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ABSTRACT 

 
 Laboratory experiments have been recently reintroduced into the ideas-to-applications 

pipeline for geophysical applications. Benefiting from recent technological advances, we believe that 

in the coming years, laboratory experiments can play a major role in supporting field experiments 

and numerical modeling, to explore some of the current challenges of seismic imaging in terms of, 

for instance, acquisition design or benchmarking of new imaging techniques at a low cost and in an 

agile way. But having confidence in the quality and accuracy of the experimental data obtained in a 

complex configuration which mimics at a reduced scale a real geologic environment, is an essential 

prerequisite. This requires a robust framework regardless of the configuration studied. Our goal is to 

provide a global overview of this framework in the context of offshore seismics. To illustrate it, a 

reduced-scale model is used to represent a 3D complex-shaped salt body buried in sedimentary layers 

with curved surfaces. Zero-offset and offset reflection data are collected in a water tank, using a 

conventional pulse-echo technique. Then a cross-validation approach is applied, which allows 

through the comparison between the experimental data and the numerical simulation, to point out 

both some necessary future improvements of the laboratory setup to increase the accuracy of the 

experimental data, and the limitations of the numerical implementation which must also be tackled. 

Due to this approach, a hierarchical list of points can be collected, to which particular attention should 

be paid in order to make laboratory experiments an efficient tool in seismic exploration. Finally, the 

quality of both the complex reduced-scale model and the global framework is successfully validated 

by applying reverse-time migration to the laboratory data. 

 

INTRODUCTION 

 

 Numerical simulations of wave propagation are key tools, for example, to help the 

understanding of field data, in seismic acquisition design, imaging, and inversion during subsurface 

exploration (Robertsson et al., 2007, Virieux et al., 2011). However, in highly challenging geological 

environments, for which reliable real seismic datasets are often expensive, incomplete, or simply 

difficult to obtain due to practical reasons, relying only on a fully numerical approach to study and 

improve surveying and imaging may be inappropriate, as the numerical datasets usually suffer from 

simplified physics. Indeed, for instance, they do not contain source-related noise, or often rely on 

“unphysical” attenuation parameters, such as the quality factor. In this context, after having 

experienced a drop in laboratory experimentation related papers for two decades, laboratory 

experiments are now re-considered as a tool to understand real field data and purely numerical 

datasets as well, to facilitate the testing of new ideas (Becker et al., 2018), to investigate the physics 
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underlying wave propagation that is not sufficiently understood (Cooper et al., 2010, Stewart et al., 

2012, Ekanem et al., 2013, Xu et al., 2016, Chang et al., 2017), as well as to test numerical algorithms 

used for data processing and imaging (Campman et al., 2005, Chai et al., 2015). Recently, small-scale 

modeling approaches have been developed as tools to test numerical modeling and seismic-imaging 

methods in the context of onshore and offshore seismics (Bretaudeau et al., 2011, 2013, Favretto-

Cristini et al., 2014, Tantsereva et al., 2014a,b, Solymosi et al., 2018). In particular, Tantsereva et al. 

(2014a) have evaluated the ability of a 3D discretized Kirchhoff integral method (DKIM) to 

accurately simulate complex diffractions using a zero-offset laboratory data set, measured for a 

reduced-scale model with strong topography and immersed in a water tank. Comparisons of 

numerical and laboratory data sets have shown that the DKIM could correctly reproduce the 

wavefield, except in the vicinity of shadow zones created by the interaction on the edges of the 

topographic structures. More importantly, a quantitative analysis of the effect of multiple scattering 

and the surface curvature on the wavefield has been then performed to define the cases where these 

effects may be neglected in the numerical modeling, in order to decrease the computational cost while 

maintaining a high accuracy (Favretto-Cristini et al., 2017). These works clearly show the importance 

of laboratory experiments as part of the benchmarking options for numerical algorithms. Indeed, 

reduced-scale experiments are highly valuable because they are repeatable, more controllable than 

real seismic surveys, and versatile in terms of the acquisition setup. Laboratory experiments also 

provide data of higher fidelity than real seismic surveys, because the sources and the level of noise, 

as well as the uncertainties in the transducer positions and in the material properties, can be better 

assessed than in usual seismic exploration setups. 

 

 However, using laboratory experiments to investigate seismic issues raises legitimate 

concerns. For instance, the issue of similarity is at the heart of the debate between those who support 

the all numerical approach and those who push for a fine balance between numerical simulations and 

laboratory experiments. Using laboratory experiments implicitly assumes that the scaled physical 

mechanisms are identical to those at the seismic scale (Ebrom and McDonald 1994).  In other words, 

waves have to propagate identically in both settings. This implicitly assumes that the sources are able 

to generate the appropriate wave phenomena, that the geometry of the reduced-scale model is similar 

(at a smaller scale) to that of the real field, and that the materials used for manufacturing this model 

behave identically to the real geological media. It is obvious that the size of the sources and receivers 

used in the laboratory experiments cannot be compared to the sources/receivers used on the field. 

Nevertheless, laboratory sensors with a large area of illumination to emphasize the different wave 

phenomena observed in field experiments (e.g., multiple diffractions, wave focusing/defocusing) are 

available nowadays (Tantsereva et al., 2014a). Moreover, thanks to a broad range of metals, resins, 

and composite materials, one can often find materials with somewhat identical density and P- and S- 

wave velocities. By applying pre-stressed conditions or by combining various materials, one can even 

create models with specific anisotropic properties. Nonetheless, scaling experiments in certain 

geological environments are still challenging. Indeed, as the real-life dimensions are often scaled 

down to the laboratory scale by a factor of 10 000 - 20 000 (Bretaudeau et al., 2011, Solymosi et al., 

2018), it may be technically difficult to reproduce at a reduced scale some of the heterogeneities found 

in real geological environments. As a consequence, it is not straightforward to study, for instance, the 

impact of the non-linear behavior of materials due to micro-damage or cracks on wave propagation. 

A laboratory for immersive wave experimentations that enables experiments with broadband signals 

at much lower frequencies than commonly employed in typical wave propagation laboratories is 

therefore of great interest (Vasmel et al., 2013). However, additive and subtractive manufacturing 
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techniques, as well as new composite materials, make it possible to manufacture reduced-scale 

models that are increasingly realistic from a geological point of view, as illustrated thereafter in this 

paper. We are convinced that these complex models, associated with a very high quality and accurate 

laboratory experimental framework, could play an increasingly important role in the exploration of 

the current challenges of seismic imaging in terms of acquisition design, or in benchmarking new 

imaging techniques at a low cost and in an agile way. But having confidence in the quality and 

accuracy of the experimental data obtained in a very complex environment (i.e., an environment that 

is far beyond the configuration of a flat stratified medium) is an essential prerequisite. As a 

consequence, this requires a robust framework regardless of the configuration studied. 

 

 The goal of this paper is to provide a global overview of the framework to be implemented to 

obtain high-quality laboratory data in the context of offshore seismics. The framework is quite 

straightforward to implement in the case of a simple environment (Favretto-Anrès and Rabau 1997). 

But for more complex configurations, for instance, setups with strongly curved interfaces generating 

wave focusing/defocusing, or setups prone to multiple diffractions, a further investigation is 

necessary. Therefore, the framework must be adapted accordingly, preferentially by following a cross-

validation approach between numerical tools and the laboratory setup (Pageot et al., 2017, Solymosi 

et al., 2018). Indeed, the comparison between the experimental and numerical results usually 

emphasizes the improvements of the experimental setup that must be made to increase the accuracy 

(and decrease the uncertainties) of the experiments, and at the same time, it points out the limitations 

of the numerical tools that must be tackled. In this paper, using such a cross-validation, we establish 

a hierarchical list of points to which particular attention should be paid to allow laboratory 

experiments to be very efficient tools in support of real data and numerical simulations for seismic 

exploration. Far from being exhaustive, this list may, however, be a useful starting point for similar 

studies combining laboratory experiments and numerical simulations. For the sake of illustration we 

rely on a much more complex case study that is also much more realistic from a geological viewpoint 

than the configurations considered in our previous works (Tantsereva et al., 2014a, Solymosi et al., 

2018) or configurations considered in other works (e.g. Cooper et al., 2010, Stewart et al., 2012, 

Chang et al., 2017, Pageot et al., 2017), namely a complex-shaped salt body buried in sedimentary 

layers with curved surfaces. This choice is motivated by the fact that salt structures usually play a 

crucial role in hydrocarbon migration and entrapment, and as such receive special attention from 

exploration geophysicists. For many years various works have been published on (sub-)salt imaging, 

focusing on either the post-processing of already acquired datasets (e.g., Roberts et al., 2016), or on 

the acquisition techniques and geometries (e.g., Fleury, 2013). However, despite advances in 

migration algorithms and inversion methods, accurate (sub-)salt imaging is still an ongoing challenge 

for seismic exploration (Zhu et al., 2009, Jones and Davison, 2014, Liu et al., 2015). The main reason 

essentially stems from the particular properties of salt bodies. Indeed, salt often behaves and moves 

similarly to fluids at the geologic time scale, and salt bodies can, therefore, have various complex 

shapes, ranging from horizontal sheets to vertical “plums” with steep dips, or even mushroom or 

dome-shaped forms (e.g., Tari et al., 2003, Jackson and Hudec, 2017). Moreover, salt bodies usually 

have higher velocities than the typical surrounding sedimentary layers, while their density is generally 

close to that of the sediments, thus leading to a high reflectivity at the salt/sediments interfaces. As a 

consequence, imaging structures within and below the salt layers (also known as sub-salt imaging) is 

highly challenging, although inevitable for the detailed understanding of the complete geologic setup. 

 

 Motivated by the challenges related to salt bodies, we have built the WAVES reduced-scale 
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model (scale ratio 1:20 000), closely representing both the geometry and the media properties of a 

realistic 3D geologic setup by using materials such as specific crystal and resins. The model 

represents a salt body buried in different sedimentary layers with curved surfaces, all of them on the 

top of a crystalline basement. The sedimentary layers have varying properties, including a zone with 

an inverted velocity profile where the velocity decreases with increasing depth. This model illustrates 

the current ability to design and manufacture realistic complex reduced-scale models of high interest 

for seismic exploration issues, using processes combining subtractive manufacturing and 3D printing. 

Zero-offset and offset reflection datasets have been then acquired for this reduced-scale model in a 

water tank, using a conventional pulse-echo technique and a broadband/broad-beam piezoelectric 

transducer and a hydrophone. To identify the points that need particular attention, we have compared 

these experimental datasets to numerical data obtained using a full-wave method, namely a spectral-

element method (SEM) (Komatitsch and Vilotte 1998). To be effective, this cross-validation requires 

that the same input data (e.g., the geometry and the physical properties of the model, the 

characteristics of the sources and the receiver, and the acquisition design) have to be considered 

carefully in both the experiments and the numerical simulations. Finally, we have tested the validity 

of the whole framework (both the laboratory experiments and the numerical implementation) by 

applying a standard imaging technique of seismic exploration, namely Reverse-Time Migration 

(RTM) (Robein, 2010, Zhou et al., 2018) to the laboratory datasets. 

The paper is organized as follows. The WAVES realistic geologic model presents the geometry and 

the properties of the reduced-scale model used for the laboratory experiments. Reduced-scale seismic 

modeling is devoted to the reduced-scale modeling, including the experimental setup and the data 

acquisition. In Numerical modeling the principles of the SEM used for obtaining numerical data 

similar to laboratory data are briefly reviewed. The numerical implementation of the input data similar 

to laboratory conditions is also discussed there. Comparisons between experimental and numerical 

data presents the comparisons between the laboratory data and the corresponding numerical results 

and discusses the possible origins of the observed misfits. More specifically, there, we provide a 

hierarchical list of points to which particular attention should be paid to allow laboratory experiments 

to be even more efficient tools to support real data and numerical simulations in seismic exploration. 

Finally, in the last section, RTM is applied successfully to the laboratory datasets, thus validating the 

whole framework and confirming the highly valuable potential of laboratory experiments for 

investigating specific seismic exploration issues. 

 

THE WAVES REALISTIC GEOLOGIC MODEL 

 

 The real-life dimensions are scaled down to the laboratory scale by a factor of 1:20 000. 

Therefore, 1 mm at the laboratory scale corresponds to 20 m at seismic scale.  The WAVES reduced-

scale model has dimensions of 400 x 270 x 95 mm3, which corresponds to 8 x 5.4 x 1.9 km3 at seismic 

scale. The model mimics a salt-body embedded in sedimentary layers (Figure 1). The manufacturing 

of the WAVES model was a challenging task due to both the choice of the relevant materials and to 

find an appropriate, precise and efficient manufacturing process. Salt is represented by crystal (glass 

enriched with lead monoxide) and the sediments are represented by resins (Table 1). The resins are 

all based on the same base material, but some of them are enriched with a mixture of aluminum and 

silicon dioxide powder to increase their density and their wavespeed. The aluminum layer on the 

bottom represents a typical crystalline basement, such as granite. The glass dome was manufactured 

with the help of a 3D-printed mold by La Fonderie de Verre, while the other parts were manufactured 

by VN Composites, who also assembled the whole physical model. The assembly started with the 
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aluminum plate, on which the first resin layer was poured (layer #4 in Figure 1). Then, it was 

constantly rotated in an oven where the temperature was gradually decreased over a few hours to 

avoid air bubbles forming in the resin, and also to ensure the homogeneous distribution of the Al-

SiO2 powder in the base resin. After solidifying, the top surface of the resin layer was carved out 

according to the curved surfaces described in the preliminary 3D plans. Finishing the fabrication of 

the first resin layer, the process continued with the next layer above (layer #3 in Figure 1), and so on. 

Before adding the topmost resin layer (layer #1 in Figure 1), the glass dome was placed inside. Its 

coupling with the surrounding layers has been ensured by a very thin layer of the base resin. The P- 

and S-wave velocity and attenuation values (expressed as Q-factors), obtained with transmission 

measurements through two material samples of different thickness, are close to constant within the 

frequency range of interest (250-650 kHz). Each material is therefore considered to be homogeneous 

and isotropic for the frequency range of interest (Table 1). We consider glass and aluminum to be 

elastic, i.e. QP and QS are infinite. 

 

Figure 1. (a) The WAVES model after the assembly, (b) the glass dome placed inside, 

(c) top view of the WAVES model without the topmost layer, where the dashed blue line 

denotes the study line discussed in the paper, (d) illustration of the 3D geometry of the 

model, and (e and f) perpendicular vertical cross sections along the center lines of the 

model. The numbers denote the different materials whose properties are reported in Table 1. 
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Material 
Number in 

Figure 1 

Density 

(kg/m3) 
VP (m/s) VS (m/s) QP QS 

resin A 1, 3 
1172 ± 2 

(± 0.2 %) 

2720 ± 13 

(± 0.5 %) 

1210 ± 144 

(± 12 %) 

25 ± 1 

(± 4 %) 

11 ± 4 

(± 36 %) 

resin B 2 
1680 ± 10 

(± 0.6 %) 

3090 ± 16 

(± 0.5 %) 

1577 ± 25 

(± 1.6 %) 

26 ± 1 

(± 4 %) 

18 ± 3 

(± 17 %) 

resin C 4 
1800 ± 10 

(± 0.6 %) 

3470 ± 21 

(± 0.6 %) 

1840 ± 101 

(± 5 %) 

53 ± 1 

(± 2 %) 

33 ± 9 

(± 27 %) 

crystal glass 5 
3623 ± 10 

(± 0.3 %) 

4480 ± 43 

(± 1 %) 

2845 ± 464 

(± 16 %) 
∞ ∞ 

aluminum 6 
2710 ± 4 

(± 0.2 %) 

6441 ± 87 

(± 1.4 %) 

3573 ± 544 

(± 15 %) 
∞ ∞ 

Table 1. Measured properties of the materials used in the WAVES model, together with the associated 

uncertainties for the frequency range of interest (250–650 kHz). 

 

REDUCED-SCALE SEISMIC MODELING 

 

Experimental setup 

 Because the objective was to perform reduced-scale offshore seismic acquisitions, the 

WAVES model was immersed in a water tank before the measurements (Figure 2). The tank is 

equipped with a computer-controlled acquisition system that allows for the accurate positioning of 

the ultrasonic transducers. We emphasize here that, compared to the experimental setup described in 

Solymosi et al. (2018), the precision of the measurements has been significantly improved. The 

uncertainty of the transducer movements has been reduced to ±5 μm (i.e. ±0.1 m at seismic scale), 

while the tilt angle of the source transducer can now be measured with a precision of ±0.1°. Namely, 

optic rulers have been installed to provide a precise a posteriori control of the transducer movements, 

as well as a digital protractor to measure the tilt angle of the source transducer. It is estimated that, 

due to these modifications, the precision of the transducer movement and that of the source tilt angle 

have been improved by a factor of 100 and 10, respectively. However, determining with high accuracy 

the initial position of both the transducer and the hydrophone before the data acquisition is still a 

challenge. So far, this accuracy cannot be improved to better than ±0.5 mm, and this is definitely a 

point to further investigate and improve in future experiments. 
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Figure 2. The water tank used for the experiments: (a) two axes 

support the two transducers; the movement of the source (four degrees 

of freedom) and that of the receiver (three degrees of freedom) 

are ensured by stepping-motors installed on the axes and controlled 

by a PC, whereas the recently installed optical rulers provide a posteriori 

control of the transducer movements and (b) the WAVES 

model placed inside the water tank. 

 

 As in Solymosi et al. (2018), we used a conventional pulse-echo technique to acquire 

reflection data in both zero-offset and offset configurations (Figure 2). Zero-offset data was acquired 

using a custom-made Imasonic® transducer as both the source and the receiver. This transducer has 
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a dominant frequency of 500 kHz (i.e., 25 Hz at seismic scale) and a broad-beam radiation pattern. 

Because the width of the main lobe is 35° at -3 dB, this transducer has a large area of illumination, 

leading to a complex 3D wavefield (Tantsereva et al., 2014a, 2014b, Solymosi et al., 2018). In the 

offset configuration, an omnidirectional Teledyne Reson® hydrophone was used as the receiver, 

which has a constant sensitivity for the frequency range of interest. For more details on the laboratory 

measurements, we refer the reader to Solymosi et al. (2018). 

 

Laboratory data sets 

 For the sake of brevity, we focus on a study line, located above the center line in the x-direction 

(dashed line in Figure 1c, and along the section shown in Figure 1e). This acquisition line covers both 

rather simpler parts close to the sides where the geometry consists of close-to-horizontal layers, as 

well as complex parts in the center above the dome. 

 

 Figure 3 shows the laboratory zero-offset data set for the study line together with the 

interpretation of the main recorded events. The transducer was positioned 100.0±0.1 mm above the 

top surface of the model (i.e., 2000±2 m at seismic scale) and recorded events every 0.5 mm in the x-

direction. Event (a) represents reflections from the top surface of the model, i.e. from the top of the 

upper resin A layer. Event (b) represents mainly the reflections from the top of the glass dome, in 

particular for positions 120-270 mm. For positions less than 120 mm and greater than 270 mm 

diffractions from the edges of the dome can also be observed. Events (c)-(f) are associated with the 

top surface of resin B, lower resin A, resin C, and aluminum, respectively. These events can be easily 

interpreted on the sides due to the relatively simple geometry. To the contrary, the closer we are to the 

center of the model, the harder it is to distinguish the same reflections due to the complex geometry. 

Due to the broad-beam radiation pattern of the source transducer and the curved top surface of the 

dome, we observe a constructive interference of reflections in the center, leading to focusing of the 

energy, between 165-200 μs and positions 170-240 mm. Event (g) shows reflections from the bottom 

of the aluminum. The fact that reflections are recorded from the bottom of the aluminum shows that 

the imaging of the entire depth of the model is possible, even though the resin layers are highly 

attenuating (Table 1). Although events (f) and (g) represent reflections from two perfectly horizontal 

interfaces, they exhibit some undulations in Figure 3, which is indeed a velocity pull-up effect due to 

the time-domain visualization. This is the result of the varying velocity of the complex overburden of 

the aluminum, which then leads to different arrival times of the reflected zero-offset waves at different 

horizontal positions. 
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Figure 3. Cross section of the laboratory zero-offset data set along 

the study line (top) and interpretation (bottom). Annotated events: 

reflections from the (a) top of the upper resin A layer, (b) top of the 

glass dome, (c) top of the resin B layer, (d) top of the lower resin A 

layer, (e) top of the resin C layer, (f) top of the aluminum layer, and 

(g) bottom of the aluminum layer. The data were filtered between 

250 and 650 kHz. 

 

 Figure 4 shows the laboratory offset data set for the study line, i.e. a common shot gather, 

together with the interpretation of the main events. The source was positioned at y=390.17±0.50 mm 

and the tilt angle of the source transducer was 30.0±0.1°. Both the source and the receiver transducers 

were positioned 100.0±0.1 mm above the top surface of the model (i.e. 2000±2 m at seismic scale). 

The hydrophone was moved every 0.5 mm in the x-direction to record events. The interpretation of 

the measured data set for the WAVES model without post-processing is challenging due to the 

complex multi-layered geometry. Nevertheless, event (a) can be unambiguously attributed to the 

direct arrival from the source, and event (b) to the reflections from the top surface of the model, i.e. 

from the top of the upper resin A layer. To go further in the interpretation, the laboratory data must 

be post-processed, most typically with migration algorithms. We show an example of this below. 
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Figure 4. Cross section of the laboratory offset data set along the 

study line (i.e., common-shot gather) (top), and interpretation (bottom). 

Annotated events: (a) direct arrival and (b) reflection from the 

top of the upper resin A layer. The data were filtered between 250 

and 650 kHz. 

 

NUMERICAL MODELING 

 

Brief description of the numerical method 

 We resorted to the spectral-element method (SEM) (e.g., Komatitsch and Vilotte, 1998, 

Fichtner, 2010, Peter et al., 2011) for the numerical simulations. Specifically, we used the SPECFEM 

software package (Komatitsch and Vilotte, 1998) with the explicit second-order Newmark time 

scheme (Hughes, 1987). The numerical modeling is conducted in the same way as reported in 

Solymosi et al. (2018), including the implementation of the viscoelasticity and the real transducer 

characteristics. The only difference lies in the implementation of the model geometry. Because the 
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WAVES model has a complex 3D multi-layered geometry, obtaining a non-structured hexahedral 

mesh is extremely difficult (e.g., Shepherd and Johnson, 2008, Staten et al., 2010). The main difficulty 

is not only to correctly mesh any domain of the model with hexahedral elements only, but also to have 

a conform mesh on the boundaries between any two domains. Indeed, in a conform mesh all nodes 

which are on the boundary of two domains are shared by elements on both sides, and all elements on 

the boundaries must be connected to elements in the other domain by nodes. Although several open-

source and commercial meshing software have been tested, currently they are all unable to tackle this 

task for the WAVES model. Because a conformal mesh is necessary for the numerical simulations, 

we had to choose a structured grid to numerically implement the model geometry. Considering the 

minimum velocity of the model – namely, 1210 m/s for the S-waves in resin A – and the maximum 

target frequency (650 kHz), we used a grid with an equidistant grid spacing of 1.6 mm in each spatial 

direction. Because five Gauss-Lobatto-Legendre (GLL) points per element are used during the 

simulations (Solymosi et al., 2018), the grid spacing provides at least 7.1 and 5.8 GLL points per the 

shortest wavelength for P- and S-waves, respectively. This spatial discretization yields approximately 

5.6 million elements, considering the water column above the model as well. We used Intel Xeon 

Sandy Bridge EP (E5-2690) processors for the simulations. The computational cost was 1500 core 

hours to simulate 350 μs of wave propagation (corresponding to 7 s at seismic scale). 

 

Numerical calibration of the material properties for a multi-layered model 

 Because the ultrasonic characterization of the material samples yields a range of possible 

values for the measured properties due to the measurement uncertainties, an initial calibration is 

necessary to find the relevant values to be used for the simulations. The calibration consists of a zero-

offset laboratory measurement, followed by an iterative fitting of the corresponding synthetic trace. 

This iterative fitting consists of the adjustment of the material parameters of each layer such that the 

simulation yields the closest possible fit with the reference laboratory trace. Compared to the 

Marseille-Benchie model (Solymosi et al., 2018), where the properties of only one material had to be 

fitted, the WAVES model is more challenging due to its multi-layered geometry. Our strategy is 

simple: at first, the properties of the topmost layer are calibrated, then, considering these calibrated 

values, the properties of the second layer are calibrated, and so on. We chose a reference point 

100.0±0.1 mm above the top surface of the model as close to the sides of the model as possible where 

the geometry is close to a 2D layer-cake geometry, but avoiding diffractions effects from the model 

edges (Figure 5). The calibration thus consists of two phases: first, the properties of each layer except 

those of the glass dome are calibrated successively using the reference point, then, a second trace is 

used in the center of the model to also fit the properties of the glass (Figure 5). 

 

 Figure 6a shows the comparison of the reference laboratory trace with the simulated trace, 

using the measured material properties reported in Table 1. Although the arrival time, amplitude and 

phase of the simulation are correct for the first event (reflection from the top of the upper resin A 

layer), the later arrivals have extremely low amplitudes compared to the laboratory measurement. By 

successively adjusting the material parameters of the different layers, we can finally obtain an 

excellent fit between the laboratory and synthetic traces, as shown in Figure 6b, from a quantitative 

(through correlation coefficients) points of view. Table 2 reports the adjusted material properties and 

the change in terms of percentages compared to the measured material properties listed in Table 1. At 

this point, we note that the differences between the adjusted and the measured values of the Q-factors 

appears to be significant, whereas the differences in the velocity values remain small. Moreover, even 

though the same resin A is used twice in the model, we obtained different material properties for the 
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upper and lower layers, especially for the attenuation parameters. Finally, using the calibrated 

material properties of Table 2, we did an additional control measurement and simulation in the same 

horizontal position, but one centimeter closer to the surface of the model (i.e. at 90.0±0.1 mm above 

the top surface of the model). Changing only the height of the transducer results in a slightly different 

fit between laboratory and synthetic traces (Figure 6). It can be explained by the fact that the width 

of the illuminated zone of the model changes with the transducer height. Here, we can clearly see the 

importance of the illuminated zone on the measurements, and on the calibration as well, in particular 

for a multi-layered medium. Thus, the adjusted material parameters should be considered as rather 

apparent or effective parameters than intrinsic parameters of the materials. We note that the accurate 

and reliable estimation of the intrinsic material attenuation is still a challenging issue both for the 

laboratory and the field experiments. Discussions about the relevancy of both the (classical) 

experimental procedure used here to evaluate intrinsic attenuation and the consideration of constant 

Q-factors in numerical models (as usually considered in seismic/seismological applications) are 

beyond the scope of this paper. 

 

 

 

Layer 
Number in 

Figure 1 

Density 

(kg/m3) 
VP (m/s) VS (m/s) QP QS 

upper 

resin A 
1 

1172 

(0 %) 

2549 

(-6 %) 

1210 

(0 %) 

123.8 

(376 %) 

88 

(389 %) 

resin B 2 
1680 

(0 %) 

3213 

(4 %) 

1577 

(0 %) 

27.3 

(5 %) 

23 

(28 %) 

lower 

resin A 
3 

1172 

(0 %) 

2560 

(-6 %) 

1210 

(0 %) 

41.7 

(60 %) 

30 

(67 %) 

resin C 4 
1800 

(0 %) 

3050 

(-12 %) 

1840 

(0 %) 

30 

(-43 %) 

26 

(-21 %) 

aluminum 6 
2710 

(0 %) 

6491 

(< 1 %) 

3573 

(0 %) 

∞ 

(0 %) 

∞ 

(0 %) 

Table 2. The calibrated material properties for the resins and the aluminum. The percentages show 

the differences compared to the measured values listed in Table 1. 
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Figure 5. Location of the reference trace (red asterisk) and of the second trace used to calibrate the 

properties of the glass (blue asterisk). The yellow asterisks denote the position of the zero-offset 

examples showcased below. 

 

 

Figure 6. Comparison of the reference laboratory trace (blue) and the corresponding synthetic trace 

(red) obtained using: a) the measured material properties reported in Table 1, b) the adjusted material 

properties reported in Table 2. 
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Figure 7. Comparison of the laboratory trace (blue) recorded at the same horizontal position as the 

reference trace (Figure 6), but one centimeter closer to the model, and the corresponding synthetic 

trace (red) obtained using the adjusted material properties reported in Table 2. 

 

 After calibrating the material properties for the resins and the aluminum, a second trace was 

used in the center of the model to adjust the properties of the glass (blue asterisk in Figure 5). Figure 

8a shows the comparison of the laboratory trace with the synthetic results, using the adjusted material 

properties listed in Table 2. We can see that the two traces fit each other very well for the reflection 

from the top of the upper resin A layer. Figure 8b shows the same comparison, but this time the 

material properties of the glass dome are also calibrated (Table 3). We can clearly see a good fit 

between the laboratory and synthetic traces for the reflection from the bottom of the glass dome too, 

as well as for other events with later arrival times. The reflection from the top of the glass dome shows 

a good, but not a perfect fit, as the amplitude is overestimated compared to the laboratory 

measurement. To decrease this misfit, the properties of upper resin A should have been readjusted. In 

other words, it would have required different properties of the same layer at different locations, 

meaning that the materials would have been heterogeneous. However, this heterogeneity was not 

confirmed by our measurements for the material samples, also including X-ray tomography. This 

misfit may be due to the effect of the illuminated zone, that also depends on the model geometry 

(especially in this case when the top surface of the dome is curved), and hence to mild 

focusing/defocusing effects. 

 

Figure 8. Comparison of the laboratory trace (blue) recorded in the center of the model and the 
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corresponding synthetic trace (red) obtained using: a) the adjusted material properties listed in Table 

2, b) the adjusted material properties reported in Tables 2 and 3. 

 

 

Layer 
Number in 

Figure 1 

Density 

(kg/m3) 
VP (m/s) VS (m/s) QP QS 

glass 5 
3623 

(0 %) 

4325 

(-4 %) 

2845 

(0 %) 

∞ 

(0 %) 

∞ 

(0 %) 

Table 3. The calibrated material properties for the glass. The percentages show the differences 

compared to the measured values reported in Table 2. 

 

COMPARISONS BETWEEN EXPERIMENTAL AND NUMERICAL DATA 

 

Comparison of zero-offset data 

 In addition to the reference and the central traces, we consider here more specifically three 

traces of the laboratory zero-offset data set, acquired at locations denoted with the yellow asterisks in 

Figure 5. These traces are located at different parts of the model to investigate the fit between the 

measurements and the simulations, using the calibrated material properties (Tables 2 and 3) at 

different positions. 

 

 Trace A is located 130 mm (i.e., 2.6 km at seismic scale) far from the reference trace in the y-

direction (Figure 5). The comparison of the laboratory measurement with the numerical result shows 

a general good fit for both the arrival times and the amplitudes for most of the events (Figure 9a), as 

highlighted by the high value (0.93) of the correlation coefficient of the two traces. In particular, the 

first three reflections (from the top of upper resin A, resin B and lower resin A layers, respectively) 

exhibit an almost perfect fit in terms of arrival time and amplitude, whereas the reflection from the 

top of resin C shows only some minor amplitude and arrival time misfits. On the contrary, the 

reflections from the top and bottom of the aluminum layer reveal a significant misfit in the arrival 

times. 

 

 Trace B is located 130 mm (i.e., 2.6 km at seismic scale) far from the reference trace in the x-

direction (Figure 5). Figure 9b shows a good fit between the measurements and the simulations for 

the reflection from the top of the upper resin A layer, except for the tail of the event which exhibits 

some minor amplitude misfits. Although some amplitude misfits can be observed, the reflections from 

the top of resin B and lower resin A layers are well restored by the simulations. On the contrary, the 

later arrivals of trace B (corresponding to reflections from the top of the resin C layer and to 

reflections from the top and bottom of the aluminum layer) show an almost perfect fit in both the 

arrival times and the amplitudes. Despite the occasional amplitude misfits, trace B has a high 

correlation coefficient (0.87). 

 

 Trace C is located 260 mm (i.e., 5.2 km at seismic scale) far from the reference trace in the x-

direction (Figure 5). Figure 9c shows the comparison between the measurement and the simulation, 

revealing a generally good fit. The fit is especially good for the reflections from the top of upper resin 

A and resin B layers. The reflections from the top of lower resin A and resin C layers, and from the 

bottom of the aluminum layer show some small amplitude and arrival time misfits. On the contrary, 
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the arrival time misfit for the reflection from the top of the aluminum layer is significant. We also 

note the arrival recorded after the reflection from the top of the upper resin A layer, around 148 μs. 

This event is pronounced for the measurement, while not reconstructed by the simulation. This arrival 

is probably related to tiny air-bubbles which accumulated on the surface of the physical model during 

the measurements, which can take even several days for the entire data set. Nevertheless, trace C has 

a quite high correlation coefficient (0.88). 

 

Figure 9. Comparison of zero-offset laboratory traces with the corresponding synthetic SEM results: 

a) trace A, b) trace B, c) trace C. 

 

Comparison of offset data 

 Here, we consider more specifically two sets of offset traces, corresponding to two different 

source positions. All the sources and receivers were positioned in the center line of the model in the 

y-direction (y=135.0±0.5 mm). The two source positions are denoted with red and blue asterisks in 

Figure 10, respectively. The positions of the receivers are denoted with triangles of the corresponding 

color. The tilt angle of the source transducer for all the traces was 30.0±0.1°. 
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Figure 10. Location of the sources (asterisk) and receivers (triangles) associated to the two showcased 

offset experiments. The two data sets are denoted with red and blue colors, respectively. 

 

First set of offset traces 

 The source was positioned at x=300.0±0.5 mm for traces D and E (Figure 10). Trace D 

corresponds to an offset of 280.0±0.5 mm (i.e., 5.60±0.01 km at seismic scale). Figure 11a shows the 

comparison of the laboratory measurement with the synthetic result. The reflection from the top of 

the upper resin A layer shows a good fit between the two traces, in terms of both the arrival time and 

the amplitude. Although the arrival time of the reflection from the top of the glass dome is correct for 

the synthetic trace, the simulated amplitude is somewhat lower compared to the measurement. The 

later arrivals, which propagated through the glass dome, cannot be easily interpreted one-by-one, 

because of complex wave paths. Although the arrival time and phase of these events are correct, they 

show a varying amplitude misfit. A correlation coefficient of 0.84, however, suggests a generally 

good fit between the measurement and the simulation. 

 

 Trace E was recorded at an offset of 80.0±0.5 mm (i.e., 1.60±0.01 km at seismic scale). The 

comparison of the measured and simulated traces in Figure 11b shows a good fit for the reflection 

from the top of the upper resin A layer, similar to trace D. Following that, there are two arrivals 

corresponding to reflections from the top of the glass dome. This is due to the broad-beam radiation 

pattern of the source in combination with the curved top surface of the dome. These arrivals show 

some arrival time and amplitude misfits. The later arrivals, corresponding to waves propagating 

through the glass dome, show a similar pattern as for trace D. Namely, the arrival time of these events 

are mostly correct with some amplitude misfits. The correlation coefficient is 0.81, partly due to the 

erroneously low simulated amplitude of the later arrivals (e.g., at 180 μs). 
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Figure 11. Comparison of offset laboratory traces with the corresponding synthetic SEM results: a) 

trace D, b) trace E. 

 

Second set of offset traces 

 For the second set of offset traces, the source was positioned at x=200.0±0.5 mm (Figure 10). 

Trace F corresponds to an offset of 140.0±0.5 mm (i.e., 2.80±0.01 km at seismic scale). The reflection 

from the top of the upper resin A layer has the correct arrival time and amplitude, but the phase of the 

early and late parts of this event is somewhat distorted, compared to the laboratory trace (Figure 12a). 

The reflection from the top of the glass dome shows mainly some amplitude misfit. The simulated 

arrivals of the waves traveling through the glass dome show an erroneously low amplitude in general, 

which explains the lower correlation coefficient of 0.78 compared with traces D and E above. 

 

 Trace G (Figure 12b) corresponds to an offset of 90.0±0.5 mm (i.e., 1.80±0.01 km at seismic 

scale). The reflection from the top of the upper resin A layer exhibits a good fit in time and amplitude. 

The early and late parts of this event have a somewhat superior fit in phase than for trace F. The two 

reflections from the top of the glass dome are of excellent fit in both arrival times and amplitudes. 

However, the later arrivals, corresponding to waves propagating through the dome, again reveal an 

erroneously low amplitude for the synthetic trace. The correlation coefficient is 0.81, and this higher 

value compared with trace F is due to the better fit at earlier times. 

 

 Trace H (Figure 12c) corresponds to an offset of 50.0±0.5 mm (i.e., 1.00 ±0.01 km at seismic 

scale). This near-offset trace shows an excellent fit in arrival times and amplitudes for the reflections 

from both the top of the upper resin A layer and the glass dome. For this trace, even the beginning of 

the complex arrivals related to the rays propagating through the glass dome exhibits a good fit 

between the simulation and the measurement. Indeed, the arrival at around 150 μs has both the good 

amplitude and arrival time with a minor phase misfit. The later parts of these arrivals also show a 

good fit in time. Similar to the previous traces, the simulated amplitude of these events after 180 μs 

is generally too low, explaining the lower correlation coefficient of 0.78. 

 



19 

 

Figure 12. Comparison of offset laboratory traces with the corresponding synthetic SEM results: a) 

trace F, b) trace G, c) trace H. 

 

Discussion of the experimental and calibration procedure 

 As shown above, we can accurately reconstruct the laboratory measurements for the WAVES 

model using the SEM with a regular grid. In general, a very good fit can be obtained between the 

laboratory zero-offset measurements and the numerical simulations, which is also highlighted by the 

very high correlation coefficients of at least 0.82. Although the observed misfits are somewhat higher 

in the offset configuration, the values of the correlation coefficients (0.78 or higher) still suggest a 

good reconstruction of the laboratory offset traces as well. 

 

 At this point, it is interesting to focus more specifically on the possible origins of the observed 

misfits and to evaluate as much as possible the associated uncertainties and the degree of significance 

of their impact on the misfits. In this sense, we would like to provide here a hierarchical list of 

uncertainties to which particular attention should be paid. By hierarchical list, we mean from the least 

to the most affecting uncertainty. Far from being exhaustive, this list may nevertheless be useful in 

future studies when laboratory experiments and numerical simulations are to be combined or 

compared. Three different factors can be distinguished: those related exclusively to the numerical 

simulations, those related exclusively to the experiments, and those related to both the experimental 

and the numerical aspects. 

 

 In the numerical simulations, the highly complex model geometry has been implemented 
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using an equidistant grid. Of course, such a grid cannot explicitly honor the model discontinuities, 

especially in the case of the sides of the dome and the junctions of the different resin layer boundaries 

next to the flanks of the dome. Nevertheless, the good fit observed for the reflections from the curved 

top surface of the glass dome, in both zero-offset and offset configurations, provides a reassuring 

feedback on the current implementation of the model geometry. Therefore, we consider this effect to 

be minimal. 

 

 The reduced-scale experiments are of physical nature. Hence, similar to field data, our 

laboratory data still contain noise, although each signal was stacked several hundreds of times, in 

order to reduce the relative amplitude of any spurious incoherent noise and to enhance the signal-to-

noise ratio. The presence of noise may be problematic mainly in offset configurations where signals 

can have very low amplitudes (Figures 11 and 12). In this case, it may be useful to post-process 

laboratory data by applying appropriate denoising methods (Traoré et al., 2017a, 2017b), after 

identifying the resulting noise characteristics. Nevertheless, the noise is far from being the main issue 

we have to face during the experiments, and we consider the impact of the noise on the quality of the 

fit between numerical simulations and laboratory data to be small. 

 

 On the contrary, two factors appear to have much a greater impact on the quality of the fit 

between numerical simulations and laboratory data: the numerical implementation of the source 

characteristics and that of the material properties. As already pointed out in Solymosi et al. (2018), 

the implementation of the source characteristics used here does not describe perfectly the real 

directivity of the transducer and its full waveform (since the later arrivals of the wavelet are poorly 

reconstructed). Indeed, although the strongly energetic main lobe of the source transducer is very well 

restored (as it can be seen from the good fit between numerical and experimental data in zero-offset 

configuration), the lower-energy secondary lobes are poorly recovered by the inversion strategy 

proposed by Solymosi et al. (2018). In other words, this strategy seems to be inadequate in case of 

low signal-to-noise ratios. Therefore, further work must be done both from a theoretical point of view 

in order to improve the strategy, and from the experimental side to maximize the signal-to-noise ratio 

in the directivity measurements. 

 

 Although the precision of the laboratory measurements has been significantly improved 

compared to Solymosi et al. (2018), thanks to an a posteriori control of the transducer movements, 

there is still a high uncertainty in the initial transducer positions before the data acquisition, and this 

appears to have a major impact on the quality of the fit between numerical simulations and laboratory 

data, in particular for offset configurations. This uncertainty (± 0.5 mm) has to be definitely 

investigated in detail and decreased in future works, probably with the help of metrologists (e.g., Pitre 

et al., 2017). 

 

 Before simulating wave propagation for the complex WAVES model, we had performed a 

numerical calibration of the material properties, consisting of adjusting the velocity and attenuation 

values, such that there is a perfect fit between the chosen laboratory traces and the corresponding 

numerical ones for the zero-offset configuration. This preliminary and quite common procedure is 

necessary as the uncertainties are quite high in the laboratory characterization of the material 

properties, especially for the attenuation fields. However, we could observe that the obtained material 

properties are significantly influenced by the position of the transducer, and hence by the zone of the 
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model which is illuminated by the transducer. They implicitly bear the signature of wave phenomena 

(e.g., mild focusing/defocusing, diffraction). In other words, the calibrated properties are rather 

effective/apparent than intrinsic, therefore they do not provide perfect results for all the comparisons 

between laboratory and numerical data. Including offset data in the calibration procedure from the 

beginning would have led to a different set of material properties, but it is not clear whether these 

properties would have produced a lower global misfit, since wave focusing/defocusing and diffraction 

by 3D curved structures are much more significant in the offset than in the zero-offset configuration. 

In future works, it would be particularly worthwhile to understand better this attenuation issue, both 

from theoretical and experimental aspects. Moreover, the relevancy of the calibration procedure and 

that of assuming constant Q-factors with frequency (as usually considered in seismics/seismology) in 

numerical algorithms should also be investigated. 

  

 At this point, one last question should be raised : has the reduced-scale model been perfectly 

manufactured according to the initial 3D plans? Indeed, it was highly challenging to find the optimal 

process to manufacture such a complex model and to ensure a perfect contact between the different 

material layers. A good way to check the quality of both the model and our “imperfect” experimental 

framework can be to apply reverse-time migration (RTM) to the laboratory data. 

 

REVERSE-TIME MIGRATION OF THE LABORATORY DATA AS AN ADDITIONAL TOOL 

TO VALIDATE THE EXPERIMENTAL FRAMEWORK 

 

 As shown above, the interpretation of the laboratory data for the WAVES model without the 

necessary post-processing is challenging in the time domain, as for instance the late arrivals 

corresponding to ray paths through the dome could not be individually interpreted due to the complex 

geometry. Therefore, accurate reconstruction of the model geometry is crucial before interpreting the 

measured data. This geometric reconstruction is usually ensured by different seismic migration 

algorithms in an operational context. Depending on the vertical and lateral heterogeneities, and the 

expected maximal tilt angle of the discontinuities, different algorithms have been developed (e.g., 

Yilmaz, 1987, Virieux and Operto 2009). Here we use a standard seismic imaging technique, reverse-

time migration (RTM). RTM is based on the imaging principle (Claerbout, 1971), and it is capable to 

reconstruct the reflectors related to reflection coefficient contrasts, but it cannot determine the real 

amplitude of these reflectors (Zhang et al., 2003, Robein 2010). Our goal with applying RTM to the 

laboratory data sets is to validate the framework described above. Because RTM yields an image in 

the depth domain, if the true material properties are used and if our framework is correct overall 

(despite the uncertainties in the laboratory measurements, the characterization of the material 

properties, the numerical implementation of the transducer characteristics and the model geometry), 

the resulting RTM data set should strongly resemble the known model geometry. 

 

Brief description of the method 

 RTM is based on seismic reciprocity, which exploits the time-invariant property of the wave 

equation for a non-attenuating medium. Namely, this property makes it possible to record a wavefield 

in the time domain, and then focus back the wavefield at the source position by propagating back in 

time the registration at the original receiver position (in a last in first out manner). In the context of 

time-reversed acoustics, seismic reciprocity was first used by Baysal et al. (1983), Mc Mechan (1983) 

and Whitmore (1983), and later by Fink (1999). 
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 Figure 13 shows the workflow of the applied RTM. First, offset laboratory data are acquired 

along the center line of the model in the x-direction (dashed line in Figure 1 middle left, and along 

the section shown in Figure 1e). To ensure the illumination of the physical model, we use three source 

tilt angles (19.7±0.1°, 25.1±0.1°, and 30.0±0.1°) and record multiple acquisition lines with a source 

spacing of 20.000±0.005 mm and a receiver spacing of 0.500±0.005 mm. These values correspond to 

a source spacing of 400.0±0.1 m and a receiver spacing of 10.0±0.1 m at seismic scale. Altogether 17 

642 registrations on 42 survey lines are measured. Second, forward simulations are computed, using 

the same acquisition geometry as for the laboratory measurements. We performed the simulations 

with the 2D version of the SPECFEM software package to save computational cost, considering also 

the fact that RTM is mostly suitable to reconstruct discontinuities, but not well-suited for quantitative 

amplitude analysis. The geometry is implemented with a non-structured 2D quadrangular mesh in 

Cubit/Trelis (Blacker, 1994). The target element size of the mesh is 1.1 mm, and we obtain 

approximately 73 000 elements, considering the water above the model as well. The material 

properties are considered to be identical to the 3D case presented above. Following the forward 

simulations, the differences between the recorded and simulated registrations are computed for each 

receiver. These differences provide the source-time function of the so-called adjoint wavefield in the 

third step (e.g., Tromp et al., 2005, Virieux and Operto, 2009). The third step consists of two 

simulations at the same time, a forward simulation (identical to the second step) and the adjoint 

simulation, which means the forward propagation of the adjoint wavefield in time from the original 

receiver points of Steps 1 and 2. 

 

 Because the resin layers of the model have significant attenuation, it has to be taken into 

account in the calculations as well. We use the technique of parsimonious disk storage (also known 

as optimal checkpointing) of the forward wavefield (Komatitsch et al., 2016). As part of this strategy, 

the so-called checkpoint/restart files are saved to the disk during the forward simulation in Step 2. 

These files contain the displacement components and are typically stored for every few hundred time 

steps. Then in the third step, the forward simulation is not run backward in time which would be 

numerically unstable, but rather forward, using the checkpoint/restart files. At any time, the 

simulation is run forward in time using the corresponding restart file, read back from the disk. Because 

the simulations are always conducted forward in time, they are always stable, even in the case of 

attenuating materials. 
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Figure 13. RTM workflow. 

 

 We use a smoothed version of the “real” model, as is general practice in seismic exploration. 

Here the term real refers to the best knowledge we have about the physical model, i.e., provided in 

the 3D geometry files of the model which were also used for the manufacturing. Hence, this does not 

take into account the possible misfits between the assumed (provided by these files) and actual real 

geometry. In addition, a Gaussian filter with a kernel size of 12x12 mm2 (corresponding to 240x240 
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m2 at seismic scale) is applied to each material property (VP, VS, ρ, QP, QS) to obtain a smooth model 

(Figure 14). Figure 15a shows a 3D laboratory trace and the corresponding 2D simulated trace using 

the smoothed geometry. The source was positioned at x=19.9±0.5 mm, in the center line in y-

direction, and 100.0±0.5 mm above the model. The receiver was located at x=79.8±0.5 mm, in the 

center line in y-direction, and 100.0±0.5 mm above the model. Figure 15b illustrates the difference 

between the measured and simulated traces, i.e., the adjoint trace. We can clearly see that the adjoint 

trace contains information mainly about the laboratory measurements for the late arrivals after 245 

μs. These events correspond to the ray paths traveling through the glass dome. Thanks to the 

preservation of the laboratory information, the interpretation of the final RTM results is 

straightforward, as any high correlation value corresponds to the information on the geometry that 

has been measured during the laboratory experiments (and unrelated to to the numerical simulations 

for the smooth model in Figure 14). 

 

Figure 14. The smoothed density model used for the RTM calculations. 

 

Figure 15. Illustration of the RTM calculations for the smoothed model, as shown in Figure 14. Top: 

laboratory trace (blue) and 2D simulated trace (red), bottom: difference (i.e. adjoint source). 
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 In RTM, the correlation of the forward and adjoint wavefields is calculated in the third step 

(Figure 13). However, as there is a strong connection between the full-waveform inversion (FWI) and 

RTM (e.g., Mora, 1988, Tromp et al., 2005), sensitivity kernels can also be defined for RTM and used 

similar to FWI for the imaging and geologic interpretation of the subsurface (e.g., Virieux and Operto, 

2009, Zhu et al., 2009). In this case, some derivatives of the cross-correlated wavefields are used. 

These derivatives (also known as sensitivity kernels) depend on the formulation of the wave equation. 

We note that in practice there is no one formulation to be chosen in any case, but rather it depends on 

the actual geologic setup and the recorded data itself (e.g., seismic exploration, global seismology, 

etc.) (e.g., Zhu et al., 2009). We calculate the two most common formulations here, first, the density 

ρ, bulk modulus κ, shear modulus μ formulation, then the impedance ρ', compressional-wave speed 

α, shear-wave speed β formulation. An extensive explanation of the calculations can be found, for 

example, in Liu and Tromp (2006), Tromp et al. (2008), Zhu et al. (2009), Douma et al. (2010), and 

Luo et al. (2013). Here we present only the sensitivity kernels which are used in this paper: 

 

𝐾ρ(𝑥) = ∫
𝑇

0
ρ(𝑥)𝜕𝑡𝑠

*(𝑥, 𝑇 − 𝑡) ⋅ 𝜕𝑡𝑠(𝑥, 𝑡)𝑑𝑡, (1) 

 

𝐾κ(𝑥) = −∫
𝑇

0
κ(𝑥)[𝛻 ⋅ 𝑠*(𝑥, 𝑇 − 𝑡)][𝛻 ⋅ 𝑠(𝑥, 𝑡)]𝑑𝑡, (2) 

 

𝐾μ(𝑥) = −∫
𝑇

0
2μ(𝑥)𝐷*(𝑥, 𝑇 − 𝑡): 𝐷(𝑥, 𝑡)𝑑𝑡, (3) 

 

namely, the density Kρ, bulk modulus Kκ, and shear modulus Kμ kernels, respectively, where x is the 

spatial coordinate, the integral is over the time (t = 0 ..T), s is the displacement, s* is the adjoint 

source,𝐷 =
1

2
[𝛻𝑠 + (𝛻𝑠)𝑇] −

1

3
(𝛻 ⋅ 𝑠)𝐼and D* are the traceless strain deviator and its adjoint, 

respectively (Tromp et al., 2005), and I is the identity matrix. The definition of the second set of 

sensitivity kernels are based on equations 1-3: 

 

𝐾ρ′ = 𝐾ρ + 𝐾κ + 𝐾μ, (4) 

 

𝐾α = 2𝐾κ(1 +
4

3

μ

κ
), (5) 

 

𝐾β = 2(𝐾μ −
4

3

μ

κ
𝐾κ)(6) 

 

for the impedance Kρ', compressional-wave speed Kα, and shear-wave speed Kβ kernels, respectively. 

 

RTM results 

 Figure 16 shows the resulting sensitivity kernels obtained with the RTM. From the three 

kernels of the Kρ-Kκ-Kμ formulation, Kκ can be interpreted most easily (Figure 16b). Although this 

kernel shows artifacts as well, the different discontinuities of the model can be interpreted easier than 

for Kρ or Kμ. As pointed out by Zhu et al. (2009), RTM images usually suffer from artifacts, due to 

diving waves, head waves, and backscattered waves. They suggest relying on the impedance kernel 

Kρ', which is the sum of Kρ, Kκ, and Kμ (equation 4), because the low-frequency artifacts cancel each 

other during the summation. This observation is confirmed for the WAVES model, as observed in 
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Figure 16d. Considering either Kκ or Kρ', we can easily interpret the top of the physical model at a 0 

cm depth. The other discontinuities of the model can also be interpreted, especially in the middle of 

the sections, where the model is better illuminated than the sides. Furthermore, there is a difference 

between the coherence of these discontinuities on the left and right sides of each kernel. That is 

because the source was always located on the left side during the laboratory experiments, therefore 

the receiver could not image beyond the source position. Last but not least, we see a proper imaging 

of all sides of the glass dome, also on the bottom. The top of the aluminum at a depth of 5.5 cm can 

also be interpreted at its known position. 

 

 In order to validate the resulting RTM images from the perspective of the spatial dimensions 

of the geometry, Figure 17 shows Kρ' superimposed to the color-coded known reference geometry. 

From a qualitative viewpoint, we can see an almost perfect fit between the sensitivity kernels and the 

original geometry for each domain of the model.
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Figure 16. Sensitivity kernels obtained with RTM: a) density kernel Kρ, b) bulk modulus kernel Kκ, c) shear modulus kernel Kμ, d) impedance kernel Kρ', 

e) compressional-wave speed kernel Kα, and f) shear-wave speed kernel Kβ. Yellow arrows: artifacts, red arrows: known model discontinuities.
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Figure 17. The impedance sensitivity kernel Kρ' obtained with RTM. Top: the obtained kernel, bottom: 

the obtained kernel with an overlay of the original geometry (in color). 

 

Discussion of the RTM results 

 As shown above, we can successfully visualize the inner geometry of the WAVES model with 

a 2D RTM, using the 3D laboratory data sets. We found that the bulk modulus and the impedance 

kernels are the most suitable for the interpretation of these data sets. The known discontinuities of the 

model are almost all restored. The top surface of the physical model, as well as all sides of the glass 

dome, and the top of the aluminum are entirely recovered. The other discontinuities are well-

reconstructed in the central positions, somewhat less coherently at greater depths, or sometimes next 

to the dome. Artifacts can also be interpreted on the RTM images, which are partly expected with the 

RTM, due to diving waves, head waves, and backscattered waves. In accordance with the literature 

(e.g. Zhu et al., 2009), the impedance kernel suffers from fewer artifacts than, for example, the bulk 

modulus kernel. 

 

 Although the comparison of RTM images with the original geometry shows an almost perfect 

overlap, we need to keep in mind the non-equivalence of the 2D and 3D for a complex geometry like 

the WAVES model. The images could be improved by re-performing RTM in 3D where sources and 

receivers were deployed out of the current acquisition plane, as well as by using more sources with a 

smaller source spacing. Nevertheless, our main goal with applying RTM to the laboratory data was 

to provide an additional tool to validate the experimental framework for complex models such as the 

WAVES model, which we can consider achieved here. 

 

CONCLUSIONS 

 
 The goal of this work was to provide a global overview of the framework to be implemented 
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to obtain high-quality laboratory data in the context of offshore seismics, regardless of the geological 

environment. To illustrate it, we have relied on a reduced-scale model representing a 3D complex-

shaped salt body buried in sedimentary layers with curved surfaces. The model is made of a specific 

crystal, different resins with aluminum and silicon powders, and aluminum. Zero-offset and offset 

reflection data have been acquired for this model in a water tank, using a conventional pulse-echo 

technique. Following previous works, the framework uses cross-validation of laboratory and 

numerical data, to point out the necessary improvements in both the experimental and numerical parts 

by reducing the measurements uncertainties and improving the numerical implementations, 

respectively. We have thus set up a hierarchical list of points (from the least to the most affecting the 

quality of the numerical simulations and the experimental data) to which particular attention should 

be paid to allow laboratory experiments to be very efficient tools for seismic exploration. For instance, 

inaccuracies in the initial position of the transducers, numerical implementation of the source 

directivity pattern, and uncertainties in the estimation of the media properties (especially, for 

attenuation) may have a major effect on the data and simulations quality. These issues may be solved 

with the help of metrologists. On the contrary, the quality of the meshing of the complex model and 

the presence of noise, which can be reduced by using proper signal processing techniques, introduce 

minimal adverse effects. Finally, the quality of both the complex reduced-scale model and the global 

framework proposed here has been successfully validated by successfully applying reverse-time 

migration to the laboratory data. Benefiting from the on-going technological advances, we believe 

that in the future laboratory experiments can play a major role to support the field experiments and 

numerical modeling, or to investigate some of the current challenges of seismic imaging in terms of, 

e.g., acquisition design or benchmarking of new imaging techniques at a low cost and in a versatile 

way. 
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