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ABSTRACT

Many conservation instruments rely on detecting and estimating a population
decline in a target species to take action. Trend estimation uftibecause of small
sample size and relatively large uncertainty in abundance/density estimates of many
wild populations of animals. Focusing on cetaceans, we performed a prospective
analysis to estimate power, type-I, sign (type-S) and magnitude (type-M) error rates
of detecting a decline in short time-series of abundance estimates with different
signal-to-noise ratio. We contrasted results from both unregularized (classical) and
regularized approaches. The latter allows to incorporate prior information when
estimating a trend. Power to detect a statistically s@amt estimates was in general
lower than 80%, except for large declines. The unregularized approach (status quo)
had in ated type-I error rates and gave biased (either over- or under-) estimates of a
trend. The regularized approach with a weakly-informative prior offered the best
trade-off in terms of bias, statistical power, type-I, type-S and type-M error rates and
con dence interval coverage. To facilitategly conservation decisions, we recommend

to use the regularized approach with a vigakformative prior in the detection and
estimation of trend with short and noisinte-series of abundance estimates.

Subjects Conservation Biology, Marine Biology, Statistics, Population Biology
Keywords Power analysis, Trend detection, Weakly-informative prior, Cetacean, Conservation,
Marine, Regularization

INTRODUCTION

Ecologists have long strived for power, often of the statistical kKirdr§dette, 1937
Link & Hat eld, 1990Thomas, 1996Geavy & Reynolds, 200Vhite, 2018 In particular,
the issue of low statistical power to detect change in time-series of population
abundance estimates arose earlyfAmganuzzi, 1993with obvious, and sometimes dire,
consequences for applied conservation. Some twemstyears agd,aylor & Gerrodette
(1993)pithily warned about predicating conservation efforts on stringent statistical
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requirements such as reaching the arbitrary level of 80% statistical power (associated wi
an arbitrary statistical signtance level of 5%) to detect a decrease in abundance for
the vaquita porpoisePhocoena siniisan elusive and small-bodied cetacean endemic to
the Gulf of California®if we were to wait for a statistically signant decline before
instituting stronger protective measures, the vaquita would probably go exth¢page
492)” With the vaquita now numbering less than 30 individuals, extinction is indeed
imminent (Taylor et al., 20% daramillo-Legorreta et al., 20,1&nd appears in fact
unavoidable Rarsons, 20)8While blaming statistical power for the vaqstguiet
vanishing out of the Anthropocene would be excessive3(sesesen (2018) an overview
of the vaquita case), we nevertheless think that it illustrates how ecologists may have
painted themselves into a corner in their insistence for statistidhbdoxy inherited
from the uneasy wedding of Fisherian (statistical sicarice) and NeymaiPearsonian
(type-I and type-II errors) philosophiesi(ibbard & Bayarri, 2003Christensen, 2005
NotwithstandingTaylor & Gerrodetts (1993Wwarning and changing winds in the
statistical philosophies of conservationistsafie, 2000Ellison, 2004Saltz, 201)1
statistical signicance and statistical power remain paramount in conservation practice.
Despite widespread recognition of the need for a precautionary approachyvporst,
2009, the burden of proof remains on the shoulders of conservationists who, in line with
traditional statistical practices designed to avoid false alarms, must provide evidence of
adverse effects (e.g., a decline in abundance) against an assumption of no effect
(Shrader-Frechette & McCoy, 1998ss, 1994 High statistical power of a statistical
procedure gives high codence in resultsHuhl-Mortensen, 19%6and may help bridge
the gap between scienti uncertainty and norms of certitude for decision makinggs,
1999. In the European Union, the main conservation instruments are the Habitats
Directive (HD, 92/43/EEC) and the Marine Strategy Framework Directive (MSFD, 2008/
56/EC) for terrestrial and marine ecosystems. In particular, Favourable Conservation
Status dened by the HD requires that monitoring should be ablédetect a decline in
abundance of more than 1% per year within a spetime period (European
Commission, 20L.IMSFD set the ambitious transboundary agenda of maintaining or
restoring the Good Environmental Status (GES)marine waters where these provide
ecologically diverse and dynamic oceans and seas are clean, healthy and ptoductive
An oft-mentioned prerequisite of GES indicators is a high statistical power to detect
change over timeZampoukas et al., 20)L4
With respect to cetaceans, a group of species well acquainted with discussions of
statistical powerTaylor & Gerrodette, 1993he Olso-Paris (OSPAR) Convention for the
Protection of the Marine Environment of the North-East Atlantic published in 2017 its
Intermediate Assessment of GESSPAR, 201Yand lamented on the lack of statistical
power to detect change despite for example, three large scale SCANS surveys over the
North-East Atlantic since 1994OGPAR, 201)bThis conclusion is hardly surprising
though: some 10 years agaylor et al. (2007already warned of an abyssmaly low power
to detect accurately precipituous decreaseree as a 50% decline in 15 years) in the
abundance of marine mammals. This result was discussed at length in subsequent expe
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groups (CES, 2008014 201§ yet statistical, and consequently decisional, power
remained low ICES, 20L,80SPAR, 201Yb

Three main problems with statistical power in the analysis of change in abundances o
marine mammals have been idemd: (i) low precision of the estimatd€ES, 2016
(ii) low frequency of monitoringICES, 201 and (iii) choice of a baselin&JES, 2010
All these problems boil down to the kind of data based on which a trend is to be estimated
usually noisy and short time-series. Even for the vaquita, en route to extinction, only
three abundance estimates are available between 1997 and 2015, and all these estima
have coefcient of variation (CV) equal to or above 50%a(lor et al., 200)7Prior to 1997,
no estimate is available but the population is thought to have numbered less than 1,00C
individuals {Taylor & Gerrodette, 19R3Although the absolute numbers of vaquita are
strikingly low, the short time-series, high CVs, and imprecise baseline are typiglr(
et al., 200) These features may be intrinsic to elusive and highly mobile species such a
cetaceans, but can also characterize also other species (e.g., sharks). Short time-series
results from the inherent ditulties of monitoring mobile specie&ithier et al., 2017
low precision from many uncertainties (e.g. detection probability of elusive species in
heterogeneous environmentsitsanevakis et al., 20lahd imprecise baseline from the
lack of historical quantitative data for many specieg4de & Worm, 2009icClenachan,
Ferretti & Baum, 2012 For most marine mammals, increasing the frequencies of
surveys appears as a limited option given the high costs associated with sampling large
parts of the oceans. Increasing the precision of estimates can be achieved with the use
of model-based estimates (such as density-surface middelsgt al., 2013 at the risk of
an increase in bias if the model is misspedi There is no eas to increase statistical
power for applied conservation in the Anthropocene.

Statistical power is equals to one minus the long-term frequency of failing to reject the
null hypothesis when it is false. It is the complement of the type-II error rate in the
Neymanr-Pearson statistical philosophyibbard & Bayarri, 2003 Assessing statistical
power often requires Monte Carlo studies to simulate population declines in abundance
and whether a proposed method can detect this decline. Such studies tends to be
retrospectivehomas, 1997and, unfortunately, they are often uninformativ@il(ett,

1996 Thomas, 199Hoenig & Heisey, 200lenth, 200y or even misleading3elman &
Carlin, 2014Vasishth & Gelman, 20).7The latter results from the use of statistical
signi cant effect sizes reported in the literature: statistical signce preferentially selects
badly estimated effect sizés(ie & Dunlap, 1973that can be exaggerated or even of
the wrong sign Gelman & Tuerlinckx, 2000Qu, Qiu & Deng, 2008 Thus, the problem
with statistical power may not be solely caused by measuremeatiltiés, but also by
structural ones with Null Hypothesis Signance TestingL@sh, 201/ Gelman &
Tuerlinckx (2000introduced the concepts of type-M and type-S errors to describe the
distorting consequences of statistical sigance: a type-M error is an error in the
magnitude of an estimated effect size given that it is statistically cignj and a type-S
error is an error in the sign of an estimated effect size given that it is statisticallycaigii
Gelman & Tuerlinckx (200@urther argued that type-M and type-S errors are more
informative than the traditional type-l and type-Il errors. To our knowledge,
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methodologies currently used by ecologists and conservationists to assess and detect trel
in time-series of population abundance estimates have not been investigated in terms
of type-M and type-S error rates. Type-M error can be represented as an exaggeration rat
between the statistically signant estimate and its true value (when known).

Below, we perform a Monte Carlo study to investigate the statistical power, the type-M
and type-S error rates of the most used technique to detect a trend in short and noisy
time-series: linear regression. While this topic has been extensively covered, we provide
new outlook by focusing on pragmatic considerations, and avoiding some restrictive
assumptions while making some unconventional choices. In particular, we start with
general considerations on the sort of imperfect data that are available right now to
conservationists. We then focus not only on detecting a trend but also on its accurate
estimation, and propose to use statistical regularization with linear regreSsibngn &
Shalizi, 2013 The latter enables to incorporate prior information and shrink estimates
to address the problem of type-M errors. Our philosophical outlook is instrumentalist,
rather than realist$ober, 1999we do not look for a true model, but for a wrong
model that nevertheless allows correct inference on trends from sparse data, while usin
standard tools of modern statistical packages (e.g., the R soffv@rep Team, 20).8
Thus we investigate the frequency properties of regularized linear regression not only ir
terms of the traditional considerations of bias, coverage, and type-| error rates; but also
with respect to type-M and type-S errors. Wally illustrate our proposed methods with
real-world examples on cetacean monitoring in European waters.

METHODS
A power analysis requires the following stepsnth, 200):

. a null hypothesisly on a parameter;

. an effect size (magnitude) qof

. a probability model relatingto data (that is, a data-generating mechanism);
. a statistical test on(e.g., a Wald test); and

. a thresholda below which statistical sigrdance is achieved.

ga b~ WO N

r is the parameter of inferential interest: it is the fraction of the initial population
remaining at the end of the study period. The null hypothesis of interest is that of no
change over the study peridth : r ¥2 1, which is equivalent to a nill null hypothesis
(on a log scaleHg : logr ¥4 0. To perform Monte Carlo simulations, a data-generating
mechanism wherein the parametentervenes, must be speed. We made the following
assumptions.

1. Monitoring relies on a temporal sampling scheme having a tofa(®f 3) sampling
occasions evenly spaced at tiheg1:T];

2. each sampling occasion yields an abundance/density esfimate an upper bound
for the magnitude of their CV gy

3. the response variable is the reﬂjd/4$7t forallt [1:T];
1
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4. the observed valu@sfollow a log-normal distribution; and
t 1
5. the true values ag % rT 1.

With the above spectation of the data-generating mechanism, it can be checked that
(forr > 0):
( 11
tYal ppYrT 1%r0%1
T1
tY%T prYrT 1%rlYr

We, thus, assumed that ddtaare collected on each sampling occasitimese data may
be (relative) biomass, abundance, or density. The ratio of each datum tstldatum is
then computed, and the dimensionless fractifyneesulting from these simple
computations will be used to infer a trend.

Inference strategy
The true values gi, the proportions of the population at tinteelative to the baseline at
t4, are given by the following model:
t1

pr YarT 1 1)

The parameter is represents the fraction of the initial population remaining at the end
of the study period. For exampley, 1/4% means the halving of the initial population, or a
50% decrease over the study period. Taking the logarithm transfoem @f) yields:

logp: 1/4Iogr%_ll 1/4; logr ¥ax. b 2)
where
8
2 Xt Ya t 1
T 1 ©)
b Y logr

Equations (2and (3) suggest regressing the logarithm of the observed proportions
logf: againstx; to estimater = e . This amounts to a linear regression with no intercept
(starting from 0 at = 1) and a linear trend over the study period. The parameter of
inferential interest is related to this trend sendunk & Sauer (1997)the percentage
change (in abundance) over a specitime period. This choice of removing the intercept
by modeling the ratios of abundance relative to thet estimate is highly unconventional
as noted by a reviewer. Our focus on short time-series with limited information in the
data to estimate many parameters motivates a desire to limit that number of parameters a
much as possible. This choice is expected to increase statistical power simply by virtue
of having one less parameter to estimate. Anchoring the regression line to the origin
(zero) conforms to some European conservation instruments such as the HD and MSFL
where conservation goals are framed with respect to a baseline, understbedséerting
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point (a certain date or state) against which the changes in the condition of a variable or &
set of variables are measur¢duropean Environmental Agency, 2015

Simulation scenarios

We did not assume any relationship between true abundance and C\Gasrindette

(1987 1991)or Taylor et al. (2007 CVs may be under the control of researchers during
the planning of a survey targeting a single species. However, some surveys may collect d
on several species groups to augment cost-effectivermesbdrt et al., 20)9in this

setting it becomes more ddult to jointly achieve a desired precision across a broad panel
of species with for example, different behavior. In this setting, which is encouraged for
cost-effective sampling of the marine environment, although a focal species may be a
particular interest, data on other species will also be collected and the associated CVs «
their estimated abundances may be viewed as random variables. Accordingly to this vie\
we generated CVs for abundance estimgteandomly from a uniform distribution.

Coef cients of variation smaller than 0.1 are not common in the literature on marine
mammals (aylor et al., 2007and we considered this lower bound to be the best precision
to be realistically attainable with line transect surveys. CVs for marine mammal
abundances can be largeaglor et al., 2007 To assess the impact of the precision of
estimates on detecting a trend, we varied the upper bound between 0.1 and 0.5 by

0.1 increment when simulating data. Thus 5 scenarios relating to data quality
(abundance/density estimates with CVs of exactly 0.1, between 0.1 and 0.2; between 0
and 0.3; between 0.1 and 0.4; and between 0.1 and 0.5) were investigated.

We varied the value of (= e ), the parameter of inferential interest, between 0.5
(halving of the population over the study peridfland 0.99 (a 1% population decrease
over the study period). We did not consider declines larger than 50% as these are
more readily detected @ylor et al., 2007 and thus focused on ambiguous cases. Finally,
the length of the study period varied between 3 and 30 by increment of 1. The chosen rang
of values forr is nevertheless broad and aligned with current goals: in simulating data,
we have control over the length of the study perioaindr, the overall decline expressed
as a fraction of the initial abundance. From these two parameters, the annual rate of
change can be derived. European management targets are often framed with respect tc
the annual rate of decline: within the HBjjlsma et al. (201%uggested a large decline
to be equivalent to a loss of more than 1% per year (page 16). This corresponds to an
overall decline of 5, 10, 18 and 26% over 5, 10, 20 and 30 years. These values are we
within the range considered in our simulations.

There were 5 x 28 x 38 = 5,320 different scenarios. For each of these, 10,000 data s:
were simulated (seeupplemental Materiafer full details andR code).

Estimation: unregularized (a.k.a. classical) and regularized

We log-transformed the simulated data before analysis with linear models. The time
variable was scaled to range between 0 (start of the study period) to 1 (end of the study
period). We consider a simple regression with no intercept agsthdatumf); equals 1 by
design, and log(1) = 0. There was one slope parametergstimate (from at least 3 data

Authier et al. (2020), PeerJ, DOI 10.7717/peer].9436 6/27


http://dx.doi.org/10.7717/peerj.9436#supplemental-information
http://dx.doi.org/10.7717/peerj.9436
https://peerj.com/

Peer/

points). Although CVs gy were used to simulate data, we did not use this piece of
information in the analysis to rect a situation in which estimates may be available with
only a vague idea of their precision. We thus assumed pragmatically that some abundanc
estimates can be available but not necessarily with their associated uncertainties in a
gquantitative form.

We used the default functiogim from R(R Core Team, 20).8This function returns
Maximum Likelihood estimates of These estimatd®’" are by default unregularized
and may be improved with prior information, especially in data sparse setfwjsi1én
et al., 201}t Priors need not reect any'subjectivity but rather characterizes transparent
decisions Gelman & Hennig, 20} Wwith respect to the many possible analytical
choices that may be available (so-cdlledearchers degrees of freetdddnmmons, Nelson
& Simonsohn (2011and“garden of forking patlisGelman & Loken (2013%ee
Fraser et al. (2018r ecological research). We adhere to the viemaman & Hennig
(2017)and see the prior in the context of trend estimation as a technical device (page 991
to “exploit a sensitivity-stability trade-off: they (the priors) stabilize estimates and
predictions by makingtted models less sensitive to certain details of the ataman &
Shalizi, 2013 In addition toglm, we used thdéayesglm function implemented iR
packagearm (Gelman & Su, 20)&o obtain regularized estimatb&9 (see the
Supplemental Materiafer the associateR code). The prior helps to stabilize estimates
and robusti es results against sampling noise in the data: in this sense one obtains
regularized estimates. Our Monte Carlo study is an instanteatibrated Bayésensu
Little (2006)in which we are evaluating the frequentist properties of Bayesian methods.
We considered two priors: an informative prior and a weakly-informative Biug ).

The informative prior was chosen to cover a priori a range associated with the halving or
doubling of the population over the study period: we chose a symmetric normal prior
(on a logarithmic scale) centered on 0, and set the scale parameter to log(@/2LQ&
and 1B). The weakly-informative prior was a Cauchy distribution propose@ doyk,

Fuquene & Pericchi (20hich translated the idea that the null (no decline) is assumed a
priori true with odds of 39:1. Its location parameter was accordingly set to 0 and its scale

parameter was set tot '0619&'3 t)pwhere is a small (skeptical) probability tha( ) is
andpn 4
2

different from 1 (0;,Cook, Fuquene & Pericchi, 2nIThe weakly-informative prior
with = 0.025 is shown ifrigs. 1Cand 1D. These two priors will regularize estimates of
the unknown trend parameter( ) with shrinkage toward the value 1 (0), thereby acting as
regularization devices against idiosyncratic noise in the data. However, in the case of
the weakly-informative prior, if the signal in the data is strong, the prior will give way and
exerts little shrinkage toward the null. Thus, priors as regularization devices will yield
biased estimates, with the direction of the bias known (bias toward the prior location
parameter) but with an increased precision. In contrast, unregularized estimates may be
very biased and imprecise.

For each of the 10,000 simulated data sets, the p value associatetd, wids stored
(see thesupplemental Materiafer the associated R code). Statistical power is the
frequency with which a faldé is rejected at the chosen sigeénce level. We considered
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Figure 1 Probability density function (PDF) of the informative (A and B) and weakly-informative
(C and D) priors used in regularized regression approach&DF are shown either on a logarithmic
(A and C) or natural scale (B and D). Full-size DOI: 10.7717/peerj.9436J-1

two signi cance levels: 0.05% and 0.20%. The relaxed cignie level of 0.20% was
suggested b\CES (2008010)to increase statistical power and to have equal probability
of Type | and Il errors, and in line with a precautionary principle. However, this
recommendation equates level of statistical saamce with type-I error rates: it confuses
statistical signicancea laFisher with type-I error raté laNeyman-Pearsonkiubbard &
Bayarri, 2003Christensen, 20pINonetheless, the hybrid approach, even if it confuses
signi cance and type-I error rate, is widely used in conservation decisions and needs to b
assessed in this context. We estimated the type-I error rates of our proposed approach
by running Monte Carlo simulations with = 0; that is when the null hypothesis of no
decline over the study period is true. With our comprehensive factorial design crossing
(a) sample size (study length), (b) effect size (decline magnitude), (c) data precision (CV
and (d) statistical approach (regularized regression or not), we thus assessed power,
statistical signicance and computed associated aence intervals fof. We assessed

con dence interval coverage, both unconditional and conditional on statistical

signi cance. Finally, we assessed the type-S and type-M error rates of statistically

signi cant estimates.

Case studies

We applied our proposed regularized approach on a handful of recent case studies in
European waters. We collected 132 abundance or density estimates from published
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Table 1 Case studies, and associated references, for regularized estimation of population trends of cetacean species in European waters.
The column “Desigri refers to the design of the data collection scheme: Distance Sampling (DS) or Capture-Mark-Recapture (CMR).
The vaquita is included for illustrative purposes (see @algmlemental Materigls

Species Scientc name Period Area Season Sample Design References
size
Fin whale Balaneoptera physalus 20072016 Wider Bay of Biscay Autumn 6 DS Garcia-Baron et al. (2019)
Minke whale Balaneoptera 20042016 Bay of Biscay Spring 13 DS Authier et al. (2018)
acutorostrata
19892016 North Sea Summer 10 DS ICES (2017)
Rissés dolphin Grampus griseus 20042016 Bay of Biscay Spring 13 DS Authier et al. (2018)
Long- nned pilot Globicephala melas 20042016 Bay of Biscay Spring 13 DS Authier et al. (2018)
whale
Bottlenose dolphin  Tursiops truncatus 20042016 Bay of Biscay Spring 13 DS Authier et al. (2018)
20052016 Wider bay of Year- 12 CMR Lohrengel et al. (2018)
Cardigan round
2016-2017 Gulf of Saint Malo  Year- 8 CMR  Grimaud, Galy & Couet
round (2019)
Common dolphin Delphinus delphis 20042016 Bay of Biscay Spring 13 DS Authier et al. (2018)
20072016 Iberian Coasts Spring 10 DS Saavedra et al. (2018)
Striped dolphin Stenella coeruleoalba 2004-2016 Bay of Biscay Spring 13 DS Authier et al. (2018)
White-beaked Lagenorhynchus 1994-2016 North Sea Summer 3 DS Hammond et al. (2017)
dolphin albirostris
Harbour porpoise Phocoena phocoena 19942016 North Sea Summer 3 DS Hammond et al. (2017)
Vagquita Phocoena sinus 19972016 Sea of Cortez Summer 4 DS Taylor et al. (2017)

research or reportsT@ble ). The number of available estimates for trend estimation
varied between 3 and 13. We included data on the vaquita for illustration of an
unambiguous case of a dramatic decline (seeGdsmdette, 201 $eeSupplemental
Materiald. For each case study, we estimated trends with both an unregularized and
regularized approach. We investigated the stability of estimates of annual growth rate witl
increasing sample size to mimic an ongoing study in which data are collected at regular
intervals. Annual growth batefg were computed from trend estimatescaled back to

an annual timeframe, ¥4 ' f.

RESULTS

Type-I error

Empirical Type-I| error rates were not equal to the chosen signice levelsg. 9.

For all sample sizes, the unregularized approach (classical generalized linear model) hac
Type-I error rate of at least 10% when the sigance level was set to 5%; and a Type-|
error rate of at least 30% when the sigr@ince level was set to 20%. The regularized
approach with an informative prior had a Type-I error rate close to the chosencagie

level for small sample size onlylQ), and in ated Type-I error rate with increasing

sample size. The regularized approach with a weakly-informative prior had a Type-I
error rate less than 10% when sigrance was set at 5%, and close to 5% for CVs less
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Figure 2 Type-I error rate of a two-tailed test of no trend over a study period T, with a signiance level set to 5% () or 20% (R-DD).
The dotted red line materializes the chosen sicgmice level. Full-size DOI: 10.7717/peerj.9436J-2

Figure 3 Power of a two-tailed test with a signicance level set to 5% () or 20% (R-DD) to detect a population decline over a study
period T. Each column corresponds to a different assumption with respect to the precision of abundance estimates on which the trend is
inferred. Full-size DOI: 10.7717/peer|.9436§-3

than 0.4. When signtance was set to 20%, type-I error rates were below 20% for sample
size 4.

Power

Power to detect a statistically sigoént trend increased with sample size, magnitude of
decline and precision of dat&if). 3. Regularized approaches were less powerful than
the unregularized one, with the greatest loss of power associated with using an informativ
prior on a short time-series of noisy estimates. For all approaches, the power to detect
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Figure 4 Bias in the estimated population declindeach column corresponds to a different assumption
with respect to the precision of abundance estimates on which the trend is inferred. The dotted red line
materializes no bias. All estimates, statistically sagmt or not, are included in this assessment.
(A-E) Results from unregularized regressiorJffesults from regression with an informative prior; and
(K-O) results from regression with a weakly-informative prior.

Full-size DOI: 10.7717/peerj.9436y-4

decline of less than 5% over the study period was low (less than 0.5) to very low (less
than 0.2).

Bias unconditional on statistical significance

All estimates were biaseBif. 4 with the magnitude of the bias depending on sample
size, magnitude of decline and precision of data. With unregularized regression, bias
was mostly a function of data precision with an increasing positive bias (that is an
overestimation of decline) with an increasing CV. The range of bias was largest with
regularized regression with an informative prior. This approach yielded underestimates
of trends when sample size was small, true decline was small and precision was low.

It resulted in overestimates with large sample size and low data precision. Regularized
regression with a weakly-informative prior resulted in estimates with the lowest bias, with
a bias that was mainly negative (that is, underestimates) except for large sample size a
imprecise data.

Coverage unconditional on statistical significance
Empirical coverage of 95% catence intervals was never at its nominal leizéd.(5.
Coverage improved with smaller CVs but was especially low with regularized regressior
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Figure 5 Empirical coverage of condence intervals for the estimated population decline using a sigoance level of 5% (AO) or 20%
(P-DD). Each column corresponds to a different assumption with respect to the precision of abundance estimates on which the trend is
estimated. (AE) and (R-T) Results from unregularized regressior:Jjrand (U-Y) results from regression with an informative prior«® and
(z-DD) results from regression with a weakly-informative prior. Full-size DOI: 10.7717/peerj.9436J-5

Figure 6 Empirical coverage of condence intervals for the estimated statistically sigréant population decline using a signicance level of 5%

(A—0O) or 20% (P-DD). Each column corresponds to a different assumption with respect to the precision of abundance estimates on which the trend
is estimated. (AE) and (P-T) Results from unregularized regressiorJjrand (U-Y) results from regression with an informative prior—®) and

(Z-DD) results from regression with a weakly-informative prior. Full-size DOI: 10.7717/peer].9436J-6

with a weakly-informative prior except when negligible trends (of the order of 1 or 2% over
the study period) were being estimated.

Coverage conditional on statistical significance
Empirical coverage of 95% catence intervals of statistical sigoant estimates was not,
in general, at its nominal leveti@. §. Coverage was closest to its nominal value for
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Figure 7 Empirical Type-S error rates associated with a sigeance level of 5% (A0) or 20% (R-DD). Each column corresponds to a different
assumption with respect to the precision of abundance estimates on which the trend is estimated. Note the square-root geaéso(AHe) and
(P-T) Results from unregularized regressior:JjFand (U-Y) results from regression with an informative prior—®) and (ZDD) results from
regression with a weakly-informative prior. Full-size DOI: 10.7717/peerj.9436J-7

regularized regression with an informative prior. There was little difference between an
unregularized approach and a regularized one with a weakly-informative prior.

Type-S error rates

Type-S error rates were larger with small sample size and small magnitude of decline
(Fig. ). When trying to detect a small decline with precise data (CV = 0.1), type-S error
rates were the largest suggesting that a small amount of noise in estimates could easily
lead to spurious inference of an increase in this setting, unless sample size was large.
Regularized approaches had lower type-S error rates than an unregularized one. Setting t
signi cance level to 20% instead of the classical 5% rescitiedis paribysn a small
increased probability of type-S error.

Type-M error rates

Exaggeration factors (Type-M error rates) were the largest for regularized regression wit
an informative prior, but similar between unregularized regression and regularized
regression with an weakly-informative pridriq. §. The latter two approaches tended

to underestimate a statistically sigcant trend, especially with imprecise data.

The results are summarized Trable 2 The main differences between the different
approaches are with respect to bias, type-l and type-M error rates. The regularized
approach with a weakly-informative prior had a consistent underestimation bias and
a type-I error rate under control. In contrast, the unregularized approach and the
regularized approach with an informative prior could yield over- or under-estimates, and
had an in ated type-I error rate.
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Figure 8 Empirical exaggeration factors (a.k.a. Type-M error rates) associated with a sigance level of 5% (AO) or 20% (R-DD).

Each column corresponds to a different assumption with respect to the precision of abundance estimates on which the trend is esknated. (A
and (RP-T) Results from unregularized regressior;JjFand (U-Y) results from regression with an informative prior—®&) and (Z-DD) results

from regression with a weakly-informative prior. Full-size DOI: 10.7717/peerj.9436J-8

Table 2 Comparing results from the three approaches to estimate and detect a trend across the
different scenariosa is the threshold for statistical signicance.

Unregularized Informative Weakly-informative
Unconditional on statistical signi cance
Bias over- or under-estimation underestimation
Coverage includes the true value less th&altimes
Conditional on statistical signi cance
Power <80% except for large decline
Coverage includes the true value less th&raltimes
Type-I error in ated (>a) under control (&)
Type-S error large for small declines
Type-M error underestimation over- or under-estimation underestimation

Case studies
Estimates of annual growth rates for 14 populations of cetaceans were similar in magnitud
across the different approaches, with the biggest differences for time-series of less thar
5 data points figs. 9A9L). Estimates from regularized regression approaches were
somewhat attenuated, that is biased towards 1, compared to those from unregularized
regression. Estimates from regularized regression approaches were also more precise,
especially those with a weakly-informative prior. This increased precision would allow to
reach a conclusion with respect to trend detection faster.

For the vaquita, the estimated annual growth rate was estimated at 0.88% (80%
con dence interval 0.8%.90), a gure similar that ofraylor et al. (201 4yho estimated an
annual growth rate of 0.87% (95% credible interval$Dgal).
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Figure 9 Stability of trends estimates for the different approaches {8) and point estimates along with 80% cordence interval from a
regularized regression with a weakly-informative prior (M)Harbour porpoises and white-beaked dolphins are not depicted because only
three estimates were available. Full-size DOI: 10.7717/peerj.9436J-9

DISCUSSION

Accurate estimation of population trend of marine mammals is acdif and rather
depressing endeavordylor et al., 20Qdewell et al., 20).ZThis stems from both
challenging conditions at sea and the intrinsic ecology of marine mammals, including their
mobility (wide areas across international borders need to be covered during sampling, witl
large operational costs money-wise) and their elusiveness (imperfect detection). As a
result, conservationists usually have to base decisions on short time-series of noisy
abundance/density estimates even when state-of-the-art methods and sampling design
are used. Turning once again to the vaquita for illustrative purposes, even though its
estimated abundance more than halved between 1997 and 2008, from 567 to 245; the
width of the condence intervals associated with these abundance estimates remained
roughly constant at about 800 or 900 individualsiflor et al., 2017 High estimation
uncertainty is endemic, except in some cases of Mark-Capture-Recapture studies.

We investigated the practical consequences of this uncertainty with respect to
frequentist properties of unregularized (classical) and regularized regression approache
The unregularized approach did not meet quality expectations: it haded type-1 error

rates compared to the customary sigrdince level of 5%. Relaxing the latter to 20% as
recommended byCES (2008010)did not remedy this issue. In both cases, type-I error
rates increased with sample size when uncertainty was large, a counterintuitive result
which underscores that noise can easily dominate the signal in trend analyses. In contras
regularized regression with a weakly-informative prioo¢k, Fuquene & Pericchi, 2p11
kept type-I error under the 20% sigeance level in the face of large uncertainty in
abundance estimates with no additional computational cost compared to the
unregularized approach.
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It may come as surprising from a glancé-ai. 1that what appears as a very informative
prior is actually not so, or that the default option of equating uniform with uninformative
is misleading [orazio, 2018Gelman, Simpson & Betancourt, 20&@bry et al., 2039
The prior is what distinguishes Bayesian from classical statistics, with the oft mentionec
pros of the former approach being its ability to incorporate auxiliary information with data
in an analysis\(ade, 2000Ellison, 2004Clark, 200%» This ability is not unique to the
Bayesian approach éper & Ponciano, 20).6ut a discussion of the so-called
“statistics war'sin ecology and conservation is beyond the scope of this study (see also
Toquenaga, 20);6suf ce it to say that the prior is the price to pay for a Bayesian analysis.
Few studies using Bayesian methods in ecology and evolution used informative priors
in practice, but most relied on non-informative priors, meaning either uniform priors or
very diffuse priorsiforazio, 2016 This can have unfortunate consequences as what
looks uninformative of one scale may be very informative on anofhergio, 2016
Yamamura, 2016 The appeal of uniform priors may stem from the desire to prevent
personal idiosyncrasies of a researcher taémce analyses, that is to uphold objectivity.
The adjective$objectivé and“subjectivé are loadedGelman & Hennig (201 €alled
for avoiding using them altogether, a suggestion which triggered a lively discussion
among leading statisticians (see thé0 comments published along side witkiman &
Hennig (2017) For the pragmatical ecologist, the question remains: should an informative
prior be used, and if so, will it convince colleagues and legislators, especially in an
applied conservation context.

The choice of the null hypothesis is not benign. Implicit in choosing a null
hypothesis of no effect (a nil null hypothesis) is the assumption that a type-I1l error (failing
to detect a decline) carries less costs than a type-I error (concluding there is a trend whe
it is in fact nil). This scientic preference is congruent with thimnocent until proven
guilty” standard in criminal lawoss, 1994but puts the burden of proof on the shoulders
of conservationists. However, only dramatic declines are readily detéatedr(et al.,
2007 and irremediable damage or loss may occur because measures are delayed in the
light of statistically insignicant declines. This shortcoming of nil null hypotheses is well
known (Noss, 1998uhl-Mortensen, 1996but current conservation instruments in
Europe such as the Habitats Directive or the Marine Strategy Framework Directive have
not taken stock of it. Here, we have carried out extensive simulations to show that type-|
errors are not even minimized with standard (unregularized) regression techniques
applied on realistic data for cetaceans. Only by incorporating auxiliary information in
the form of a weakly-informative prior could we achieve type-I error rates congruent
with the recommendations 6£ES (20082010)to equalize the probabilities of type | and
type Il errors. Relaxing the threshold for sigrance from 5% to 20% resulted in an
increase of statistical power as expected, but our regularized regressions, all else being
equal, were less powerful that unregularized oR&s §. However, statistical power of
regularized regression with a weakly-informative prior and stgmice level set to 20%
was similar to the power of unregularized regression with signice level set to 5%
(Fig. 3. These results strongly suggests that incorporating prior information in the
detection of a trend is actually better aligned with default expectations of both scientists
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and legislators. It is our opinion that the pragmatical ecologist ought, in fact, to use
priors and can rebutt claims tbbfuscating the challenges of data andl\&isiides et al.,
2017 with an evaluation of Bayesian procedures from their long-run frequency properties
(Rubin, 198)¥similar to the evaluation we have carried out in this study.

Although type-I and type-Il errors are often discussed in applied conservation studies,
there are also other kinds of errors that are no less detrimental, and that go beyond the
binary detection of a trend to the reliability of the estimate with respect to its sign and
magnitude. These are the type-S and type-M errofSadman & Tuerlinckx (2000)
which were also the focus of our Monte Carlo study. Type-S error rates increased with
decreased precision of abundance estimates in all cases, and the largest rates were
associated with the smallest declines, that is, the signal that was the hardest to detect.
Type-S error rates of regularized regression approaches were smaller than those of an
unregularized one: using a prior was begial with respect to the accuracy of the
inference. With a prior, the chance of reaching a wrong conclusion, that is, inferring an
increase when in fact there was a decrease, was lowered, but could be as high as 20%
with short and very noisy time-series of abundance estimates. Results with respect to
type-M error rates were more contrasted: a decrease in precision resulted in statistically
signi cant estimates being underestimates of the true magnitude of the decline for
unregularized and weakly-informative regularized regression. This underestimation was
surprising as we were expecting in fact an exaggeration of effect sizes due to conditionir
on statistical signicance l(ane & Dunlap, 197%&5illett, 1996Gelman & Carlin, 2014
This may be due to the fact that we removed the intercept in our analyses, thus anchorin
trend estimates to therst value in the time series. Consequently, thit value can have a
large in uence on inferences. This exaggeration of effect sizes was, however, apparent
with regularized regression with an informative prior: estimates were too large when the
true decline was also large (Sagplemental Informatign The reason for this was
statistical signicance: with regularized regression with an informative prior, the
statistically signicant estimates were more biased away from 0 on average compared to
the other approaches. Taken together, empirical type-S and type-M error rates suggest th
the best trade-off is reached when a weakly-informative prior is used.

Con dence intervals associated with a given level, say 95%, are supposed to contain t
true value of an unknown parameter with the same long-term frequency. We investigatec
whether the empirical coverage of cdence intervals around a trend were at their
nominal value, and found that it almost never was. That coverage oflenoe interval
may differ from the nominal value may, again, come as surprising to ecolégistsii &

Coull, 199% In our study, coverage was always lower with unregularized regression.
The effect of conditioning on statistical sigeénce was pronounced: when trying to
estimate small declines (in magnitude), coverage was close to the nominal level with
regularized approaches if one did not condition on statistical signce, whereas
coverage dropped dramatically when only statistically signit estimates were

retained. Overall, conditioning on statistical sigi@ince gave similar results between an
unregularized approach and a regularized one with a weakly-informative prior,
although coverage was smaller for the latter than for the former, all else being equal.
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This reduced coverage is expected since the weakly-informative prior is introducing bia:
by de nition: it shrinks a priori the trend toward a nil value. Moreover, the weakly-
informative prior has a small dispersion, thereby encouraging narrowdenige intervals

but the choice of a heavy-tailed distribution such as the Cauchy means that in the case of
data-prior conict, the data will dominate the analysis. Overcoming the prior when

there is a conict with data entails a loss of powetiq. 3, but this loss was modest and
more than offset by othatesiderataFor instance, cordence intervals derived for

a regularized approach with a weakly-informative prior were narrower, to the effects
that they could exclude the true value more often (reduced coverage), even though the
overall bias and type-M error rates of this approach were no worse than alternative
estimators. With respect to bias, it was always negative or close to zero with the regularize
approach with a weakly-informative prior, whereas the sign of the bias could be either
positive or negative with the other two approaches.

We believe that our Monte Carlo study clearly points to the superiority of incorporating
weak information in the form of a prior to carry out the difult task of detecting and
estimating a decline in short and noisy time-series of abundance or density estimates.
A question remains vis-a-vis real case studies wherein the data-generating mechanism
is unknown, which we tackled by looking at a handful of recent studies of cetaceans
in European watersi@ble ). The differences between the unregularized and
weakly-informative regularized approaches were siiall §, with the latter producing
estimates with narrower codence intervals, as expected. Similar conclusions would be
reached for all case studies we considered irrespective of methodological choice: all
methods converged to the similar estimate values and associated standard errors with
increasing sample size. Thus, in practice, the same conclusions would have been reach
but the weakly-informative regularized approach offers more empirical guarantees with
respect to its long-term performance, especially with short time-series. The vaquita
again provides a point of reference for population growth rate: a vaquitan decline is one o
more than 10% per year, meaning than the species with such a decline will be on the
same path as the vaquita (an example of a vaquitan decline in the terrestrial realm is the
of Grauerts Gorilla,Gorilla beringei grauerPlumptre et al., 20)6The high annual
growth rate for n whales in the wider Bay of Biscay, and for common dolphins of the
Iberian coasts suggested immigration and open populatitaesedra et al., 201Barcia-
Baron et al., 20)9Compared to the original published results, inferences were similar
except for those on population trends of common and bottlenose dolphins in the Bay of
Biscay during springiuthier et al. (2018lid not nd a decrease for these two species,
but their analysis was different and did not estimate a trend as it relied on a Dynamic
Factor Analysis to infer a common trajectory in relative abundance for a panel of 23 specie
of marine megafauna. Here, our analysis focused on detecting and estimating a trend
on a species per species basis, and the discrepancy is due tst tegtimate in the
time-series for both common and bottlenose dolphins being the largest. Thissdstthe
high leverage that therst datum can have, and illustrates further that the choice of
the baseline is critical (ES, 2010 Information on“edeni¢ baselines, referring to
abundance levels before any anthropogenic alterations, aceltlifo document, or
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entirely lacking I(otze & Worm, 2009VicClenachan, Ferretti & Baum, 201Ropf et al.
(2015)suggested the use‘@nthropocene baselirfeas a‘dynamic point of reference for
human-dominated ecosystehrather than focusing on axed point of reference from
pristine (that is, pre-industrial) conditions which are largely unknown. This concept of
“anthropocene baselifealigns well with requirements of the Marine Strategy
Framework Directive, the latest normative conservation instrument for marine ecosystem:
in Europe.

Norms are"standards of appropriate behavior for actars énd) re ect temporally,
socially, and materially generalized behavior expectations in a given socidl group
(Deitelhoff & Zimmermann, 20P0Their ultimate purpose is to solve problems of
collective action, and statistical siggance does qualify as a norm for reaching a decision
in the face of uncertainty in applied conservation. This paper hence deals with contesting .
norm, not in challenging its validity but its current application. Validity concerns
about reliance on statistical signance have been detailed elsewhere: see for example
Gerrodette (2011ith respect to applied conservatigkimrhein, Greenland & McShane
(2019)for science in general; and for statistical sciéffeeserstein & Lazar (2016)
Wasserstein, Schirm & Lazar (20{&@png other contributions on the topic in the 73th
issue ofThe American StatisticianOur concern here stems from applicatory
conditions of the current norms in conservation instruments. For exanipls (20108
suggestion to relax the threshold for statistical sicgnice to 20% enacts a challenge to
the (usually) unquestioned defauljure of 5%, a default which rects its internalization
by stakeholders, and hence its validibe(telhoff & Zimmermann, 202.0Ne heeded
that call and further challenged the current norm by considering Bayesian regularization tc
improve the detection and estimation of trends. To demonstrate the adequacy and
relevance for conservation of such a norm change we carried out a comprehensive study |
means of Monte Carlo simulations to assess the long-run frequency properties of both
the unregularized (statu quo) and regularized (challenger) statistical procedures used fc
trend estimation in the spirit of Calibrated Bayégt(e, 2006201). We are thus not
advocating a norm decay with wolf-in-sh&eplothing priors, but a very precise norm
change consistent WitiKES (20108 suggestion. We have shown that setting the threshold
for statistical signicance to 20% and using regularized regression with a speci
weakly-informative prior provide a superior alternative to current practices according to
the same criteria (type-I, type-Il error rates, bias, coverage), along with additional ones
(type-M, type-S error rates), that are routinely invoked to justify the current norm.
Furthermore, regularization with a weakly-informative prior was able to yield estimates
with similar or less bias than the unregularized approach, even when estimates were nc
statistically signicant (Fig. 9. Moreover, the bias was always negative thus giving
conservative estimates of declines and avoiding an exaggeration of the magnitude of
declines. Although this slight underestimation of a decline may seem to contravene a
precautionary approach, it can nevertheless be taken into account in conservation
decisions because its direction is known and systematic, which means in practice
that uncertainty is reduced (e.fthe decline was at leastx#’). In order to truly abide
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by a precautionary approach, regularized estimates should be corrected for this
underestimation bias, and our simulations provide correction factors to re-calibrate
empirical trend estimates irrespective of statistical sigmice ig. 9.

CONCLUSIONS

Applied conservation faces many challenges in the Anthropocene, ranging from climate
change to the dire impact of ever-expanding anthropogenic activitieésdriand et al.,

2019. In the face of high uncertainty and (more often than not) few data, ecologists
must base decisions on trends detected and estimated from short and noisy time-series
where the usual (asymptotics) guarantees no longer hold. Focusing on simple methods
available from freely available software, we investigated weakly-informative regularized
regression as a tool to disentangle a meaningful signal, a population trend, from
measurement error. Our philosophical outlook was instrumentalist in that we have no
doubt that we are proposing a very simple model but were interested in the quality of
inferences drawn from this undoubtedly mis-spedi model given the data available

right now to ecologists and conservationists. In particular, we ignored some information in
the analyses (e.g., the exact precision of abundance estimates) but not entirely as we
considered several possible and realistic ranges. We used the vaquita, a small endemic
cetacean on the brink of extinction, mostly for illustrative purpoSesrpdette, 20),1but

also looked at other species in the context of the European conservation instruments.

It is worth keeping in mind that, in general, a trend is a crude sincplion and is
a convenient summary statistic to understand and to communicate: it provides a
counterfactual of what would have been the annual growth rate, had it been constant ove
the study period (e.g5ig. 9. The longer the time-series, the less realistic tbi®n
becomes. With long time-series, say more tha®200 more complex methods, in
particular state-space model methofs (Valpine & Hastings, 2008nape, Jonzén &

Skaold, 200)] are appropriate as they can take into account both process and measuremer
errors and make better use of all the available information. However, the target of the
analysis has now shifted from estimating a population trend to estimating the whole
trajectory of the populationL(nk & Sauer, 1997 It is also important to realize that

(i) the null hypothesis of no trend over time is, strictly speaking, always false; and

(i) a trend analysis cannot, in general, elucidate the cause of the decline. For that latter
endeavor, both experiments and modeling the whole population trajectory with
state-space models is better suited as it can leverage process-level variations to identif
causesNichols & Williams, 2006Hovestadt & Nowicki, 200Bnape, Jonzén & Skold,

201).

We investigated the statistical guarantees of a method, linear regression with
regularization, in a very circumscribed context, that of estimating a trend relative to a
baseline in short and noisy time-series. Furthermore, we took several unconventional ste
(i.e., we used some researcher degrees of freedomS&ensons, Nelson & Simonsohn
(2011), including anchoring the regression line at the origin while working relative to
a baseline; and ignoring information on estimate uncertainty at the analysis stage.
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These choices should not be viewed as prescriptive for trend estimation in general, but
were motivated by pragmatic considerations such as the current availability of only
very short time-series of abundance estimates for some wide-ranging species; and the
potential lack of uncertainty measures for baselines, especially if these are old. Hence, 0
results and recommendations apply in this narrow framing of data-poor situations

(e.g., only a handful of point estimates are available), outside of which there are better
alternatives. In particulatGerrodette (201 proposed a fully Bayesian approach to

trend estimation, which may require the careful choice of adequate joint priors for the
abundance estimates. Correct speaiion of the joint correlation structure may not be
trivial, especially in long time series. More research needs to be carried out to recommen
a default prior in this framework. Rather than using point abundance estimates (and
their uncertainty), raw data (e.qg. line transect data) should ideally be available to perforn
an integrated analysis of trend, along with abundance estimationdr et al., 2007

This would allow the mostexibility to leverage all the information that may be available
for a given species.

While we are aware that simple methods will necessarily ignore some of the
complexities of data collected in sp&cand idiosyncratic contexts, we are nevertheless
interested in the empirical performance of statistical methods in the spirit of evaluating
their long-term frequency properties (Calibrated Bayes seiti$el (2006) see also
Dorazio (2016for a pragmatic outlook in ecology and conservation). We think that our
proposal, regularized regression with the weakly-informative priGiook, Fuquene &
Pericchi (20119ffers a better alternative than the status quo. We are thereby challenging
the current statistical norm in international conservation instruments such as the
Marine Strategy Framework Directive and Habitats Directives in Europe. The challenge i
not in the validity of the norm (but seémrhein, Greenland & McShane, 2))18ut in
its application, because we think that the current stringent requirements may have
rendered the legislation toothless if we have to wait for large and dramatic declines,
associated with a higher risk of irreversible damage, to take actions. We showed that th
status quo in trend analysis does not fare well with respect to the statistical properties
invoked for its justication compared to our proposal. The latter is not a panacea though:
it does not increase statistical power per se, but, within a context of nil null hypothesis
testing, it should nevertheless be used for estimation and detection of trend with noisy
and short time-series of abundances. The severe limitations on trend analysis with suct
frugal data underscore the need for (i) a re-alignment of current statistical practices with
contemporary challenges in conservation; and (ii) for a more widespread and effectual
application of the precautionary principle in conservation instruments.
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