in section 5.

2. Statement of the results

We consider a N × N Hermitian matrix XN such that the empirical measure of its
eigenvalues

µ̂XN
= 1
N

N∑
i=1

δλi

converges towards a probability measure µ with support with rightmost point rµ and
leftmost point lµ which are assumed to be finite. Let k, ` be two integer numbers. Let
λN1 ≥ λN2 ≥ · · · ≥ λNk ≥ rµ be the ` largest outliers of XN counted with multiplicity one,
λN−1 ≤ · · · ≤ λN−` ≤ lµ be the smallest outliers of XN with multiplicity one (but eventually
equal). Assume that

lim
N→∞

λNi = λi > rµ for i ∈ [1, k], lim
N→∞

λN−i = λ−i < lµ for i ∈ [1, l]

The main result of our paper is the following. Denote by (ei)−`≤i≤k
i 6=0

a family of k + `

orthonormal eigenvectors following the uniform law on the sphere with radius one, taken
with complex coordinates if β = 2 and real coordinates if β = 1. Then

Proposition 1. Let θ1 ≥ θ2 ≥ · · · ≥ θk ≥ 0 ≥ θ−` ≥ · · · ≥ θ−1. Then

lim
N→∞

1
N

logE

exp

βN2
k∑

i=−l
i6=0

θi〈ei,XNei〉




= β

2

(
k∑
i=1

J(µ, θi, λi) +
∑̀
i=1

J(µ, θ−i, λ−i)
)
.
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Here, J(µ, θ, λ) = K (µ, θ, λ, v(µ, θ, λ)) with

K(µ, θ, λ, v) = θλ+ (v − λ)Gµ(v)− ln θ −
∫

ln |v − x|dµ(x)− 1

and
v(µ, θ, λ) =

{
λ if Gµ(λ) ≤ θ,

G−1
µ (θ) if Gµ(λ) > θ.

Gµ denotes the Cauchy-Stieltjes transform given, for z outside the support of µ, by
Gµ(z) =

∫
(z − x)−1dµ(x).

@@ As a first application, we generalize the universality of the large deviations of the
largest eigenvalue for Wigner matrices with sharp sub-Gaussian tails [13] to the k-th
extreme eigenvalues. We consider a Wigner matrix XN with entries

(
Xij√
N

)
1≤i,j≤N

where
(Xij)i≤j are independent centered variables such that

E[|Xij|2] = 1, i < j and E[|Xii|2] = 21β=1 (1)
where β = 1 if the entries are real, and β = 2 if they are complex. In the complex case
we assume that the real and the imaginary part of Xij, 1 ≤ i < j ≤ N, are independent.
We moreover assume that the Xij have sharp sub-Gaussian tails in the sense that

E[exp(<(aXij))] ≤ exp( |a|
2E[|Xij|2]

2 ) (2)

where a is any complex number in the case where β = 2 and any real number in the case
β = 1. We finally define the following concentration assumption.

Assumption 2. We say that XN concentrates if the spectral radius of XN , ||XN ||, con-
centrates as well as the empirical measure µ̂XN

of its eigenvalues in the following sense.
First, ‖XN‖ is exponentially tight at the scale N :

lim
K→+∞

lim sup
N→+∞

1
N

logP
(
||XN || > K

)
= −∞. (3)

Moreover, the empirical distribution of the eigenvalues µ̂XN
concentrates at the scale N :

lim sup
N→+∞

1
N

logP (d(µ̂XN
, σ) > ε(N)) = −∞, (4)

for some ε(N) goes to zero as N goes to infinity, where d is a distance compatible with
the weak topology and σ is the semi-circle law, defined by

σ(dx) = 1
2π
√

4− x21|x|≤2dx.

In our previous paper [13] we took ε(N) = N−κ. This hypothesis was needed to insure
the continuity of spherical integrals according to [18]. However, part of the consequences
of our new approach is that spherical integrals enjoy better continuity properties, see
the Appendix 6. Assumption 2 is satisfied by all the matrix models we shall consider
below (Wigner, Wishart and variance profile) as soon as the entries satisfy log-Sobolev
inequality with uniformly bounded constant or are bounded (see [1] and the Appendix in
[13]). Examples of entries satisfying all our hypotheses (including (2)) are Rademacher
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variables or uniform variables. We prove the following universality of the large deviations
for the extreme eigenvalues of XN :

Theorem 3. Let XN = (Xij√
N

)i,j be a N×N Hermitian matrix where (Xi,j)i≤j are centered
independent entries satisfying (1) and (2), as well as such that XN satisfies Assumption
2. Let λN1 ≥ λN2 ≥ · · · ≥ λNN be the N eigenvalues of XN . Let k be a fixed integer number.
Then the law of λ̄N = (λN1 , λN2 , . . . , λNk , λNN−k, λNN−k+1, . . . , λ

N
N) satisfies a large deviations

principle in the scale N and with good rate function I(x1, . . . , xk, x−k, . . . , x−1) which is
infinite unless x̄ = (x1, . . . , xk, x−k, . . . , x−1) satisfies

x1 ≥ x2 ≥ · · · ≥ xk ≥ 2 ≥ −2 ≥ x−k ≥ x−k+1 ≥ · · · ≥ x−1

and is given by

I(x1, . . . , xk, x−k, . . . , x−1) = β

2

 k∑
i=1

∫ xi

2

√
t2 − 4dt+

−k∑
i=−1

∫ −x−i
2

√
t2 − 4dt

 .

Observe that this result is well known in the Gaussian case for the case k = 1, see [1,
Section 2.6.2] and [3]. The case of more general k but Gaussian entries is a straightforward
generalization, see e.g. [4]. The case of sharp sub-Gaussian entries and k = 1 was proven
in [13, Theorem 1.4 and Theorem 1.5]. This result can also be generalized for Wishart
matrices. We consider GL,M a L×M random matrix and set N = L+M . We define the
Wishart matrix WL,M = 1

M
GL,MG∗L,M . If L/M goes to α ≤ 1, it is well known that the

spectral measure of WM,L converges towards the Pastur Marchenko distribution

dπα(x) = 1
2παx

√
(λ+ − x)(x− λ−)dx .

where λ± = (1±
√
α)2. Then we have the following :

Theorem 4. Let GL,M = (Xij) 1≤i≤L
1≤j≤M

be a L × M matrix where (Xi,j)i,j are centered
independent entries satisfying (1) and (2), as well as such that WL,M satisfies Assumption
2. Let k ≥ 0 and λN1 ≥ ... ≥ λNk the k largest eigenvalues of WL,M . Assume that there
exists α ≤ 1 and κ ≥ 0 so that L/M − α = o(N−κ). Then (λN1 , ..., λNk ) satisfies a large
deviations principle in the scale N with good rate function J(x1, ..., xk) which is infinite
unless x1 ≥ ... ≥ xk ≥ bα and :

J(x1, ..., xk) = β

4(1 + α)

k∑
i=1

∫ xi

λ−

√
(y − λ−)(y − λ+)

y
dy

As in the Wigner case, as soon as the entries satisfy log-Sobolev inequality or are
compactly supported, insuring that the empirical measure converges towards the Pastur-
Marchenko distribution with probability larger than any exponential and that the norm of
Wishart matrices stays bounded, yielding a property similar to Assumption 2 for WL,M .

This result can be further extended to Wigner matrices with variance profiles. Those
matrices are built by letting Xσ

N(i, j) = σN(i, j)Xi,j√
N

where :
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• either there exists p ∈ N, α1(N), ..., αp(N) > 0 such that ∑p
1 αi(N) = N and

limαi(N)/N = αi > 0, and (σi,j)i,j ∈Mp,p(R+), σ = σT , such that :

σN(i, j) =
p∑

k,l=1
σk,l1IkN×IlN (i, j)

where I1
N = [0, α1(N)] and I i+1

N = [∑i
j=1 αj(N) + 1,∑i+1

j=1 αj(N)]. This case will be
called the piecewise constant case with parameters σ and α.
• either σN(i, j) = σ(i/N, j/N) where σ is a continuous symetric positive function
of [0, 1]2. This case will be called the continuous case.

We will also make the following assumption on the variance profiles :
Assumption 5. • In the piecewise constant case, we assume that the quadratic form

ψ 7→ ∑p
i,j σ

2
i,jψiψj is negative on the subspace V ect(1, ..., 1)⊥.

• In the continuous case, we assume that the the function ψ 7→
∫
σ2(x, y)dψ(x)dψ(y)

is concave on the set P([0, 1]) of probability measures on [0, 1].
When this Assumption as well as Assumption 4 and (2) are verified, one of the author

of this article [16] proved that the largest eigenvalue of Xσ
N satisfies a large deviations

principle with a good rate function J (1)
σ . In this article we generalize this result to the

kth largest eigenvalues and prove the following theorem :

Theorem 6. Let Xσ
N = (σN (i,j)Xij√

N
)i,j be a N × N Hermitian matrix where (Xi,j)i≤j are

centered independent entries satisfying (1) and (2), as well as such that Xσ
N satisfies

Assumption 2 and such that σ verifies Assumption 5. Let k ≥ 0 and λN1 ≥ ... ≥ λNk be the
k largest eigenvalues of Xσ

N . Then (λN1 , ..., λNk ) satisfies a large deviations principle in the
scale N with good rate function J (k)

σ (x1, ..., xk) which is infinite unless x1 ≥ ... ≥ xk ≥ rσ
and in this case equals:

J (k)
σ (x1, ..., xk) =

k∑
i=1

J (1)
σ (xi)

where rσ is the rightmost point of the support of the limit µσ of the empirical measure of
XN and where J (1)

σ is the rate function for the large deviations of the largest eigenvalue.
This result was proved in the case k = 1, ` = 0 in [10, Theorem 6]. Let us now

consider XN to be a GOE/GUE matrix, that is a N ×N Hermitian matrix with centered
real/complex Gaussian entries satisfying (1). Let ` and k be two integer numbers and let
(e1, . . . ek, e−1, . . . , e−`) be orthonormal vectors following the uniform law on the sphere.
In [18], Mylene Maïda showed that the largest eigenvalue of a Gaussian Wigner matrix
perturbed by a rank one matrix satisfy a large deviations principle. In this article we
generalize this result to the kth largest eigenvalues and ` smallest eigenvalues when the
Gaussian matrix is perturbed by a finite rank matrix with k non-negative eigenvalues and
` non-positive eigenvalues.
Proposition 7. Let XN be a GUE (β = 2) or GOE (β = 1) matrix. Let `, k be two finite
integer numbers. Let θ1 ≥ θ2 ≥ · · · ≥ θk ≥ 0 ≥ θ−` ≥ · · · ≥ θ−1 and define

Xθ
N = XN +

∑
−`≤i≤k
i 6=0

θieie
∗
i .
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Let λN,θ1 ≥ λN,θ2 ≥ · · · ≥ λN,θN be the eigenvalues of Xθ
N . Then, the distribution of

(λN,θ1 , . . . , λN,θk , λN,θN−`, . . . , λ
N,θ
N ) satisfies a large deviations principle in the scale N and

with good rate function which is infinite unless
x1 ≥ x2 ≥ · · · ≥ xk ≥ 2 ≥ −2 ≥ x−` ≥ · · · ≥ x−1

and is given then by β∑−`≤i≤k
i6=0

Iθi(xi). Here, with I(y) = 1
4x

2−
∫

ln |x− y|dσ(y), we have
set

Iθ(x) = I(x)− J(σ, θ, x)− inf
y

(I(y)− J(σ, θ, y)) .

A similar result holds for Wishart matrices. We next consider a L ×M matrix GL,M

with i.i.d standard Gaussian matrices with covariance 1, set N = M + L, and assume
without loss of generality that M ≥ L. We consider the Wishart matrix

Wγ
N = 1

M
Σ1/2
L GL,MG∗L,MΣ1/2

L

where ΣL is a L× L covariance matrix given by IL +∑k
i=1 γieie

∗
i for some fixed γi > −1.

Here the ei, 1 ≤ i ≤ k are orthonormal vectors. It is well known that when L/M goes to
α ∈ [0, 1], the empirical measure of the eigenvalues of Wγ

N goes to the Pastur-Marhenko
distribution.

Large deviations for the extreme eigenvalues in the case γi = 0 are well known, and
similar to the Gaussian case, see [1, 8]. The rate function governing the large deviations in
the scale N for the smallest eigenvalue is infinite outside [0, λ−] and is given for y ∈ [0, λ−]
by

Iα(y) = β

4(1 + α)(y − (1− α) ln y − 2α
∫

ln |y − t|dπα(y)− C)

= β

4(1 + α)

∫ λ−

y

1
t

√
(t− λ+)(t− λ−)dt

where C is the infimum of y − (1− α) ln y − 2α
∫

ln |y − t|dπα(y). The same result holds
for the largest eigenvalue. We have the following analogue to Proposition 7.

Proposition 8. Let ` ≤ k be two finite integer numbers. Let γ1 ≥ γ2 ≥ · · · ≥ γ` ≥
0 ≥ γ`+1 ≥ · · · ≥ γk > −1. Let λN,γ1 ≥ λN,γ2 ≥ · · ·λN,γM be the eigenvalues of Wγ

N

in decreasing order. Then, the law of (λN,γ1 , . . . , λN,γ` , λN,γN−k+`, . . . , λ
N,γ
N ) satisfies a large

deviations principle in the scale N and with good rate function which is infinite unless
x1 ≥ x2 ≥ · · · ≥ x` ≥ λ+ ≥ λ− ≥ x`+1 ≥ · · · ≥ xk ≥ 0

and is given otherwise by ∑k
i=1 Iγi,α(xi). Here, we have set

Iγ,α(x) = Iα(x)− β

2J(πα,
γ

1− γ , x)− inf
y

(Iα(y)− β

2J(πα,
γ

1− γ , y))

We finally notice that since our results hold for any number of eigenvalues, they capture
as well the large deviations for the point processes of the outliers. For instance, if we let
Ai = [ai, bi] be intervals above the bulk, bi < ai+1 < bi+1, if we denote I the large deviation
rate function for any of the above models, the probability that there are ni outliers in the
set Ai has probability of order exp{−N ∑

i ni infAi I}.
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3. Limiting spherical integral in the discrete case

We first consider the case where XN has finitely many different eigenvalues :

XN = diag

η−m1+1, ..., η−m1+1︸ ︷︷ ︸
N−m1+1

, η−m1+2, ..., η−m1+2︸ ︷︷ ︸
N−m1+2

, ..., ηp+m2 , ..., ηp+m2︸ ︷︷ ︸
Np+m2

 ,
where η−m1+1 < ... < η1 · · · < ηp < ηp+1 < · · · < ηp+m2 , and ηi has multiplicity Ni where∑p+m2
i=−m1+1Ni = N . We assume that Ni/N goes to a positive limit αi for i ∈ {1, p} and to

zero for i ∈ {1 −m1, . . . , 0} ∪ {p + 1, . . . , p + m2}, the later representing the outliers of
XN . m1,m2, p are independent of N (with the convention that if αi = 0, αi lnαi = 0). In
the previous notations, the eigenvalues of XN are given by λN1 ≥ λN2 ≥ · · · ≥ λNN with
λNi = ηj, i ∈ Ij = [Np+m2 + · · ·+Np+m2−j + 1, Np+m2 + · · ·+Np+m2−j +Np+m2−j−1]

and Ip+m2 = [1, Np+m2 ].

Remark 9. We notice that if the sequences Ni are fixed, the spherical integrals are β/2-
Lipschitz in the p+m1 +m2-uplet (ηi)−m1+1≤i≤p+m2 with the norm ||.||∞ .

3.1. Limiting 1-d spherical integral. We start by giving a new proof of [10, Theorem
6] giving the asymptotics of spherical integrals in the one dimensional case, in the case
of matrices with p+m1 +m2 different eigenvalues with multiplicity as above. This proof
will in fact extend to the higher dimensional setting in the next subsection.

Proposition 10. Let θ ≥ 0. Then

lim
N→∞

1
N

logE
[
exp

(
βN

2 θ〈e,XNe〉
)]

= β

2 sup
γi≥0∑p+m2

i=1−m1
γi=1

θ
p+m2∑

i=−m1+1
ηiγi +

p∑
i=1

αi ln
γi
αi


Proof. We have the following formula :

〈e,XNe〉 =
p+m2∑

i=−m1+1
ηiγ

N
i

where we have denoted γNj = ∑
i∈Ij |ui|2 with ui = 〈vi, e〉 if vi is the eigenvector for the

i-th eigenvalue of XN . In other words, γNj is the `2-norm of the projection of e onto the
eigenspace of ηj. The vector γN follows a Dirichlet law of parameters β

2 (N1−m1 , . . . , Np+m2),
that is the distribution on Σ = {x ∈ [0, 1]m1+m2+p : ∑m2+p

i=1−m1 xi = 1} given by γN1−m1 =
1−∑p+m2

i=2−m1 γ
N
i and

dPNN(γ) = 1
ZN
α

1∑p+m2
i=2−m1

γi≤1(1−
p+m2∑
i=2−m1

γi)
β
2N1−m1−1

p+m2∏
j=2−m1

γ
β
2Ni−1
j 1γj≥0dγj (5)

We deduce the following large deviations principle
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Theorem 11. Assume that Ni/N converges towards αi for all i, with αi = 0 for i /∈ [1, p].
Then, the law of γN satisfies a large deviations principle with scale N and good rate
function Iα given for x ∈ Σ by

Iα(x1−m1 , ..., xp+m2) = β

2

p∑
i=1

αi log xi
αi
.

The proof is a direct consequence of Laplace’s method. We deduce Proposition 10 by
Varadhan’s lemma. �

Lemma 12. For θ ≥ 0, η = (η1−m1 < · · · < ηp+m2) and αi ∈ (R+)p such that ∑p
i=1 αi = 1,

J(θ, η) = sup
γi≥0∑
γi=1

θ
p+m2∑

i=−m1+1
ηiγi +

p∑
i=1

αi ln
γi
αi


only depends on ηp+m2 , θ and µ = ∑p

i=1 αiδηi. It is given by

J(θ, η) = J(µ, θ, ηp+m2) = K (µ, θ, ηp+m2 , v(µ, θ, ηp+m2))

with
K(µ, θ, λ, v) = θλ+ (v − λ)Gµ(v)− ln |θ| −

∫
ln |v − x|dµ(x)− 1

and

v(µ, θ, λ) =
{

λ if Gµ(λ) ≤ θ,
G−1
µ (θ) if Gµ(λ) > θ.

Proof. J(θ, η) is the supremum of

Ip+m2
θ,η (γ) := θ

p+m2∑
i=−m1+1

ηiγi +
p∑
i=1

αi ln
γi
αi
. (6)

The entropic term in Ip+m2
θ,η does not depend on (γi, i < 1 or i > p), and the first term

increases when we take them all equal to zero except γm2+p. Hence, the maximum is taken
at γi = 0 for i < 1 or i ∈ [p + 1, p + m2 − 1]. Then, putting γp+m2 = 1 −∑p

i=1 γi we see
that we need to optimize

Iθ,η(γ) = θηp+m2 +
{
θ

p∑
i=1

(ηi − ηp+m2)γi +
p∑
i=1

αi ln
γi
αi

}
over γi ≥ 0,∑p

i=1 γ1 ≤ 1. We see that the critical point of Iθ,η(γ) is

γ∗i = αi
θ(ηp+m2 − ηi)

, 1 ≤ i ≤ p, γ∗p+m2 = 1−
p∑
i=1

γ∗i = 1− 1
θ
Gµ(ηp+m2)

provided ∑p
i=1 γ

∗
i = 1

θ
Gµ(ηp+m2) ≤ 1. For θ < Gµ(ηp+m2), the supremum is achieved at

γ∗∗i = αi
θ(G−1

µ (θ)− ηi)
, 1 ≤ i ≤ p, γ∗∗p+m2 = 0

This gives the announced formula. �
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3.2. Limiting 2-d spherical integral. We next consider the bi-dimensional case where
(e, f) are two orthonormal vectors following the uniform law in the sphere.

Proposition 13. Let θ1 ≥ θ2 ≥ 0. Then, if Np+m2 = 1,

lim
N→∞

1
N

logE
[
exp

(
βN

2 (θ1〈e,XNe〉+ θ2〈f,XNf〉)
)]

= β

2 (J(µ, θ1, ηp+m2) + J(µ, θ2, ηp+m2−1)) .

If Nm+p2 ≥ 2,

lim
N→∞

1
N

logE
[
exp

(
βN

2 (θ1〈e,XNe〉+ θ2〈f,XNf〉)
)]

= β

2 (J(µ, θ1, ηp+m2) + J(µ, θ2, ηm+p2)) .

Proof. We first assume that Np+m2 = 1. We can write :

E
[
exp

(
N
β

2 (θ1〈e,XNe〉+ θ2〈f,XNf〉)
)]

= E
[
exp

(
N
β

2 θ1〈e,XNe〉
)
E
[
exp

(
β

2 θ2〈f,X(e)
N f〉

) ∣∣∣∣∣e
]]

where X(e)
N = Pe⊥XNPe⊥ if Pe⊥ = I − ee∗ is the orthogonal projection onto the ortho-

complement of e. We can see X(e)
N as a (N − 1) × (N − 1) matrix living in V ect(e)⊥.

Its largest eigenvalue χ belongs to [ηp+m2−1, ηp+m2 ] and writing that the corresponding
eigenvector v ∈ V ect(e)⊥ satisfies X(e)

N v = χv and 〈e, v〉 = 0, we find that χ belongs to
[ηp+m2−1, ηp+m2 ] must satisfy

p+m2∑
i=1−m1

γi(e)
χ− ηi

= 0 (7)

if there is a solution in this interval where γi(e) = ∑
j∈Ii |〈vj, e〉|2 with vj the jth eigenvector

of XN . If there is no solution (which can happen only if γp+m2(e) = 0) then χ = ηp+m2

if the rational function is positive on this interval and χ = ηp+m2−1 if it is negative.
Note that χ = χ(γ(e)) is a continuous function of γ(e) and denote this function χ(γ(e)).
Moreover, the spectral measure of X(e)

N converges towards µ, the limiting spectral measure
of XN by Weyl interlacing property. Therefore, when γ(e) converges towards κ, and since
the empirical measure of X(e)

N converges toward the same limit that the empirical measure
of XN ,

lim
N→∞

1
N − 1 lnE[eθ2N

β
2 〈f,XNf〉|e] = β

2J(µ, x, χ(κ)).

Moreover, the right hand side depends continuously on κ (since J is continuous in χ and
χ in κ). We now can apply the fact that γN follows a large deviations principle, see
Theorem 11, to conclude that
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lim 1
N

logE[exp
(
N
β

2 (θ1〈e,XNe〉+ θ2〈f,XNf〉)
)

]

= β

2 sup
γ∈(R+)p+m1+m2 ,

∑
γi=1

J(µ, θ2, χ(γ)) +
p∑
i=1

αi log γi
αi

+
p+m2∑
i=1−m1

θ1ηiγi


Since J is bounded and due to the continuity of γ, we can change the domain of the
sup to (R+,∗)p+m1+m2 . We next complete the proof by computing the right hand side and
showing it equals the sum of the two limiting spherical integrals as stated. We first denote
by γ̃i = γi|χ − ηi|−1 with χ = χ(γ). By definition we have γ̃i > 0, χ ∈ (ηp+m2−1, ηp+m2)
and (7) holds so that

γ̃p+m2 =
p+m2−1∑
i=1−m1

γ̃i,
p+m2−1∑
i=1−m1

(χ− ηi)γ̃i + (ηp+m2 − χ)γ̃p+m2 = 1

This simplifies into the condition

γ̃p+m2 =
p+m2−1∑
i=1−m1

γ̃i, ηp+m2 γ̃p+m2 −
p+m2−1∑
i=1−m1

ηiγ̃i = 1 (8)

which is independent of χ. We thus first take the supremum over χ ∈ [ηp+m2−1, ηp+m2 ] of

I(χ, γ̃) = J(µ, θ2, χ) +
p∑
i=1

αi log[|ηi − χ|
γ̃i
αi

]− θ1(χ− ηp+m2)ηp+m2 γ̃p+m2

+
p+m2−1∑
i=1−m1

θ1(χ− ηi)ηiγ̃i

= H(χ) +
p∑
i=1

αi log γ̃i
αi

+ θ1η
2
p+m2 γ̃p+m2 −

p+m2−1∑
i=1−m1

θ1η
2
i γ̃i

with

H(χ) = J(µ, θ2, χ) +
p∑
i=1

αi log |ηi − χ| − χθ1. (9)

Recall the formula for J from Lemma 12. When θ2 ≤ Gµ(χ), that is χ ≤ G−1
µ (θ2), J

does not depend on χ and the function H increases till G−1
µ (θ1) and decreases afterwards.

When θ2 ≥ Gµ(χ), that is χ ≥ G−1(θ2), Lemma 12 gives

H(χ) = θ2χ−
p∑
i=1

αi ln(χ− ηi)− ln θ2 − 1 +
p∑
i=1

αi log |ηi − χ| − χθ1

= χ(θ2 − θ1)− ln θ2 − 1
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which is decreasing since θ1 > θ2. Therefore, H increases till G−1
µ (θ1) and decreases

afterwards. As a consequence,

max
χ∈[ηp+m2−1,ηp+m2 ]

H(χ) =


H(ηp+m2−1) if G−1

µ (θ1) ≤ ηp+m2−1,
H(G−1

µ (θ1)) if G−1
µ (θ1) ∈ [ηp+m2−1, ηm+p2 ],

H(ηp+m2) if G−1
µ (θ1) > ηp+m2 .

(10)

Let us also optimize on γ̃ satisfying (8) the function

L(γ̃) =
p∑
i=1

αi log[ γ̃i
αi

] + θ1η
2
p+m2 γ̃p+m2 −

p+m2−1∑
i=1−m1

θ1η
2
i γ̃i .

Replacing γ̃p+m2 by ∑p+m2−1
i=1−m1 γ̃i we get

L(γ̃) =
p∑
i=1

αi log[ γ̃i
αi

] + θ1

p+m2−1∑
i=1−m1

(η2
p+m2 − η

2
i )γ̃i

with by (8), ∑(ηp+m2− ηi)γ̃i = 1. We may again do the change of variables γ̄i = (ηp+m2−
ηi)γ̃i which are non negative and with mass one by (8). We get by (8)

L(γ̃) =
p∑
i=1

αi log[ γ̄i
αi(ηp+m2 − ηi)

] + θ1

p+m2−1∑
i=1−m1

(ηp+m2 + ηi)γ̄i

=
p∑
i=1

αi log[ γ̄i
αi(ηp+m2 − ηi)

] + θ1

p+m2−1∑
i=1−m1

ηiγ̄i + θ1ηp+m2

= Ip+m2−1
θ1,η (γ̄) +

p∑
i=1

αi log[ 1
(ηp+m2 − ηi)

] + θ1ηp+m2

where Ip+m2−1
θ1,η is defined as in (6) with largest outlier ηp+m2−1. Its maximum gives

J(µ, θ1, ηp+m2−1). We thus get

maxL =
p∑
i=1

αi log[ 1
(ηp+m2 − ηi)

] + θ1ηp+m2 + J(µ, θ1, ηp+m2−1)

We finally compute max I(χ, γ̃) = maxL(γ̃) + maxH(χ).
• For G−1(θ1) ≤ ηp+m2−1 ≤ ηp+m2 , we check that J(µ, θ1, ηp+m2) equals

J(µ, θ1, ηp+m2−1) +
∑

αi ln
|ηi − ηp+m2−1|
|ηi − ηp+m2|

+ θ1(ηp+m2 − ηp+m2−1) (11)

so that by (10) we find

max I = J(µ, θ1, ηp+m2) + J(µ, θ2, ηp+m2−1) .

• ForG−1
µ (θ1) ∈ [ηp+m2−1, ηm+p2 ], J(µ, θ2, G

−1
µ (θ1)) = J(µ, θ2, G

−1
µ (θ2)) = J(µ, θ2, ηp+m2−1)

since θ1 > θ2 and ηp+m2−1 < G−1
µ (θ1) < G−1

µ (θ2). Moreover as θ1 > Gµ(ηp+m2),

maxL = J(µ, θ1, ηp+m2) + J(µ, θ1, ηm2+p−1) + ln θ1 + 1
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which again does not depend on ηm2+p−1. Hence
max I = J(µ, θ2, ηp+m2−1) +

∑
αi ln |ηi −G−1

µ (θ1)| − θ1G
−1
µ (θ1)

+J(µ, θ1, ηp+m2) + J(µ, θ1, G
−1(θ1)) + ln θ1 + 1

= J(µ, θ2, ηp+m2−1) + J(µ, θ1, ηp+m2)

• For G−1
µ (θ1) > ηm+p2 , we compute

max I = J(µ, θ2, ηp+m2) + J(µ, θ1, ηp+m2−1)
= J(µ, θ2, ηp+m2−1) + J(µ, θ1, ηp+m2)

since θ2 < θ1 < Gµ(ηp+m2) < G(ηp+m2−1) so that the above supremum does not
depend on the outliers.

In the case where Np+m2 ≥ 2, we have χ = ηp+m2 by Weyl interlacing property and
therefore it does not depend on the choice of γ. The result follows immediately after
conditioning as in the proof above. �

A similar (but easier) argument shows that

Proposition 14. Let θ1 ≥ 0 ≥ θ2. Then,

lim
N→∞

1
N

logE
[
exp

(
βN

2 (θ1〈e,XNe〉+ θ2〈f,XNf〉)
)]

= β

2 (J(µ, θ1, ηp+m2) + J(µ, θ2, η1−m1)) .
Here J is extended to negative values of θ2 by putting

J(µ, θ2, η1−m1) = K (µ, θ2, η1−m1 , v(µ, θ2, η1−m1))
with K as in Lemma 12 and for θ ≤ 0, η ≤ lµ,

v(µ, θ, λ) =
{

λ if Gµ(λ) ≥ θ,
G−1
µ (θ) if Gµ(λ) < θ.

The formula for J for negative θ can simply be found by replacing XN by −XN .

3.3. Limiting k-d spherical integrals. We now consider more general k-dimensional
spherical integrals with k ≥ 2. In the sequel we let λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 0 be the limit
of the k largest outliers of XN counted with multiplicity one, and λ−1 ≤ · · · ≤ λ−` ≤ 0 be
the limit of the ` smallest outliers of XN counted with multiplicity one. With the previous
notations, λi = ηp+m2 for i ∈ [1, Np+m2 ], λi = ηp+m2−1 for i ∈ [Np+m2+1, Np+m2+Np+m2−1].

Proposition 15. Fix two integer numbers k and `. Let (e1, . . . ek, e−1, . . . e−`) be k + `
orthonormal vectors following the uniform law in the sphere and assume that the sequence
XN has the form described at the beginning of this section. Let θ1 ≥ θ2 ≥ · · · ≥ θk ≥ 0 ≥
θ−` ≥ · · · ≥ θ−1. Then

lim
N→∞

1
N

logE
exp

βN
2

k∑
i=−`,i 6=0

θi〈ei,XNei〉


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= β

2

(
k∑
i=1

J(µ, θi, λi) +
∑̀
i=1

J(µ, θ−i, λ−i)
)
.

Proof. For the sake of simplicity we will assume the outliers λ1, ..., λk and λ−1, ..., λ−` are
distinct. The general case can be deduced by equicontinuity of the spherical integral. We
will prove this proposition by induction over k+ `. We know it is true for k+ ` ≤ 2 by the
previous section. By symmetry we can assume the proposition true for (`, k− 1) and it is
enough to show it still holds for (`, k). Thus we will set ηp+m2−i+1 = λi for i ∈ [1, k], and
η−m1+i = λ−i and we will assume Np+m2−i = 1 for i ∈ [1, k] and N−m1+i = 1 for i ∈ [1, `].
We proceed as in the 2-dimensional case by conditioning on the vector e1 and so we have
:

E
[
exp

(
βN
2
∑k
i=−`,i 6=0 θi〈ei,XNei〉

)]
=

E
[
exp

(
βN
2 θ1〈e1,XNe1〉

)
E
[
exp

(
βN
2
∑k

i=−`,i 6=0
i6=1

θi〈ei,X(e1)
N ei〉

) ∣∣∣∣e1

]]

As previously, the eigenvalues of X(e1)
N (seen as a N − 1×N − 1 matrix) are interlaced

with those of XN . Thus if we denote χj the j-th largest eigenvalue of X(e1)
N , χj is the

unique solution in the interval [ηp+m2−j, ηp+m2−j+1] of the equation :

p+m2∑
i=1−m1

γi(e)
χj − ηi

= 0 (12)

for j ∈ [1, k− 1]. The same equation holds for the ` smallest eigenvalues below the bulk :
if we denote χ−j the j-th smallest eigenvalue of X(e)

N , it is solution of the same equation
in [η−m1+j, η−m1+j+1]. Observe that unless γi(e) vanishes, χi can not be equal to ηi. So,
if we denote for i = −m1 + l + 1, ..., p + m2 − k, δi the solution of the same interlacing
equation in [ηi, ηi + 1], up to diagonalization, X(e1)

N has the following form :

X(e1)
N = diag(χ−1, ..., χ−l, η−m1+l+1︸ ︷︷ ︸

N−m1+l+1−1

, δ−m1+l+1, η−m1+l+2︸ ︷︷ ︸
N−m1+l+2−1

, ..., ηp+m2−k︸ ︷︷ ︸
Np+m2−k−1

, δp+m2−k, χk−1, ..., χ1)

where the δj and the χi being continuous functions of γ(e). If we denote χi(κ) the value
of χi when γ(e) = κ, we deduce by induction and using the continuity in Remark 9 that
when γ(e1) converges toward κ :

lim
N→∞

1
N − 1 lnE

exp
βN

2

k∑
i=−`,i 6=0,1

θi〈ei,X(e1)
N ei〉

 ∣∣∣∣e1

 = β

2

k∑
i=−`,i 6=0,1

J(µ, θ, χi(κ))

Then, using again that γN satisfies a large deviations principle we can write that :
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lim
N→∞

1
N

lnE

exp
βN

2

k∑
i=−`,i 6=0

θi〈ei,XNei〉

 (13)

= β

2 sup
γ∈(R+)p+m1+m2 ,

∑
γi=1

{ −1∑
i=−`

J(µ, θi, χi(γ)) +
k∑
i=2

J(µ, θi, χi−1(γ))

+
p∑
i=1

αi log γi
αi

+
p+m2∑
i=1−m1

θ1ηiγi

}
By continuity, taking this supremum only on the set of γ summing up to 1 and such

that γi > 0 does not change its value. Notice that for such γ we have for all i and j
χi(γ) 6= ηj. We set I−j =]η−m1+j, η−m1+j+1[ for j = 1, ..., ` and Ij =]ηm2+p−j, ηm2+p−j+1[
for j = 1, ..., k − 1 and we define :

D =
{

(γ, χ) ∈
k−1∏

j=−`,j 6=0
Ij×(R+,∗)m1+m2+p :

∑
i

γi = 1,
∑
i

γi
χj − ηi

= 0∀j ∈ [−`, k−1]\{0}
}

Therefore we have :

lim
N→∞

1
N

lnE

exp
βN

2

k∑
i=−`,i 6=0

θi〈ei,XNei〉

 (14)

= β

2 sup
(χ,γ)∈D

{ −1∑
i=−`

J(µ, θi, χi) +
k∑
i=2

J(µ, θi, χi−1) +
p∑
i=1

αi log γi
αi

+
p+m2∑
i=1−m1

θ1ηiγi

}
For i = −m1 + `, ...,m2 + p− k, we set :

γ̄i =
∏`
j=1(η−m1+j − ηi)

∏k−1
j=1(ηm2+p−j+1 − ηi)∏`

j=1(χ−j − ηi)
∏k−1
j=1(χj − ηi)

γi

We have that if γi > 0 for all i then γ̄i > 0 for all i and γ̄i vanishes at the outliers. We
want to prove that this definition provides a one to one correspondance between the set
D of parameters (χ, γ) and the set D̄ parameters (χ, γ̄) defined as follows :

D̄ =
{

(χ, γ̄) ∈
k−1∏

j=−`,j 6=0
Ij × (R+,∗)m1+m2+p−k−`+1,

∑
i

γ̄i = 1
}

Note that γ̄ lives a priori in a set of k + `− 1 dimension smaller but γ was satisfying as
well k + `− 1 additional equations. First, let us prove that if (χ, γ) ∈ D the γ̄′is sum up
to 1. We let for a real number X, F to be the rational function

F (X) =
∏`
j=1(η−m1+j −X)∏k−1

j=1(ηm2+p−j+1 −X)∏`
j=1(χ−j −X)∏k−1

j=1(χj −X)
so that γ̄i = F (ηi)γi for i ∈ [−m1 + `,m2 + p− k] and F (ηi) = 0 for the other values of i.
Let us decompose F in partial fractions : as it goes to one at infinity, we find

F (X) = 1 +
k−1∑

j=−`,j 6=0

aj
χj −X
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for some real numbers aj. Then, since F (ηi) = 0 for i 6= −m1 + `, ...,m2 + p− k we have :
m2+p−k∑
i=−m1+`

γ̄i =
m2+p∑

i=−m1+1
F (ηi)γi

=
m2+p∑

i=−m1+1
γi +

k−1∑
j=−`,j 6=0

aj

m2+p∑
i=−m1+1

γi
χj − ηi

= 1

where we used the interlacing relations. Therefore, since when χ is fixed the fonction
γ 7→ γ̄ is an affine map between the affine subspace E of Rp+m1+m2 defined by the
k + ` − 1 interlacing relations and the condition of sum one and the affine subspace F
of Rp+m1+m2−k−`+1 defined by the condition of sum one. Since these spaces have the
same dimension to conclude we only need to prove that this map is injective and that
for all γ ∈ E, γ̄i > 0 for all i implies γi > 0 for all i. To prove injectivity first notice
that γi = F (ηi)−1γ̄i for i ∈ [−m1 + `,m2 + p − k]. We next show how to reconstruct
γi for i ∈ [−m1 + `,m2 + p − k]c, and more precisely i ∈ [m2 + p − k + 1,m2 + p]. To
this end, for j = 1, ..., k − 1, we let Gj(X) = F (X)

(ηp+m2−j+1−X) and for j = 1, ..., `, we let
G−j(X) = F (X)

(η−m1+j−X) . Let us suppose j > 0 (the j < 0 case is similar). Then again
decomposing Gj in partial fractions, we have

Gj(X) =
k−1∑

j=−`,j′ 6=0,j

bj′

χj′ −X

for some real numbers bj. Again by the interlacing relations
p+m2∑

i=−m1+1
Gj(ηi)γi = 0 .

But we can also write :
p+m2∑

i=−m1+1
Gj(ηi)γi =

p+m2−k∑
i=−m1+`

γ̄i
χj − ηi

+Gj(ηp+m2−j+1)γp+m2−j+1

so that we deduce

γp+m2−j+1 = −(
p+m2−k+1∑
i=−m1=`

γ̄i
χj − ηi

)/Gj(ηp+m2−j+1) .

As a consequence, the map γ 7→ γ̄ is injective. Furthermore if γ̄i > 0 for all i, then γj > 0
since Gj(ηj) < 0. The same remains true for j negative. Therefore we have that the
change of variables from (χ, γ) ∈ D to (χ, γ̄) ∈ D̄ is one to one. But before changing
variables, let us compare ∑ ηiγi and

∑
ηiγ̄i. We use the following decomposition :

XF (X) = X + S +
k−1∑

j=−`,j 6=0

cj
χj −X
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for some real numbers cj and where

S =
k−1∑

j=−`,j 6=0
χj −

∑̀
j=1

η−m1+j −
k−1∑
j=1

ηm2+p−j+1 .

We deduce that
m2+p−k+1∑
−m1+l

ηiγ̄i =
m2+p∑
−m1+1

ηiF (ηi)γi =
m2+p∑
−m1+1

ηiγi + S

where we used again the interlacing relationships and the fact that the γi’s sum up to
1. Coming back to (13), we have to take the supremum of the following function I for
(χ, γ̄) ∈ D̄:

I(γ̄, χ) =
k−1∑
j=1

[
J(µ, θj+1, χj) +

p∑
i=1

αi log |χj − ηi| −
p∑
i=1

αi log |ηm2+p−j+1 − ηi|
]

+
−1∑
j=−`

[
J(µ, θj, χj) +

p∑
i=1

αi log |χj − ηi| −
p∑
i=1

αi log |η−m1−j − ηi|
]

+
p∑
i=1

αi ln
γ̄i
αi

+ θ1

 p+m2∑
i=−m1+1

ηiγ̄i −
k−1∑

j=−`,j 6=0
χj +

∑̀
j=1

η−m1+j +
k−1∑
j=1

ηm2+p−j+1


Therefore we have :

I(γ̄, χ) =
k−1∑
i=1

H(χi, θi+1) +
−1∑
i=−`

H(χi, θi) +
p∑
i=1

αi log γ̄i
αi

+ θ1

p+m2−k+1∑
i=m1−`

ηiγ̄i

−
k−1∑
j=1

p∑
i=1

αi log |ηm2+p−j+1 − ηi| −
−1∑
j=−`

p∑
i=1

αi log |η−m1−j − ηi|

+ θ1
∑̀
j=1

η−m1+j + θ1

k−1∑
j=1

ηm2+p−j+1

where we set :

H(χ, θ) = J(µ, θ, χ) +
p∑
i=1

αi ln |χ− ηi| − χθ1 .

The supremum over γ̄ and χ are now decoupled and the χi belongs to ]η−m1+i, η−m1+i+1[
if i ∈ [−`,−1] and ]ηp+m2−i+1, ηp+m2−i+2[ if i ∈ [1, k]. As in the two-dimensional case we
can compute for i = 2, ..., k,

sup
χ∈]ηp+m2−i+1,ηp+m2−i+2[

H(χ, θi) =


H(ηp+m2−i+1, θi) if G−1

µ (θ1) ≤ ηp+m2−i+1,
H(G−1

µ (θ1), θi) if G−1
µ (θ1) ∈ [ηp+m2−i+1, ηm+p2−i+2],

H(ηp+m2−i+2, θi) if G−1
µ (θ1) > ηp+m2−i+2.

Moreover, for i = 1, ..., `, H(χ, θ−i) is a decreasing function of χ since θ−i is negative and
so
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sup
χ∈]η−m1+i,η−m1+i+1[

H(χ, θ−i) = H(η−m1+i, θ−i) .

It remains to optimize the sum of the third and fourth term in I(γ̄, χ). But this sum is
equal to Ip+m2−k+1

θ1,ηp+m2−k+1
(γ̄), see (6). Thus, taking the supremum for γ̄i > 0 and ∑ γ̄i = 1

gives J(µ, θ1, ηp+m2−k+1).
To conclude, we need to look at the position of G−1

µ (θ1) relatively to the k largest
outliers. Let us denote Hi = maxH(., θi) for i < 0 and Hi = maxH(., θi+1) for i > 0. We
have

sup I =
k−1∑
j=1

(
Hj −

∑
αi log |ηi − ηp+m2−j+1|+ θ1ηp+m2−j+1

)

+
∑̀
j=1

(
H−j −

∑
αi log |ηi − η−m1+j|+ θ1η−m1+j

)
+ J(µ, θ1, ηp+m2−k+1)

Here we will treat the case where G−1
µ (θ1) ∈ [ηp+m2−k+1, ηp+m2 ] which is the most complex

one. First of all, since for j = 1, ..., ` H−j = H(η−m1+j, θ−j), we have that in the second
sum, the term of index j is indeed equal to J(µ, θ−j, η−m1+j). If j′ is the index such that,
G−1
µ (θ1) ∈ [ηp+m2−j′ , ηp+m2−j′+1] then for j < j′, Hj = H(ηp+m2−j, θj+1) and the term of

index j of the first sum is :

J(µ, θj+1, ηp+m2−j) +
∑

αi log |ηp+m2−j − ηi|
|ηp+m2−j+1 − ηi|

+ θ1(ηp+m2−j − ηp+m2−j+1)

The term of index j′ is equal to :

J(µ, θj+1, G
−1
µ (θ1)) +

∑
i

αi log
|G−1

µ (θ1)− ηi|
|ηp+m1−j′+1 − ηi|

+ θ1(ηp+m2−j′ −G−1
µ (θ1))

And the terms j > j′ are equal to J(µ, θj+1, ηp+m2−j+1). Since θj+1 ≤ θ1, G−1
µ (θj+1) ≥

G−1
µ (θ1), so we have that for j > j′

J(µ, θj+1, ηp+m2−j+1) = J(µ, θj+1, ηp+m2−j) and J(µ, θj′+1, G
−1
µ (θ1)) = J(µ, θj′+1, ηp+m2−j′)

Therefore the whole sum can be simplified as follows :

max I =
k−1∑
j=1

J(µ, θj+1, ηp+m2−j) +
∑̀
j=1

J(µ, θ−j, η−m1+j) +
∑
i

αi ln
|G−1

µ (θ1)− ηi|
|ηp+m2 − ηi|

+ θ1(ηp+m2 −G−1
µ (θ1)) + J(µ, θ1, ηp+m2−k+1)

Then we notice that J(µ, θ1, ηp+m2−k+1) = J(µ, θ1, G
−1
µ (θ1)) and conclude since :

J(µ, θ1, ηp+m2) = J(µ, θ1, G
−1
µ (θ1)) +

∑
i

αi ln
|G−1

µ (θ1)− ηi|
|ηp+m2 − ηi|

+ θ1(ηp+m2 −G−1
µ (θ1)) .

�
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4. Diffuse spectrum

We next consider the general case where XN is a Hermitian matrix such that

µ̂XN
= 1
N

N∑
i=1

δλi

converges towards a probability measure µ with support with rightmost point rµ and
leftmost point lµ which are assumed to be finite. Let λN1 ≥ λN2 ≥ · · · ≥ λNk ≥ rµ be the
k largest outliers of XN counted with multiplicity one, λNN ≤ · · · ≤ λNN−`+1 ≤ 0 be the
smallest outliers of XN with multiplicity one (but eventually equal). Assume that

lim
N→∞

λNi = λi > rµ for i ∈ [1, k], lim
N→∞

λNN−i+1 = λ−i < lµ for i ∈ [1, `] .

If the above assumption is true for the k largest outliers and we want to study the spherical
integral with non-negative θi’s while relaxing the assumption on the smallest ones, we still
need to assume that the latter are bounded.

We are going to prove that

Proposition 16. Fix two integer numbers k, `. Let θ1 ≥ θ2 ≥ · · · ≥ θk ≥ 0 ≥ θ−` ≥ · · · ≥
θ−1. Then

lim
N→∞

1
N

logE
exp

βN
2

k∑
i=−`,i 6=0

θi〈ei,XNei〉


= β

2

(
k∑
i=1

J(µ, θi, λi) +
∑̀
i=1

J(µ, θ−i, λ−i)
)
.

Proof. We first remark that we can assume XN diagonal without loss of generality. In a
first step, we assume that the the partition function of µ is continuous and that XN has
bounded norm. We fix ε > 0 . We know by assumption that for N large enough, the
spectrum of XN is included into [λ−`−ε, λk+ε[. For j ≥ −1 we let nε,Nj be the number of
eigenvalues of XN in [λ−`+jε, λ−`+(j+1)ε[, until the first j so that λ−`+(j+1)ε ≥ λk+ε.
We let Xε

N be the diagonal matrix with eigenvalues λ−` + jε with multiplicity nε,Nj . Since
we assumed the extreme eigenvalues distinct, for N large enough the extreme eigenvalues
of Xε

N are (λi, i ≤ k, λ−j, j ≤ `). nε,Nj /N converges towards µ([λ−` + jε, λ−` + (j + 1)ε])
since we assumed the partition function of µ to be continuous. Hence, Xε

N satisfies the
hypotheses of Proposition 15. Moreover, by definition, for N large enough we know that

‖XN −Xε
N‖ ≤ ε

Therefore, ∣∣∣∣∣∣ 1
N

log
E
[
exp

(
βN
2
∑k
i=−`,i 6=0 θi〈ei,XNei〉

)]
E
[
exp

(
βN
2
∑k
i=−`,i 6=0 θi〈ei,Xε

Nei〉
)]
∣∣∣∣∣∣ ≤ β

2
∑
|θi|ε .

On the other hand, Proposition 15 implies

lim
N→∞

1
N

logE
exp

βN
2

k∑
i=−`,i 6=0

θi〈ei,Xε
Nei〉

 = β

2

 k∑
i=−`,i 6=0

J(µε, θi, λi)

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with µε = ∑
j µ([λ−` + jε, λ−` + (j + 1)ε])δλ−`+jε. By continuity of µ → J(µ, θi, λi), see

[18] or the Appendix, and the weak convergence of µε towards µ, the conclusion follows.
Finally, to remove the condition that µ has a continuous partition function we note

that we can always add a small matrix to XN and its contribution will go to zero as its
norm goes to zero after N goes to infinity. We again assume XN diagonal and replace
it by the diagonal matrix with the same outliers and in the bulk the entries are added
independent uniform variables with uniform distribution on [0, ε]. Again Xε

N −XN has
norm bounded by ε. Moreover, the spectral measure of Xε

N converges towards µ∗1[0,ε]du/ε
whose partition function is continuous. Hence, we can apply our result to this new matrix
and then let ε go to zero to conclude. �

5. Applications to large deviations for the extreme eigenvalues of
random matrices

5.1. Universality of the large deviations for the k extreme eigenvalues of Wigner
matrices with sharp sub-Gaussian entries. In this section, we prove Theorem 3.
The proof follows the ideas of [13] quite closely: we simply sketch the main arguments
and changes. First note that it is enough to prove a weak large deviations principle
thanks to our assumption which insures that exponential tightness holds. Moreover. let
λ̄N = (λ1, . . . , λk, λN−k, . . . , λN) be the k extreme eigenvalues of XN . To get a weak large
deviations upper bound, we tilt the measure by spherical integrals as above : if (ei)−k≤i≤k
follows the uniform law on the set of 2k orthonormal vectors on the sphere (θ0 = 0 and
e0 = 0 is added to shorten the notations), θi are real numbers of the same sign than
i ∈ [−k, k] to be chosen later, we write

P
(
‖λ̄N − x̄‖2 ≤ ε

)
≤ EXN

1‖λ̄N−x̄‖2≤ε
Ee
[
exp

(
βN
2
∑k
i=−k θi〈ei,XNei〉

)]
Ee
[
exp

(
βN
2
∑k
i=−k θi〈ei,XNei〉

)]


≤ e−N
β
2 F (x̄,θ̄)+o(ε)NEXN

Ee

exp
βN

2

k∑
i=−k

θi〈ei,XNei〉



where

F (x̄, θ̄) =
k∑

i=−k
J(σ, θi, xi) .

We used in the second line that by Theorem 22, the spherical integrals are uniformly
continuous and are asymptotically given by F (x̄, θ̄), and our assumption that the spectral
measure of XN converges towards the semi-circle law σ faster than any exponential. Here
o(ε) goes to zero when ε does. We also used the bound

EXN

[
1‖λ̄N−x̄‖2≤εEe

[
exp

(
βN
2
∑k
i=−k θi〈ei,XNei〉

)]]
EXN

[
Ee
[
exp

(
βN
2
∑k
i=−k θi〈ei,XNei〉

)]] ≤ 1 (15)
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We next compute the expectation of the spherical integral by using that our entries are
sharp-subgaussian :

EXN

Ee
exp

βN
2

k∑
i=−k

θi〈ei,XNei〉


≤ Ee[exp{β4N

k∑
i=−k

∑
k≤j

2k 6=j|
∑

θiei(k)ei(j)|2}] = exp{β4

k∑
j=−k

θ2
j}

We hence get the upper bound

lim sup
ε→0

lim sup
N→∞

1
N

lnP
(
‖λ̄N − x̄‖2 ≤ ε

)
≤ −β2 sup

θi

{
k∑

j=−k

θ2
j

2 − F (x̄, θ̄)}

where we take the supremum over non-negative θi for i ∈ [1, k] and non-positive θi’s for
i ∈ [−k,−1]. Finally we observe that the supremum decouples and recall from [13, Section
4.1] that the supremum over each θi of θ2

i /2− J(σ, θi, xi) gives
∫ |xi|

2
√
t2 − 4dt. To get the

lower bound, we need to show that there exists θ̄ = (θ−k, . . . , θ−1, θ1, . . . , θk) such that
(15) is almost an equality in the sense that for every ε > 0

lim inf
N→∞

1
N

ln
EXN

[
1‖λ̄N−x̄‖2≤εEe

[
exp

(
βN
2
∑k
i=−k θi〈ei,XNei〉

)]]
EXN

[
Ee
[
exp

(
βN
2
∑k
i=−k θi〈ei,XNei〉

)]] ≥ 0 (16)

and

lim inf
N→∞

1
N

lnEXN

Ee
exp

βN
2

k∑
i=−k

θi〈ei,XNei〉

 ≥ β

2

k∑
j=−k

θ2
j . (17)

In both cases we use the fact that under the uniform measure, the vectors ei are delocalized
with overwhelming probability, namely if V κ

N = ∩1≤i≤k{‖ei‖∞ ≤ N−1/4−κ} then P(V κ
N)

goes to one for any κ ∈ (0, 1/4). Therefore, to prove (17) we notice that

EXN

Ee
exp

βN
2

k∑
i=−k

θi〈ei,XNei〉


≥ Ee

1e∈V κN
∏
i≤j

E[exp{β2N21i 6=j
∑
r

θr<(er(i)ēr(j)Xij)]


≥ exp{N β

2

k∑
r=−k

θ2
j +O(N1−2κ)}P(V κ

N)

where we used that ∑r θrer(i)ēr(j) is of order at most N−1/2−2κ on V ε
N so that we can

expand the Laplace transform of the entries around the origin. This proves (17). To prove
(16) we notice that it is enough to show that for N large enough

inf
ē∈V εN

EXN

[
1‖λ̄N−x̄‖2≤ε exp

(
βN
2
∑k
i=−k θi〈ei,XNei〉

)]
EXN

[
exp

(
βN
2
∑k
i=−k θi〈ei,XNei〉

)] ≥ 1
2 .

But under the law tilted by exp
(
βN
2
∑k
i=−k θi〈ei,XNei〉

)
, XN still has independent entries.

We can compute its mean and covariance under the tilted law and using again that
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r θrer(i)ēr(j) is of order at most N−1/2−2κ, we see that its mean is ∑ θieie

∗
i and its

covariance is close to 1/N . We deduce as in [13] and the BBP transition [2, 20] that
under this tilted law the outliers of XN are given by θi + θ−1

i : it is therefore sufficient to
choose θi = 1

2(xi ±
√
x2
i − 4). We refer the reader to [13] for more details.

5.2. Universality of the large deviations for the k largest eigenvalues of Wishart
matrices with sharp sub-Gaussian entries. We here prove Theorem 6 and, as in
the previous subsection, we will only sketch the changes from the proof in [13]. As
in [13] we will study the largest eigenvalues of the linearized matrix YN of the matrix
N−1/2GL,MG∗L,M :

YN =
(

0L×L 1√
N

GL,M
1√
N

G∗L,M 0M×M

)

Up to a factor (N/L)1/2 = ((1 + α) + o(N−κ))1/2 YN is the linearization of WL,M . The
main difference with the proof for Wigner matrices will be that computing the asymptotics
of the annealed spherical integral requires more skill as it depends on the large deviations
for the scalar products of projections of vectors uniformly distributed on the sphere : we
can not merely assume that they are delocalized since this could a priori change the large
deviations weight. To be more precise, let ΛN be the annealed spherical integral given for
θ̄ = (θ1, . . . , θk) ∈ (R+)k by

ΛN(θ̄) = 1
N

logEXN

[
Ee
[
exp

(
βN

2

k∑
i=1

θi〈ei,YNei〉
)]]

.

We shall prove that

lim
N→∞

1
N

log ΛN(θ̄) = Λ(θ̄) =
k∑
i=1

Λ(θi) (18)

with, if α′ = (1 + α)−1, and with α the limit of M/N ,

Λ(θ) = sup
a∈]0,1[

(
θ2a(1− a) + α′ ln a

α′
+ (1− α′) ln 1− a

1− α′
)
.

The above supremum is achieved at xθ,α, as defined in Lemma 3.4 of [13]. We first prove
the upper bound in (18).

eNΛN (θ̄) = EeEY

[[
exp

(
βN

2

k∑
i=1

θi〈ei,YNei〉
)]]

= EeEY

[[
exp

(
β

2

k∑
i=1

∑
l=1,...,L

m=L+1,...,N

θi
√
N<(ei(l)ēi(m)Xl,m)

)]]

≤ Ee
[

exp
(
βN

4
∑

l=1,...,L
m=L+1,...,N

k∑
i,j=1

θiθj<(ei(l)ēi(m)ēj(l)ej(m))
)]



22 ALICE GUIONNET AND JONATHAN HUSSON

where we used that the entries are sharp sub-Gaussian. Now, let us call e(1) the vector of
CL whose coordinnates are the L first coordinates of e and e(2) the vector of CM whose
coordinates are the M last of e. If we let ψ(p)

l,m = 〈e(p)
l , e(p)

m 〉, the upper bound gives :

ΛN(θ̄) ≤ 1
N

logEe
[

exp
(
βN

2

k∑
i,j=1

θiθjψ
(1)
i,j ψ

(2)
j,i

)]

but since the ei are unitary and orthogonal , if we let Ψ(p) = (ψ(p)
i,j )1≤i,j≤k we have Ψ(1) +

Ψ(2) = I2k and so ψ(1)
i,j ψ

(2)
j,i = ψ

(1)
i,j (1i=j − ψ̄(1)

i,j ). Furthermore the Ψ(1) is an element of a
Jacobi ensemble as the following lemma states :

Lemma 17. The distribution of the matrix Ψ(1) when N > k is given by the following
density for the Lebesgue measure on the set of symmetric/Hermitian matrices :

1
Z

det(Ψ(1))β
L−k+1

2 −1 det(Ik −Ψ(1))β
M−k+1

2 −110≤Ψ(1)≤IkdΨ(1)

Proof. Let U be a orthohogonal/unitary N ×N Haar matrix, U1 its L× k top left block.
Then Ψ(1) has the same law as U∗1U1. If we denote Π the matrix diag(1, ..., 1︸ ︷︷ ︸

L times

, 0, ...0) and Π′

the matrix diag(1, ..., 1︸ ︷︷ ︸
k times

, 0, ...0), then U∗1U1 = Π′U∗ΠUΠ′. Then we can apply [6, Theorem

2.2] (up to adapt this theorem to the real case). �

Therefore, using Laplace’s method, we see that the distribution of Ψ(1) satisfies a large
deviations principle with rate function I :

I(M) =

−
β
2

[
1

1+α ln det(M) + α
1+α ln det(Ik −M)

]
− Z if 0 ≤M ≤ Ik,

+∞ otherwise.

where Z is such that min I = 0. As a consequence, Varadhan’s lemma implies that

lim sup ΛN(θ̄) ≤ Λ(θ̄)

where :

Λ(θ̄) = sup
M

[f(M)− I(M)]

with f(M) = β
4
∑k
i,j=1 θiθjMi,j(Ik −M)j,i. We notice by taking M = α′Ik that

Z ≤ −kβ2

(
α logα′ + (1− α′) log(1− α′)

)
.

On the other hand, because det(M) ≤ ∏Mii for any positive self-adjoint matrix M ,

I(M) ≥ −β2

[ k∑
i=1
{α′ ln(Mi,i) + (1− α′) ln(1−Mi,i)}

]
+ Z
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whereas f(M) ≥ β
4
∑k
i=1 θiθjMi,i(Ik −M)i,i since the off-diagonal terms are non-positive

(because M is symmetric and the θi’s non-negative). We deduce (with Mi,i = ai) that

Λ(θ̄) ≤ β

2 sup
(ai)ki=1∈]0,1[k

k∑
i=1

(
θ2
i ai(1− ai) + α′ ln ai

α′
+ (1− α′) ln 1− ai

1− α′
)

=
k∑
i=1

Λ(θi)

To obtain the lower bound on lim infN ΛN(θ̄) as in [13], it is enough to find a sequence
of events V κ

N independent of Ψ(1) such that on these events |ei(l)| ≤ CN−1/4−κ for some
κ > 0 and all i and l since then we will be in the regime where the sharp sub-Gaussian
bound is also a lower bound. Note here that Ψ(2) is determined by Ψ(1), so we only
condition on Ψ(1). To do that let us denote U the k × L matrix with column vectors
(e(1)
i , 1 ≤ i ≤ k). Then

U = (Ψ(1))1/2V

and conditionally to Ψ(1), V = (v1, . . . , vk) follows the uniform law on the set of k or-
thonormal vectors on the sphere SL. We can then let V κ

N = {maxi maxl |vi(l)| ≤ N−1/4−κ}.
On this set, maxi maxl |ei(l)| ≤ CN−1/4−κ so that

ΛN(θ̄) ≥ Ee
[
1e∈V κN exp

(
βN

4 (1 + o(1))
∑

l=1,...,L
m=L+1,...,N

k∑
i,j=1

θiθj<(ei(l)ēi(m)ēj(l)ej(m))
)]

= Ee
[
1e∈V κN exp

(
βN

2

k∑
i,j=1

θiθjψ
(1)
i,j ψ

(2)
j,i

)]
where we expended the Laplace transform of the entries close to the origin. We finally
notice that V κ

N is independent of Ψ(1) and with probability going to one. We can therefore
apply the large deviations principle to deduce that

lim sup ΛN(θ̄) ≥ sup
M

[f(M)− I(M)] .

We finally conclude by takingM diagonal that the above right hand side is bounded below
by ∑Λ(θi), which completes the proof of (18). To deduce the large deviations principle
for the k largest eigenvalues of Wishart matrices, we first obtain a large deviations upper
bound by tilting the measure by the k-dimensional spherical integral. Because it factorizes
as well as Λ(θ̄) the upper bound has a rate function given by the sum of the rate functions
for each outliers. To obtain the large deviations upper bound, we tilt again the measure by
exp(βN2

∑k
i=1 θi〈ei,YNei〉) with ei ∈ V ε

N . Under this tilted measure, we have the following
expectations :

E(e,θ)[YN ] =
k∑
i=1

θi

(
e

(1)
i (e(2)

i )∗ + e
(2)
i (e(1)

i )∗
)

( where we identify CL and CM respectively with CL × {0}M and {0}L × CM). We can
then write

YN = ỸN +
k∑
i=1

θi

(
e

(1)
i (e(2)

i )∗ + e
(2)
i (e(1)

i )∗
)

+ o(1)

where ỸN has the same form as YN under the original measure. Then to identify the
eigenvalues of YN outside the bulk of the limit measure we need to solve the following
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equation

det
(
IN + (ỸN − z)−1

k∑
i=1

θi
(
e

(1)
i (e(2)

i )∗ + e
(2)
i (e(1)

i )∗
))

= 0

Note that the above arguments also show that in Pθ̄-probability Ψ(1) converges towards
the diagonal matrix with entries (xθi,α)1≤i≤k. We also have local laws for (z − ỸN)−1

under Pθ̄. Therefore, if we denote λ̃+ =
√

(1 + α)−1λ+ (which is the rightmost point of
the support of the limit measure of YN), the left hand side converges uniformly on any
band {z ∈ C : λ̃+ + ε ≤ =z ≤ A, |<z| ≤ 1} toward :

g : z 7→
k∏
i=1

(
1− θ2z2xθi,α(1− xθi,α)(1 + α)2GMP (α)((1 + α)z2)GMP (1/α)((1 + α)z2)

)
where MP (α) is the Marchenko-Pastur distribution of parameter α. Using the fact the
these functions are holomorphic, we have the k largest eigenvalue converges toward zθ1,α ≥
zθk,α where zθ,α is defined as the unique solution of

1− θ2xθ,α(1− xθ,α)(1 + α)2z2GMP (α)((1 + α)z2)GMP (1/α)((1 + α)z2) = 0

on ]λ̃+,+∞[ (see [13] for details).

5.3. Universality of the large deviations for the k largest eigenvalues of Hermit-
ian matrices with variance profiles and sharp sub-Gaussian entries. We consider
in this section the setting of Theorem 6, which generalizes the previous subsection. We
will proceed as in [16] and we will first deal with the piecewise constant case with the
supplementary technical assumption that the variance profile is non-negative.

The main point is to prove the following estimate for the annealed spherical integral.

Lemma 18. Let

Λσ
N(θ̄) = 1

N
logEX,e[exp(N

k∑
i=1

θi〈ei,Xσ
Nei〉)]

Then, let σ be piecewise constant and under the assumptions of Theorem 6, for all θi ∈ R+

lim
N→∞

Λσ
N(θ̄) =

k∑
i=1

Λσ(θi)

with, if Rij := σ2
ij,

Λσ(θ) = β

2 sup
ψ∈S

[
θ2

2 〈ψj, Rψj〉+
p∑
i=1

αi log ψ(j)
αi

]
Indeed, let us define for e ∈ SβN−1 and j ∈ [1, p], e(p) the vector of Cαi(N) whose

coordinates are the coordinates of e whose indices lie in I iN . We then define for j = 1, ..., p
the random matrix Ψ(j) = (〈e(j)

i , e
(j)
j 〉). Following the same computations as before and

using the sharp sub-Gaussian character of the entries, we have :

Λσ
N(θ̄) ≤ Ee

[
exp

(
βN

4

k∑
l,m=1

p∑
i,j=1

θlθmΨ(i)
l,mΨ̄(j)

l,mσ
2
i,j

)]
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Notice that the Ψ(j) are Gram matrices (hence self-adjoint and positive) and that their
sum is Ik. There again we will use a slightly improved version of the Lemma 17 to
determine the distribution of the Ψ(j) :

Lemma 19. The joint distribution of the matrices Ψ(1), ...,Ψ(p−1) when α1(N), ..., αp(N) >
k is given by the following density for the Lebesgue measure on the set of symmet-
ric/Hermitian matrices :

1
Z

p−1∏
i=1

(
10≤Ψ(i) det(Ψ(i))β

αi(N)−k+1
2 −1

)
det(Ik −

p−1∑
i=1

Ψ(i))β
αp(N)−k+1

2 −11∑p−1
i=1 Ψ(i)≤Ik

p−1∏
i=1

dΨ(i)

Proof. Here we need an improved version of [6, Theorem 2.2] which states as follows. Let U
be a N ×N Haar-distributed orthogonal or unitary matrix, n0 = 0 < n1 < ... < np = N a
p-uplet of integers and for i ∈ [1, p], π̃i the orthogonal projection on the vector span of the
columns of U with indices between ni−1 +1 and ni. Let π be a constant projection of rank
k. Then, if we identify πSN(R)π (respectively πHN(C)π) to Sk(R) (respectively Hk(C)),
the joint distribution of (M1, ...,Mp−1) = ππ̃1π, ..., ππ̃p−1π has the following density on
SN(R)p−1 ( resp. HN(C)p−1) :

1
Z

p−1∏
i=1

(
10≤Mi

det(Mi)β
mi−k+1

2 −1
)

det(Ik −
p−1∑
i=1

Mi)β
mp−k+1

2 −11∑p−1
i=1 Mi≤Ik

p−1∏
i=1

dMi

where mi = ni − ni−1.
The proof of this result is the same as the proof of [6, Theorem 2.2]. The difference

is that one need to prove that (ππ̃iπ)1≤p−1 has the same law as (Σ−1/2XiΣ−1/2) where
the Xi are independent Gaussian Wishart of parameters (k,mi) and Σ = X1 + ... + Xp.
Once we have this result, we take a Haar-distributed unitary matrix U and we denote
Ui the αi(N) × k matrix extracted from U by taking its k first columns and its rows of
indices in I iN . We denote Π′ = diag(1, ..., 1︸ ︷︷ ︸

k times

, 0, .., 0) and Πi the diagonal matrix with entries

equal to 1 for indices in I iN and 0 elsewhere. Then, since (Ψ(i))1≤p−1 has the same law as
(Π′U∗ΠiUΠ′)i≤p−1, we can use the previous theorem. �

We deduce from this explicit distribution of the p − 1-uplet (Ψ(i))1≤i≤p that it follows
a large deviations principle with rate function :

I((Mi)1≤i≤p−1) =

−
β
2

[∑p
i=1 αi ln det(Mi)

]
− C if ∀i ∈ [1, p], 0 ≤Mi ≤ Ik, and

∑p
i=1Mi = Ik

+∞ otherwise.

Then we have using Varadhan’s lemma :

lim sup
N

Λσ
N(θ̄) ≤ Λσ(θ̄)

where :

Λσ(θ̄) = sup
(Mi)1≤i≤p

[f((Mi))− I((Mi))]
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with f((Mi)) = β
4
∑k
i,j=1 θiθj〈M i,j, RM i,j〉 where R is the p × p matrix (σ2

i,j) and M i,j is
the vector (M1(i, j), ...,Mp(i, j)). But, as before, if d(M) represents the diagonal matrix
with entries (Mii)1≤i≤k we have that

I((Mi)) ≥ I((d(Mi))) and for i 6= j〈M i,j, RM i,j〉 ≤ 0
where the last inequality is due to Assumption 5 which implies ∑p

i=1Mi = I and therefore
that for i 6= j

∑p
l=1M

i,j = 0. Therefore we can again restrict the sup to diagonal matrices
and it then decouples into

Λσ(θ̄) = β

2 sup
(ψi)1≤i≤k∈Sk

[ k∑
j=1

θ2
i

2 〈ψj, Rψj〉+
k∑
j=1

p∑
i=1

αi log ψi(j)
αi

]
=

k∑
j=1

Λσ(θj)

where S := {ψ ∈ (R+)p : ψ1 + ...+ψp = 1}. In particular, since the function ψ 7→ 〈ψ,Rψ〉
is concave on S thanks to Assumption 5, the function optimized is strictly concave and
thus is maximum at a unique ψ. Furthermore ψj only depends on θj so that we will
denote ψj = ψθj . Using again the strict concavity and the implicit function theorem,
we have that the function θ 7→ ψθ is analytic in θ. Furthermore, if we tilt our measure
by EX[exp(N ∑

θi〈ei,Xσ
Nei〉)], the Ψ(i)’s follow a large deviations principle and converges

respectively toward diag(ψθ1(i), ..., ψθk(i)). For the lower bound we restrict the integral
as in the preceding subsection to delocalized vectors with fixed Ψ and conclude similarly.

To prove the large deviations principle, we first observe that the large deviations upper
bound is direct after a tilt by spherical integrals and decoupling of the annealed spherical
integrals. For the large deviations lower bound, we tilt by exp(N ∑k

i=1 θi〈ei,Xσ
Nei〉). Under

this tilted measure Pe,θ̄, we have the following expectation Ee,θ̄[Xσ
N ] = ∑k

i=1 θi
∑p
l,m=1 σ

2
l,me

(l)
i (e(m)

i )∗.
Using the BBP transition phenomenon, the local law for XN as in [16, Lemma 5.6] and
the fact that the Ψ(k) converges in Pθ̄ - probability, we have that the eigenvalues outside
the bulk are asymptotically solution of the following equation in z :

k∏
i=1

det(Ip − θiRD(θi, z)) = 0

where D(θ, z) is defined as in [16, Section 5]. To conclude, it suffices to prove that for
any z1 > ... > zk > rσ, there exists θ1 ≥ ... ≥ θk ≥ 0 such that zi is the unique solution
of det(Ip − θRD(θ, z)) = 0 on [zp,+∞[. We already know thanks again to the proof
of the large deviations lower bound in [16] that there is for every z, a θ such that z is
the largest solution. Let us prove that with Assumption 5, this solution is unique on
]rσ,+∞[. First, one can notice that this assumption implies that the quadratic form
whose matrix is R has signature (1, p − 1) and so it is also true for the quadratic form
whose matrix is

√
D(θ, z)R

√
D(θ, z). Therefore, if we denote ρ(θ, z) the largest eigenvalue

of
√
D(θ, z)R

√
D(θ, z), the equation det(Ip− θiRD(θi, z)) = 0 is equivalent for θ > 0 and

z > rσ to θρ(θ, z) = 1. Since z 7→ ρ(θ, z) is strictly decreasing, the result is then proved.
For the continuous case, we can as in [16, Section 6] approximate our continuous vari-

ance profiles by piecewise constant ones. This approximation step is in fact easier than
in the more general case of [16] since if σ satisfy Assumption 5 then we can approximate
Xσ
N by the X(p)

N defined as follows :
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X(p)
N = σ

(p)
N (i, j)Xi,j√

N

where σ(p)
N (i, j) = ∑p

k,l=1 σ
(p)
k,l 1IkN×I

l
N

(i, j) if I1
N = [0, N/p] and I iN =]N(i − 1)/p,Ni/p] for

i = 2...p and

σ
(p)
i,j =

√
p2
∫ i/p

(i−1)/p

∫ j/p

(j−1)/p
σ2(x, y)dxdy .

Since σ satisfy Assumption 5, it is easy to check that σ(p) also satisfies Assumption 5 for
all p and therefore if we denote λ(p),1

N , ..., λ
(p),k
N its k largest eigenvalues, they satisfy a large

deviations principle with rate function I(p)(x1, ..., xp) = ∑
I(p)(xi). If we denote λ1

N , ..., λ
k
N

the k largest eigenvalues of XN , we have for all i = 1, ..., k, |λiN − λ
(p),i
N | ≤ ||XN −X(p)

N ||.
Using [16, Lemma 6.6], we have that ||XN −X(p)

N || can be neglected at exponential scale
once p is large enough. And using again [16, Lemma 6.4 and Lemma 6.5], we have that the
rate function converges toward the sum of the rate functions for one eigenvalue. Therefore,
λ1
N , ..., λ

k
N satisfy a large deviations principle and the rate function is the sum of the rate

functions for one eigenvalue.

Remark 20. Contrary to the Wigner case where we can see that asymptotically the posi-
tive and negative eigenvalues deviate independently from one another, this is not the case
for matrices with variance profiles. An example is the linearization of a Wishart matrix
where the negative eigenvalues are always exactly the opposite of the positive ones.

5.4. Large deviations for the k largest eigenvalues for the Gaussian ensembles
with a k-dimensional perturbation. We next prove proposition 7. We first observe
that the result is well known when θ̄ = 0, see e.g. Theorem 3. We next remark that the
joint law of the eigenvalues of Xθ

N is given by

dPθN(λ) = 1
ZN

∆(λ)β
∫

exp{−β4NTr|UD(λ)U∗ −
k∑
i=1

θieie
∗
i |2}dU

∏
1≤i≤N

dλi

where U follows the Haar measure on the unitary group (resp. the orthogonal group)
when β = 2 (resp, β = 1). ∆(λ) = ∏

i<j |xi − xj| is the Vandermonde determinant and
D(λ) is a diagonal matrix with entries given by λ = (λ1, . . . , λN). Expanding the integral
under the unitary (or orthogonal) group, we find that

dPθN(λ) = 1
Z̃N

Ee[e
β
2N
∑k

i=1 θi〈ei,D(λ)e〉]dP0
N(λ) ,

where (e1, . . . , ek) follows the uniform law on k orthonormal vectors in dimension N .
Hence the density is exactly given by the spherical integral. Using that Assumption 2 holds
under P0

N (see e.g [11]), we see that the empirical measure of λ is close to the semi-circle
law with overwhelming probability. Assume that θ1 ≥ θ2 · · · ≥ θp ≥ 0 ≥ θp+1 · · · ≥ θk.
Then, on the set where the extreme eigenvalues λNN ≥ · · ·λNN−p and λN1 ≤ · · · ≤ λNk−p+1 are
close to x1 ≥ x2 ≥ · · · ≥ xp ≥ 2 ≥ −2 ≥ x−k+p ≥ · · · ≥ x−1, Theorem 16 and Varadhan’s
Lemma give the result.
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5.5. Large deviations for k extreme eigenvalues for Gaussian Wishart matrices
with a k-dimensional perturbation. The proof of Proposition 8 is similar to the
previous one. Again the proof is based on the explicit joint law of λN,γ1 ≥ λN,γ2 ≥ · · ·λN,γM

given by the law on (R+)M

dPγ̄M,N(dλ) = 1
ZN

∆(λ)β
∫
e−

β
2NTr(UD(λ)U∗Σ−1)dU

∏
1≤i≤M

λ
β
2 (N−M+1)
i dλi

Noticing that

Σ−1 = I +
k∑
i=1

γi
1− γi

eie
∗
i

we recognize again that the density with respect to the case γ = 0 is given by a spherical
integral. The result follows as for the Wigner case.

6. Appendix

In this Appendix we investigate the continuity property of spherical integrals. First we
need to prove the continuity of the deterministic limit itself :

Theorem 21. Let d be a distance compatible with the weak topology on the set P(R) and
||.|| any norm on Rk+`, and forM > 0, KM the subset of E = Rk+`×(R+)k×(R−)`×P(R)
defined by

KM := {(λ̄, θ̄, µ) ∈ E|M ≥ θ1 ≥ ... ≥ θk ≥ 0 ≥ θ−` ≥ ... ≥ θ−1 ≥ −M
M ≥ λ1 ≥ ... ≥ λk ≥ rµ ≥ lµ ≥ λ−` ≥ ...θ−1 ≥ −M}

where rµ and lµ are respectively the rightmost and the leftmost point of the support of µ.
We endow KM with the distance D given by D((λ̄, θ̄, µ), (λ̄′, θ̄′, µ′)) = d(µ, µ′)+ ||λ̄− λ̄′||+
||θ̄ − θ̄′||. Then KM is a compact set and the function J

J(µ, θ̄, λ̄) =
k∑

i=−`, 6=0
J(µ, θi, λi)

extends continuously on KM .

Proof. It is clear that we only need to prove the continuity of (θ, λ, µ) 7→ J(µ, θ, λ) where
either θ ≥ 0 and λ ≥ rµ or θ ≤ 0 and λ ≤ lµ. We assume without loss of generality
that we are in the first case. Furthermore since J(µ, θ, λ) = J(θ ∗ µ, θλ, 1) we only need
to prove the continuity for the first two arguments with the third being fixed equal to 1.
Let us take a sequence (µn, λn) such that ∀n ∈ N, lµ ≥ −M, rµn ≤ λn and lim λn = λ and
limn µn = µ. First, since |J(µn, λn, 1)−J(µn, λ+ ε, 1)| ≤ |λn−λ|+ ε for n large enough so
that λ+ ε ≥ rµn , and |J(µ, λ, 1)− J(µn, λ+ ε, 1)| ≤ ε we can restrict ourselves to proving
lim J(µn, λ + ε, 1) = J(µ, λ + ε, 1). But, when we differentiate J(µ, λ, 1) on the variable
λ, we find

∂

∂λ
J(µ, λ, 1) = 1− 1[G−1

µ (1),+∞[Gµ(λ)− 1]−∞,G−1
µ (1)[G

−1
µ (1)

On [λ + ε,+∞[, since rµn ≤ λ + ε it is in fact easy to see that the weak convergence
of µn imply the uniform convergence of ∂/∂λJ(µn, λ, 1). The we conclude by choosing
Λ > λ+ ε so that Gµ(Λ) ≤ 1/2 so that v(µn, 1,Λ) = Λ for n large enough and then using
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the weak convergence and the fact that x 7→ log(Λ − x) is bounded on [−M,λ + ε], we
have that J(µn, 1,Λ) converges toward J(µ, 1,Λ). �

With this continuity and the compactness of KM , we can prove the following theorem
of uniform continuity, which generalizes [18] :

Theorem 22. Let k, ` ∈ N, θ̄ ∈ (R−)` × (R+)k and

JN(XN , θ̄) = 1
N

logE
[

exp
(
βN

2

k∑
i=−`,i 6=0

θi〈ei,XNei〉
)]

Let us denote λN−1 ≤ ... ≤ λN−` the smallest outliers of XN and λN1 ≥ ... ≥ λNk the largest
outliers. We will denote this k + `-uplet λ̄N . Then for every M > 0 and ε > 0, there is
N0 ∈ N so that for every N ≥ N0, for any matrix XN such that (λ̄N , θ̄, µXN

) ∈ KM
|JN(XN , θ̄)− J(µXN

, λ̄N , θ̄)| ≤ ε

Proof. We first notice that in the proof of Proposition 16 we approximated JN(XN , θ̄) by
JN(Xε

N , θ̄) with an error depending only on ε. Hence we may and shall replace in the
above statement XN by Xδ

N for some small enough δ = δ(ε). Xδ
N has the same extreme

eigenvalues than XN and otherwise eigenvalues λN−` + jδ with multiplicity bNµ̂N([λN−` +
jδ, λN−` + (j + 1)δ])c. Therefore, we see that JN(XN , θ̄) is a function of the extreme
eigenvalues and the empirical measure, hence a function on KN . By the previous uniform
approximation and the continuity of the limit, we deduce that it is uniformly continuous
on KN , hence the result. �
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