

A Discontinuous Galerkin-based surface domain decomposition method for the electromagnetic wave scattering problem

DE LA RECHERCHE À L'INDUSTRIE

Justine Labat Agnès Pujols Muriel Sesques | CEA-CESTA Journes Jeunes Chercheuses Jeunes Chercheurs sur le thème de la propagation d'ondes en régime harmonique November 23-24, 2020

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr

Physical context : Radar detection

Scattering of electromagnetic waves on a target to determine its radar cross-section Make an object stealthy = Reduce its radar signature

Context and application : electromagnetic stealth technology

Physical context : Radar detection

Scattering of electromagnetic waves on a target to determine its radar cross-section Make an object stealthy = Reduce its radar signature

Mathematical context : Numerical simulation

- Solve the time-harmonic Maxwell equations
- Simulate infinite domains
- Take into account complex geometries (large-scale objects, multi-scale effects, ...)
- Guarantee accuracy, efficiency and robustness
- \longrightarrow Limitations due to high numerical costs ...

Monopole antenna in the presence of a dielectric object on a launcher (ISAE Workshop, 2016) The Boundary Element Method is very well-adapted for solving scattering problems

... but can also be limited by computational resources !

The Boundary Element Method is very well-adapted for solving scattering problems but can also be limited by computational resources !

Combine it with a Surface Domain Decomposition in order to tackle the following issues :

• Robust and accurate simulations for a wide range of frequencies

Domain length	Mesh points
10λ	> 20 000
100λ	pprox 2000000
1000λ	pprox 200000000
10000λ	pprox 20 000 000 000

• Geometry-adaptive strategies to handle multi-scale structures

 100×100 metallic patch on the half cone-sphere (ISAE Workshop, 2016)

• Simulation-based engineering using High Performance Computing

- Acoustics : N.-A. Messai and S. Pernet (2019)
- ▶ Electromagnetism : Z. Peng, K.-H. Lim, J.-F. Lee (2013), Z. Peng, R. Hiptmair, Y. Shao (2016)

- Acoustics : N.-A. Messai and S. Pernet (2019)
- Electromagnetism : Z. Peng, K.-H. Lim, J.-F. Lee (2013), Z. Peng, R. Hiptmair, Y. Shao (2016)

- Acoustics : N.-A. Messai and S. Pernet (2019)
- ▶ Electromagnetism : Z. Peng, K.-H. Lim, J.-F. Lee (2013), Z. Peng, R. Hiptmair, Y. Shao (2016)

- Acoustics : N.-A. Messai and S. Pernet (2019)
- Electromagnetism : Z. Peng, K.-H. Lim, J.-F. Lee (2013), Z. Peng, R. Hiptmair, Y. Shao (2016)

- Acoustics : N.-A. Messai and S. Pernet (2019)
- Electromagnetism : Z. Peng, K.-H. Lim, J.-F. Lee (2013), Z. Peng, R. Hiptmair, Y. Shao (2016)

• Development of a Discontinuous Galerkin-based Surface Domain Decomposition Method

- Acoustics : N.-A. Messai and S. Pernet (2019)
- Electromagnetism : Z. Peng, K.-H. Lim, J.-F. Lee (2013), Z. Peng, R. Hiptmair, Y. Shao (2016)

• Discretization using the Boundary Element Method

- Physics : Conducting or dielectric material
- ► Geometry : Conformal or non-conformal meshes
- Solvers : Direct solvers or compression method + iterative coupling
- Features : Massively parallel architecture on TERA-1000

- Model problem
- Continuous formulation

Outline

- Discrete formulation
- 2 Preliminary numerical results
 - Test-cases
 - Qualitative comparison
 - Numerical convergence
 - Eigenspectrum of preconditionned system
- 3 Conclusion and perspectives

- Model problem
- Continuous formulation

Outline

- Discrete formulation
- 2 Preliminary numerical results
 - Test-cases
 - Qualitative comparison
 - Numerical convergence
 - Eigenspectrum of preconditionned system
- 3 Conclusion and perspectives

Model problem

- Ω^{ext} : exterior domain
- Γ : boundary of Ω^{ext}
- $\bullet~\textbf{\textit{E}}^{i}, \textbf{\textit{H}}^{i}~:$ incident fields
- $\boldsymbol{E}^{s}, \boldsymbol{H}^{s}$: scattered fields
- **E**, **H** : total fields

 $\boldsymbol{E} = \boldsymbol{E}^{i} + \boldsymbol{E}^{s}$ $\boldsymbol{H} = \boldsymbol{H}^{i} + \boldsymbol{H}^{s}$

• Time-harmonic dependence $\exp(+i\omega t)$

$$\begin{split} \text{Time-harmonic Maxwell equations (in vacuum)} \\ \left\{ \begin{aligned} \nabla \times \boldsymbol{E}^{\text{s}} + \mathrm{i}\kappa Z_0^{-1}\boldsymbol{H}^{\text{s}} &= 0 & \text{ in } \Omega^{\text{ext}} \\ \nabla \times \boldsymbol{H}^{\text{s}} - \mathrm{i}\kappa Z_0\boldsymbol{E}^{\text{s}} &= 0 & \text{ in } \Omega^{\text{ext}} \end{aligned} \right. \end{split}$$

- κ : wave-number
- Z_0 : impedance coefficient

Perfect conductor condition
$$\mathbf{n} \times \mathbf{E}^{s} = -\mathbf{n} \times \mathbf{E}^{i}$$
 on Γ

• n : exterior unit normal vector

Silver-Müller radiation condition
$$\lim_{|\mathbf{x}|\to\infty} |\mathbf{x}| \left(\mathsf{Z}_0 \ \mathbf{H}^{\mathrm{s}} \times \hat{\mathbf{x}} - \mathbf{E}^{\mathrm{s}} \right) = 0 \qquad \text{unif. in } \hat{\mathbf{x}} = \frac{\mathbf{x}}{|\mathbf{x}|}$$

C22 Classical Boundary Integral Equations

• The scattered electromagnetic fields can be represented by the Stratton-Chu formulas

$$oldsymbol{E}^{ extsf{s}}(oldsymbol{x}) = - extsf{i}\kappa\mathcal{T}oldsymbol{J}(oldsymbol{x}) \qquad oldsymbol{H}^{ extsf{s}}(oldsymbol{x}) = rac{1}{Z_0}\mathcal{K}oldsymbol{J}(oldsymbol{x}) \qquad oldsymbol{x}\in\Omega^{ extsf{ext}}$$

where $J = Z_0(\mathbf{n} \times \mathbf{H})$ is the total surface electric current and

$$\mathcal{T}J(\mathbf{x}) = \frac{1}{\kappa^2} \nabla \left(\mathcal{S} \operatorname{div}_{\Gamma} J \right)(\mathbf{x}) + \mathcal{S}J(\mathbf{x}) \qquad \qquad \mathcal{K}J(\mathbf{x}) = \nabla \times \mathcal{S}J(\mathbf{x}) \qquad \qquad \mathcal{S}\lambda(\mathbf{x}) = \int_{\Gamma} G(\mathbf{x}, \mathbf{y})\lambda(\mathbf{y}) \, \mathrm{d}s_{\mathbf{y}}$$

where $G(\mathbf{x}, \mathbf{y}) = \frac{\exp(-i\kappa |\mathbf{x}-\mathbf{y}|)}{4\pi |\mathbf{x}-\mathbf{y}|}$ is the outgoing Green function of the Helmholtz equation

Cea Classical Boundary Integral Equations

• The scattered electromagnetic fields can be represented by the Stratton-Chu formulas

$$oldsymbol{E}^{ extsf{s}}(oldsymbol{x}) = - extsf{i} \kappa \mathcal{T} J(oldsymbol{x}) \qquad oldsymbol{H}^{ extsf{s}}(oldsymbol{x}) = rac{1}{Z_0} \mathcal{K} J(oldsymbol{x}) \qquad oldsymbol{x} \in \Omega^{ extsf{ext}}$$

where $J = Z_0(n \times H)$ is the total surface electric current and $\mathcal{T}J(\mathbf{x}) = \frac{1}{\kappa^2} \nabla (S \operatorname{div}_{\Gamma} J)(\mathbf{x}) + S J(\mathbf{x}) \qquad \mathcal{K}J(\mathbf{x}) = \nabla \times S J(\mathbf{x}) \qquad S \lambda(\mathbf{x}) = \int_{\Gamma} G(\mathbf{x}, \mathbf{y}) \lambda(\mathbf{y}) \, \mathrm{d}s_{\mathbf{y}}$

From jump relations through Γ, we deduce two kinds of Boundary Integral Equations¹

Electric Field Integral Equation	Magnetic Field Integral Equation			
$\mathtt{i}\kappa T \pmb{J} = \pmb{n} imes (\pmb{E}^{\mathtt{i}} imes \pmb{n})$ on Γ	$rac{1}{2}m{J}-m{K}m{J}=Z_0(m{n} imesm{H}^{ m i})$ on Γ			
where $\mathcal{T}: \mathbf{H}_t^{-\frac{1}{2}}(\operatorname{div}_{\Gamma}, \Gamma) \longrightarrow \mathbf{H}_t^{-\frac{1}{2}}(\operatorname{rot}_{\Gamma}, \Gamma)$	where $K: \mathbf{H}_t^{-\frac{1}{2}}(\operatorname{div}_{\Gamma}, \Gamma) \longrightarrow \mathbf{H}_t^{-\frac{1}{2}}(\operatorname{div}_{\Gamma}, \Gamma)$			
$TJ = \mathbf{n} imes (\mathcal{T}J imes \mathbf{n})$	$\mathcal{K} oldsymbol{J} = ext{p.v.} \left(oldsymbol{n} imes \mathcal{K} oldsymbol{J} ight)$			

where $\mathbf{H}_t^s(D_{\Gamma},\Gamma) = \{ \mathbf{J} \in \mathbf{H}^s(\Gamma) \, | \, D_{\Gamma}\mathbf{J} \in H^s(\Gamma) \text{ and } \mathbf{n} \cdot \mathbf{J} = 0 \text{ on } \Gamma \}$

1. J.-C. Nédélec, A. Bendali, R. Kress, D. Colton, . . .

Commissariat l'énergie atomique et aux énergies alternatives

C22 The classical Boundary Element Method

• The variational formulations associated with the EFIE and MFIE formulations read as :

Find
$$J \in H_t^{-\frac{1}{2}}(\operatorname{div}_{\Gamma}, \Gamma)$$
 such that

 $b(\boldsymbol{J}, \boldsymbol{v}) = Z_0 \left\langle \boldsymbol{n} \times \boldsymbol{H}^{\mathrm{i}}, \boldsymbol{v} \right\rangle_{\mathrm{r}}$

(EFIE) $a(J, \mathbf{v}) = \left\langle \mathbf{n} \times (\mathbf{E}^{i} \times \mathbf{n}), \mathbf{v} \right\rangle_{\Gamma} \quad \forall \mathbf{v} \in \mathbf{H}_{t}^{-\frac{1}{2}}(\operatorname{div}_{\Gamma}, \Gamma)$

(MFIE)

$$\forall \boldsymbol{\nu} \in \boldsymbol{\mathsf{H}}_t^{-\frac{1}{2}}(\mathrm{rot}_{\boldsymbol{\mathsf{\Gamma}}},\boldsymbol{\mathsf{\Gamma}})$$

where

$$\begin{split} a(J, \mathbf{v}) &= \mathrm{i}\kappa \langle TJ, \mathbf{v} \rangle_{\Gamma} = \frac{1}{\mathrm{i}\kappa} \langle S \mathrm{div}_{\Gamma} J, \mathrm{div}_{\Gamma} \mathbf{v} \rangle_{\Gamma} + \mathrm{i}\kappa \langle SJ, \mathbf{v} \rangle_{\Gamma} \\ b(J, \mathbf{v}) &= \frac{1}{2} \langle J, \mathbf{v} \rangle_{\Gamma} - \langle KJ, \mathbf{v} \rangle_{\Gamma} \end{split}$$

with $S: H^{-\frac{1}{2}}(\Gamma) \longrightarrow H^{\frac{1}{2}}(\Gamma)$ is the Dirichlet trace of single-layer potential operator S

In (EFIE), we have used the Stokes formula on the closed surface Γ

$$\int_{\Gamma} \nabla_{\Gamma} u \cdot \boldsymbol{v} \, \mathrm{d}\boldsymbol{s} = - \int_{\Gamma} u \, (\operatorname{div}_{\Gamma} \boldsymbol{v}) \, \mathrm{d}\boldsymbol{s}$$

C22 The classical Boundary Element Method

 $\bullet\,$ The variational formulations associated with the EFIE and MFIE formulations read as :

Find
$$J \in H_t^{-\frac{1}{2}}(\operatorname{div}_{\Gamma}, \Gamma)$$
 such that

$$\begin{array}{ll} (\mathsf{EFIE}) & \mathsf{a}(J, \mathbf{v}) = \left\langle \mathbf{n} \times (\mathbf{E}^{\mathsf{i}} \times \mathbf{n}), \mathbf{v} \right\rangle_{\Gamma} & \forall \mathbf{v} \in \mathsf{H}_{t}^{-\frac{1}{2}}(\operatorname{div}_{\Gamma}, \Gamma) \\ (\mathsf{MFIE}) & \mathsf{b}(J, \mathbf{v}) = Z_{0} \left\langle \mathbf{n} \times \mathbf{H}^{\mathsf{i}}, \mathbf{v} \right\rangle_{\Gamma} & \forall \mathbf{v} \in \mathsf{H}_{t}^{-\frac{1}{2}}(\operatorname{rot}_{\Gamma}, \Gamma) \end{array}$$

• Discretization space $\mathcal{V}^h \subset \mathbf{H}_t^{-\frac{1}{2}}(\operatorname{div}_{\Gamma}, \Gamma)$: The Raviart-Thomas div-conforming boundary elements of smallest degree

$$J \approx J^{h}(\mathbf{x}) = \sum_{K \in \Gamma^{h}} J^{h}_{K,1} \boldsymbol{\varphi}^{1}_{K}(\mathbf{x}) + J^{h}_{K,2} \boldsymbol{\varphi}^{2}_{K}(\mathbf{x}) + J^{h}_{K,3} \boldsymbol{\varphi}^{3}_{K}(\mathbf{x}) \qquad \mathbf{x} \in \Gamma^{h} \text{ (triangulation of } \Gamma)$$

with

$$\begin{array}{c} & x_{K}^{3} \\ \varphi_{K}^{2} \\ x_{K}^{1} \\ \varphi_{K}^{3} \\ \varphi_{K}^{3} \end{array} \qquad \varphi_{K}^{i}(\mathbf{x}) = \frac{1}{2|K|} \left(\mathbf{x} - x_{K}^{i} \right) \quad \text{and} \quad J_{K,i}^{h} = \int_{e_{K}^{i}} J^{h} \cdot \mathbf{n}_{K}^{i} \, \mathrm{d}\sigma \quad \underbrace{e_{K}^{2}}_{x_{K}^{1}} \underbrace{e_{K}^{1}}_{e_{K}^{3}} x_{K}^{2} \\ \end{array}$$

The classical Boundary Element Method

• The variational formulations associated with the EEIE and MEIE formulations read as :

Find
$$\mathbf{J} \in \mathbf{H}_t^{-\frac{1}{2}}(\operatorname{div}_{\Gamma}, \Gamma)$$
 such that

$$\begin{array}{ll} (\mathsf{EFIE}) & \mathsf{a}(J, \mathbf{v}) = \left\langle \mathbf{n} \times (\mathbf{E}^{\mathsf{i}} \times \mathbf{n}), \mathbf{v} \right\rangle_{\Gamma} & \forall \mathbf{v} \in \mathsf{H}_{t}^{-\frac{1}{2}}(\operatorname{div}_{\Gamma}, \Gamma) \\ \\ (\mathsf{MFIE}) & \mathsf{b}(J, \mathbf{v}) = Z_{0} \left\langle \mathbf{n} \times \mathbf{H}^{\mathsf{i}}, \mathbf{v} \right\rangle_{\Gamma} & \forall \mathbf{v} \in \mathsf{H}_{t}^{-\frac{1}{2}}(\operatorname{rot}_{\Gamma}, \Gamma) \\ \end{array}$$

(MFIE)

Discretization space
$$\mathcal{V}^h \subset \mathbf{H}_t^{-\frac{1}{2}}(\operatorname{div}_{\Gamma}, \Gamma)$$
: The Raviart-Thomas div-conforming boundary elements of smallest degree

The discrete formulations associated with the EFIE , MFIE and CFIE formulations read as : ٠

Find
$$J^h \in \mathcal{V}^h$$
 such that for any $v^h \in \mathcal{V}^h$

Ce2 DG-based Surface Domain Decomposition Method

• Write the EFIE on the partial surface Γ_n Find $J \in \bigoplus_{m=1}^N \mathbf{H}_t^{-\frac{1}{2}}(\operatorname{div}_{\Gamma_m}, \Gamma_m)$ such that $i\kappa \langle TJ, \mathbf{v} \rangle_{\Gamma_n} = \left\langle \mathbf{E}_t^i, \mathbf{v} \right\rangle_{\Gamma_n} \quad \forall \mathbf{v} \in \mathbf{H}_t^{-\frac{1}{2}}(\operatorname{div}_{\Gamma_n}, \Gamma_n)$ with $TJ = \frac{1}{\kappa^2} \nabla_{\Gamma}(S \operatorname{div}_{\Gamma} J) + SJ$

•
$$\Gamma = \bigcup_{n=1}^{N} \Gamma_n$$

• $\gamma_{nm} = \Gamma_n \cap \Gamma_m = \gamma_{mn}$
• $\gamma_n = \partial \Gamma_n = \bigcup_{m \in \mathcal{I}_n} \gamma_{nm}$

- τ_{nm} : ext. normal vector to γ_{nm}
- τ_n : exterior normal vector to γ_n

Ce2 DG-based Surface Domain Decomposition Method

•
$$\Gamma = \bigcup_{n=1}^{N} \Gamma_n$$

• $\gamma_{nm} = \Gamma_n \cap \Gamma_m = \gamma_{mn}$
• $\gamma_n = \partial \Gamma_n = | | \gamma_{nm}$

 $\gamma_n = \partial \mathbf{I}_n = \bigcup_{m \in \mathcal{I}_n} \gamma_{nm}$

- τ_{nm} : ext. normal vector to γ_{nm}
- $\boldsymbol{\tau}_n$: exterior normal vector to γ_n

Find
$$\boldsymbol{J} \in \bigoplus_{m=1}^{N} \mathbf{H}_{t}^{-\frac{1}{2}}(\operatorname{div}_{\Gamma_{m}}, \Gamma_{m})$$
 such that
 $i\kappa \langle T\boldsymbol{J}, \boldsymbol{v} \rangle_{\Gamma_{n}} = \left\langle \boldsymbol{E}_{t}^{i}, \boldsymbol{v} \right\rangle_{\Gamma_{n}} \quad \forall \boldsymbol{v} \in \mathbf{H}_{t}^{-\frac{1}{2}}(\operatorname{div}_{\Gamma_{n}}, \Gamma_{n})$
with $T\boldsymbol{J} = \frac{1}{\kappa^{2}} \nabla_{\Gamma}(S\operatorname{div}_{\Gamma}\boldsymbol{J}) + S\boldsymbol{J}$

• Use local integration by parts on Γ_n

$$\int_{\Gamma_n} \nabla_{\Gamma} u \cdot \boldsymbol{v} \, \mathrm{d}s = -\int_{\Gamma_n} u(\operatorname{div}_{\Gamma} \boldsymbol{v}) \, \mathrm{d}s + \int_{\gamma_n} u(\boldsymbol{\tau}_n \cdot \boldsymbol{v}) \, \mathrm{d}\sigma$$

Ce2 DG-based Surface Domain Decomposition Method

- $\Gamma = \bigcup_{n=1}^{N} \Gamma_n$ • $\gamma_{nm} = \Gamma_n \cap \Gamma_m = \gamma_{mn}$ • $\gamma_n = \partial \Gamma_n = \bigcup_{m \in \mathcal{I}_n} \gamma_{nm}$
- τ_{nm} : ext. normal vector to γ_{nm}
- $\boldsymbol{\tau}_n$: exterior normal vector to γ_n

• Write the EFIE on the partial surface Γ_n

Find
$$\boldsymbol{J} \in \bigoplus_{m=1}^{N} \mathbf{H}_{t}^{-\frac{1}{2}}(\operatorname{div}_{\Gamma_{m}}, \Gamma_{m})$$
 such that
 $i\kappa \langle T\boldsymbol{J}, \boldsymbol{v} \rangle_{\Gamma_{n}} = \left\langle \boldsymbol{E}_{t}^{i}, \boldsymbol{v} \right\rangle_{\Gamma_{n}} \quad \forall \boldsymbol{v} \in \mathbf{H}_{t}^{-\frac{1}{2}}(\operatorname{div}_{\Gamma_{n}}, \Gamma_{n})$
with $T\boldsymbol{J} = \frac{1}{w^{2}} \nabla_{\Gamma}(S\operatorname{div}_{\Gamma}\boldsymbol{J}) + S\boldsymbol{J}$

• Use local integration by parts on Γ_n

$$\int_{\Gamma_n} \nabla_{\Gamma} u \cdot \boldsymbol{\nu} \, \mathrm{d} s = - \int_{\Gamma_n} u(\operatorname{div}_{\Gamma} \boldsymbol{\nu}) \, \mathrm{d} s + \int_{\gamma_n} u(\boldsymbol{\tau}_n \cdot \boldsymbol{\nu}) \, \mathrm{d} \sigma$$

• Sum over all the sub-domains

$$\sum_{n=1}^{N} \langle S \mathrm{div}_{\Gamma} \boldsymbol{J}, \boldsymbol{\tau}_{n} \cdot \boldsymbol{v} \rangle_{\gamma_{n}} = \sum_{\gamma_{nm}} \langle S \mathrm{div}_{\Gamma} \boldsymbol{J}, [\boldsymbol{v}]_{\gamma_{nm}} \rangle_{\gamma_{nm}}$$

where the jump operator : $[\boldsymbol{v}]_{\gamma_{nm}} = \boldsymbol{\tau}_{nm} \cdot \boldsymbol{v}_{n} + \boldsymbol{\tau}_{mn} \cdot \boldsymbol{v}_{m}$

• While the classical EFIE variational formulation for BEM reads as

Find $\boldsymbol{J} \in \boldsymbol{H}_t^{-\frac{1}{2}}(\operatorname{div}_{\Gamma}, \Gamma)$ such that

$$a(\boldsymbol{J}, \boldsymbol{v}) = \left\langle \boldsymbol{n} \times (\boldsymbol{E}^{\mathrm{i}} \times \boldsymbol{n}), \boldsymbol{v} \right\rangle_{\Gamma} \qquad \forall \boldsymbol{v} \in \boldsymbol{\mathsf{H}}_{t}^{-\frac{1}{2}}(\mathrm{div}_{\Gamma}, \Gamma)$$

the EFIE variational formulation for DG-SDDM can be written as

Find
$$\boldsymbol{J} \in \bigoplus_{m=1}^{N} \mathbf{H}_{t}^{-\frac{1}{2}}(\operatorname{div}_{\Gamma_{m}}, \Gamma_{m})$$
 such that
 $\boldsymbol{a}(\boldsymbol{J}, \boldsymbol{v}) + \boldsymbol{c}(\boldsymbol{J}, \boldsymbol{v}) = \left\langle \boldsymbol{n} \times (\boldsymbol{E}^{i} \times \boldsymbol{n}), \boldsymbol{v} \right\rangle_{\Gamma} \quad \forall \boldsymbol{v} \in \bigoplus_{n=1}^{N} \mathbf{H}_{t}^{-\frac{1}{2}}(\operatorname{div}_{\Gamma_{n}}, \Gamma_{n})$

$$c(\boldsymbol{J}, \boldsymbol{v}) = -rac{1}{\mathrm{i}\kappa} \sum_{\gamma_{nm}} \langle S \mathrm{div}_{\Gamma} \boldsymbol{J}, [\boldsymbol{v}]_{\gamma_{nm}}
angle_{\gamma_{nm}}$$

• While the classical EFIE variational formulation for BEM reads as

Find $oldsymbol{J}\in oldsymbol{H}_t^{-rac{1}{2}}(\mathrm{div}_{\Gamma},\Gamma)$ such that

$$\mathbf{a}(\mathbf{J}, \mathbf{v}) = \left\langle \mathbf{n} \times (\mathbf{E}^{i} \times \mathbf{n}), \mathbf{v} \right\rangle_{\Gamma} \qquad \forall \mathbf{v} \in \mathbf{H}_{t}^{-\frac{1}{2}}(\operatorname{div}_{\Gamma}, \Gamma)$$

the EFIE variational formulation for DG-SDDM can be written as

Find
$$\boldsymbol{J} \in \bigoplus_{m=1}^{N} \mathbf{H}_{t}^{-\frac{1}{2}}(\operatorname{div}_{\Gamma_{m}}, \Gamma_{m})$$
 such that
 $\boldsymbol{a}(\boldsymbol{J}, \boldsymbol{v}) + \boldsymbol{c}(\boldsymbol{J}, \boldsymbol{v}) = \left\langle \boldsymbol{n} \times (\boldsymbol{E}^{i} \times \boldsymbol{n}), \boldsymbol{v} \right\rangle_{\Gamma} \quad \forall \boldsymbol{v} \in \bigoplus_{n=1}^{N} \mathbf{H}_{t}^{-\frac{1}{2}}(\operatorname{div}_{\Gamma_{n}}, \Gamma_{n})$

(Anti-)Symetrization¹ :
$$c(J, \mathbf{v}) = -\frac{1}{i\kappa} \sum_{\gamma_{nm}} \langle S \operatorname{div}_{\Gamma} J, [\mathbf{v}]_{\gamma_{nm}} \rangle_{\gamma_{nm}} \pm \frac{1}{i\kappa} \sum_{\gamma_{nm}} \langle S \operatorname{div}_{\Gamma} \mathbf{v}, [J]_{\gamma_{nm}} \rangle_{\gamma_{nm}}$$

• While the classical EFIE variational formulation for BEM reads as

Find $\boldsymbol{J} \in \boldsymbol{H}_t^{-\frac{1}{2}}(\operatorname{div}_{\Gamma}, \Gamma)$ such that

$$\mathbf{a}(\mathbf{J}, \mathbf{v}) = \left\langle \mathbf{n} \times (\mathbf{E}^{i} \times \mathbf{n}), \mathbf{v} \right\rangle_{\Gamma} \qquad \forall \mathbf{v} \in \mathbf{H}_{t}^{-\frac{1}{2}}(\operatorname{div}_{\Gamma}, \Gamma)$$

the EFIE variational formulation for DG-SDDM can be written as

Find
$$\boldsymbol{J} \in \bigoplus_{m=1}^{N} \mathbf{H}_{t}^{-\frac{1}{2}}(\operatorname{div}_{\Gamma_{m}},\Gamma_{m})$$
 such that
 $\boldsymbol{a}(\boldsymbol{J},\boldsymbol{v}) + \boldsymbol{c}(\boldsymbol{J},\boldsymbol{v}) + \boldsymbol{p}(\boldsymbol{J},\boldsymbol{v}) = \left\langle \boldsymbol{n} \times (\boldsymbol{E}^{i} \times \boldsymbol{n}), \boldsymbol{v} \right\rangle_{\Gamma} \qquad \forall \boldsymbol{v} \in \bigoplus_{n=1}^{N} \mathbf{H}_{t}^{-\frac{1}{2}}(\operatorname{div}_{\Gamma_{n}},\Gamma_{n})$

$$(\text{Anti-})\text{Symetrization}^{1} : \quad c(\boldsymbol{J}, \boldsymbol{v}) = -\frac{1}{i\kappa} \sum_{\gamma_{nm}} \langle S \text{div}_{\Gamma} \boldsymbol{J}, [\boldsymbol{v}]_{\gamma_{nm}} \rangle_{\gamma_{nm}} \pm \frac{1}{i\kappa} \sum_{\gamma_{nm}} \underbrace{\langle S \text{div}_{\Gamma} \boldsymbol{v}, [\boldsymbol{J}]_{\gamma_{nm}} \rangle_{\gamma_{nm}}}_{\text{consistent term}}$$
Penalization¹ :
$$p(\boldsymbol{J}, \boldsymbol{v}) = \frac{\beta}{\kappa} \sum_{\gamma_{nm}} \underbrace{\langle [\boldsymbol{J}]_{\gamma_{nm}}, [\boldsymbol{v}]_{\gamma_{nm}} \rangle_{\gamma_{nm}}}_{\gamma_{nm}}$$

stabilizing term

1. Reed and Hill (1973), Babŭska et al. (1973), Cockburn et al. (2004), Cohen et al. (2006), Grote et al. (2007), ...

Commissariat l'énergie atomique et aux énergies alternatives Justine Labat	t November 23-24, 2020	11 / 25
--	------------------------	---------

• While the classical EFIE variational formulation for BEM reads as

Find $\mathbf{J} \in \mathbf{H}_t^{-\frac{1}{2}}(\operatorname{div}_{\Gamma}, \Gamma)$ such that

$$oldsymbol{a}(oldsymbol{J},oldsymbol{v}) = \left\langle oldsymbol{n} imes (oldsymbol{E}^{\mathrm{i}} imes oldsymbol{n}), oldsymbol{v}
ight
angle_{\Gamma} \qquad \quad orall oldsymbol{v} \in oldsymbol{\mathsf{H}}_{t}^{-rac{1}{2}}(\mathrm{div}_{\Gamma},\Gamma)$$

the EFIE variational formulation for DG-SDDM can be written as

Find
$$J \in \bigoplus_{m=1}^{N} H^{0}_{t}(\operatorname{div}_{\Gamma_{m}}, \Gamma_{m})$$
 such that
 $a(J, v) + c(J, v) + p(J, v) = \langle n \times (E^{i} \times n), v \rangle_{\Gamma} \qquad \forall v \in \bigoplus_{n=1}^{N} H^{0}_{t}(\operatorname{div}_{\Gamma_{n}}, \Gamma_{n})$

Drawbacks of the discontinuous formulation

- No equivalence between the classical formulation and the discontinuous one
- Flux terms : The vector fields v and J require more regularity (to make sense)
- Penalty terms : Use of a «weaker» inner product than $L^2(\gamma_{nm})$

C22 Discrete DG-SDD formulation

• The variational formulations associated with the EFIE and MFIE formulations read as :

Find
$$J \in \bigoplus_{m=1}^{N} \mathbf{H}_{t}^{0}(\operatorname{div}_{\Gamma_{m}}, \Gamma_{m})$$
 such that
(EFIE) $\tilde{a}(J, \mathbf{v}) = a(J, \mathbf{v}) + c(J, \mathbf{v}) + p(J, \mathbf{v}) = \left\langle \mathbf{E}_{t}^{i}, \mathbf{v} \right\rangle_{\Gamma} \quad \forall \mathbf{v} \in \bigoplus_{n=1}^{N} \mathbf{H}_{t}^{0}(\operatorname{div}_{\Gamma_{n}}, \Gamma_{n})$
(MFIE) $b(J, \mathbf{v}) = Z_{0} \left\langle \mathbf{n} \times \mathbf{H}^{i}, \mathbf{v} \right\rangle_{\Gamma} \quad \forall \mathbf{v} \in \bigoplus_{n=1}^{N} \mathbf{H}_{t}^{0}(\operatorname{rot}_{\Gamma_{n}}, \Gamma_{n})$

C22 Discrete DG-SDD formulation

• The variational formulations associated with the EFIE and MFIE formulations read as :

Find
$$J \in \bigoplus_{m=1}^{N} \mathbf{H}_{t}^{0}(\operatorname{div}_{\Gamma_{m}}, \Gamma_{m})$$
 such that
(EFIE) $\widetilde{a}(J, \mathbf{v}) = a(J, \mathbf{v}) + c(J, \mathbf{v}) + p(J, \mathbf{v}) = \left\langle \mathbf{E}_{t}^{i}, \mathbf{v} \right\rangle_{\Gamma} \quad \forall \mathbf{v} \in \bigoplus_{n=1}^{N} \mathbf{H}_{t}^{0}(\operatorname{div}_{\Gamma_{n}}, \Gamma_{n})$
(MFIE) $b(J, \mathbf{v}) = Z_{0} \left\langle \mathbf{n} \times \mathbf{H}^{i}, \mathbf{v} \right\rangle_{\Gamma} \quad \forall \mathbf{v} \in \bigoplus_{n=1}^{N} \mathbf{H}_{t}^{0}(\operatorname{rot}_{\Gamma_{n}}, \Gamma_{n})$

 Discretization space V^h = ⊕ V^h_m with V^h_m ⊂ H⁰_t(div_{Γm}, Γm) : The Raviart-Thomas div-conforming boundary elements of smallest degree

$$J_{|\Gamma_m} \approx J_m^h(\mathbf{x}) = \sum_{K \in \Gamma_m^h} J_{K,1}^{h,m} \varphi_K^1(\mathbf{x}) + J_{K,2}^{h,m} \varphi_K^2(\mathbf{x}) + J_{K,3}^{h,m} \varphi_K^3(\mathbf{x}) \qquad \mathbf{x} \in \Gamma_m^h \text{ (triangulation of } \Gamma_m)$$

such that

$$[J^{h}]_{e_{n}^{(j)}} = [J^{h}]_{e_{m}^{(j)}} = \frac{1}{|e_{n}^{(j)}|} J_{K_{n},i}^{h,n} + \frac{1}{|e_{m}^{(j)}|} J_{K_{m},j}^{h,m}$$

Discrete DG-SDD formulation

The variational formulations associated with the EFIE and MFIE formulations read as :

Find
$$J \in \bigoplus_{m=1}^{N} \mathbf{H}_{t}^{0}(\operatorname{div}_{\Gamma_{m}}, \Gamma_{m})$$
 such that
(EFIE) $\widetilde{a}(J, \mathbf{v}) = a(J, \mathbf{v}) + c(J, \mathbf{v}) + p(J, \mathbf{v}) = \left\langle \mathbf{E}_{t}^{i}, \mathbf{v} \right\rangle_{\Gamma} \quad \forall \mathbf{v} \in \bigoplus_{n=1}^{N} \mathbf{H}_{t}^{0}(\operatorname{div}_{\Gamma_{n}}, \Gamma_{n})$
(MFIE) $b(J, \mathbf{v}) = Z_{0} \left\langle \mathbf{n} \times \mathbf{H}^{i}, \mathbf{v} \right\rangle_{\Gamma} \quad \forall \mathbf{v} \in \bigoplus_{n=1}^{N} \mathbf{H}_{t}^{0}(\operatorname{rot}_{\Gamma_{n}}, \Gamma_{n})$

- Discretization space $\mathcal{V}^h = \bigoplus \mathcal{V}^h_m$ with $\mathcal{V}^h_m \subset \mathbf{H}^0_t(\operatorname{div}_{\Gamma_m}, \Gamma_m)$: The Raviart-Thomas div-conforming boundary elements of smallest degree
- The discrete formulations associated with the EFIE , MFIE and CFIE formulations read as :

Find
$$J^h \in \mathcal{V}^h$$
 such that for any $v^h \in \mathcal{V}^h$

(EFIE)

$$\widetilde{a}^{h}(\boldsymbol{J}^{h}, \boldsymbol{v}^{h}) = \left\langle \boldsymbol{n} imes (\boldsymbol{E}^{ ext{i}} imes \boldsymbol{n}), \boldsymbol{v}^{h}
ight
angle_{\Gamma}$$

 $b^{h}(\boldsymbol{J}^{h}, \boldsymbol{v}^{h}) = Z_{0}\left\langle \boldsymbol{n} \times \boldsymbol{H}^{\mathrm{i}}, \boldsymbol{v}^{h} \right\rangle_{\mathrm{F}}$ (MFIE)

(CFIE)

 $\alpha \widetilde{a}^h(J^h, v^h) + (1 - \alpha)$

$$b^{h}(J^{h}, \boldsymbol{v}^{h}) = \alpha \left\langle \boldsymbol{E}_{t}^{i}, \boldsymbol{v}^{h} \right\rangle_{\Gamma} + (1 - \alpha) Z_{0} \left\langle \boldsymbol{n} \times \boldsymbol{H}^{i}, \boldsymbol{v}^{h} \right\rangle_{\Gamma}$$
(with $0 < \alpha < 1$)

(with $0 < \alpha < 1$)

Ceca Remarks on the DG-SDD formulation

• Interior Penalty Discontinuous Galerkin formulation for surface domain decomposition

- Less degrees of freedom than a classic IPDG formulation
- \blacktriangleright Discrete ellipticity \Longrightarrow well-posedness of the discrete weak formulations

$$\|\boldsymbol{J}^{h}\|_{IPDG}^{2} = \|\boldsymbol{J}^{h}\|_{L^{2}(\Gamma)}^{2} + \sum_{n=1}^{N} \|\operatorname{div}_{\Gamma_{n}}\boldsymbol{J}_{n}^{h}\|_{L^{2}(\Gamma_{n})}^{2} + \beta \sum_{n=1}^{N} \|[\boldsymbol{J}^{h}]\|_{L^{2}(\gamma_{n})}^{2}$$

Cea Remarks on the DG-SDD formulation

• Interior Penalty Discontinuous Galerkin formulation for surface domain decomposition

- Less degrees of freedom than a classic IPDG formulation

$$\|\boldsymbol{J}^{h}\|_{IPDG}^{2} = \|\boldsymbol{J}^{h}\|_{\boldsymbol{L}^{2}(\Gamma)}^{2} + \sum_{n=1}^{N} \|\operatorname{div}_{\Gamma_{n}}\boldsymbol{J}_{n}^{h}\|_{L^{2}(\Gamma_{n})}^{2} + \beta \sum_{n=1}^{N} \|[\boldsymbol{J}^{h}]\|_{\boldsymbol{L}^{2}(\gamma_{n})}^{2}$$

• What about the penalization term

$$p^{h}(J^{h}, \mathbf{v}^{h}) = \beta \sum_{\gamma_{nm}} \left\langle [J^{h}]_{\gamma_{nm}}, [\mathbf{v}^{h}]_{\gamma_{nm}} \right\rangle_{\gamma_{nm}}$$
?

b How to choose the penalty parameter β ?

examples : $\beta = \frac{c}{h}$ $\beta = c |\log(h)|$ where c > 0 constant

▶ Which impact on the accuracy? on the condition number?

CE2 Remarks on the DG-SDD formulation

• Interior Penalty Discontinuous Galerkin formulation for surface domain decomposition

- Less degrees of freedom than a classic IPDG formulation
- ▶ Discrete ellipticity ⇒ well-posedness of the discrete weak formulations

$$\|\boldsymbol{J}^{h}\|_{IPDG}^{2} = \|\boldsymbol{J}^{h}\|_{\boldsymbol{L}^{2}(\Gamma)}^{2} + \sum_{n=1}^{N} \|\operatorname{div}_{\Gamma_{n}}\boldsymbol{J}_{n}^{h}\|_{\boldsymbol{L}^{2}(\Gamma_{n})}^{2} + \beta \sum_{n=1}^{N} \|[\boldsymbol{J}^{h}]\|_{\boldsymbol{L}^{2}(\gamma_{n})}^{2}$$

What about the penalization term

$$p^{h}(\boldsymbol{J}^{h}, \boldsymbol{v}^{h}) = \beta \sum_{\gamma_{nm}} \left\langle [\boldsymbol{J}^{h}]_{\gamma_{nm}}, [\boldsymbol{v}^{h}]_{\gamma_{nm}} \right\rangle_{\gamma_{nm}}$$
?

▶ How to choose the penalty parameter β ?

examples : $\beta = \frac{c}{h}$ $\beta = c |\log(h)|$ where c > 0 constant

- Which impact on the accuracy? on the condition number?
- Accurate evaluation of new weak singular integrals under the form

$$\frac{1}{4\pi} \int_{\mathcal{K}} \int_{e} \frac{\exp(-i\kappa |\mathbf{x} - \mathbf{y}|)}{|\mathbf{x} - \mathbf{y}|} \, \mathrm{d}\sigma_{\mathbf{x}} \mathrm{d}s_{\mathbf{y}}$$

Singularity substraction : Haninen, Taskinen and Sarvas (2006), Lenoir and Salles (2012)
 Contribution assembling : Salles (2013, PhD thesis), Collino (2020, *technical report*)
 Singularity cancellation : Xu, Song, Pan and Sheng (2018)

Commissariat l'énergie atomique et aux énergies alternatives

 $\mathbb{M} \mathbf{x} = \mathbf{f}$

where ${\textbf x}$ is the unknown, ${\textbf f}$ is the right hand-side, ${\mathbb M}$ is the new EFIE matrix which can be

 $\mathbb{M}\, x = f$

where \mathbf{x} is the unknown, \mathbf{f} is the right hand-side,

 ${\mathbb M}$ is the new EFIE matrix which can be

• decomposed following the mesh partitioning (example for N = 3)

 $\mathbb{M}\, x = f$

where \mathbf{x} is the unknown, \mathbf{f} is the right hand-side,

 ${\mathbb M}$ is the new EFIE matrix which can be

▶ decomposed following the mesh partitioning (example for N = 3)

 $\mathbb{M}\, x = f$

where \mathbf{x} is the unknown, \mathbf{f} is the right hand-side,

 ${\mathbb M}$ is the new EFIE matrix which can be

▶ decomposed following the mesh partitioning (example for N = 3)

 \blacktriangleright written as the sum of three matrices \mathbb{A} , \mathbb{C} and \mathbb{P}

 $\mathbb{M}\, x = f$

where \mathbf{x} is the unknown, \mathbf{f} is the right hand-side,

 ${\mathbb M}$ is the new EFIE matrix which can be

- decomposed following the mesh partitioning (example for N = 3)
- \blacktriangleright written as the sum of three matrices \mathbb{A} , \mathbb{C} and \mathbb{P}

Classical EFIE

 $\mathbb{M}\, x = f$

where \mathbf{x} is the unknown, \mathbf{f} is the right hand-side,

- decomposed following the mesh partitioning (example for N = 3)
- \blacktriangleright written as the sum of three matrices \mathbb{A} , \mathbb{C} and \mathbb{P}

 $\mathbb{M}\, x = f$

where \mathbf{x} is the unknown, \mathbf{f} is the right hand-side,

- decomposed following the mesh partitioning (example for N = 3)
- \blacktriangleright written as the sum of three matrices \mathbb{A} , \mathbb{C} and \mathbb{P}

 $\mathbb{M}\, x = f$

where \mathbf{x} is the unknown, \mathbf{f} is the right hand-side,

- decomposed following the mesh partitioning (example for N = 3)
- \blacktriangleright written as the sum of three matrices \mathbb{A} , \mathbb{C} and \mathbb{P}

 $\mathbb{M}\, x = f$

where \mathbf{x} is the unknown, \mathbf{f} is the right hand-side,

- decomposed following the mesh partitioning (example for N = 3)
- \blacktriangleright written as the sum of three matrices \mathbb{A} , \mathbb{C} and \mathbb{P}

 $\mathbb{M}\, x = f$

where \mathbf{x} is the unknown, \mathbf{f} is the right hand-side,

- decomposed following the mesh partitioning (example for N = 3)
- \blacktriangleright written as the sum of three matrices \mathbb{A} , \mathbb{C} and \mathbb{P}

 $\mathbb{M}\, x = f$

 \bullet Instead of assembling the matrix ${\mathbb M}$ then inverting its, we implement an iterative solution

\mathbb{M}_1	\mathbb{M}_{12}	\mathbb{M}_{13}	x 1		\mathbf{f}_1
\mathbb{M}_{21}	\mathbb{M}_2	\mathbb{M}_{23}	x ₂	_	f ₂
M ₃₁	M ₃₂	\mathbb{M}_3	x 3		f ₃

2 Iterative solution

• The discrete CFIE formulation can be put under the form of a linear system to solve

$$\mathbb{M} \mathbf{x} = \mathbf{f}$$

Instead of assembling the matrix M then inverting its, we implement an iterative solution
 ▶ We restrict the linear system to a subdomain n = 1,..., N

that is equivalent to solve

$$\mathbb{M}_n \mathbf{x}_n = \mathbf{f}_n - \sum_{m \neq n} \mathbb{M}_{nm} \mathbf{x}_m$$

Iterative solution

$$\mathbb{M} \mathsf{x} = \mathsf{f}$$

Instead of assembling the matrix M then inverting its, we implement an iterative solution
 ▶ We restrict the linear system to a subdomain n = 1,..., N

that is equivalent to solve

$$\mathbb{M}_n \mathbf{x}_n = \mathbf{f}_n - \sum_{m \neq n} \mathbb{M}_{nm} \mathbf{x}_m$$

The iterative procedure is then defined by
 ▶ M_nx_n⁽⁰⁾ = f_n

$$\blacktriangleright \mathbb{M}_n \mathbf{x}_n^{(p+1)} = \mathbf{f}_n - \sum_{m \neq n} \mathbb{M}_{nm} \mathbf{x}_m^{(p)}$$

while it does not converge . . .

$$\mathbb{M} \mathsf{x} = \mathsf{f}$$

Instead of assembling the matrix M then inverting its, we implement an iterative solution
 ▶ We restrict the linear system to a subdomain n = 1,..., N

that is equivalent to solve

$$\mathbb{M}_n \mathbf{x}_n = \mathbf{f}_n - \sum_{m \neq n} \mathbb{M}_{nm} \mathbf{x}_m$$

The iterative procedure is then defined by
 ▶ M_nx_n⁽⁰⁾ = f_n

$$\mathbf{M}_n \mathbf{x}_n^{(p+1)} = \mathbf{f}_n - \sum_{m \neq n} \mathbf{M}_{nm} \mathbf{x}_m^{(p)}$$

- while it does not converge . . .
- Convergence depends on the condition number of the (block-diagonal) preconditioned matrix

$$\widetilde{\mathbb{P}}^{-1}\mathbb{M}\,\mathbf{x} = \widetilde{\mathbb{P}}^{-1}\,\mathbf{f} \qquad \text{where} \qquad \widetilde{\mathbb{P}}_{nm} = \begin{cases} \mathbb{M}_n & \text{if } m = n \\ \mathbf{0} & \text{if } m \neq n \end{cases}$$

1 Discontinuous Galerkin-based surface domain decomposition method

- Model problem
- Continuous formulation
- Discrete formulation

2 Preliminary numerical results

- Test-cases
- Qualitative comparison
- Numerical convergence
- Eigenspectrum of preconditionned system

3 Conclusion and perspectives

- Validation of the EFIE and CFIE formulations
- Comparison of electric currents on Γ
 - Qualitative comparison (module)
 - Jump error with respect to the mesh size h
 - \blacktriangleright L²-error with respect to the mesh size h
 - ▶ L^2 -error with respect the penalty coefficient β
- Comparison of radar cross-sections
 - Qualitative comparison (module)
 - L^2 -error with respect to the mesh size h
 - Impact of the penalization term ?

Ceal Qualitative comparison of electric currents

Ceal Qualitative comparison of electric currents

Cea Qualitative comparison of radar cross sections

Ceca Convergence with respect to the mesh size h

Ceca Convergence with respect to the mesh size h

Commissariat l'énergie atomique et aux énergies alternatives

Justine Labat

November 23-24, 2020

20 / 25

cea

Test-case : Sphere - EFIE

Cea

Test-case : Cube - CFIE

C22 Eigenspectrum of preconditioned matrix

Commissariat l'énergie atomique et aux énergies alternatives

Justine Labat

November 23-24, 2020

C22 Eigenspectrum of preconditioned matrix

Commissariat l'énergie atomique et aux énergies alternatives

Justine Labat

Convergence of GMRES solver : First results

- Model problem
- Continuous formulation

Outline

- Discrete formulation
- 2 Preliminary numerical results
 - Test-cases
 - Qualitative comparison
 - Numerical convergence
 - Eigenspectrum of preconditionned system

3 Conclusion and perspectives

Conclusion

- Derivation and implementation of the DG-SDD method
- Numerical validation using direct solver : EFIE/CFIE and symetric/antisymetric formulations
- First results on numerical solution using GMRES solver

Work in progress

- Iterative solution : comparison of pre-conditioners and study of eigenvalue distribution
- Scalability with respect to the number of subdomains : convergence and accuracy

Perspectives

- Parallel performance and efficiency tests
- Extension to non-conformal meshes and dielectric material

Conclusion

- Derivation and implementation of the DG-SDD method
- Numerical validation using direct solver : EFIE/CFIE and symetric/antisymetric formulations
- First results on numerical solution using GMRES solver

Work in progress

- Iterative solution : comparison of pre-conditioners and study of eigenvalue distribution
- Scalability with respect to the number of subdomains : convergence and accuracy

Perspectives

- Parallel performance and efficiency tests
- Extension to non-conformal meshes and dielectric material

Commissariat l'énergie atomique et aux énergies alternatives

Justine Labat

Thank you for your attention !