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Abstract The monitoring of hazards through the ability to detect events and predict spatial and 

temporal evolution of dynamical hazards still remains a big challenge for dynamic disaster 

risk assessment and mitigation. The goal of this paper is to show how well established methods 

arising from the control theory can positively contribute to dynamic risk assessment 

improvement through an effective hazard monitoring. More precisely, the objective is 

threefold. Firstly, the design of an optimal monitoring architecture is proposed based on the 

combination of optimal sensor placement and receding horizon observer design. In this paper, 

the focus is only made on model-based and data-driven approaches. The benefit of using sensor 

networks and crowdsensing techniques is also discussed. Secondly, the paper seeks to identify 

the application areas that can benefit from both optimal sensor location techniques and receding 

horizon observers, while reviewing already existing references. Thirdly, some personal 

contributions illustrating the proposed approach are presented. In particular, two case studies 

are presented: one considers the dynamic positioning of drones for monitoring air pollution, 

the other is dedicated to the early detection of a wildfire outbreak. 

Key words: Natural and technological hazard monitoring, optimal sensor location, receding 

horizon observer. 
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1. INTRODUCTION 

 

The early detection and the ability to predict spatial and temporal evolution of natural or 

technological hazards still remain a big challenge for disaster risk assessment and mitigation 

[Zio (2018)]. Designing effective monitoring architectures for that purpose is of great concern 

for natural hazards such as landslides, earthquakes, flooding, wildfires, air pollution, for critical 

infrastructures [Alonso et al (2018)], such as power, gas, water, oil, traffic and transportation 

networks, for engineered structures of bridges, buildings and other related infrastructures 

submitted to various stresses (earthquakes, structural ageing, attacks), or for pandemic 

detection and prediction. Another big challenge in risk assessment is to be able to predict 

cascading effects when, for instance, a natural hazard triggers a technological disaster. The 

current covid-19 crisis shows that it is more necessary than ever to have numerical tools to 

predict the evolution of a crisis so as to be able to anticipate decision-making.  

Nowadays the development of the Internet of Things increases the availability of various 

sources of spatio-temporal data, thanks to the design of more and more autonomous and 

miniaturized systems capable of self-powering and communicating, and increasingly dense and 

high-speed communications networks (see the current deployement of 5G technology). This 

allows the deployement of wireless sensor networks which are made up of embedded and 

spatially distributed sensors with communication capabilities. The development of unmanned 

aircraft systems (UAS) allows the sensor networks to become mobile and reconfigurable. In 

the same way, static or moving individuals carrying or using smartphones can be viewed as 

parts of a static or mobile wireless sensor network. The involvement of a large number of 

individuals which collectively share data and extract information is called crowdsensing 

[Capponi et al (2019)], [Zhang et al (2019)]. Some successful applications of crowdsensing or 

crowdsourcing based on social media data are now available: For instance, in the domain of 

seismic risk reduction and awareness [Bossu et al (2018)] with LastQuake app, and with the 

tuning of influenza spreading models using tweeter data [Levy et al (2018)] or, more recently, 

the development and use of mobile applications for the mapping of persons infected by the 

COVID-19.  

In this paper, a model-based framework arising from control theory to design a monitoring 

architecture based on wireless sensor networks and crowdsensing for dynamical monitoring is 

discussed. The central idea is to design a digital architecture which is optimal in the sense that 

it ensures the best possible use of data provided by sensors in order to provide the most accurate 

online information about a dynamical hazard evolving in both space and time.  

In this paper, a mathematical model of the phenemenon generating hazards is assumed to be 

available together with a set of static or mobile sensors providing on-line measurements. The 

proposed approach relies on two key components: 
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program (ANR-15-IDEX-02). Parts of this work were presented at IDRIM 2019 International Conference, October 16-18, 
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(1) Firstly, the optimal placement of sensors that can be either static [Georges (1995)], 

[Wouwer et al (2000)], [Ucinski (2005)], [Lou et al (2003)], [Kang et al (2011)], 

[Mallardo (2013)], [Spinelli et al (2017)], [Tang et al (2017)], or mobile [Demetriou 

(2008)], [Georges (2013a)], to ensure the best possible observation of the hazard to be 

monitored. In this paper, the problem of optimal sensor location is addressed using the 

so-called observability theory [Besançon (2007)]. It consists in maximizing a measure 

of the observability of some partial differential equations governing the spatial and 

temporal dynamics of physical hazards. Observability is the structural property of a 

system that makes it possible to estimate the current system state using only the 

information from outputs (measurements provided by sensors).  

(2) Secondly, the design and use of an observer that is an algorithm used to process the 

distributed data delivered via sensor or crowd networking, whose goal is to detect 

unexpected events or to estimate or predict the spatial and temporal dynamics of the 

hazard. In this paper, the focus is made on the on-line model-based receding or moving 

horizon estimation algorithm [Michalska et al (1995)], [Muske et al (1995)], that can be 

viewed as the deterministic implementation of a nonlinear Bayesian filter allowing more 

flexibility (for instance to take constraints into account). It belongs to the class of model-

based and data-driven state estimators such as Kalman filtering, extended Kalman 

filtering, unscented Kalman filtering, particle filtering, (see [Rawlings et al (2006)] for 

Kalman filter related approaches, and [Besançon (2007)] for other nonlinear state 

observer design). 

The paper is organized as follows. In section 2, some background is provided on the central 

notion of dynamical system observability and a review of criteria providing a measure of 

observability is proposed. The formulation and solution of some optimal sensor location 

problems are discussed and a review of existing applications is provided. In section 3, the 

notions of both sensor networks and crowdsensing are presented and a discussion is provided 

on how to use these techniques for hazard monitoring. Section 4 is devoted to receding horizon 

observer design. Both the formulation and solution of the related optimization problem are also 

discussed. In section 5, an optimal architecture design based on the combination of both 

optimal sensor location and receding horizon observer techniques is presented. Section 6 

considers two case studies -the dynamic positioning of drones for monitoring air pollution, and 

the early detection of a wildfire outbreak- to illustrate the proposed framework. Finally, the last 

section sums up the conclusions and perspectives. 

 

2. OBSERVABILITY, OPTIMAL PLACEMENT OF SENSORS OR HOW TO 

INCREASE MONITORING CAPABILITIES 

 

Monitoring of spatio-temporal dynamical systems consists in processing various data 

collected through time and space to estimate the past and current parameters or states of the 

system. Based on the estimation of future events or inputs affecting the system, monitoring 

may also allow the prediction of the spatio-temporal dynamics of the system. Monitoring of 



IDRiM (2020) 10 (1)        ISSN: 2185-8322 

DOI10.5595/001c.xxxxxxx 

 

72 

 

large-scale dynamical systems is a big challenge for risk management and safety since it 

provides a way to isolate or estimate system vulnerabilities or the occurence and evolution of 

a (natural or man-made) hazard. In this paper, we will focus on model-based approaches, i.e., 

approaches requiring the a priori knowledge of the mathematical representation of the system 

dynamics. In system control theory and physics, modelling is based on state-space 

representation (those properties have been studied by Kalman for linear systems, see [Ogata 

(2010)] for an introduction to linear control theory) or partial differential equations (PDEs) for 

spacetime distributed systems. Most of the applications are governed by PDEs and complex 

networks that require high level of computational complexity. However in many cases PDEs 

or networks can be well approximated using finite-dimensional state-space representations via 

model reduction techniques.  

The major property required for the successful monitoring of a dynamical system is 

Observability, i.e. basically the ability to recover the initial state of the system through the 

knowledge of some output measurements (obtained from sensors) collected over a time interval.  

Mathematically, Observability is defined as the injectivity of the operator initial state to 

output, that can be also reformulated as the preservation of initial state distinctness or the 

nonzero output sensitivity to initial state (see [Besançon (2007)] for more details). 

𝑦1(𝑡, 𝑥1(𝑡0)) = 𝑦2(𝑡, 𝑥2(𝑡0)), ∀𝑡 ∈ [𝑡0, 𝑡0 + 𝑇]  ⇒ 𝑥1(𝑡0)  = 𝑥2(𝑡0)     (1) 

In the case of parameters estimation, there is a related notion: The Identifiability of 

parameters  : 

𝑦1(𝑡, 1) = 𝑦2(𝑡, 2) ⇒ 1 = 2.          (2) 

This fundamental property opens the way to the development of algorithms for 

reconstructing the initial state of a system from measurements obtained over a time interval. 

 

2.1 Measuring the degree of observability 

The effective model-based monitoring requires optimal configuration of a limited number 

of sensors to ensure the best possible state/parameter estimation. The Optimal Placement of 

Sensors will here consist in seeking an optimal configuration of a fixed number of sensors in 

order to maximize a measure of Observability/Identifiability. 

Gramian-based measures of Linear System Observability 

Consider the class of linear finite-dimensional systems defined by the following linear state-

space representation : 

𝑥̇(𝑡) = 𝐴𝑥(𝑡), 𝑥 ∈ ℝ𝑁 , 𝑥(0)  = 𝑥0,         (3)             

𝑦(𝑡) = 𝐶𝑥(𝑡), 𝑦 ∈ ℝ𝑃   

where x is the state, y is the output vector corresponding to measurements obtained by sensors. 
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If the measurement vector y(t) is known over time interval [0,T], the so-called Output Energy 

generated by any initial state x0 is given by 

𝐸0 = ∫ 𝑦𝑇(𝑡)𝑦(𝑡)𝑑𝑡 = 𝑥0
𝑇  {

𝑇

0

∫ ⅇ𝐴𝑇𝑡
𝑇

0

𝐶𝑇𝐶ⅇ𝐴𝑡𝑑𝑡}𝑥0                                                                (4) 

since y(t)=CeAt 𝑥0. nonnegative-definite symmetric matrix W(T)= ∫ ⅇ𝐴𝑇𝑡
𝑇

0
𝐶𝑇𝐶ⅇ𝐴𝑡𝑑𝑡, called 

the Observability Gramian, can be isolated (see also for instance [Kailath (1980)]). 

𝑊(𝑇) = 𝑊𝑇(𝑇) ≥  0 can be obtained as solution of the following differential Lyapunov 

equation: 

Ẇ(𝑡) = 𝐴𝑇𝑊(𝑡) + 𝑊(𝑡)𝐴 + 𝐶𝑇𝐶, 𝑊(0) = 0.       (5) 

This approach was extended to the case of algebraic-differential (singular) systems in 

[Marx et al (2004)]. 

It appears that W (T) is a measure of the sensitivity of output y with respect to initial state x0 

(which can be interpreted as a Fisher Information Matrix (FIM) (see [Ucinski (2005)], and 

[Song et al (2009)] for interpretation of FIM): Indeed, the sensitivity of state x(t) with respect 

to x0 is given by 

𝑑

𝑑𝑡
(𝜕𝑥0

𝑥(𝑡)) = 𝐴𝜕𝑥0
𝑥(𝑡), 𝜕𝑥0

𝑥(0) = 𝐼𝑑        (6) 

𝜕𝑥0
𝑦(𝑡) = 𝐶𝜕𝑥0

𝑥(𝑡) ⇒ 𝜕𝑥0
𝑦(t) = 𝐶ⅇ𝐴𝑡                                                                           (7) 

Then 

  ∫ 𝜕𝑥0

𝑇

0

𝑦𝑇(𝑡)𝜕𝑥0
𝑦(𝑡)𝑑𝑡 = ∫ ⅇ𝐴𝑇𝑡

𝑇

0

𝐶𝑇𝐶ⅇ𝐴𝑡𝑑𝑡 =  𝑊(𝑇),                                                      (8) 

where 𝜕𝑥0
𝑥(𝑡) denotes the Jacobian matrix of partial derivatives 

𝜕𝑥𝑖

𝜕𝑥0𝑗
. 

The observability gramian is therefore a mathematical way to characterize the sensitivity of 

the system outputs to any initial state x0, allowing the development of a methodology to 

optimally locate sensors. Another interesting feature is that the notion of observability gramians 

can be extended to the case of nonlinear systems. 

Extension of observability gramians to Nonlinear Systems 

Consider systems described by the following nonlinear state-space representation 

𝑥̇= F(x,t,), x∈ℝN , x(0) = x0,          (9) 

y = H(x,t), y∈ℝP, 

where x denotes the state vector, y, the output vector, and , the vector of model parameters, 

and F is supposed to continuously differentiable. 
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Again the application of the sensitivity analysis is possible, which leads to the following 

sensitivity equations: 

𝑑

𝑑𝑡
 (𝜕𝑥0

x) = 𝜕xF(x,t,) 𝜕𝑥0
𝑥,𝜕𝑥0

𝑥(0) =Id ,                 (10) 

𝜕𝑥0
y = 𝜕xH(x,t) 𝜕𝑥0

x ; ẋ 𝐹 = (𝑥. 𝑡)                   (11) 

Formally the nonlinear Observability Gramian can be defined by: 

𝑤(𝑥0, 𝑇) = ∫ 𝜕𝑥0

𝑇

0

𝑦𝑇(𝑡)𝜕𝑥0
𝑦(𝑡)𝑑𝑡.                                                                                            (12) 

It is worth noticing that the linear observability gramian defined by (8) appears to be a special 

case of this general formalism. However the gramian depends on initial state x0 in the nonlinear 

case.  

It is also worth mentioning that a similar approach can be used to study parameter 

identifiability by introducing the sensitivity of the state with respect to the vector of system 

parameters  : 

𝑑

𝑑𝑡
(𝜕𝜃𝑥) = 𝜕𝑥𝐹(𝑥, 𝑡, ) 𝜕𝜃𝑥 + 𝜕𝜃𝐹(𝑥, 𝑡, ), 𝜕𝜃𝑥(0) = 0,                                                       (13) 

𝜕𝜃𝑦 = 𝜕𝑥𝐻(𝑥, 𝑡) 𝜕𝜃𝑥 ; 𝑥̇ = 𝐹(𝑥, 𝑡,  ).                                                                                        (14) 

Then the nonlinear Identifiability Gramian can be defined by:  

𝑊(, 𝑇) = ∫ 𝜕

𝑇

0

𝑦𝑇(𝑡)𝜕𝜃𝑦(𝑡)𝑑𝑡.                                                                                                (15) 

In practice, the computation of sensitivity equations (10)-(11) or (13)-(14) can be highly 

complex, especially for systems with a large number of states or parameters. Indeed, a N-

dimensional system with M parameters to identify (or N initial states to estimate), requires the 

integration of a sensitivity system in a space of dimension N× M (or N2). To overcome this 

drawback, empirical computation of the observability gramian has been proposed that requires 

only simple simulations of the system. 

Empirical observability gramian [Lall et al (1999)] 

The empirical gramian is obtained by applying some small pertubations to each component 

of the initial state and performing time integrations to get the output trajectory corresponding 

to each perturbated initial state. For (nonlinear) dynamical systems, the empirical observability 

Gramian can be defined as 

      𝑊 = ∑  

𝑟

𝑙=1

∑  

𝑠

𝑚=1

1

𝑟𝑠𝑐𝑚
2

∫ 𝑇𝑙𝛹𝑖𝑙𝑚(𝑡)𝑇𝑙
𝑇 𝑑𝑡

𝑇

0
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where 𝛹𝑙𝑚(𝑡) ∈ ℝ N⨯N is given by 𝛹𝑖𝐽̇
𝑙𝑚(𝑡) = (𝑦𝑖𝑙𝑚(𝑡) − 𝑦𝑖𝑙𝑚,0)

𝑇
(𝑦𝑖𝑙𝑚(𝑡) − 𝑦𝑖𝑙𝑚,0) , and 

𝑦𝑖𝑙𝑚 is the output obtained with perturbated initial condition 𝑐𝑚𝑇𝑙ⅇ𝑖 + 𝑥0, and 𝑦ⅈ𝑙𝑚,0 refers to 

the output obtained with unperturbated initial state 𝑥0; 𝑇𝑙 is a perturbation direction, and ei is a 

standard unit vector in ℝN. For more details, the reader is invited to refer to [Lall et al (1999)]. 

Some other approaches for the characterization of system observability 

The observability gramian-based approach is not the only way quantify observability. Other 

observability indices may be derived by using the injectivity property (an observability 

inequality) that can be reformulated as follows: 

The system ẋ= F(x,t), y = H(x, t) is observable in time T if there exists C > 0 such that 

𝐶‖𝑥1(0) − 𝑥2(0)‖2 ≤ ∫ ‖𝑦(𝑡, 𝑥1(0)) − 𝑦(𝑡, 𝑥2(0))‖2𝑑𝑡
𝑇

0

                                                    (16) 

for any pair of initial state (𝑥1(0),𝑥2(0)) in the estimation space (included in the state space).  

Here y(t,x(0)) denotes the system output generated by initial state x(0). 

A similar observability inequality can be formulated when dealing with partial differential 

equations (see for instance Privat et al. (2014)). 

The authors in King et al. (2014) proposes to exploit this definition by defining an 

unobservability index as follows: 

ɛ2 = min
𝛿𝑥0

𝛿𝑋0
𝑇 𝑃1𝛿𝑋0 + ∫ ‖𝑦(𝑡, 𝑋0 + 𝛿𝑋0) − 𝑦(𝑡, 𝑋0)‖

𝑃2

2

𝑇

0

𝑑𝑡               (17) 

       s. 𝑡. ‖𝛿𝑋0‖＝𝜌, 𝛿𝑋0 ∈ 𝑊 

where W is the estimation space, and P1 and P2 are weighting matrices. The ratio 
𝜌

𝜀(𝜇)
 denotes 

the unobservability index. A good observability is obtained when the ratio is minimal, i.e, when 

ɛ is maximal. 

One can also directly work on the performance of state observers or data assimilation 

problems by considering the state estimation error, for instance, using the Kalman filter (see 

[Tang et al (2017)] for a description of this approach in the infinite dimensional framework), 

based on the covariance matrix P of the observation error defined by 

trace[P] = trace[E{(x−𝑥̂) (x−𝑥̂)T)}],        

                                     (18) 

where P is the non negative-definite symmetric matrix, solution of Kalman filter stationary 

Riccati equation 

AP+PAT −PCT R-1CP+Q = 0.                  (19) 

One of the three metrics (20), (21), or (22) can be used with covariance matrix P to measure 

the degree of observability. 
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A similar approach based on a norm of the state estimation error, is used for instance in 

Demetriou (2008) for the location of a mobile sensor and in Lou et al. (2003) for the optimal 

sensor location of a system governed by a nonlinear partial differential equation. For data 

assimilation problems, a similar approach is also proposed in Herzog et al (2017). 

For Riesz-spectral linear partial differential equations or finite-dimensional systems, 

eigenvalue/eigenfunction decomposition allows to use the modal components of the 

measurement/output operator to measure the degree of observability (see section 6.1.2). This 

kind of approach is used in structural health monitoring (see [Mallardo (2013)] that also 

provides an extensive review of optimal sensor locations techniques. 

Frequency-based approaches have been also proposed (see [Demetriou et al (2014)]) that 

exploit the spatial H2 norm of the transfert function of a 1D diffusion-advection partial 

differential equation. The spatial H2 norm can be used as a measure of sensor sensitivity over 

the spatial domain. 

The question is now to examine how observability gramians / FIM or other approaches can 

be used to design an appropriate observability metric, usable as a cost function for solving an 

optimal sensor location problem. 

 

2.2 Observability gramian-based cost functions for optimal sensor placement 

Three classical metrics based on the spectral analysis of observability gramian / FIM W(T,), 

where  is a given sensor configuration corresponding to specific choices of state 

measurements or physical locations of the sensors are here recalled (see also [Herzog et al 

(2017)]): 

𝑐() = 𝑡𝑟𝑎𝑐ⅇ(W(𝑇,)) = ∑ 𝜆𝑖

𝑁

𝑖=1

(𝜇),                                                                                         (20) 

𝑐() = (log)𝑑ⅇ𝑡(𝑊(𝑇, 𝜇))  = (log) ∏𝑖 (𝜇),

𝑁

𝑖=1

                                                                   (21) 

c() =(𝑊(𝑇, 𝜇)) = min
𝑖=1,...,𝑁

i (𝜇),                   (22) 

where the  i ’s, i = 1,…,N, denote the eigenvalues of symmetric (N,N)-matrix W(T,). 

The trace of the observability gramian (20) does not guarantee full observability, since some 

eigenvalues of W can be equal to zero. These null eigenvalues correspond to non observable 

state components. However, for exponentially stable systems, at least detectability (a weak 

form of observability where at least one stable state component is non observable) is ensured, 

meaning that asymptotic observers (such as Kalman filters) will converge. This metric only 

tends to improve observability of the dominant modes of the system. If metric (20) is used as 

a cost function to be maximized, an optimal sensor configuration achieves the maximum 

observability in average. 
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In contrast, stricly positive values of metrics (21) and (22) guarantee that all the state 

components are observable. 

 

2.3 Other cost functions for optimal sensor placement 

ɛ2 given by (17) can be used as a cost function c(𝜇) , solution of a minimization problem, if 

one considers parametrization of the measurement operator C in function of sensor location 𝜇:            

c(𝜇) = ɛ2(𝜇) = min
𝛿𝑥0

𝛿𝑋0
𝑇 𝑃1𝛿𝑋0 + ∫ ‖𝑦(𝑡, 𝑋0 + 𝛿𝑋0, 𝜇) − 𝑦(𝑡, 𝑋0, 𝜇))‖

𝑇

0

 𝑃2

2 𝑑𝑡              (23) 

𝑠. 𝑡. ‖𝛿𝑋0‖ = 𝜌, 𝛿𝑋0∈W   

Notice that the use of the cost function will lead to the solution of max-min optimization 

problem. 

In the same way, (18) defines a cost function c(𝜇), whose computation is obtained by solving 

the following algebraic equation parametrized in 𝜇: 

𝐴𝑃(𝜇) + 𝑃(𝜇)𝐴𝑇 − 𝑃(𝜇)𝐶𝑇(𝜇)𝑅−1𝐶(𝜇)𝑃(𝜇) + 𝑄 = 0.                                                     (24) 

For data assimilation problems, a similar approach is also proposed in [Herzog et al (2017)]. 

 

2.4 Formulation of an optimal sensor location problem OSPP 

It is now possible to define a generic Optimal Sensor Placement Problem OSPP which 

consists in maximizing one of the presented observability metrics:  

max
𝜇∈𝒟𝜇

𝑐(𝜇),                                                                                                                          (25) 

where 𝒟𝜇  defines a set of constraints such as density constraints, communication range 

constraints, placement constraints . OSPP is usually a non convex optimization problem. Also 

notice that index (22) is not differentiable, leading to additional complexity that can be 

overcome by using subgradient optimization techniques [Bertsekas (2015)], [Karmitsa (2016)]. 

Solving OSPP can be a complex task especially for large-scale systems and in the case of 

sensors configurations constrained to belong to a set of discrete values (defining an integer 

programming problem). This is for instance the case when the OSSP consists in determining 

the location of a set of sensors. A big issue is the so-called curse of dimensionality since OSPP 

usually relies on exponential N2-complexity computations where N is the dimension of the 

system state space. In order to limit this complexity, model-reduction techniques have been 

proposed for large-scale systems (especially systems governed by partial differential equations), 

see for example, [Antoulas et al. (2006)] for large-scale finite-dimensional systems or [Benner 

et al (2017)] for systems governed by partial differential equations. Furthermore, a mixed 

integer programming OSPP has to deal with combinatorial explosion. The interested reader is 
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invited to refer to appropriate references such as [Burer et al (2012)] which discuss the 

algorithmic techniques available to overcome the limitations due to combinatorial complexity. 

In many situations, it is important to adapt the locations of the sensors, especially when the 

dynamics of the monitored phenomenon is time-varying (for instance, air pollution or wildfires 

with changing meteorological conditions). The OSPP for M mobile sensors can be formulated 

as an optimal control problem, where the dynamics of the mobile sensors can be also taken into 

account together with energy consumption: 

    min
𝑢𝑖(𝑡)

 ∑  

𝑀

𝑖=1

∫
 

[𝓏 𝑖
𝑇(𝑡)𝒬𝓏𝑖(𝑡) + 𝑢 𝑖

𝑇(𝑡)𝑅𝑢𝑖(𝑡)] 𝑑𝑡 − 𝑐(
1

(𝑇), . . . ,
𝑀

(𝑇))

𝑇

0

                            (26) 

 

subject to 

𝓏̇𝑖(𝑡) = 𝐺𝑖(𝓏𝑖(𝑡), 𝑢𝑖(𝑡)), 𝑖 = 1, … , 𝑀,                                                                (27) 

 𝛼 ≤ 𝑑𝑖𝑗(t) ≤ β, 𝑖 = 1, … , 𝑀 − 1, 𝑗 = 𝑖 + 1, … , 𝑀,                                                                (28) 

where 𝓏𝑖 = (
𝑖
(t),̇ 𝑖(t))

T denotes the position and velocity of sensor i at time t. 𝑢𝑖(t) is the 

navigation control input of sensor i. Q and R are weighting matrices. di j = ‖
𝑖
(𝑡) − 

𝑗
(𝑡)‖2 is 

the euclidian distance between sensor i and sensor j. (27) represents the state-space equations 

of the dynamics of sensor i. Inequality constraints (28) are introduced for mutual collision 

avoidance purpose and mutual communications. 

Provided that cost function c is differentiable, a less demanding navigation approach is the 

kinematic approach (i.e., without introducing the sensor dynamics, see for instance [Georges 

(2013a)]) may consist in using a gradient-based method of the form: 

̇
𝑖
̇ (𝑡) = 𝜌[∇ 𝑖𝑐(

1
(𝑡), … ,

𝑀
(𝑡)) +  𝛿 ∑  

𝑀

𝑗=1,   𝑗≠𝑖

{
(

𝑖
(𝑡) − 

𝑗
(𝑡))

𝑑 𝑖𝑗
2 (𝑡) − 𝛼2

−
(

𝑖
(𝑡) − 

𝑗
(𝑡))

𝛽 
2−𝑑 𝑖𝑗

2 }], 𝜌, 𝛿 > 0.   (29) 

The trajectory of each sensor i follows the direction imposed by the gradient of c(1(t),…, 


𝑀

(𝑡)) + 𝛿 ∑  

𝑀−1

𝑖=1,

∑  

𝑀

𝑗=𝑖+1

{log(𝑑 𝑖𝑗
2 − 𝛼2) + log(𝛽2 − 𝑑 𝑖𝑗

2 )}  with respect to 𝑖, where ∑  

 𝑀−1

𝑖=1,

∑  

𝑀

𝑗=𝑖+1

{log 

(𝑑 𝑖𝑗
2 − 𝛼2) + log(𝛽2 − 𝑑 𝑖𝑗

2 )} are the sum of barrier functions (that can be viewed as repulsive 

potentials) introduced to avoid mutual collisions and ensure maximal interdistance. 𝜌 controls 

the velocity and 𝛿 is a weighting coefficient used to adjust the importance of mutual avoidance 

constraints. 

In fact, (29) can be viewed as a gradient method used for solving the maximization problem 

max
1,...,𝑀

𝑐 (
1

, . . . ,
𝑀

) +  𝛿 ∑  

 𝑀−1

𝑖=1,

∑  

𝑀

𝑗=𝑖+1

{log(𝑑 𝑖𝑗
2 − 𝛼2) + log(𝛽2 − 𝑑 𝑖𝑗

2 )}                            (30) 

energy consumption observability index 
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In [Demetriou (2010)], an approach based on Lyapunov stability arguments is proposed to 

control collocated actuator-sensor mobile networks for improving control and estimation of 

systems governed by diffusion partial differential equations. 

 

2.5 Some existing OSPP applications 

Table 1 provides some already implemented examples of (OSSP) for hazard monitoring. 

  
Table 1.  Applications of OSPP for Hazard Monitoring. 

Hazard  Sensors  Some References 

Weather  
meteorological stations, 

satellites, crowdsensing  
[Demetriou et al (2014)] 

Overland or urban flooding  water level or flow rate sensors 

[King et al (2014)], 

[Nguyen et al (2016)], 

[Ogie et al (2017)], 

[Park et al (2017)] 

Landslides, avalanches, lava 

flows, mudflows 

LIDAR, satellite, stress sensors, 

crowdsensing 

[Terzis et al (2006)], 

[Thuro et al (2017)] 

Pollution  pollutant sensors, crowdsensing 

[Georges (2011)], 

[Georges (2013a)], 

[Georges (2013b)], 

[Boubrima et al (2015)]), 

[Kouichi et al (2016)]) 

[Georges (2017)]) 

Epidemics and pandemics 

(including rumor propagation)  

crowdsensing, hospitals and 

medical centers   
[Spinelli et al (2017)] 

Critical infrastructures (water, 

gas, oil, energy, traffic flow 

networks), industrial facilities or 

processes, buildings … 

physical sensors depending on 

the infrastructure, crowdsensing 

[Nguyen et al (2008)],  

[Mallardo (2013)],  

[Georges (2014)],  

[Qi et al (2014)],  

[Casillas et al (2015)],  

[Herzog et al (2017)],  

[Khorshidi et al (2018)],  

[Summers et al (2014)],  

[Zan et al (2018)] 

 

 

3. SENSOR NETWORKS AND CROWDSENSING 

 

A Wireless Sensor Network (WSN) is a set of embedded sensors, spatially disseminated, 

able to use wireless communications with each other and to send data to a sink station (see Fig. 

1). The WSNs are used to collect physical data, such as temperature, sound, pollution 
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concentrations, humidity, wind velocities, and so on. The WSNs offer several interesting 

features, such as flexibility (no expensive infrastructure is required) and measurement 

redundancy offering more robustness to node failures. However they are often subject to power 

consumption constraints, except if they are equipped with energy harvesting devices. For a 

recent survey, see [Mostafaeia et al (2018)].  

Some WSNs can be mobile. However in this case, the management is much more complex 

since the sensors have to be coordinated in order to ensure connectivity and the energy 

management of the sensors is also more demanding. Navigation approaches (26) or (29) are 

some examples of techniques that can be used to coordinate mobile sensor networks. 

Crowdsensing is a technique where a group of individuals uses mobile or static devices 

capable of sensing and providing qualitative or quantitative data (see Fig 2 and [Capponi et al 

(2019)]). Today most smartphones are equipped with sensors such as cameras, microphones, 

GPS and accelerometers, temperature sensors, which can be used to provide quantitative data, 

for example to detect or locate earthquakes or to monitor traffic congestion in real time. 

Crowdsensing can be classified into two classes: the opportunistic crowdsensing, where the 

data is collected without user intervention via specialized samrtphone applications, and the 

participatory crowdsensing, where many users voluntarily provide information through social 

networks or specialized applications. Both approaches can give access in addition to a huge 

number of qualitative data, which can be very relevant to reinforce physical knowledge in 

vulnerability or hazards after adequate processing. Or course, crowdsensing (even in the 

participatory case) is less suitable for the implementation of observability maximisation 

techniques such as (25), as it can be difficult or even dangerous to ask a large number of people 

to position themselves in order to increase the observability of a natural hazard (such as a flood 

or a forest fire). However, this defect can be compensated by the fact that the number of sensors 

is potentially higher and the coverage is therefore potentially wider. 

Advances in Artificial Intelligence offer highly effective machine learning techniques for 

extracting quantitative data from qualitative data (for the goal of pattern recognition and 

classification for instance) (see [Zhang et al (2019)] for a recent survey). 

 

 

Figure 1.  WSN structure - each node in blue is a wireless sensor. Some unconnected part of the 

WSN may exist. The communication range is limited and here depicted by a circle. 
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Figure 2.  Crowdsensing (see also Alsheikh (2017)). 

 

Participatory crowdsensing can be very useful in providing information about hazard 

magnitude and location during an extreme weather event, flooding, earthquakes, or epidemics 

for example. A description of the process with illustrative examples is given by Fig. 3. The 

learning process relies on the availability of data sets obtained from past events or simulations. 

The data sets are used to learn a regression/classification model that will provide an estimate 

of the magnitude of an event occurring at a given time instant together with a degree of 

confidence. The processed data (estimated value + degree of confidence) then can be used for 

model-based monitoring as depicted in the section here-after. 

 

 

Figure 3.  From qualitative to quantitative data through machine learning. 
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4. RECEDING HORIZON OBSERVERS FOR DYNAMIC HAZARD ASSESSMENT 

AND REAL-TIME MONITORING: AN OPTIMIZATION APPROACH  

 

In this section, some background is provided on Receding or Moving Horizon Observer 

design. The main goal is to show how this approach can be useful to ensure real-time 

monitoring of an evolving hazard or to estimate vulnerability. 

Hazard monitoring must be here understood as the online process described by Fig. 4 that 

consists in processing data provided by a large number of sensors on a time period [tk −T, tk], 

called receding or moving horizon, at each sampling time denoted as tk =kTs, where Ts is the 

sampling period, in order to get estimate of both system state at tk −T and unknown system 

parameters. It is worth noticing that this approach does not necessarily require a large and 

dense coverage with sensors to get relevant spatio-temporal information, thanks to the 

observability property. 

In this paper, one considers that the phenomenon to be monitored is described by the 

following nonlinear state-space representation 

𝓏̇(𝑡) = 𝐹(𝓏(𝑡), 𝑢(𝑡), 𝛳), 𝓏(𝑡) ∈ ℝ𝑛, 𝓏(0) = 𝓏0, 𝑢 ∈ ℝ𝑚                                                            (31) 

     𝑦(𝑡) = 𝐻(𝓏(𝑡), 𝑡), 𝑦(𝑡) ∈ ℝ𝑝, 

where 𝓏(t) denotes the state vector, u is the vector of known exogenous inputs, y is the vector 

of measured outputs provided by the sensors, and 𝜃 is the vector of unknown parameters. 

If the phenomenon is governed by partial differential equations, spatial discretization on a 

grid or model reduction techniques have to be performed in order to get form (31). In the case 

of systems governed by partial differential equations (PDEs), such as floods governed by the 

shallow water equations, pollution governed by several diffusion-advection-reaction PDEs or 

earthquake dynamics governed by 3D elastic wave equations for instance, the dimension of the 

state space can be very large. A big challenge in current research is to develop effective low-

dimensional model reduction techniques (see [Benner et al (2017)] for a review of techniques 

as Proper Orthogonal Decomposition (POD), balanced truncation, tensor-based approaches). 

The measurements are assumed to be obtained from physical sensors or from qualitative 

information provided by individuals via the social media (through crowdsensing), with a 

certain degree of confidence (see Fig. 3). 𝛳 can represent either physical parameters (such 

physical diffusion or source location) or information on particular dysfonctionning or failures 

in the case of critical infrastructures. The reader is invited to refer to Table 3 for concrete 

examples of what are state variables and parameters for various hazards. 
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Figure 4.  Principle of RHO with sensor network and crowdsensing. 

 

4.1 The receding or moving horizon observer formulation 

The following notation will be used in what follows to denote the forward solution of (31) 

at time 𝜏, starting from state 𝓏 at time t: 

𝑍(𝜏, 𝓏, 𝑢(. ), 𝛳), 𝜏 ≥ 𝑡.                   (32) 

State and/or Parameter Receding or Moving Horizon Observers RHO (see [Michalska et al 

(1995)], [Muske et al (1995)], [Kuhl et al (2011)], [Rangegowda et al (2018)]) provide an 

estimate of both x and θ of the true x and θ by minimizing the output prediction error in the 

least-square sense over a past receding horizon defined by horizon T, at each time 𝑡ₖ: 

{𝓏̂(𝑡𝑘 − 𝑇), 𝛳̂𝑘} =  𝑎𝑟𝑔 min
𝓏∈ℨ(𝑡),𝜃∈𝛩

 ∫  
𝑡𝑘

𝑡𝑘−𝑇 

‖𝑦(𝜏) − 𝐻(𝑍(𝜏, 𝓏, 𝑢(. ), 𝛳), 𝜏) ‖
2  

𝑅−1𝑑𝜏 + ‖𝓏 − 𝓏̅) ǁ
2    
𝑀1

−1 + ‖𝜃 − 𝜃̅‖ 
2     
𝑀2

−1, 

(33) 

where y(t) denotes the measured data at time t, weighting matrix R can be interpreted as the 

covariance matrix of a noise vector affecting the output measurement. 𝐻 denotes the 

measurement operatr    𝑅−1 can also be used to reflect the degree of confidence in the 

measurements (particularly useful for data obtained from crowdsensing). 𝑅−1 can also depend 

on time to introduce some forgetting factor with respect to past measurements. M1 and M2 can 

be viewed as regularization matrices or the covariance matrices of uncertain variables 𝓏 and 

𝛳.  ℨ (t) is the set of admissible values of the state at time 𝜏 (often the set is used to impose the 

state remains positive, for instance, in the case of physical densities). Θ is the set of admissible 

values of the parameters. 𝓏̅ and 𝜃̅ are guess values of initial state 𝓏 (𝑡𝑘−T) and 𝛳 respectively, 

for instance estimated values obtained from the algorithm at previous sample time 𝑡𝑘 −T −1. 
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It is worth mentioning that (33) provides in fact an estimate of state 𝓏 at time t ∈ [𝑡𝑘 −T, 𝑡𝑘 

+1], since it suffices to integrate (31) from estimate state 𝓏̂(𝑡𝑘−T), knowing u(.) and the estimate 

of 𝛳. 

 

4.2 Relevance of the RHO approach 

The main value of RHO lies in the fact that each new sample of the sensor measurements 

are used to provide an update of the state estimate thanks to the online solving of (33). 

Measurement reliability is a big concern especially when low cost sensors are used in sensor 

networks, since indeed they can be prone to failure or lack of precision. The interest of using 

model-based estimation/filtering whose effectiveness relies on the fundamental property of 

observability, is the fact that estimation algorithms, such as the receding horizon which is based 

on optimal filtering, are able to provide estimates of the distributed states based on a limited 

number of well-placed sensor measurements which can be subject to measurements noise. Thus 

the covariance matrix of the measurement noise is explicitely taken into account in the 

minimized cost function (see eqn (33)), where R denotes the covariance matrix of noises 

affecting the sensors). 

This approach also provides a lot of flexibility allowing inclusion of heterogeneous, sporadic 

or asynchronous data produced by static or mobile sensors, especially in the context of 

crowdsensing. In this case, the number of sensors can actually vary considerably over time. 

Think about the increasing number of posts in social media observed during a disaster. 

Furthermore, taking measurements delays due to limited transmission rates in some sensor 

network configurations, is important if the monitored dynamics has ”small time constants” with 

respect to the measurement delays. The development of 5G technologies will soon make the 

problem of delayed data obsolete due to the gain in transmission rates (x10 compared to 4G). 

However, it is worth mentioning that there exist well-established results on the estimation of 

systems time-delayed measurements and data loss [Johansen et al (2013)]. Formulation (33) 

can be modified to include delayed data. However the computation of the optimization is more 

tricky. Finally, extension of the RHO have been proposed to hybrid dynamical systems [Ferrari 

et al (2003)]. A hybrid system is a dynamical system that exhibits both continuous and discrete 

dynamic behavior, i.e. a system that combines both differential equations and discrete event 

automatons. The class of hybrid systems has to be considered with attention when dealing with 

cascading hazards such as natural hazards triggering technological disasters (Natech risks). It 

is worth noticing that such flexibility cannot be obtained using the Kalman filtering approach 

-and its variants- that cannot include constraints in particular in the estimation process. 

It can be shown that the existence of a solution to (33) relies on both the state observability 

and parameter identifiability properties of system (31). Improving observability/identifiability 

by solving an OSPP (25) will increase the sensitivity of output measurements 𝑦(𝜏), 𝜏 ∈ [𝑡𝑘 −

𝑇, 𝑡𝑘]  to state 𝓏(𝑡𝑘) which generated them. It can be shown that such sensitivity computations 

are involved in solving (33), for instance through the computation of an adjoint model. 
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Solving optimal problem (33) usually requires the computation of a large scale optimization 

problem in particular when dealing with discretized PDEs with a large number of state 

variables. Again the use of model reduction techniques is a key factor for reducing 

computational complexity. In addtion, efficient solvers have been developed over the last 

decades to solve large-scale constrained optimization problems, such as solvers based on 

sequential quadratic programming techniques associated to quasi-Newton methods [Gould et 

al (2005)] or Limited Memory Bundle Methods for solving large-scale nonsmooth optimization 

problems [Karmitsa (2016)]. 

Due to its ability to cope with constraints and its intrinsic flexibility in the formulation, some 

particular formulations of RHO can be viewed as the generalization of Kalman filter that hold 

only for linear unconstrained systems subject to Gaussian noises. (see [Alamir (2007)]) . 

 

4.3 Review of some existing or potential RHO applications 

RHO implementations are still limited in environmental applications, despite the flexibility 

of the approach. However, many data assimilation techniques and Kalman filter variants have 

been developed in the literature, that are not reviewed here. However successful 

implementations of RHO are available in the literature related to the monitoring of industrial 

processes or facilities, that are listed here. 

Table 2 provides some potential applications of RHO techniques for hazard monitoring. 

 

5. OPTIMAL MONITORING ARCHITECTURE  

 

In this section, the overall optimal architecture proposed in the paper is described and 

formalized. 

Some additional notations are introduced. 

The measurement operator related to static sensors and the locations of the static sensors are 

denoted as 𝑦𝑠(𝑡) = 𝐶𝑠(𝜇ₛ)𝓏(𝑡), 𝑦𝑠 ∈ ℝ𝑁s  and μₛ respectively, where Ns is the number of static 

sensors. 

⚫ The measurement operator related to controlled mobile sensors, such as UAVs, and the 

time-varying locations of these mobile sensors are denoted as 𝑦𝑚(t) = 𝐶𝑚(μm(t)) 𝓏 (t), 𝑦𝑠 ∈

ℝ𝑁𝑚  and μm(t), respectively, where Nm is the number of mobile sensors. 

⚫ The measurement operator related to crowd sensors (individuals carrying smartphones), 

and the time-varying locations of these crowd sensors are denoted as 𝑦𝑐 (t) = 𝐶𝑐 (μc(t)) 

z(t), 𝑦𝑐 ∈ ℝ𝑁c and μc(t), respectively, where Nc is the number of crowd sensors. 
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Table 2. Potential or Existing Applications of RHO 

Hazard  States Parameters Sensors References 

Weather 

temperature, wind 

velocities, pressure 

fields … 

extreme events 

meteorogical 

stations, satellites, 

crowdsensing 

  

Overland or urban 

flooding 

water levels, flow 

velocity in time and 

space 

friction coefficient, 

location of dyke 

failures  

water level or flow 

rate sensors  

[Pham et al 

(2013)] 

Landslides, 

avalanches, lava 

flows, mudflows 

flow thickness , flow 

velocity, in time and 

space 

friction and stress 

coefficients 

LIDAR, satellite, 

stress sensors, 

crowdsensing 

  

Earthquakes 

displacement and 

stress tensor, in time 

and space 

Lamé elastic 

constants, density of 

the elastic medium, 

seismic source 

location 

seismometers, 

crowdsensing 
  

Wildfire 

Temperature, fuel 

consumption in time 

and space 

diffusion and 

reaction coefficients, 

ignition location 

infra-red sensors, 

crowdsensing, 

satellite 

See section 6.2 

Pollution 

pollutant 

concentration in time 

and space 

diffusion and 

reaction coefficients, 

pollutant source 

location 

pollutant sensors, 

crowdsensing 
  

Epidemics and 

pandemics 

susceptible, infected, 

recovered individual 

density in time and 

space 

disease diffusion, 

infection, recovery 

rate coefficients 

crowdsensing, 

hospitals and medical 

centers 

  

Ecology 

(Predator/Prey 

models) 

predators and prey 

density in time and 

space 

diffusion and rate of 

increase and 

competition 

coefficients 

biological field 

stations 
  

Critical 

infrastructures 

(water, gas, oil, 

energy, traffic flow 

networks), industrial 

facilities or 

processes, 

buildings ... 

flows and physical 

potentials 

fault detection and 

isolation 

physical sensors 

depending on the 

infrastructure, 

crowdsensing 

[Alamir et al 

(2003)],  

[Mohd Ali et al 

(2015)],  

[Rangegowda 

et al (2018)] 

 

When one considers systems governed by PDEs, the individual measurement operator 𝐶𝑖
j
, 𝑖= 

s,m,c, for any sensor j is defined as follows: 

      𝐶𝑖
𝑗
(𝜇𝑖

𝑗
𝓏 (𝑡)  = ∫ ∆

 

Ω 𝑖

(ζ, 𝜇𝑖
j
) 𝓏(ζ, 𝑡)𝑑 ζ ,                                                                                        (34) 

where ∆ (ζ, 𝜇𝑖
𝑗
)  is the characteristic of a spatially averaged measurement around location 𝜇𝑖

𝑗
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  1, 𝑖𝑓 ζ ∈ [
𝑖

− ɛ,
𝑖

+  ɛ], 

0, otherwise 

 

The way of deriving the optimal location of sensors depends on the nature of the sensors: 

⚫ For static sensor units, the OSPP is solved once and for all. 

⚫ For controlled mobile sensing units, an adaptive OSPP is implemented where the 

observability index is updated at each sample time tk using both state 𝓏̂(tk−T−1) and 

exogeneous inputs on horizon (tk−T−1,tk−1] -for instance, weather forecasting 

information: wind velocity, temperature, pressure- or control inputs performed on the 

system -for instance, actions of fire fighting units in the case of wildfires- and estimated 

parameters provided by the RHO, and the sensor trajectories are updated accordingly. 

⚫ For crowdsensing units, usually the OSPP does not make sense since the individuals freely 

evolve on the field. However if parts of the individuals (in the context of participatory 

crowssensing) accept to follow some prescribed trajectories in order to position themselves 

in order to maximize observability, they are assumed to belong to the category of 

controlled mobile sensors defined just before. 

 

Based on (25), (29), (33), additional notations and previous assumptions, the overall iterative 

monitoring architecture can be formulated as follows: 

Offline static OSP: 

    max
𝑠∈𝐷s

𝑐s (
𝑠
),                                (35) 

Mobile OSPP2 updated at each tk, starting from 
𝑚
𝑖 (𝑡𝑘 − 1): 

 ̇ 𝑚
𝑖 (𝑡) = 𝜌[∇ 𝑚

𝑖 𝑐𝑚
 

 (
𝑚
1 (𝑡), . . . ,

𝑚
𝑀 (𝑡), 𝜃̂𝑘−1, 𝓏̂(𝑡𝑘 − 𝑇 − 1), 𝑢([𝑡𝑘 − 𝑇 − 1, 𝑡𝑘 − 1])) + 𝛿 ∑  

𝑀

𝑗=1,   𝑗≠𝑖

(
𝑚
 𝑖 (𝑡) − 

𝑚
 𝑗 (𝑡))

𝑑 𝑖𝑗
2 (

𝑚
 𝑖 (𝑡),

𝑚
 𝑗 (𝑡)) − 𝛼2

], 

⇒ 
𝑚
𝑖 (𝑡𝑘), 𝑖 = 1, … , 𝑁𝑚,                        (36) 

Processing of crowd data 𝑦𝑐([𝑡𝑘 − 𝑇, 𝑡𝑘])                  (37) 

RHO with data assimilation with sensor measurements 𝑦𝑖([𝑡𝑘 − 𝑇, 𝑡𝑘]), i= 𝑠, 𝑚, 𝑐: 

min
𝓏∈ ℨ(𝑡),ϴ∈𝛩

 ∫ [
𝑡𝑘

𝑡𝑘−𝑇 

∑  

 𝑁𝑠

𝑖=1  

1

𝑟𝑠
𝑖

‖𝑦𝑠
𝑖(𝜏) − 𝐶𝑠

𝑖(
𝑠
𝑖 )𝑍(𝜏, 𝓏, 𝑢(. ), 𝛳)‖2 + ∑  

 𝑁𝑚

𝑖=1  

1

𝑟𝑚
𝑖

‖𝑦𝑚
𝑖 (𝜏) − 𝐶𝑚

𝑖 (
𝑚
𝑖 (𝜏))𝑍(𝜏, 𝓏, 𝑢(. ), 𝛳)‖2

 

 

 

+ ∑  

 𝑁𝑐

𝑖=1  

1

𝑟c
𝑖

‖𝑦𝑐
𝑖(𝜏) − 𝐶𝑐

𝑖(
c
𝑖 (𝜏))𝑍(𝜏, 𝓏, 𝑢(. ), 𝛳)‖2

 
] 𝑑𝑡 + ‖𝓏 − 𝓏̂(𝑡𝑘 − 1)‖ 

2  
𝑀1

−1 + ‖𝜃 − 𝜃̂𝑘−1‖ 
2     
𝑀2

−1,     (38) 

⇒𝓏̂ ([𝑡𝑘 − 𝑇, 𝑡𝑘]),𝜃𝑘 

 
2 Here, constraints 𝑑𝑖𝑗(t) ≤ β are omitted. 

on domain Ω𝑖. ∆ is often chosen as 



IDRiM (2020) 10 (1)        ISSN: 2185-8322 

DOI10.5595/001c.xxxxxxx 

 

88 

 

Repeat the above steps for all 𝑡𝑘 , using 


𝑚

([𝑡ₖ − 𝑇, 𝑡𝑘]),
𝑐
([𝑡𝑘 − 𝑇, 𝑡𝑘]), 𝑦𝑠([𝑡𝑘 − 𝑇, 𝑡𝑘]), 𝑦𝑚([𝑡𝑘 − 𝑇, 𝑡𝑘]), 𝑦𝑐([𝑡𝑘 − 𝑇, 𝑡𝑘])                              (39) 

  

where the 1/𝑟 𝑖
𝑗
, 𝑖 = 𝑠, 𝑚, 𝑐 denote the degree of confidence in the sensor 𝑖 𝑗 measurement or 

the quantitative data provided by crowdsensing. 

Finally, Fig. 5 depicts the overall proposed scheme. 

 

6. TWO ILLUSTRATIVE CASE STUDIES 

 

The goal of this section is to illustrate how OSSP techniques (25), (29) and RHO approach 

(33) described in the previous sections, can be applied to realistic hazard monitoring problems. 

The section is now dedicated to two main topics: 

(1) The management of both static and mobile sensor networks in the context of air pollution 

monitoring. 

(2) The early detection of fire ignition and the prediction of the spreading of wildfires based 

on a receding using low-cost temperature sensors deployed on the field. To the best of 

my knowledge, such a RHO has never been proposed before. 

 

6.1 Optimal management and deployment of static or mobile Sensor networks for air 

pollution monitoring 

This section sums up some contributions in ([Georges (2011)], [Georges (2013a)], and 

[Georges (2017)] and presents the following results: 

⚫ The management of a WSN with static sensor nodes including lifespan concern; 

⚫ The illustration of navigation strategy (29) with a number of UAVs reaching 100 units; 

⚫ A modal observability metric not proposed in my previous publications. 
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Figure 5.  Optimal Monitoring Architecture. 

 

Air pollution spreading is classically modeled by 2D or 3D advection-diffusion partial 

differential equations (ADPDE) (see [Zannetti (1990)] for example). For the sake of 

simplification, only a 2D problem is discussed here. 

𝜕𝓏

𝜕𝑡
(𝑥, 𝑡) + 𝑈(𝑥, 𝑡). ∇𝓏(𝑥, 𝑡) = 𝑘∆𝓏(𝑥, 𝑡) + 𝐷(𝑥, 𝑡)𝑆(𝑡) − 𝑟𝓏(𝑥, y, 𝑡)             (40) 

where 𝓏(𝑥, 𝑡) is the concentration of a chemical species, U = (Ux,Uy) is the vector of wind 

velocities, k is the diffusion coefficient, r is the reaction coefficient, S(t) represents the source 

of pollution assumed to be known, D(x,t) represents how the source of pollutant S(t) acts in a 

domain Ω= [0,L] [0,H], where L and H are the limits of the 2D domain. ∇ is the gradient 

operator, while ∆ is the Laplacian operator. 

Some initial conditions 𝓏(𝑥, 𝑢, 𝑡 =  0)  =  𝓏0(𝑥, 𝑦) and boundary conditions are needed for 

the well-posedness of the problem, for instance, Dirichlet boundary conditions: 

𝓏(𝑥, 𝑦, 𝑡) = 𝓏𝑏𝑐(𝑥, 𝑦, 𝑡), ∀(𝑥, 𝑦) ∈ ∂Ω               (41) 

In what follows, the source is supposed to be constant with a gaussian distribution located 

at (xs,ys). 

Three methods will be considered in the following sections to deal with a finite-

dimensional system of form (31): 

⚫ A time-explicit finite-difference approximation [Georges (2011)]; 

⚫ A spectral Galerkin methods [Georges (2013a)] using Legendre’s orthogonal 

polynomials; 
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⚫ A modal approximation based on the solution of the eigenvalue problem of the 

advection-diffusion equation (40) ([Georges (2017)]. More focus on this appraoch will 

be made in section 6.1.2. 

 

6.1.1 Managing the trade-off between observability and energy consumption in static 

Wireless Sensor Networks 

 

Figure 6.  Static network of 50 randomly-distributed sensors with 296 communication links, on a 

monitored square domain of 2km side.  

The dotted lines feature the existence of an effective communication link between two sensors 

(mutual reachability). The red dot is the sink station. 

 

In [Georges (2011)], the problem of energy management in a static WSN, ensuring the best 

possible observability of air pollution, while maximizing the lifespan, was studied. This section 

sums up the contribution and the main results obtained. It can be regarded as a special case of 

OSPP (25) where constraints on energy and communications were taken into account. 

The sensors were assumed to operate with limited energy harvesting and storage capabilities. 

The chosen observability metric was the trace of the observability gramian (20). 

Two objectives were assigned: 

⚫ The first objective consisted in maximizing the observability index. 

⚫ The second objective was to maximize the lifespan of the network by minimizing the 

energy consumed by the sensors (due to communication and data processing). 
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It is worth noticing that these objectives are antagonistic and there is a trade-off to find, since 

observability is better if many sensors are active, but the price to pay is a greater energy 

consumption of the sensors. 

The sensors were assumed to be equipped with a battery and a photovoltaic panel. 

This problem was formulated in [Georges (2011)] as a two-objective optimization problem 

using a receding horizon optimization problem constrained by the topology of available 

communication links which depends on both the initial configuration of the network and the 

individual state of the sensors (the fact to be active in sensing or not). 

The network structure is described in Fig. 6. 

The incidence matrix MI of the communication network is assumed to be known. It is derived 

from the connectivity matrix of the network, that depends on the interdistance di j between any 

sensor nodes i and j. If ẟ is the Mc vector of the ẟ𝑖𝑗’s, where ẟ𝑖𝑗 denotes the average number of  

packets routed from the node i to the node j and 𝑀𝑐 = ∑ 𝛽
𝑖 𝑗

=

 

𝑖,𝑗  

∑ 𝑐𝑎𝑟𝑑(𝐶𝑖),

 𝑀

𝑖=1  

 where for each 

node i, Ci denotes the set of the nodes connected to 𝑖: 𝐶𝑖 = {𝑗, 𝑗 = 1, . . . , 𝑀, 𝑗 ≠ 𝑖/𝛽𝑖 𝑗 = 1},  we 

get the following model of communications links: 

  MI ẟ +dα −Hd0 = 0Mc⨯1,                  (42) 

where d is the maximum number of packets transmitted by any sensor node (routing 

information and measurement packets), d is supposed to be fixed. H = (1,…,0)T , and d0 is the 

maximum number of packets received by the base station. Since all the packets are supposed 

to converge towards the base station, d0 = ∑ 𝑑𝛼𝑖 .

𝑀 

𝑖 =1 

 

  Decision variable 𝛼𝑖 ϵ [0,1] was introduced to reflect the activity ratio of node i (when 𝛼𝑖 = 1, 

node i is fully active, while when 𝛼𝑖= 0 it is in standby). 

The amount of energy needed to send a packet of the measurement data, status and routing 

data between the node i and the node j is assumed to be available on request of the base station, 

and is given by a coefficient 𝑘𝑖𝑗
𝑠 > 0. 𝑘𝑖𝑗

𝑠  depends on the distance d𝑖𝑗
  between node i and node 

j, since the emission power needed to send packets to node j increased as a function of the 

distance d𝑖𝑗
 . On the other hand, the amount of energy needed to receive a packet from the node 

j is given by a coefficient 𝑘𝑖𝑗
𝑟  > 0. The a model of energy consumption at each node i, i = 1,…,M 

is given by: 

ⅇ̇𝑖(𝑡) = −ｋ
𝒊𝒊

𝛼𝑖(𝑡)– ∑ [

 

𝑗∈𝐶𝑖 

𝑘𝑖𝑗
𝑠 ẟ𝑖𝑗(𝑡) + 𝑘𝑖𝑗

𝑟 ẟ𝑗𝑖(𝑡)] + 𝐸𝑖(𝑡) −  𝑝𝑖(𝑡)                                               (43) 

ⅇ𝑖 < ⅇ𝑖(𝑡) < ⅇ
𝑖
,                                  

(44) 
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𝑝𝑖(𝑡)  > 0,                    (45) 

where ei(t) is the available energy of node i at time t, ⅇ𝐼
𝑖 is the initial available energy stored in 

the node battery, and 𝐸𝑖(t) is the energy provided by the solar cell of the sensor i at time t. The 

coefficient kii correspond to the energy consumed by the node i when it collects and computes 

its own air pollution measurement. ⅇ𝑖  and ⅇ
𝑖
 are the discharge and full battery bounds, 

respectively. pi(t) is a energy ”spill” variable to take into account the full battery state. 

 

 

The OSSP may be now formulated as a two-goal receding horizon control problem as 

follows3 

min
ẟ(𝑡𝑘),𝛼(𝑡𝑘),𝑑𝐿(𝑡𝑘),𝑝(𝑡𝑘)

 ∫ {
𝑡𝑘+𝑇

𝑡𝑘  

∑(𝑘𝑖𝑖𝛼𝑖(𝑡)

 𝑀 

𝑖=1  

+ ∑ [

 

𝑗∈𝐶𝑖 

𝑘𝑖𝑗
𝑠 (𝑑𝑖𝑗)ẟ𝑖𝑗(𝑡) + 𝑘𝑖𝑗

𝑟 ẟ𝑗𝑖(𝑡)]) + 𝐾𝑝 ∑ (𝑝𝑙
𝑗

+

 Ｍ

ｊ=1

𝑑𝑗𝑙
𝐿 )

− 𝜎 𝑡𝑟𝑎𝑐ⅇ(𝑊(𝑡𝑘 , 𝑇0, 𝛼(𝑡)))}                                                                                                                                    (46) 

subject to constraints 

𝑀𝒍𝑀ẟ(𝑡)+𝑑𝛼(𝑡) − 𝐻 ∑ 𝑑𝛼𝑖(𝑡)

 𝑀

𝑖=1  

− 𝑑𝐿(𝑡) = 0𝑀𝑐×1 ,                                                          (47) 

ⅇ̇𝑖(𝑡) = −𝑘𝑖𝑖𝛼𝑖(𝑡) – ∑  

 

𝑗∈𝐶𝑖 

[𝑘𝑖𝑗
𝑠 ẟ𝑖𝑗(𝑡) + 𝑘𝑖𝑗

𝑟 ẟ𝑗𝑖(𝑡)] + 𝐸̂𝑖(𝑡)  − 𝑝𝑖(𝑡)                                                         (48) 

ⅇ0
𝑖 = ⅇ 𝐼

𝑖 ,               (49) 

ⅇ𝑖 < ⅇ𝑖(𝑡) < ⅇ
𝑖
,                                 (50) 

0 < ẟ𝑖𝑗(𝑡) < ẟ̅𝑖𝑗(𝑑𝑖𝑗),0 < 𝛼𝑖(𝑡) < 1, 𝑑𝐿(𝑡) > 0, 𝑝𝑖(𝑡) > 0,                (51) 

where 𝜎 > 0 is the ”preference or arbitrage coefficient”, and Kp > 0 is a large enough penalty 

coefficient, W(𝑡𝑘, 𝑇𝑂,α(t)) is the observability gramian of the discretized ADPDE obtained by 

finite-differences, computed on the time interval [𝑡𝑘 − 𝑇𝑂, 𝑡𝑘], 𝐸̂𝑖(t) is a prediction (except at 

current time t) of the amount of energy provided by the solar cell (depending on both night or 

day time and weather conditions). ei(t) is the amount of energy stored in the battery, available 

for the node i at t. 𝛿̅𝑖𝑗(dij) is the maximum number of packets sent by the node i to the node j 

at every sampling time (a data flow rate limit), which will depends on the inverse of the distance 

dij since the transmission rate is affected by the quality of the wireless link. dL(t) is the M vector 

of packet losses at each node. Packet losses may occur, when some links are congested due to 

data flow rate limits. 

Based on the parameters of the ADPDE, the 50-sensor network, and the optimization given 

in [Georges (2011)], Fig. 7a and Fig. 7b provide a comparison of the results obtained with two 

different values of preference coefficient 𝜎 , 2 and 0.1. The trade-off is in favour of the 

observability maximization when the value of 𝜎 is large (see the left column results compared 

 
3 In the referenced paper, the formulation was originally made in discrete-time. 
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to the right column results with the smaller value of 𝜎). All the results are expressed in 

normalized units. The different figures show the evolution on 24 hours of the observability 

index, the evolution of the energy stored in each sensor, and the communication traffic in each 

active links of the sensor network. Not surprisingly, the observability index reaches its 

maximum value when a maximum of energy is available in the sensor batteries as expected. 

For 𝜎 = 2, the observability index value appears to be 5 times greater than when using 𝜎 = 0.1. 

Of course, the price to pay is a higher energy consumption of the sensors. 

 

 
Figure 7a.  Results obtained with 𝜎 = 2.,  
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Figure 7b.  Results obtained with 𝜎 = 0.1. 

 

 

 

 

 



IDRiM (2020) 10 (1)        ISSN: 2185-8322 

DOI10.5595/001c.xxxxxxx 

 

95 

 

6.1.2 Management of mobile sensors for air pollution monitoring 

This section sums up the contribution in [Georges (2013a)], where the goal was to manage 

mobile sensors to ensure the best possible observability of air pollution when the 

meteorological conditions (essentially, the wind velocity field) vary. A group of mobile sensors 

(UAVs) was coordinated to adapt their positioning in order to always maximize the trace of 

the observability gramian, while maintaining wireless communication through the group, 

together with mutual obstacle avoidance. 

20 mobile sensors follow navigation strategy (29) that consisted in maximizing the trace of 

the observability gramian (20) of a reduced model of ADPDE obtained with a spectral Galerkin 

method using 20 Legendre’s orthogonal polynomials. The individual trajectory of each sensor 

towards an optimal sensor configuration was constrained to guarantee mutual collision 

avoidance and to maintain the communication connectivity with all the other members of the 

group. 

 

Table 3 shows the parameters retained for the case study presented here-after. 

 

Table 3.  ADPDE parameters 

Ux Uy diffusion k B.C. D(x,t) 

10km/h 10km/h 1 𝓏𝑏𝑐(x,t) =0 ⅇ
−‖𝑥 − 𝑥𝑠‖2

2𝜎2
, 𝜎 = 0.01 

 

The source of pollutant was assumed to be defined by a Gaussian distribution, where xs is 

the source location here situated at the center of the square domain. 

Fig. 8 and 9 show the trajectories of the 50 sensors to reach optimal location maximizing the 

observability index. The sensors start from a random initial position. On Fig. 9, the wind 

velocity has changed (from (10km/h, 10km/h) to ( − 10km/h, 5km/h)) and the sensors 

automatically reposition themselves to maximize the observability index corresponding to this 

new situation. 
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Figure 8.  The ”o”’s feature the optimal location of the sensors.  

The coloured curves represent levels with identical polllutant densities. 

 

 

Figure 9.  New trajectories of the sensors obtained after wind velocity changes. 
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6.1.3 OSPP with a modal observability gramian 

Following [Georges (2017)], the air pollution model (40) may be represented in abstract 

form by 

𝓏̇(𝑡) = 𝐴𝓏(𝑡),                               (52) 

𝑦(𝑡) = 𝐶𝓏(𝑡),                    (53) 

where A is the infinitesimal generator of a C0-semigroup T(t) on a Hilbert space Z, and C is an 

output linear and bounded operator from Z to a Hilbert space Y; define for some finite To > 0, 

the observability map of (A,C) on [0,To], as the bounded linear map 𝐶𝑇𝑜: Z →L2([0,To];Y) given 

by 𝐶𝑇𝑜𝓏 =CT(.)𝓏. 

Here the output operator C is given, as in (34), by 

𝑦 = 𝐶𝓏 = ∫  
𝐿

0

∫ ∆
𝐻

0

(𝑥 − 𝑥𝑙 , 𝑦 − 𝑦𝑙)𝓏(𝑥, 𝑦, 𝑡)𝑑𝑥𝑑𝑦,                                                                     (54) 

where ∆(𝑥 − 𝑥𝑙 , 𝑦 − 𝑦𝑙) is a shaping function of a sensor l located at position 
𝑙
= (𝑥𝑙 , 𝑦𝑙). 

Here 

  1, 𝑖𝑓(𝑥, 𝑦) ∈ [
𝑙

− 𝜀,
𝑙

+ 𝜀],                                                           (55) 

0, otherwise.                

The observability gramian of (A,C) is defined by the linear self-adjoint operator 𝑊𝑇 =

𝐶𝑇0∗𝐶𝑇0.  

In order to get an explicit form of the gramian, the following procedure was proposed in 

[Georges (2017)]: 

(1) Transform the ADPDE (40) into the following diffusion equation: 

𝜕𝑣

𝜕𝑡
(𝑥, 𝑦, 𝑡) = 𝑘

𝜕2𝑣

𝜕𝑥2
(𝑥, 𝑦, 𝑡) + 𝑘

𝜕2𝑣

𝜕𝑦2
(𝑥, 𝑦, 𝑡) + 𝑆′(𝑥, 𝑦, 𝑡) − 𝑞𝑣(𝑥, 𝑦, 𝑡),             (56) 

with 𝑞 = 𝑟 +  
1

4
(

𝑣𝑥
2

𝑘
+

𝑣𝑦
2

𝑘
), thanks to the change of coordinates 𝓏(𝑥, 𝑦, 𝑡) =  

𝑣(𝑥, 𝑦, 𝑡)ⅇ𝑝1𝑥+𝑝2𝑦 where  𝑝1 =
𝑣𝑥

2𝑘
, 𝑝2 =

𝑣𝑦

2𝑘
. 

(2) Compute the well-known eigenvalues and eigenfunctions of the diffusion equation 

using Dirichlet’s boundary conditions: 

𝑛 =
𝜋2𝑛2

𝐿2 , 𝜙𝑥
𝑛(𝑥) = 𝑠𝑖𝑛(

𝑛𝜋𝑥

𝐿
),        (57) 

v𝑚 =
𝜋2𝑚2

𝐻2 , 𝜙𝑦
𝑚(𝑦) = 𝑠𝑖𝑛(

𝑚𝜋𝑦

𝐻
),                   

(58) 

∆(𝑥 − 𝑥𝑙 , 𝑦 − 𝑦𝑙) 
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𝜙𝑛𝑚(𝑥, 𝑦) =  𝜙𝑥
𝑛(𝑥) × 𝜙𝑦

𝑚(𝑦).           (59) 

(3) Get the modal solution of ADPDE (40) with input S(𝑥, 𝑦, 𝑡) = 0, ∀𝑡 ≥ 0: 

𝓏(𝑥, 𝑦, 𝑡) =  ∑  

∞

𝑛=1 

∑ 𝑐𝑛𝑚ⅇ(−𝑞−𝑘(𝑛+𝑣𝑚))𝑡+𝑝1𝑥+𝑝2𝑦𝜙𝑛𝑚(𝑥, 𝑦),

∞

𝑚=1 

                                      (60) 

where 𝑐𝑛𝑚 denote the modal coordinates of the initial conditions. 

(4) Compute the output map using (54): 

𝐶𝑇0𝓏 = ∑ 𝑐𝑛𝑚𝐶𝑛𝑚(
𝑙
) × ⅇ(−𝑞−𝑘(𝑛+𝑣𝑚))𝑡,

∞

𝑛,𝑚=1 

 

where 

𝐶𝑛𝑚(
𝑙
) = ∫  

𝐿

0

∫ ∆
𝐿

0

(𝑥 − 𝑥𝑙 , 𝑦 − 𝑦𝑙) sin(
𝑛𝜋𝑥

𝐿
) sin(

𝑚𝜋𝑥

𝐻
)ⅇ𝑝1𝑥+𝑝2𝑦 𝑑𝑥𝑑𝑦

≠ 0, ∀𝑛, 𝑚,                                                                                                     (61) 

 

× sin(
𝑚𝜋𝑥

𝐻
)ⅇ𝑝1𝑥+𝑝2𝑦 𝑑𝑥𝑑𝑦 ≠ 0, ∀𝑛, 𝑚,                                                                   (61)Since 

𝑊∞() = ∑  

𝑁

𝑛=1 

∑  

𝑀

𝑚=1 

𝐶𝑛𝑚
2 ()

2(𝑘(
𝑛

+ 𝑣𝑚) + 𝑞)
,                                                                                    (62)  

where (M,N) are the numbers of modes retained for the approximation. 

Fig. 10 shows the value of the observability index for a pollution distribution with constant 

wind velocities according to the sensor location in the domain. 

    Fig. 11 shows the mobile OSPP of a network of 100 mobile sensors using navigation strategy  

(29) with the cost function 𝑐(
1

, . . . 
100

) = ∑ 𝑡𝑟𝑎𝑐ⅇ 

100

𝑖=1 

{𝑊∞(
1
)} on a given time period. 

According to the classical theory of Riesz-spectral operators, ADPDE (40) is approximately 

observable if and only if all the Cnm() are different from zero, for a sensor located at  (see 

[Curtain et al (1995)]). 

Then an observability index ensuring approximate observability on the basis of the first 

(N,M) modes can be defined by 

𝑐() = min
𝑛=1,...,𝑁,𝑚=1,...,𝑀

|𝐶𝑛𝑚()|.                                          (63) 
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Figure 10.  Observability index given by the trace of the observability gramian with N = M = 20 for 

one sensor according to its location in the domain, for (Ux = 50km/h, Uy = 25km/h). 

 

Fig. 12 shows all the values of this new index and therefore the locations of sensors ensuring 

observability (c( l) ≠ 0), with N = M = 30. The maximum values of the index are obtained at 

the top-right corner of the domain. Compared to Fig. 10, it immediately appears that metric 

(63) is more demanding than (62). With (63), navigation strategy (29) is no more directly 

applicable since the index is not smooth. It should be modified to ensure that some optimal 

locations of the Ns sensors  
𝑙
∗, l=1,...,Ns, solutions of a static nonsmooth OSPP, for instance: 

max
 𝑙∈𝐷(1,...,𝑁𝑠

),𝑙=1,...,𝑁𝑠

 min
𝑛=1,...,𝑁,𝑚=1,...,𝑀

∑ |

𝑁𝑠

𝑘=1 

𝐶𝑛𝑚(
𝑘

)|,                                                                         (64) 

are reached, for instance, by replacing the gradient  ∇𝑖
c by −𝛾 (  

𝑖
∗ − 

𝑖
), 𝛾 >0 in 

(29). 𝐷(
1

, . . ., 
𝑁𝑠

) is the set of constraints intended to avoid sensor clustering and to ensure 

inter communications between the sensors. 

 

6.2 Early detection of a wildfire ignition and fire prediction using a receding horizon 

observer 

In this section, some new results on the use of a receding horizon observer RHO (33) are 

presented, based on the adjoint method proposed in [Georges (2019)]. The objective is to be 
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able to detect and locate early fire ignition using a sensor network constituted with ground-

layer temperature sensors (see Fig. 13). 

The model of a wildfire propagation can be well described by 2D coupled partial differential 

equations, which define the energy balance and fuel reaction rate for a wildfire in a ground 

layer of some given finite small thickness, on a rectangular domain D = [0,Lx]× [0,Ly] (see 

[Mandel et al (2008)]): 

𝜕𝑡𝑇 = 𝜕𝑥(𝑘𝜕𝑥𝑇) + 𝜕y(𝑘𝜕𝑦𝑇) − 𝑣𝑥𝜕𝑥𝑇 − 𝑣𝑦𝜕𝑦𝑇 +A(Sr(T) −C(T−𝑇𝑎)),                            (65) 

𝜕𝑡S =−CSSr(T), 

 

 

Figure 11.  The 100 sensors tend to move towards locations on the right side of the domain.  

The sensors initially are randomly distributed in the domain.  

The initial locations are marked by ”+”, and the final ones, by ”X”. 

 

with Arrhenius reaction rate from physical chemistry 

 ⅇ−𝐵/(𝑇−𝑇𝑎), T > 𝑇𝑎,                     

0, 𝑇 < 𝑇𝑎,               (66) 

and where T(x,y,t) is the distributed temperature in the ground layer, S(x,y,t) is the distributed 

mass fraction of fuel. k is the coefficient of temperature diffusion. v = (vx(x,y,t), vy(x,y,t)) defines 

the velocity field of the air, supposed to known from meteorological data. A, B, C, Cs are some 

r(T)=

sas 
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physical coefficients. Ta is the ambient temperature. 𝜕𝑡  , 𝜕𝑥 , and 𝜕𝑦  denote the partial 

derivatives with respect to time t, and spatial coordinates x and y, respectively. 

Some boundary and initial conditions have also to be defined to ensure the well-posedness 

of the problem. Neumann’s boundary conditions are used in this paper: 

𝜕𝑥𝑇(0, 𝑦, 𝑡) = 𝜕𝑥𝑇(𝐿𝑥, 𝑦, 𝑡) = 0, ∀𝑦 ∈ [0, 𝐿𝑦],                (67) 

𝜕𝑦𝑇(𝑥, 0, 𝑡) = 𝜕𝑦𝑇(𝑥, 𝐿y, 𝑡) = 0, ∀𝑥 ∈ [0, 𝐿𝑥],                (68)   

𝑇(𝑥, 𝑦, 0)  =  𝑇0(𝑥, 𝑦), 𝑆(𝑥, 𝑦, 0)  =  𝑆0(𝑥, 𝑦), ∀(𝑥, 𝑦) ∈ 𝐷.              (69)   

The interest of this model relies in the fact it is able to simulate heat travelling waves in a 

realistic way. In what follows, a normalized model is adopted (see (71) and (72)). 

A network of temperature sensors is assumed to be deployed in the field. The location of the 

sensors is obtained thanks to a Sobol’s sequence (see [Georges (2019)]. The sensor location is 

assumed to be fixed and the effect of changes in wind direction is taken into account via the 

advection term of model (65) by using weather forecast data. A perspective would be to use 

mobile sensors (UAVs with infrared sensors) using a navigation strategy (26) or (29). Here it 

is assumed that the initial fuel distribution S(x,y,0) is known from an a priori mapping of the 

field. Physical coefficients β and λ are also assumed to be known from the knowledge of 

previous wildfire occurrences with the same fuel characteristics. 

 

 

Figure 12.  Alternative modal observability index over the domain.  

Observability for N = M = 20 is ensured only on very specific locations. 
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Figure 13.  Sensor networks for wildfire monitoring (see also [Li et al (2006)]). 

 

Similarly to (33), the moving horizon fire ignition estimation will consist in finding the 

distributed temperature at each time instant tk over domain D. This can be formulated as solving 

the optimal least-square optimization problem defined for Ns sensors and on moving time 

interval [tk −Tf, tk]: 

min
𝑇(𝑥,𝑦,𝑡𝑘−𝑇𝑓)∈𝐷

𝐽(𝑇0) = min
𝑇(𝑥,𝑦,𝑡𝑘−𝑇𝑓)∈𝐷

1

2
∑  

𝑁𝑠

𝑖=1 

∫ (𝑦𝑖(t)
𝑡𝑘

𝑡𝑘−𝑇𝑓 

− 𝑦𝑖
𝑚(𝑡))2𝑑𝑡 +

𝑎
2

∫  
𝐿𝑥

0

∫ (𝑇(𝑥, 𝑦, 𝑡𝑘 − 𝑇𝑓))2𝑑𝑥𝑑𝑦
𝐿𝑦

0

,        (70) 

subject to 

𝜕𝑡𝑇 = 𝜕𝑥𝑥𝑇 + 𝜕𝑦𝑦𝑇−𝑣𝑥𝜕𝑥𝑇−𝑣𝑦𝜕𝑦𝑇 + 𝑆ⅇ−1/𝑇 − λ𝑇,            (71) 

𝜕𝑡𝑆 = −𝛽𝑆ⅇ−1/𝑇, 𝑇 > 0,                            (72) 

where the measurement operator for each sensor i is given by 

𝑦𝑖(𝑡)  = ∫  
𝐿𝑥

0

∫ ∆(𝑥 − 𝑥s
𝑖 , 𝑦 − 𝑦s

𝑖)𝑇
𝐿𝑦

0

(𝑥, 𝑦, 𝑡)𝑑𝑥𝑑𝑦,                                                                    (73) 

Where 𝑦𝑖
𝑚(𝑡) is the temperature measured by sensor i at time t and pair 

𝑖
= (𝑥s

𝑖 , 𝑦s
𝑖) denotes the 

spatial coordinates of sensor i in the reference frame. ∆ is defined as (55). This problem was 

solved by using a adjoint-based method associated to a gradient iterative algorithm. The PDEs 

are discretized using a finite difference scheme on a 80×80 grid leading to a finite-dimensional 

system of 6400 states. The interested reader may refer to [Georges (2019)] for the derivation 

of the necessary conditions for optimality and the detailed computation of a closely-related 

state estimation problem without receding horizon technique. 
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In the simulation presented here-after, the receding horizon is equal to 160 time samples, 

and the domain is assumed to be a square of size 650 (in normalized units) for each side. The 

fuel is uniformly distributed over the domain, except for a fuel break featuring a river with no 

fuel. The fire ignition is detected when at least a sensor measures an abnormal temperature 

increase implying that the cost function of (70) becomes greater than a small threshold. The 

detection time is not the fire ignition time, since the fire wave reaches the closest sensor after 

a propagation time delay. Fig. 14 shows the fuel consumption after 160 time samples. The fire 

ignition was located at (450,350) and modelled by a gaussian distribution. Fig. 15 shows the 

location over the domain of the 50 temperature sensors used by the RHO algorithm (meaning 

that only 0.8% of the 6400 system states are supposed to be known). Fig. 16 shows a 

comparison between the estimated distribution of the fire ignition and the simulated one. 

Finally, Fig. 17 demonstrates that the RHO is able to predict the wildfire expansion, despite 

the fact that the data assimilation problem is known to be ill-conditioned. The optimization 

problem appears to be very sensitive to initial conditions that are generated randomly. Several 

trials (here 5) have to be performed at each sample time tk and the solution corresponding to 

the minimum value of the cost function is retained. 

 

7. CONCLUSIONS AND PERSPECTIVES 

 

This paper was devoted to the design of optimal architectures for hazard assessment 

monitoring. Hazard assessment monitoring was viewed as the ability of estimating and 

predicting states of a dynamical system representing a natural or technological hazard. It was 

also considered to be the ability to estimate model parameters or changes in the model 

parameters. From the view point of risk assessment, the proposed approach can be used to 

detect vulnerabilities or locate failures or dysfonctionning, and to predict future behaviors of 

the hazard in time or space. In this paper, two approaches were discussed: firstly, the key notion 

of system observability was emphasized and some metrics for measuring observability were 

discussed. The use of these metrics was also investigated for solving the optimal sensor location 

problem for both static or mobile sensor networks. A survey of applications of such optimal 

sensor location problem was also provided. Secondly, the receding horizon estimation 

approach was presented. The relevance of this estimation technique was discussed and a survey 

of existing and potential applications of this approach was also proposed. Finally, some 

concrete applications illustrating optimal sensor location problems and receding horizon 

estimation were presented in the field of air pollution and wildfire monitoring. 

The application of the framework described in this paper to large-scale cascading hazards is 

still a big challenge to be investigated. In that context, one key issue is the availability of 

effective model reduction techniques suitable for large-scale complex dynamics of coupled 

phenomena. Furthermore, the implementation and validation of the global architecture (OSPP 

and RHO together) remain to be studied in real situations. 
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Figure 14.  The burned area and the river are in blue color.  

The fuel consumption is given after 160 time samples. 

 

 

Figure 15.  50-Sensor location based on Sobol’s sequence.  

The red ”+” represents le location of the fire ignition. 
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Figure 16.  Comparison - Fire ignition. 

 

 

Figure 17.  Comparison - Temperature distribution after t = 160 time samples. 

 

The huge development of Internet of Things and machine learning techniques for processing 

data obtained by crowdsensing in the context of more and more powerful networking 

capabilities (5G technology) offers very large perspectives for the development of more and 

more accurate risk monitoring. 

Such methods cannot be designed without a strong cross-disciplinary approach for including 

knowledge of fields, models, for qualification and preprocessing of available data, and finally 

developing adequate monitoring algorithms. 
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