N

N

Clustering acoustic emission signals by mixing two stages
dimension reduction and nonparametric approaches
O I Traore, Paul Cristini, Nathalie Favretto-Cristini, L. Pantera, Philippe
Vieu, Sylvie Viguier-Pla

» To cite this version:

O I Traore, Paul Cristini, Nathalie Favretto-Cristini, L. Pantera, Philippe Vieu, et al.. Clustering
acoustic emission signals by mixing two stages dimension reduction and nonparametric approaches.
Computational Statistics, 2019, 10.1007/s00180-018-00864-w . hal-03023293

HAL Id: hal-03023293
https://hal.science/hal-03023293
Submitted on 25 Nov 2020

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-03023293
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

Clustering acoustic emission signals by mixing two stages
dimension reduction and nonparametric approaches

O. I. Traore!, P. Cristini'’, N. Favretto-Cristini!, L.
Pantera?, P. Vieu®, S. Viguier-Pla*¥3

Received: date / Accepted: date

Abstract In the context of nuclear safety experiments, we consider curves issued from acoustic
emission. The aim of their analysis is the forecast of the physical phenomena associated with the
behavior of the nuclear fuel. In order to cope with the complexity of the signals and the diversity of
the potential source mechanisms, we experiment innovative clustering strategies which creates new
curves, the envelope and the spectrum, from each raw hits, and combine spline smoothing methods
with nonparametric functional and dimension reduction methods. The application of these strategies
prove that in nuclear context, adapted functional methods are effective for data clustering.

Keywords Functional clustering - curve smoothing - hierarchical clustering - semi-metric - Functional
Principal Component Analysis

1 Introduction and context of the study

Reactivity Initiated Accident (RIA) is a nuclear reactor accident which involves an unexpected and
very fast increase in fission rate and reactor power due to the ejection of a control rod. The power in-
crease may damage the fuel and reactor core, and in severe cases, create pressure pulses in the reactor
coolant [Rudling et al., 2016]. Historically, the worst RIA accident took place on April 1986 in reactor
4 of the Chernobyl power plant in Ukraine [Jernkvist and Massih, 2010]. This triggered experimental
programs in the early of the 1990s in France, Japan and Russia. In the specific case of France, since
1993 fourteen experiments have been operated in the French Alternative Energies and Atomic Energy
Commission (CEA) research center of Cadarache in southern France, with the objective to study the
behavior of the nuclear fuel in RIA conditions.

In order to cope with the difficulty of access and the hostility of the nuclear environment, the
experimentalists of the CEA rely among other on the Acoustic Emission (AE) technique through the
recordings of AE sensors installed at the top and the bottom of the test device hosting the fuel to
be tested. The experimental AE signals obtained through these sensors are composed of numerous
transients (called the hits) resulting from wave propagation generated by unknown source mecha-
nisms of interest, and corrupted by several sources among which the choice and the settings of the AE
acquisition system [Roget, 1988||Gautschi, 2002], the environmental noise and the wave propagation
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path in the test device hosting the nuclear fuel. After each experiment, the raw experimental signals
have to be preprocessed in order to cope with their corruption and then to detect the hits.

Once the preprocessing is realized, the remaining of the work-flow consists in identifying the spe-
cific mechanism (clad failure, gas ejection...) corresponding to each hit. In general, this is done by a
characterization of each hit by computing several variables called AE parameters like the amplitude,
the rise time, the duration... (Figure .
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Fig. 1: Illustration of the computation of some typical AE parameters (https://www.nde-ed.org/
index_flash.htm)

When the number of experiments to process and then of hits to characterize gets large, cluster-
ing methods based on these AE parameters are used to classify them. Depending on the diversity
of the source mechanisms associated with the hits (cracks, fractures, delaminations ...) and the type
of material (nuclear fuel, zircaloy, inox...) very different types of AE parameters can be discriminant
[Favretto-Cristini et al., 2016l[Anastassopoulos and Philippidis, 1995|/Ai et al., 2010l[Keyvan and Nagaraj, 1996].
This is the case for the nuclear environment of interest here. A very attractive alternative to the clas-
sical approach is then to avoid the steps of AE parameters computation and selection by considering
each hit as a functional variable and use the tools dedicated to Functional Data Analysis (FDA)
[Ferraty and Vieu, 2006/[Ramsay and Silverman, 2005] to classify them (Figure . Thus, we move
from the finite dimensional problem in which the random vector x taking values in R? such that
x = {x},...,xP}, p > 1 to the infinite dimensional problem associating each hit with a functional
random variable X taking values in an infinite dimension space E such that X = {X(t); t € T},
where T is a random time interval.

Since the end of the 1990s, facing the increasing number of situations as ours in which data are
continuous (functions, curves, images, surfaces...), the interest of the scientific community has con-
sistently grown for FDA [Goia and Vieu, 2016|/Cuevas, 2014]. In particular, the field has been pop-
ularized by the means of the book’s of |[Ramsay and Silverman, 2002,|Ramsay and Silverman, 2005|
and [Ferraty and Vieu, 2006]. From linear regression to classification, the contributions in FDA cover
most of the problems conventionally encountered in multivariate data analysis [Cardot et al., 1999,

|Chiou et al., 2004l|Aguilera et al., 2006}{Rossi and Villa, 2006l[Preda et al., 2007,|Cuesta-Albertos and Febrero-Bande,

[Ferraty and Vieu, 2003|. The recent developments concern as well mathematical backgrounds [Huckemann and Eltzner,

[Boudou and Viguier-Pla, 2017], methodological aspects [Jiang et al., 2017, [Febrero-Bande et al., 2017],
as applications |[Walders and Liebl, 2017|Lila et al., 2017].

If the concept is very attractive, FDA is known to be a difficult task because of the infinite dimen-
sional space data belong to. The definition of a probability density of a functional random variable and
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the definition of a metric (or a semi-metric) to compare the variables are two examples of such difficul-
ties [Jacques and Preda, 2014]. Along the years, various methods have been proposed in the litterature
to manage functional data. In the particular case of data clustering which is of interest in this work,
the two most popular of them are the dimension reduction method and the functional nonparametric
method. The first method consists in reducing the infinite dimensional problem intrinsic to func-
tional data into a finite one by approximating data with elements from some finite dimensional space
|[Ramsay and Silverman, 2005/|{Abraham et al., 2003,Ullah and Finch, 2013,Rossi et al., 2004], allow-
ing thus to use all the known classical clustering methods (k-means, unsupervised neural networks,
hierarchical clustering, Self-Organizing Map, ...) [Friedman et al., 2001]. In the case of the functional
nonparametric method, the intuitive idea is about defining specific metrics (or semi-metrics) to com-
pare directly the curves |Ferraty and Vieu, 2006lIeva et al., 2013|, the two main clustering methods
being then the k-means and the hierarchical clustering [Jacques and Preda, 2014].

Whatever the objective of the use of FDA, in general, a preliminary treatment of data before apply-
ing FDA techniques is required. This is motivated by potential registration problems as reconstruction
of functional form of the curves from discrete observations, smoothing, handling of horizontal shifts
and handling of differences in curves supports. In order to cope with these data processing problems,
several tools are proposed in [Ramsay and Silverman, 2005|. Furthermore, in the specific case of the
hits presented in Figure [2] in addition to all these cited problems and despite the precautions of the
hit detection strategy, it is difficult to ensure an optimal detection of all the hits with a global setting.
This raises a question of reliability of the exploited hit signals to correctly characterize the associated
physical source mechanisms. For example, knowing that the start and the end of a hit are respectively
triggered by an exponential rise or fall of its energy, it is clear that the hits 40, 149 and 52 show a
start detection bias, while the hits 109 and 126 show a end detection one. Moreover, one can observe
that the hit 84 shows a local maximum.
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Fig. 2: Sample of 12 hits (sensor M1) chosen among 168 detected during the experiments operated
since 1993.

The first objective of this work is to propose an effective registration strategy for this type of
complex curves, which could automatically manage the hit detection biases in addition to the clas-
sical problems of horizontal shifts and difference of supports. Secondly, we want to cluster them as
efficiently as possible, making out with their roughness and the associated difficulty to build effective
semi-metrics for their comparison.
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In Section 2, we propose a complete approach leading from the raw experimental signals to the
processed envelopes and spectra. Section 3 is devoted to the presentation of three different strategies
for the clustering of the AE hits relying on the two curves (the spectrum and the envelope) created
from each hit. In Section 4, we resume the proposed preprocessing and clustering strategies, then we
present the criteria for clusters validation. Section 5 is devoted to compare and discuss the obtained
results and we conclude in the Section 6.

Note that all the computations and results showed in this work have been realized with the open-
source R software |[R Development Core Team, 2008].

2 Preprocessing data
2.1 Registration of the Raw experimental curves

From a mathematical point of view, if the environmental noise n is assumed to be additive, the received
experimental signal y can be expressed as:

y(t) = hy xha xz(t) +n(t),t € {1,...,T} (1)

where hy and ho correspond to the impact of the structure and the acquisition system, respectively,
and x is the signal associated with the physical source mechanism of interest and ¢ the time.

A detailed presentation of the part of the preprocessing consisting in the estimation of x and
the detection of the hits is beyond the scope of this article. For more details, the reader can refer
to our works [Pantera and Traore, 2015/ Traore et al., 2017d, Traore et al., 2017cl[Traore et al., 2017,
[Traore et al., 2017a]. We note that here, a default treatment of y based on a spectral subtraction
denoising and a hit detection using a moving variance algorithm (Figure [3) have been chosen. The
application of this treatment to the fourteen experiments of interest leads to a sample of 168 hits like
those presented in Figure 2]
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(a) Raw experimental signal (red) and asso- (b) Illustration of the hits detection proce-
ciated denoised signal (blue) obtained after dure by using a moving variance algorithm
the use of the spectral subtraction method |Pantera and Traore, 2015|. The hits starts and
|Traore et al., 2017¢| ends are indicated in green and red, respec-
tively.

Fig. 3: Hlustration of the processing of a raw experimental signal. Case of an experiment operated
in 1998 (sensor M1). Note that the codes developed for the denoising of the raw experimental sig-
nals and the hits detection use mainly the packages signal, seewave and qcc [signal developers, 2014,
[Sueur et al., 2008|/Scrucca, 2004].
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In the following we assume that we have a sample 168 hits potentially associated with physical
sources mechanisms of interest and for which we want to identify the best clustering strategy based
on FDA tools.

2.2 Correction of the hits detection biases

As mentioned in the introduction, the potential hit detection biases which could occur after the pro-
cessing of the raw experimental signals are of three types: the hit start detection bias, the hit end
detection bias and the existence of local maxima. In order to handle them, we consider the envelope
of each hit.

The analytical signal Z; associated with a given hit yx; is expressed as:

Zi(t) = xi(t) + ji(t) = & (t)e??®

where j2 = —1 and Y;(t) is the Hilbert transform of x;(t) :

Vilt) = %/ﬂo xi(t) dr,

oo T

#(t) and &;(t) are the instantaneous phase and the envelope of x;(t):

Ei(t) =\/xZ(t) + VF () ()

Let us denote by I; the interval defined as:

]i B {t S 7;752(15) > o max(fi(t))}, o € (0, ].) . (3)

If I; = 7;, we consider that there is no detection bias. Otherwise, if I; # 7;, we suppose that there
is a hit start and/or a hit end detection bias and the support 7; of y; is replaced by I;, such that
xi = {xi(t),t € I;}. Then, if the support I; of x; is continuous, we stop the processing and x; is
replaced by x; (Figure. Otherwise, if the support I; of x} is discontinuous, we conclude that there
is a local maxima to process (Figure . In this last case, I; can be written as the union of at least
two disjoint and not related intervals:

J
Li=J 1 ., J>2 suchthat ¥j#j' €{1,...,J} we have I;; N I, = 0. (4)
j=1
Then, we keep only one interval I} with a continuous support such that:

IF ={I;j,max(&(t)) € I;;} with je{l,...,J}. (5)
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Fig. 4: Tllustration of the proposed method for handling of the hit detection biases.

Note that the main difficulty related with this method is the choice of the parameter ;. Indeed,
as highlighted in the Figure[d the optimal value of a; depends on the characteristics of the hit. Then,
an optimization of the value a; according to the characteristics of each hit is desirable. This remains
an open problem for us and is beyond the scope of this work. However, for the results presented in
the following, a default value of a; = 0.1 has led to good classification results, suggesting a good
robustness to a global choice of the value of a;.
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Fig. 5: Results of the application of the pre-treatment process for the hits presented in Figure

2.3 Decomposition of the raw curves into envelopes and spectra
2.3.1 Computation of the envelopes and the spectra

In order to make easiest the comparison of the hits, for example by using Lo semi-metrics (which we
will use by default in the following), it is advisable to ensure them a kind of smoothness. However,
in the specific case of interest here, applying a smoothing is equivalent to use a low-pass filter. This
could lead to the loss of the information associated with certain high frequency components. Then,
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we make the assumption that information contained in the raw hit is summarized by those contained
in its envelope and spectra:

T(x:) = Z(&) +1(Ss) - (6)

This choice is justified by the fact that smoothing is a very classical processing for the envelope or the
spectrum of a signal. Furthermore, from a physical point of view, these two curves allow to compute
most of the AE parameters associated with the waveform or the frequency content of a hit.

2.3.2 Processing the envelopes and the spectra

The decomposition of the hits into two curves (envelope and spectra) paves the way for the use
of smoothing methods and then for curves comparison. In general, the same tools can be used for
reconstruction of the functional form of the curves and for smoothing. For a given hit x;, let us consider

the discrete observations (t;5,&;;) associated with the envelope (respectively, (fi;,S;;) associated with
the spectra), we have:

Eii Zgi(tj) :gf(tj)+€i(tj), with t; € {0,...,75”1} , (7)
we want to estimate £ (t) and S;(f) such that:
Eit) =& (t) +e(t), with teT; (9)

Si(f) =S +&(f), with fel0,fi/2] . (10)

To do this, the classical approach is to use basis functions ¢;; and 1;; such that:

K;
EN() = cindik(t), with teT, (11)
k=1
L;
S;(f) = _duthin(f), with f€0,f/2), (12)
k=1
where K; and L; are the number of basis functions ¢;; and 1, respectively ¢; = (ci1,-..,¢ix,)T
and d; = (di1,...,d; Li)T are the vectors of coefficients associated with the different basis functions

generally estimated by the minimization of the mean square error.

According to the nature of the curves, several types of basis functions could be convenient (expo-
nential, wavelets, splines...). In our case, as the envelopes and the spectra are non periodic curves, we
consider spline bases. Figure [f] allows to observe that a relatively small number of basis functions is
enough to get good smoothing. However, one has to manage the reduction of energy of the envelopes
or spectra, by multiplying for example the smoothed curves by the ratio between the maximum
amplitude of the raw curves and the maximum amplitude of the smoothed curve.
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Fig. 6: Illustration of the smoothing of the envelopes and the spectra by cubic splines according to
the number of basis functions.

Once the smoothing and the reconstruction functional form made, the remaining part of the
process is more or less complex depending on the curve type. In the case of the spectra S;, there is no
horizontal shift to take into account, the only remaining problem is then to cope with the differences
of supports. The natural solution to this problem is to upsample all the hits in order to uniformize
the sampling frequency to f, such that all the spectra have the same support [0, f/2] with:

f =max(f;). (13)

In the case of the envelopes, in addition to the handling of the differences of supports, it is necessary
to deal with the horizontal shifts. For this, we suggest to adapt each envelope &; with the following
transformations.

Consider &(t), t € [—(2tn, — 6;),2tn, — &;], such that:

otherwise,

£i(t) = {?(Héi) if ¢ € [0,6n,] »

where 6; = median{t, E;(t) > oo max(&;(t))}, with ap € (0,1). Thus, Vi, we have £(0) = £;(d;). This
is equivalent to the correction of the horizontal shift such that all the envelopes have their peak at
the same landmark. Note that as in the case of the parameter «; (see section , an optimization of
the value as according to the characteristics of each hit is beyond the scope of this work.

2tpi — 0;
Consider D e R4, D; = — 5 and:

= ~ t .
(C/'Z(t) =¢; (QD,) with t € [7(2tm — 5i),2tn,,¢ — (51] (15)

This last operation ensures the same support [—D/2, D/2] to all the envelopes.
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3 Clustering

3.1 Clustering strategies using the envelope and the spectra

In the introduction, we have noticed that the two most used approaches for functional data clustering
are the dimension reduction and the nonparametric functional approach. As each hit is now repre-
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sented by two processed curves (the envelope and the spectra), several clustering strategies combining
these two curves and the two functional data clustering approaches can be experimented. Here we
consider three of them.

3.1.1 Strategy 1: Exclusive dimension reduction

The first strategy consists in creating a matrix of data which gathers the variables issued from a
reduction of dimension based, on one hand, on the spectra, and on another hand, on the envelopes.
Then we would have:

1 g7+ P

xy .w) |z T a2
1 J*| a1 P
xy ...owdy @y T b
X=1 . | . (16)
e
g A S P S .
where {z!,... 29" } and {29 F1, ... 2P} are two sets of variables associated with the envelope and

spectra, respectively, and IV is the number of considered hits.

One natural tool to make the dimension reduction and then to get the z7s is the Functional
Principal Component Analysis (FPCA). For example, in the case of the envelopes, this consists in
representing the individuals in an orthonormal basis { fx }x>1, such that ¢] is the score associated with
the i*" individual. We have:

¢ = / . fim&tyar, (17)

-D/2
_ _ 1 N
where [=2, 2] is the support of & (t), with & (t) = &(t) — p(t) and p(t) = i > ER(t).
k=1
If we denote by

N
V(s,) = 5o SOE() — mO)E(s) — p(s))
k=1

the variance-covariance operator associated with the sample of envelopes, the weighting functions
fx(t) are then the eigenfunctions of V.

‘We notice here that in the case of the spectra, an alternative to the FPCA is to make a Correspon-
dence Analysis (CA). Indeed, the spectra of a signal can be defined as the repartition of its energy
according to the different frequency ranges.

3.1.2 Strategy 2: functional nonparametric tools

The second one is based on the use of semi-metrics which lets us compare two hits x; and x;, by the
way of a combination of the results for the comparison of their envelopes (£; and &;) and of their
spectra (S; and Sy ):

d(xi(t), xo () = NuICIORZI0)N 1- Q)M

B1 B2 ’

where a € [0, 1] lets us define the weight attributed to each curve. For example, o = 0 (respectively,
a = 1), means that the analysis is based only on the spectra (respectively, on the envelopes). As

(18)
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for the parameters Sy, they are devoted to the correction of possible scale effects between the semi-
metrics di and dy. Drawing the inspiration from the normalization of the data matrices for Principal

Components, we can choose
Br = v/ var(dy), (19)

_ N
1 (dl(gi(t)’gi’ (t)) —dy)? 21 )
. 7 i=11
oz with d; = R . (20)
Note that the optimal value of o depends on the context and the studied AE signals. In the case of
a clustering problem considered here, we have chosen optimize o by maximizing the silhouette index.

where

M=

di(&i(t), € (1))

M=
M=

’

var(dy) = =12

3.1.3 Strategy 3: Mix of the strategies 1 and 2

Combining these two strategies, we build a third approach, which uses jointly the dimension reduction
and non parametric methods. The method consists in processing a first clustering from the information
contained in the spectra, and then in refining these first results with the aid of the envelopes. This
order in the use of the two types of curves raises the important question of why clustering first on the
spectra and then on the envelopes ? This is motivated the by fact that in nuclear safety experiment
context, the envelopes are less robust to the experiment conditions than the spectra. In our context:

1. two signals which are associated with the same source mechanism cannot have very different
spectra;

2. if two source mechanisms have the same spectra, their envelopes let us make difference between
them.

3.2 Choice of a clustering method

According to the state of the art realized by [Ullah and Finch, 2013] the hierarchical clustering is an
efficient method for functional data clustering. Here we adopt it as the principal method whatever
the clustering strategy.

8.2.1 Metrics and semi-metrics

When a reduction of dimension is used, the comparison of the individuals (the hits) relies on a data
matrix of dimension N X p (cf. Equation , such that the distance between two hits x; and z; is
generally expressed as:

1/n
d(zi, i) = (Z(xf - 93%”) ) (21)
jeJ

where J = {1,...,p} (resp. J = {j* + 1,...,p}) in the case of the first strategy (resp. the third
clustering strategy).

In the case of a functional nonparametric approach, [Ferraty and Vieu, 2006] propose, among other
semi-metrics, the one based on derivatives of the curves, which is well adapted after a smoothing of
the curves. We have:

1/2

0y (0, E) = ( / 7 e - sff’(t>>2dt>

D/2
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and

1/2

f/2
d2<si,si/>—(/0 (Sfl)(f)—Sff)(f))Qdf> 7

where 51.([) (t) and Si(l)(f) are the derivatives of order [ of &;(t) and S;(f), respectively.

3.2.2 Agglomeration

In hierarchical clustering, agglomeration consists in an irreversible algorithm merging at each of its
N — 1 steps a pair of clusters, including singletons [Murtagh and Contreras, 2017]. It starts with the
fine partition consisting of N clusters and ends with the trivial partition consisting in just one class.

In the case of Ward’s criterium which we have used in this work, the dissimilarity between two
clusters A and B indicates how much the sum of squares will increase when we merge them:

NuN
A(A,B) = 7NAA+ ;\B,B d*(pas ps),

where N4 and Np are the number of hits belonging to the clusters A and B, respectively, and 4
and pp their respective centroids. In usual N—dimensional data reduction, d is the usual euclidean
distance. For functional data, d is a semi-metric which measures the proximity between appropriated
curves, as presented in the previous section.
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4 From raw hit signals processing to clusters: a summary

4.1 Synoptic diagram
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4.2 Statistical and a priori criteria for clusters validation

In order to compare the different clustering strategies, we consider the criteria of the mean silhouette
[Desgraupes, 2013|[leva et al., 2013] and a priori information associated with two already identified
clusters.
For each hit z;, the silhouette value s; is defined as:
bl’ — Q;
5 — 22

" max(a;,b;) (22)
where a; is the average distance according to the chosen strategy and (semi-)metric of z; to all the
other hits which are in the same cluster Gi. And :

where D(z;, Gy ) is the mean distance between i and the clusters Gy .

s; is a quantity between -1 and 1: a value near 1 indicates that the point z; is affected to the right
cluster whereas a value near -1 indicates that the point should be affected to another cluster.

The hits corresponding to two physical mechanisms have been already identified by the experi-
mentalists. They correspond to the failure of the fuel clad (12 hits) and the drop of the control rods
(13 hits). In order to use this a priori information, we introduce a notion of «loss». For example, we
know that 8 of 168 hits are potentially associated with clad failures. If only 5 clad failures are in the
same group for a given method, we then conclude that there are 3 losses.

5 Results and discussions
5.1 Ilustration with simulated data

Before considering the results of the application of the three strategies in the case of the nuclear safety
experiment data, let use use first perfectly known simulated hits. For this purpose, we consider the
model proposed in [Wotzka, 2014]:

B a
T 1 4 e—blt—m) €

—e(t=pa) Z Ajcos(2m fit) (24)

=1

s°(t)

This model is composed of two parts. The first part is a combination of sigmoid- and exponential-type
functions and describes the envelope of the signal. The second one is composed of a sum of cosine
functions, each with its own magnitude and frequency, and represents the frequency component in-
volved in the hit.

As the source mechanism corresponding to each hit is supposed to be perfectly known, there is
no need to manage most of the registration problems reflected in Section 2.1} However, a horizontal
shift has been randomly introduced. The model has been used to create four clusters of 100 hits
size. The firsts two being associated with discrete hit signals (clad failures for example) and the last
two ones with continuous hit signals (gas ejections for example).

It is obvious that using only the envelopes does not allow to separate the clusters 1 and 2, re-
spectively the clusters 3 and 4 (Figure . Moreover, it is also obvious that using only the spectra
does not lead to the separation of the clusters 1 and 4, respectively the clusters 2 and 3 (Figure .
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Then, this example requires a combination of the envelopes and the spectra. Table [[|shows the results
of the comparison of the three strategies according to the ratio of wrong classification. It allows to
conclude that for the simulated data of interest here, the three strategies lead to very good clustering
results. Indeed, the ratio of wrong classification is less than 14% whatever the method and the cluster.

If one has to make a hierarchy between the three methods in this case, we can observe that the
mix strategy leads to the best results. However, one has to keep in mind that the performances of
the various methods depends on several parameters among which the raw data and the preprocessing
strategy.

For the sake of brevity, we limit this simulation section to this unique case. The reader can rely
on the proposed strategy to simulate AE data corresponding to his context and then choose the
appropriate clustering strategy.
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Fig. 9: Four clusters of simulated hits (from left to right: clusters 1 to 4).

Table 1: Ratio (in %) of wrong classification according to initial clusters

Cluster 1 Cluster 2 Cluster 3 Cluster 4
Dimension reduction 14 2 0 0
Nonparametric Functional 0 6 2 0
Mix strategy 0 3 0 0
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5.2 Case of nuclear safety experiment data
5.2.1 Comparison of the three strategies

Table 2] summarizes the results of the repartition of the 168 hits into 6 clusters for the three strategies.
According to the comparison criteria (mean silhouette or a priori information), we observe that the
two best strategies for these data are the nonparametric functional and the mix one. Taking into
account that the mean silhouettes are computed from different data matrices (or curves), here we
prefer the physical criteria of the a priori information and choose the mix strategy.

Table 2: Comparative table of the results of the various approaches of unsupervised classification by
hierarchical clustering in the functional case. Note that DCR means drop of control rods.

loss of clad failures loss of DCR mean silhouette
Dimension reduction 4 6 0.5
Nonparametric Functional 3 6 0.56
Mix strategy 0 5 0.11

5.2.2 Detailed results of the mix strategy

Step 1: Hierarchical clustering on the data matriz obtained from the CA on the spectra. Figure
allows to conclude that three main profiles of spectra with high mean silhouette values (> 0.6) can be
drawn. In particular, we can observe that we have no loss of clad failure or drop on the control rod.
Furthermore, we know from the experimentalists that there exists at least six clusters, this highlights
the fact that different source mechanisms can have same spectrum shape. This allows to conclude
that relying only on the hits spectra is not enough for clustering the data considered here and then
confirms the necessity to also use the envelopes.
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0.0
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t
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(a) Individuals in the plane (PC1,PC2) issued from the CA (b) Silhouettes of the hits by
process. The numbers of the hits associated with a clad failure group.

are red (numbers in the squares) and those associated with

drop of the control rods are blue (numbers in the circles).

Fig. 10: Hits map from PCA and silhouettes after clustering
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Step 2: Refining the clusters by relying on the envelopes. We identify the cluster of hits of green color
(third group) on Figure [10 as a very homogeneous cluster (mean silhouette > 0.70). In addition, the
representation of the hits in the factor plane (1,2) allows to observe that this cluster (represented by
the triangles) is well separated from the two others. We then keep it unchanged.

The analysis of the clusters 1 (represented by the squares) and 2 (represented by the circles) leads to
refine them into 2 and 3 sub-clusters, respectively (Figure . The final clusters associated with the
clad failures and the drops of the control rods contain 17 and 8, respectively. These numbers being
different from those estimated by the experimentalists (12 and 13, respectively), we conclude that
our statistical method reaches its limitation. In particular, the hits associated with the drops of the
control rods seem difficult to isolate (Table . Then it is necessary to refine the clusters manually in
order to reach the requirements of the experimentalists.

(a) Refining the cluster 1 into 2 sub-clusters (b) Refining the cluster 2 into 3 sub-clusters

Fig. 11: Dendrograms associated with the refining of clusters 1 and 2 of the first step

5.2.3 Back to physics: Identification of the physical mechanisms associated with the clusters

We have just seen that in order to reach the requirements of the experimentalists, it is necessary to
make a manual refining of the clusters. This being out of the scope of this work, here we restrict
ourselves to the analysis of the six clusters obtained by statistical ways. The objective is to identify
the physical mechanisms associated with some clusters and to give perspectives for the manual refining.

In addition to the clusters already identified, which are the clad failures (cluster Gs) and the drops
of the control rods (cluster Gy), relatively large cluster of 46 hits (Gg) does not correspond to physical
mechanisms of interest. Indeed, the broadband spectra and the low energy of the hits belonging to
this cluster allow to conclude that they are associated with noise.

The cluster G; is composed of very energetic hits with a waveform (Figure presenting a plate.
This observation being unusual for AE signals, we conclude that they are corrupted by the limitations
of the acquisition system.

Concerning the unspecified clusters G and Gs, it is clear that they are those on which one has
to focus for a manual refining. In particular, the remaining 13 hits associated with the drop of the
control rods belong to the cluster Gs.
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Table 3: Obtained clusters according to the third clustering strategy
Classe Identification of the cluster size
G1 Microphone saturation 27
Go Unspecified cluster 1 44
g3 Clad failures 17
G4 Drop of the control rods 8
gs Unspecified cluster 2 26
Gs Noise 46
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Fig. 13: Superposition of the normalized spectra according to the cluster.
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Fig. 14: Superposition of the mean curves according to the cluster

6 Conclusion

The aim of this article was to explore the abilities of clustering methods based on functional statis-
tics in order to cope with the complexity of acoustic emission signals recorded in nuclear context.
To this end, we have first proposed a preprocessing strategy in order to manage classical problems
(horizontal shifts, differences in curves supports...) and more specific problems (hit detection biases).
Then, three strategies of clustering using the spectra and the envelopes of the hits have been proposed.

An analysis of the results based on the mean silhouette index and a priori information allows to
conclude that a two step strategy combining the dimension reduction and the use of semi-metrics is
particularly well adapted in our context. We obtain six homogeneous clusters and conclude that both
spectra and envelopes are relevant to use in this study.

From a physical point of view, in addition to the already identified physical mechanisms which
are the clad failures and the drops of the control rods, our work have led to isolate two more clus-
ters. The microphone saturations, reflecting the limits of the signal acquisition system and noises
corresponding to the hits having no physical interest. However, two clusters (Go and Gs) associated
with unknown physical mechanisms still remain to identify. If it is difficult to unambiguously assign
a physical mechanism to the cluster Go, the analysis of the spectra of its hits and the moment at
which they occur during the experiments allow to make some assumptions. One can observe that the
shape of the spectra is approximately the same as those of the cluster G3 corresponding to the clad
failures. Moreover, most of the hits of this cluster occurred during experiments in which there has
effectively been a clad failure. Then, these hits correspond to physical mechanisms which are precursor
or residual of a clad failures. Unfortunately this reasoning is not decisive in the case of the cluster Gs.
A perspective is to perform measurements of acoustic wave propagation in realistic mocks and then
identify which physical mechanism could be associated with this cluster.

If the results prove that functional methods are effective for this king of complex curves, several
questions remain open. We have seen that the proposed clustering method reaches its limitations, in
particular to isolate in the same clusters the mechanism associated with the drop of the control rods.
This paves the way to the experimentation of more semi-metrics or dimension reduction methods
beyond the default ones used in this work. Furthermore, the physical analysis of the obtained clusters
have conducted to the need of refining manually the obtained clusters. The result of this refining
would allow to get a definitive response variable and to optimize the settings of the different tools
(preprocessing, smoothing, dimension reduction and semi-metric construction). This also leads to the
perspective of comparative study with the methods classically used in acoustic emission.
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