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Purpose: New radiation therapy protocols, in particular adaptive, focal or boost brachytherapy treatments, require determining precisely the position and orientation of the implanted radioactive seeds from real-time ultrasound (US) images. This is necessary to compare them to the planned one and to adjust automatically the dosimetric plan accordingly for next seeds implantations. The image modality, the small size of the seeds and the artifacts they produce make it a very challenging problem. The objective of the presented work is to set-up and to evaluate a robust and automatic method for seed localization in 3D US images.

Methods:

The presented method is based on a pre-localization of the needles through which the seeds are injected in the prostate. This pre-localization allows focusing the search on a region of interest (ROI) around the needle tip. Seeds localization starts by binarizing the ROI and removing false positives using respectively a Bayesian classifier and a Support Vector Machine (SVM). This is followed by a registration stage using first an Iterative Closest Point (ICP) for localizing the connected set of seeds (named strand) inserted through a needle, and secondly refining each seed position using Sum of Squared Differences (SSD) as a similarity criterion. ICP registers a geometric model of the strand to the candidate voxels whilst SSD compares an appearance model of a single seed to a subset of the image. The method was evaluated both for 3D images of an Agar-agar phantom and a dataset of clinical 3D images. It was tested on stranded and on loose seeds.

Results: Results on phantom and clinical images were compared with a manual localization giving mean errors of 1.09 ± 0.61 mm on phantom image and 1.44 ± 0.45 mm on clinical images. On clinical images, the mean errors of individual seeds orientation was 4.33 ± 8.51 • .

Conclusions:

The proposed algorithm for radioactive seed localization is robust, tested on different US images, accurate, giving small mean error values, and returns the 5 cylindrical seeds degrees of freedom.

I. Introduction

Prostate cancer is the 3 rd most frequently diagnosed cancer in men worldwide, accounting for 1.27 million new cases in 2018 cancerStatisticsWorld2018 1 . Brachytherapy brachytherapy 2 using low dose rate radioactive seeds is an effective treatment for low risk prostate cancer. It aims at delivering a specific and homogeneous radiation dose to the prostate whilst limiting the dose delivered to organs at risk (urethra, rectum and bladder). This requires a planning step determining the number and optimal positions of seeds from pre-operative images: most often transrectal US images.

In a typical brachytherapy procedure 1 parallel needles are inserted into the patient's prostate through the skin of the perineum with the help of a guiding grid named template. Once the needle tip reaches the wanted position, the seeds are released through the needle. Two strategies are possible depending on the type of seeds: stranded seeds are pre-assembled with spacers using connectors and released as a whole for each insertion direction. On the opposite, loose seeds are released one by one, which makes needle retraction more complex and progressive. Needle insertion and seed implantation are performed under the control of transrectal US imaging (generally reconstructed in 3D from translated axial 2D US).

In practice, seed implantation is performed manually with some imprecision which results from operator variable expertise, prostate motion and deformation, edema, needle deflection, etc. Stranded seeds reduce delivery inaccuracy and seed migration compared to loose seeds. However, in both cases, the brachytherapy procedure may require a planning update, at some stage, taking into account the real position of already implanted seeds.

Detecting them most often requires human intervention. In this paper we propose a novel method for automatic seeds localization in 3D US images. Connected to a fast replanning inversePlanning 3 , this allows to envision a fully automatic adaptive brachytherapy, that is an intra-operative update of the seeds placement planning, based on the localization and actual dosimetry map of the previously implanted seeds.

Detecting the seeds is a challenging task due to their small volume (cylinder: Ø= 0.8 mm and 5 mm in length for I 125 seeds) and to the low quality of the US imaging modality.

I.A. State of the art f_the_art

The accurate localization of seeds is an active field of research. Several approaches have been proposed operating on various image modalities, like magnetic resonance (MRI), X-ray images (computed tomography CT or fluoroscopy) and ultrasound images (US). Because of its excellent soft-tissue contrast, MRI is essentially used for diagnostic. It could be also used for seed localization post-operatively: Whilst CT and MRI may be exploited for pre-operative diagnostic or planning or postoperative assessment, they cannot be used for intra-operative control of seed position. A possible intra-operative solution is to obtain the real position from X-ray images acquired with a C-arm as presented in Xray 7 . However the prostate is not visible in X-ray images. US imaging is thus the effective modality used today to guide brachytherapy as it acquires realtimes images, which is particularly relevant in the context of moving and deformable soft tissue.

In this section we describe some of the few methods proposed in the literature to localize seeds in US images. Because seeds are injected through needles, some seed localization methods start with the needle tip localization. This allows building a ROI to be explored.

Wei et al.

SeedLocalization1 8 proposed a workflow composed of 6 iterative instructions. First steps aim to detect the needle, build the ROI and threshold the obtained volume. Then, neighboring candidate voxels, potentially corresponding to seeds, are grouped into clusters. Seeds are localized by detecting the center and the orientation of each cluster using the PCA method.

Finally, clusters which dimensions do not correspond to seed dimensions are removed. These steps are repeated until all implanted seeds have been localized. The method was tested on Agar-agar and chicken phantoms with a CT-based ground truth. Such a method may only be used to localize loose seeds since strands dimensions vary with their composition.

I.. INTRODUCTION

As pointed by the authors, selecting the threshold may be very challenging since US images vary a lot from patient to patient.

In a rather similar way, Wen et al. Deep learning was also used by Golshan et al. 

II. Materials and Methods

Seeds localization begins with a needle detection which is an essential step to build the ROI where seeds are released. First, we introduce the employed method to localize a needle in 3D

US images which we previously developed. Then we explain the seed localization method modeled by the workflow of Fig. 

II.A. Needle detection detection

Needle detection is done using the previous work ourWork 16 based on binary Bayesian classification.

We proposed a method to localize needle in 3D US images. Needle voxels within US volumes are brighter than the other voxels, and form a voxel class selected according to the Bayesian classifier:

π Xn P (I(x) = y|X n ) Xn ≷ X b π X b P (I(x) = y|X b ) (1) 
• X n = needle voxel class.

• X b = background (non-needle) voxel class.

• y = I(x) = voxel intensity x.

• π X i = prior probabilities.

• P (I(x) = y|X i ) = Gaussian probabilities.

Where: a voxel x is classified in X n if the posterior probability of X n is larger than that of 

II.B. Seeds localization

The current proposed method has been designed for stranded seeds localization. The workflow shown in Fig.

fig:workflow

1 contains the main steps and methods used to detect and localize oriented seeds. We detail each step separately in the following subsections. The first typical step for object detection is to separate it from the background.

II.B.1. Thresholding: Binary Bayesian classifier

:Bayesian

A thresholding step aims to separate seeds voxels from background. The classical method consists in defining a threshold value τ and classifying as follows:

Seeds = {x : I(x) ≥ τ } Background = {x : I(x) < τ }
Because of the presence of high intensity artifacts and the high variability of grey levels in US images, defining thresholds for binarization is very challenging. This is why we propose to use a Bayesian classifier to perform binarization without a static threshold definition. In a way similar to needle detection, seeds and background voxels are described through two separated peaks which can be modeled using an additive Gaussian Mixture Model (GMM).

The Bayesian classifier bayes 17 assigns the most likely class to a given observed feature which is the voxel intensity.

C Bayes (y) = argmax

X i P (Cl = X i | I(x) = y) (3 
) eq:Bayes1
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Where Cl = {X s (Seeds), X b (Background)}, and I(x) = y is the voxel intensity. According to Bayes theorem:

P (Cl = X i |I(x) = y) = π X i P (I(x) = y|Cl = X i ) P (I(x) = y) (4) eq:Bayes2
Where π X i are the prior probabilities and P (I(x) = y|X i ) are the Gaussian probabilities.

The intensities I(x) are independent within each class, which justifies the Bayes theorem application. According to equations ( eq:Bayes1

3) and ( eq:Bayes2 

π Xs P (I(x) = y|X s ) Xs ≷ X b π X b P (I(x) = y|X b ) (5) ineq:Bayes1
Several parameters are required: {π X i , µ i , σ i } where i = {s, b} and µ , σ are the Gaussian parameters. These parameters vary from one stranded seed to another even in the same image. According to a criterion of maximum likelihood, parameters are predicted by approaching as much as possible the distribution of seeds volume histogram. This is done via with the well known Expectation-Maximization algorithm (EM algorithm EM 18 ). EM is applied on a Gaussian mixture model to estimate the unknown parameters by an iterative process, which computes the maximum-likelihood of a given vector of features for each iteration. EM algorithm iterates parameters calculation until their convergence. Fig. 

II.B.2. False positive voxels removal: Support Vector Machine (SVM)

e_removal It naturally happens that some background voxels are assigned as seed voxels. In order to remove these false positives, we propose to apply an additional discriminator: Support

Vector Machine (SVM), a learning classifier. In the case of binary classification, a SVM maximizes the margin between classes C 1 of false positive voxels and C 2 of true positive voxels (C 1 C 2 = X s ). It aims to find the hyperplane that separates classes optimally. In the linear case, the main equation to establish the hyperplane equation is:

h(x) = w T x + w 0 (6) 
where x = (x 1 , ..., x N ) is the input vector which contains voxel features, w is the normal vector to the hyperplane and w 0 is the offset of the hyperplane from the origin along the Last edited Date : November 25, 2020 II.. MATERIALS AND METHODS page 8

Hatem normal vector w. Finally the last parameters (w T and w 0 ) determine the classifier as follows:

x → sign(w T .x + w 0 ) (7)

The input vector x is assigned to the appropriate class regarding to the sign of (w T .x + w 0 ).

It represents the position of x with respect to the hyperplane. As mentioned previously, the 

h(x) = w T x + w 0 = N i=1 α i y (i) < x (i) , x > +w 0 (8) 
where

• (x (i) , y (i) ) = training data. • y (i) = {-1 if x (i) ∈ C 1 , 1 if x (i) ∈ C 2 }.
• α ∈ N = Lagrange multipliers.

• N = the training data length.

For training the SVM, we chose three ROI containing different stranded seeds compositions and different artifacts locations for which we calculated and labelled the features (|G x |, |G y |).

SMO was trained on the fusion of these three datasets to return the best separative hyperplane which maximizes the distance at the nearest data point of each group. A typical SVM discrimination result is shown in Fig. 

). This appearance model was applied for all localized seeds.

T seed = argmin T x,y,z (V m (x, y, z) -T (V s (x, y, z))) 2 (9) 
The optimal transformation T seed is the one that minimizes the sum of squared differences 

II.C. Materials materials

The approach was tested both on phantom image and on clinical images. This section describes the data acquisition and validation protocol for both types of experiments.

II.C.1. Phantom experiments periments

Using a proportion of 2.8% of Agar-agar contained in a plastic box (Fig. 
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To measure the error of the presented seed localization method, we compared automatic localization with a manual segmentation considered as a ground truth. We evaluated the precision of the manual segmentation by repeating it at 7 distant times, and obtained a standard deviation of 0.66 mm.

II.C.2. Clinical experiments periments

The algorithm was also tested on anonymized 3D US images of two patients. Each patient's prostate with the implanted seeds was scanned using a biplane endocavity Z848 TRUS probe within the Medical Flex Focus 500 ultrasound workstation. Its biplane transducer acquired 75 axial images of resolution 600x580 and a 3D image was reconstructed with a voxel size of 0.26x0.26x1 mm. The evaluation was also done by comparing the automatic localization with a manual segmentation considered as a ground truth. Because of the very low quality of the images (Fig.

fig:firstTwoSteps

5), we had to select a few strands for which a manual segmentation could be reliably done. 4 stranded seeds were selected from the data of patient 1 containing in total 11 seeds. For the image of patient 2, 3 stranded seeds containing 6 seeds were processed.

Detailed compositions of stranded seeds are presented in table 

III. Results

c:results

After describing the results of our method using the phantom validation protocol, we present 

IV. Discussion

iscussion Challenges in seed localization from 3D US images are essentially due to the low quality of the imaging modality and the small seed volume. Thus, some echogenic structures can mimic seed appearance and some seeds brightness are affected when they are in a shadow region. In this paper we aimed to overcome these difficulties by introducing an automatic seed localization using different machine learning and rigid registration algorithms.

An accurate segmentation of candidate seeds voxels is mandatory for the localization of the seeds. To do so, we performed a thresholding using a Bayes classification, followed by a false-positives removal using an SVM. The EM algorithm of the Bayes classification converges to local optima, and therefore requires a careful initialization of the means and variances parameters. How this initialization is handled is fully described in Hatem replace the Bayes Classification step. Indeed, SVM would then be applied to the original gray-level voxels, resulting in a huge amount of input points. This would be computationally expensive (estimation of the gradients of all the non-zero voxels of the US image). Moreover, this would reduce the precision of the estimation, as it would increase the number of points close to the hyperplane.

Regarding seeds localization, it has been shown in § 

Hatem

The proposed workflow has been specifically designed for stranded seeds localization in US images. It would probably not be directly applicable to other imaging modalities (MRI or CT) but several components of the approach could be generalized to another modality.

Combining US information with other intra-operative data such as cone beam computed tomography (CBCT) image could be envisioned but the benefit/complexity ratio has to be carefully evaluated.

Regarding the clinical applicability of the presented method, several protocols can be envisioned. In a first stage, the automatic localization could simply happen when the peripheral seeds have been injected. This would allow re-planning for central seeds. However, ideally, the adaptive planning would be done much more often. In a way very similar to robot-assisted brachytherapy cunha2010toward 23 where the robot generally handles a single needle and requires repeating needle insertion-seeds injection, re-planning could occur before each new needle insertion.

V. Conclusion

Adaptive brachytherapy requires an intra-operative update of the seeds placements, for which localizing the seeds is essential. We proposed an image-based solution for the localization (position and orientation estimation) of stranded seeds, which could also be applied to loose seeds. Our validation was performed both on phantom and clinical data, with two different US imaging devices. Our results are encouraging as the position accuracy is in-par with clinical requirements, and the orientation accuracy is improved compared to state of the art.

Improvements and more extensive evaluations on clinical images will be needed to further validate the approach.

VI. Acknowledgments
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SeedLocalizationNeedle2 9

 9 detect seeds by computing a ROI using the preoperative dosimetry plan, thresholding using the Otsu methodOtsu 10 , clustering the voxels and pruning the set of clusters using dimension information. Needle track based on Hough Transform (HT) is used a posteriori to filter the seed detection results. The method was evaluated on a commercial tissue equivalent phantom. However, the information deduced from the preoperative dosimetry plan may be inaccurate to construct the ROI. Indeed, as the inserted needle may deviate from the target, seeds may be released away from the planned positions. The challenges of real clinical images are also underlined by the authors.Based on a DNN, Holupka et al. DNN 11 determine the position of the seeds from two dimensional transaxial transrectal US clinical images. A common DNN, called DetectNet was trained using 950 US images and tested on 90 validation US images. The network was trained from a data base of 2D clinical images manually segmented. The results on 10 patients were compared with the corresponding positions in CT images to obtain an average error of 2.29 mm. However, CT images were acquired one to three months after the day of the implant where prostate gland may inflate causing seeds positions displacement. To compensate this, obtained seeds positions were transformed according to an empirical scaling factor representing the prostate shape change.

  fig:workflow 1.
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 6 fig:needles lolalized 2 shows a typical result example. In order to obtain a good estimate of the dropping location of seeds, with respect to the previous work ourWork 16 , we added a new step to refine the needle tip search along the detected curve. The tip is the last voxel along the curve where

4 ){π

 4 , naive Bayesian classifier assigns to each voxel the class which maximizes argmax X i Xs P (I(x)=y | Cl=Xs) P (I(x)=y) , π X b P (I(x)=y | Cl=X b ) P (I(x)=y)}. Finally, binary Bayesian classification to be used is summarized as inequalities (

  fig:firstTwoSteps 5 contains a result

  fig:firstTwoSteps 5). The gradient magnitude (|G x |, |G y |) along -→ X and -→ Y provide a good discriminative representation as shown in Fig. fig:hyperplane 6 where x = (x 1 , x 2 ) = (G x , G y ), {G x , G y } are the gradient magnitudes. The gradient magnitudes are computed from the original US image. The Sequential Minimal Optimization (SMO SMO 19 ) algorithm is used to compute the hyperplane equation parameters (w T , w 0 ). It transforms the problem of parameters prediction into the dual problem:

3 .}

 3 fig:firstTwoSteps 5.

(

  fig:phantom-seed 9), refining ----→ Z Strand is impracticable. This is

2 .

 2 fig:KOELIS_Trinity_workstation10), we constructed a phantom sufficiently rigid to avoid any movement of released seeds. We created a preoperative dosimetry plan where 8 needles were inserted. Each of them was used to release one strand. The strands composition is given in table tab_Stranded_seeds_compositions2. The phantom with the implanted seeds was scanned using the 3D side-fire ultrasound probe of the TRINITY R (Koelis, Meylan, France) assistance workstation for prostate interventions shown in Fig.fig:KOELIS_Trinity_workstation 10. 3D images were produced using the probe internal motor moving a linear array transducer on 170 • around the probe axis. The center frequency of the transducer was set to 7 MHz, and the capturing depth was set to 80 mm. The size of generated images was 95x95x80 mm, with a voxel size of 0.3125x0.3125x0.3125 mm. Seeds in the phantom image are as shown in Fig. fig:phantom-seed 9.

  tab_Statistics

3 .

 3 We have first measured the variability of the manual segmentation by repeatedly segmenting the centers of three seeds in the two images, at 7 distant times. The obtained standard deviation was 0.7 mm.

1 .III.Y

 1 fig:boxplotPhantom 12 presents the statistics of these errors before (3.08 ± 1.55 mm) and after (1.55 ± 0.80 mm) global strands

4 .

 4 The following SVM false-positives removal step is a refinement which could not Last edited Date : November 25, 2020 IV.. DISCUSSION page 14

2 .

 2 that the orientation around ----→ Y Strand could not be refined by the image-based local registration because of the US artifacts and the small size of V s and V m . An incremental procedure would be a potential solution for extending the volumes of V s and V m . For the first released strands, it would be performed without overlaps. Then, taking into account the neighbor potential seeds already detected would allow to enlarge V m . The incremental procedure could also allow to introduce priors on previously detected seeds to modify this last stage. Of course, this would need further developments and testing.The presented method was evaluated using two different US acquisition devices, on two different types of data (phantom and clinical), resulting in quite different image contents and quality. Despite this variety, only a few of the different parameters used to establish the classification and registration models needed to be tuned: the initialization values for the parameters estimations of the Bayes classification using EM depend on the probe devices, as illustrated by table tab:parameters 4. Neither the SMO initialization values (false-positives removal using an SVM) nor the ICP initialization values (for the global strand registration) had to be adapted. SMO was trained using phantom data, but the estimated hyperplanes for phantom or clinical images are very close, despite the differences in image content, thanks to our choice of features. The only other device-dependent element is the seed appearance model V m . We selected for each image type the most generic appearance model. Adapting the few device dependent parameters (EM initialization values and V m model) to new US imaging devices would be quite straightforward although additional pre-clinical experiments would be needed. Despite the different experimental conditions, such as the probe technologies which provide different US images types (2D or 3D), qualities and resolutions, we try to compare the current work with the state of the art. Clinical images are used only in the deep learningbased works (

Figure 2 :

 2 fig:workflow

Figure 3 :

 3 Figure 3: Needle tip localization example. Successful automatic localization despite a shadow region [3mm-15mm] where the needle's voxels intensities decrease significantly. The blue line corresponds to the first pixel of the needle shaft belonging to the background class (Bayes rule of inequality BayesianTipIdentification 2). The end of the needle initially detected is presented by the broken line passing through the red star.

  fig:tip

Figure 4 :

 4 Figure 4: Reference frames and rigid transforms used by the method: global image, ROI, strand and seed references frames -positions of the strand and the individual seeds are encoded using respectively T Strand and T Seed .

  fig:References

Figure 5 :

 5 Figure 5: Sagittal sections of 3D clinical images containing stranded seeds. (a) manual segmentation based on planning information (seeds in red and spacer in green) added to the original image, (b) image after binarization with Bayesian classifier, (c) image after false positive removal with SVM classification.

Figure 6 :

 6 fig:firstTwoSteps

  fig:hyperplane

Figure 7 :

 7 Figure 7: Two stranded seeds S1,S2 (left) with their model (right). Red cylinders represent radioactive seeds and green ones are for spacers and linkers.

  fig:StrandedSeeds

Figure 8 :

 8 Figure 8: Artifacts in the 3 planes containing the seed in V m of phantom image. (a) axial plane, (b) sagittal plane, (c) transversal plane. The seed visualized in (d) is perpendicular to the axial plane.

  fig:VS

Figure 9 :HatemFigure 10 :

 910 Figure 9: 3D US phantom image showing a needle during releasing stranded seeds. fig:phantom-seed

Figure 11 :

 11 Figure 11: Seed localization result compared with manual identification ground truth at two different viewpoints. The red cylinders correspond to automatic seeds localization and the green cylinders to the ground truth. Names of the strands (cf table

  tab_Stranded_seeds_compositions

2 )

 2 are next to them.

Figure 12 :

 12 fig:resultUSPhantom

Figure 13 :

 13 fig:boxplotPhantom

Figure 14 :

 14 fig:orientations
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  Kuo et al. MRI 4 developed an algorithm based on the blob detection technique using the Laplacian of a Gaussian (LoG). Generally the CT images are used to perform post-implant dosimetry one month after seeds implantation. In this context,

N'Guyen et al.

CTseedSegmentation 5 proposed an approach to determine seeds position and orientation in CT images using K-means and principal component analysis (PCA) techniques; the method allows to separate seeds grouped in clusters, a situation that may occur with loose seeds.

MRI only and CT-MRI fusion-based works are proposed to localize seeds post-operatively using Deep Neural Network (DNN) methods for low-dose-rate prostate brachytherapy nosrati2019postim 6 .

  13, third column. The mean errors decrease from 7.4 o and 19 o to 2.55 o and 2.44 o . It can be concluded that the small cropping of V s and V m is problematic because of the artifact extending laterally over the volumes. This will be discussed in section

				sec:discussion IV..
	III.B. Clinical images	
	al images		
	Fig.	fig:boxplotpatients 14 presents the localization errors before global strand localization (2.36 ± 1.11 mm),
	before (1.59 ± 0.55 mm) and after (1.44 ± 0.45 mm) individual seeds refinement (more
	details in figure S-2). The unknown parameters are (t Seed x	, t Seed y	, θ Seed

x

). Table tab_Statistics

3 contains the seeds orientations refinement compared with the manual estimation. As explained in § sec:pose III.A.2., it was impossible to refine the rotation around ----→ Y Strand axis. Rotation could be taken into account to some extent if the US images were acquired during seed insertions, but here the US data was acquired post-operatively with all seeds implanted. We will discuss this point in § sec:discussion IV..

  DNN 11 and golshan2020automatic 12 ). Although very promising, supervised learning requires large amount IV.. DISCUSSION of precisely labeled clinical images to show good performance and ability to generalize: this may be a big issue as testify the published papers. The seed locations are determined by a commercial software in CT volume in DNN 11 and by an expert manual identification on US images in golshan2019automatic ? . Obtained results are within 2.29 mm and 2.5 mm (used to calculate F 1 score) respectively in DNN 11 and golshan2020automatic 12 . As for us, the mean errors for patients images are 1.52 mm for the 1 st patient and 1.36 mm for the 2 nd one. These good results need to be confirmed on larger clinical data. Concerning other mentioned methods, different types of phantom images are used (summarized in table tab_state_of_the_art 1). Seeds localization in phantom images is more accurate than that in a biological tissues images. For example, it is approximately 1.03 mm using Agar-agar phantom and 1.66 mm in chicken phantom SeedLocalization1 8 . As for us, obtained result on Agar-agar phantom is about 1.09 mm. According to Su et al. investigation 21 , a localization error less than 2 mm is customarily considered to be acceptable. They investigated the effects of a seed mislocation on the dosimetry accuracy and showed that an error of 2 mm accounts for less than 5% deviation in the dose delivered to 90% of the prostate volume. Collins Fekete et al. collins2014quantifying 15 demonstrated that orientation errors may have an impact on the dose delivered to organs at risks. Moreover, new focal treatments appear where a reduced number of 12 which was tested on strands. Loose and stranded seeds localization are two different problems considering the inability to differentiate between spacers and seeds which have similar response and appearance in the US images.

	page 16
	seeds are inserted in an hemi-gland or even more locally for instance for a boost secondary
	treatment. Al-Qaisieh et al.	al2015dosimetry 22 stresses the importance of sophisticated dose models and
	accurate localization of seeds for focal treatments. The presented method could contribute
	to such longer term applications.
	As mentioned before, the use of stranded seeds decreases the implantation errors since
	it brings them together to make a single injection per needle. We tested the algorithm
	on various strand compositions. N8 of the table	tab_Stranded_seeds_compositions 2 released a strand composed just by
	one seed. Also, the composition of S1 of the table	tab_Statistics 3 is just one seed. It proves that this
	method, contrarily to the state of the art methods, could be a solution for both stranded and
	loose seeds localization. However if loose seeds are clustered the method would fail as the
	other methods presented in §	State_of_the_art I.A.. This question was addressed by N'Guyen et al. for CT
	images	CTseedSegmentation 5 , and we could consider adapting their approach for the case of US images. Most
	methods of table	tab_state_of_the_art 1 focused on loose seeds except the recent deep learning-based method
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golshan2020automatic

Table 1 :

 1 thank LATIM and Brest University hospital for giving access to patient images. This was 18 A. P. Dempster, N. M. Laird, and D. B. Rubin, Maximum likelihood from incomplete data via the EM algorithm, Journal of the Royal Statistical Society: Series B (Methodological) 39,1-22 (1977). Comparative study about proposed methods for seeds localization.
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made possible through the clinical protocol FOCUS NCT03160365 "Innovative planning and guidance system for focal prostate brachytherapy. This work was partly supported by the French ANR within the Investissements dAvenir program (Labex CAMI ANR-11-LABX) EM stigation 21 Y. Su, B. J. Davis, K. M. Furutani, M. G. Herman, and R. A. Robb, Dosimetry accuracy as a function of seed localization uncertainty in permanent prostate brachytherapy: increased seed number correlates with less variability in prostate dosimetry, Physics in Medicine and Biology 52, 3105 (2007).

dosimetry 22 B. Al-Qaisieh, J. Mason, P. Bownes, A. Henry, L. Dickinson, H. Ahmed, M. Emberton, S. Langley, Dosimetry modeling for focal low-dose-rate prostate brachytherapy, International Journal of Radiation Oncology* Biology* Physics 92, 787-793 (2015).

010toward 23 J A. Cunha, I C. Hsu, J. Pouliot, M. Roach III, K. Shinohara, J. Kurhanewicz, G. Reed, D. Stoianovici, Toward adaptive stereotactic robotic brachytherapy for prostate cancer: demonstration of an adaptive workflow incorporating inverse planning and an MR stealth robot, Minimally Invasive Therapy & Allied Technologies 19, 189-202 (2010). Last edited Date : November 25, 2020

Table 2 :

 2 Compositions of stranded seeds released by the needles in the phantom.

	randed_seeds_compositions	
	Needle Released stranded seeds composition
	N1	Seed + Spacer + Seed
	N2	2 x Seed + Spacer + Seed
	N3	Seed + 2 x Spacer + Seed
	N4	2 x (Seed + Spacer) + Seed
	N5	3 x Seed
	N6	2 x Seed + Spacer + Seed + 2 x Spacer + Seed
	N7	2 x Seed + Spacer + 2 x Seed
	N8	Seed

Table 3 :

 3 Statistics of localization error on 3D US images of two patients and error of estimated orientations of seeds composing the strands Si; i ∈ [1;4].

	tab_Statistics				
			Stranded seeds composition	Error of estimated orientation in degree mean ± std [min;max] mean ± std [min;max] Localization error in mm
		S1	Seed + Spacer + 3x Seed	12.5 ± 17.03 [1;37]	
		S2 2x Seed	0.5 ± 0.7	[0;1]	
	Patient 1	S3	Seed + 2x Spacer+Seed	1.5 ± 2.12	[0;3]	1.52 ± 0.64 [0.91;2.64]
		S4	2x Seed+ 3x Spacer+Seed	4.33 ± 1.52	[3;6]	
		S1 Seed	2 ± 0	[2;2]	
	Patient 2	S2	2x Seed+ 3x Spacer+Seed	1.33 ± 1.52	[0;3]	1.36 ± 0.22 [1.2;1.82]
		S3	Seed+ 2x Spacer + Seed	1.5 ± 0.7	[1;2]	
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Table 4 :

 4 Parameters values used for each image type acquired by two different US probes. The EM and SVM parameters are unitless.T G µ X B σ X T G σ X B π X T G π X B C tol threshold ICP

	tab:parameters						
	EM Initialization				SVM	ICP
	µ X Phantom image 235	100 3	40	0.05 0.95 0.15 10 e-3 0.01 mm
	Clinical images 255	80	8	40	0.2	0.8	0.15 10 e-3 0.01 mm

596 Figure 1: Workflow for oriented seeds localization.
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