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Improving the Performance of Batch Schedulers
Using Online Job Runtime Classification

Salah Zrigui, Raphael Y. de Camargo, Arnaud Legrand, and Denis Trystram

Abstract—Job scheduling in high-performance computing platforms is a hard problem that involves uncertainties on both the job
arrival process and their execution times. Users typically provide only loose upper bounds for job execution times, which are not so
useful for scheduling heuristics based on processing times. Previous studies focused on applying regression techniques to obtain
better execution time estimates, which worked reasonably well and improved scheduling metrics. However, these approaches require a
long period of training data.
In this work, we propose a simpler approach by classifying jobs as small or large and prioritizing the execution of small jobs over large
ones. Indeed, small jobs are the most impacted by queuing delays, but they typically represent a light load and incur a small burden on
the other jobs. The classifier operates online and learns by using data collected over the previous weeks, facilitating its deployment and
enabling a fast adaptation to changes in the workload characteristics.
We evaluate our approach using four scheduling policies on six HPC platform workload traces. We show that: first, incorporating such
classification reduces the average bounded slowdown of jobs in all scenarios, second, in most considered scenarios, the improvements
are comparable to the ideal hypothetical situation where the scheduler would know in advance the exact running time of jobs.

F

1 INTRODUCTION

H IGH-Performance Computing (HPC) platforms are
fundamental instruments for many scientific and in-

dustrial fields, and supercomputers are becoming increas-
ingly larger and more complex [1]. This evolution insti-
gates the need for more adaptive and elaborate schedul-
ing strategies. One approach is to develop sophisticated
ad-hoc scheduling algorithms [2], [3], [4], [5]. However,
such algorithms are often specific to a given scenario, non-
generalizable, and too hard to be easily understood. An-
other more appealing alternative is to use more generic
scheduling heuristics based on index policies, which are
functions that compute ordering priorities based on job
characteristics. Two notable examples are First Come First
Served (FCFS), which orders the jobs based on their arrival
times, and Shortest Processing time First (SPF) [6], which
orders the jobs based on their runtimes. These heuristics
are frequently combined with a backfilling mechanism,
which allows some jobs to skip the queue if they do not
delay the scheduling of the first job in the queue. An
example is EASY-backfilling [7], which couples FCFS with
backfilling. Backfilling mechanisms and some scheduling
heuristics, such as SPF, require the actual execution time
of jobs, which is unknown a priori in the majority of online
scheduling scenarios. The scheduler has only access to user-
provided upper-bounds, which are typically highly over-
estimated [8]. Consequently, obtaining reasonable runtime
estimates would be very valuable when designing HPC
system schedulers.

Machine-learning techniques have emerged as a suit-
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able tool to predict job execution times [8], [9], [10], [11].
However, it is difficult to estimate the execution times from
historical data present in workload logs using regression-
based techniques [12]. Such difficulty arises from the fact
that crucial information, such as job dependencies, parame-
ters, and even names, are often missing. Moreover, runtime
information such as job placement and machine utilization
are available only a posteriori. Consequently, although re-
gression may allow better implementations of heuristics and
tighter backfilling choices, obtaining reliable execution time
estimates is rarely possible.

One insight one can have is that the key factor of heuris-
tics that favor shorter jobs, such as SPF, is that executing
small jobs first improves the metrics, such as the job flow
time and the slowdown [13]. In this work, we follow this
insight and we propose to apply a simple two-class classi-
fication instead of regression. We classify the jobs into two
general classes, namely small and large, and prioritize the
execution of small jobs. Since performing two-task classi-
fication is easier than full regression, we expect to obtain
better classification performance with less training data. We
perform a thorough evaluation using six workload traces
from actual HPC platforms and four scheduling policies,
comparing the results of schedulers that use our job class
classification with (i) standard schedulers, which rely only
on user-provided information, and (ii) clairvoyant sched-
ulers, which have perfect knowledge of actual job execution
times. We show that:

• The a priori knowledge of whether the job is small or
large is sufficient to generate scheduling improvements
close to those obtainable using fully clairvoyant sched-
ulers;

• Our online classification algorithm achieves a precision
ratio between 78% and 89% in all workload traces,
which is sufficient to improve scheduling performance
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in all scenarios;
• Adding a safeguard mechanism that kills the jobs that

are missclassified as small results in improvements sim-
ilar to those obtainable using fully clairvoyant sched-
ulers.

The remainder of this paper is organized as follows. We
present a brief review of related works in Section 2. Section 3
contains the workload information and evaluation metrics
used throughout this paper. Sections 3.3 and 4 describe
the method used for the classification. Section 5 describes
the experimental protocol, followed by the experimental
evaluation (Section 6). Finally, in Section 7, we give some
concluding remarks.

2 RELATED WORK

Online Scheduling in HPC platforms is a hard problem
that is plagued with many uncertainties. The evolving ar-
chitecture of HPC platforms and the ever-changing nature
of its users over time coupled with inaccurate runtime
estimates makes attempting to determine a good scheduling
scheme an elusive goal. To understand such uncertainties
or at least try to circumvent them, many researchers have
started evaluating the use of machine learning techniques.
Throughout the literature, a wide range of learning-based
solutions have been proposed. We distinguish two main
approaches: (i) reducing the uncertainty in the scheduling
data by adjusting job runtime estimates, and (ii) directly
designing a scheduling scheme that improves specific ob-
jectives.

The first approach consists of using machine learning
techniques to improve runtime estimates. Feitelson et al.
introduced EASY++, a variation of the classical EASY strat-
egy, which replaces user-provided runtime estimates by the
average runtime of the two previous jobs submitted by the
same user [8]. Despite its simplicity, it allowed for improve-
ment of around 25% over the classical EASY algorithm.
Gaussier et al. used historical data from different traces
and linear regression to predict runtimes with improved
accuracy [9]. They also showed that predictions could be
used more effectively if coupled with a more aggressive
backfilling heuristic (namely SPF). Yet, they only focus on
manipulating the backfilling policy (replacing FCFS with
SPF) and do not explore the effects of changing the main
index policy (FCFS). Later works [14], [15] show that the
main ordering policy has a more significant impact on the
general scheduling performance. A problem all the afore-
mentioned prediction-based approaches frequently suffer
from is the underestimation of running times. Guo et al.
proposed a specific framework that can be used to detect
runtime underestimates [10], allowing to adjust job running
times accordingly. They compared their approach with clas-
sical prediction schemes such as SVMs and Random Forests
and showed that it enhanced system utilization, but did
not improve classical user-oriented metrics, such as those
considered in this article.

An interesting phenomenon is that, increasing the inac-
curacy (e.g., doubling the user-provided estimates) some-
times improves performance [16]. Such surprising behavior
is related to Graham’s scheduling anomalies and stems from
the fact that index policies generally produce suboptimal

scheduling. The policy used for scheduling has a major
impact on the effectiveness of accurate predictions, with
policies that favor shorter jobs benefiting more. More recent
results by Gaussier et al. [9] show that, in some cases, pre-
dictions (which always have some inaccuracy) outperform
their clairvoyant counterparts despite the latter’s perfect
knowledge of runtimes. During our previous studies, we
also often encountered similar situations (especially when
using workload resampling, which we avoid in the present
work) but this remained an overall statistically insignificant
effect.

In a recent study [12], the authors explored the effective-
ness and limitations of using machine learning to improve
the performance of computing clusters. They show that
the workload is highly variable among periods, with large
user churn and changes in machine utilization levels, and
that a few users generate most workload. Consequently,
model performance can vary strongly on a day-to-day basis.
Moreover, more accurate runtimes do not systematically
lead to better scheduling performance, and with the few
datasets available today, it is difficult to assess the models
performance. Finally, they argue that training can take many
months (or years) before it reaches a stable level when using
a few features, which would prevent practical deployments.
We also observed strong day-to-day performance variabil-
ity [15] and the potential inefficiency of static policies
learned from long past periods of time. These observations
motivate the need for reactive online learning policy that
can quickly adapt to rapid load variations.

The second approach aims to design scheduling schemes
that directly act on the ordering and allocation of jobs.
Carastan-Santos and Camargo [11] used synthetic work-
loads and simulations to create index policy functions that
improve the slowdown metric using non-linear regression.
Interestingly, the generated functions resemble the Smallest
Area First (SAF) policy. Legrand et al. [15] showed that using
a linear combination of job characteristics allows building
index policies that can significantly improve system per-
formance. The authors also showed that the continuously
changing nature of the data makes it very hard to learn
online the optimal weights for this linear combination,
preventing any static policy to be fully effective. Sant’Ana
et al. [17] addressed the evolving nature of the workload
by using machine learning techniques to select, in real-time,
the best scheduling policy to apply for the next day on a
given cluster, based on the current cluster and queue states.
These attempts generated promising results but are rarely
adopted by system administrators as they require deploying
significant changes to existing scheduling policies. Also,
some strategies rely on black-box scheduling algorithms.

The work presented in this paper falls under the first
approach, focusing on managing the inaccuracy in the run-
time estimates while using simple glass box scheduling al-
gorithms. We propose classifying jobs into two classes, small
and large, instead of performing regression-based execution
time predictions. The objective is to allow faster training
and adaptations to changes in the workload characteristics,
while avoiding other issues, such as runtime underestima-
tions.
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Figure 1. Distribution of requested (upper row) and actual (bottom row) execution times of jobs for the six workload traces. (1) Note the scale/range
difference on the X-axis, which indicates how the distribution of both variables are very different and shows that the requested runtime is a quite
unreliable information. (2) The distribution of the actual runtime exhibits a sharp spike toward short jobs for all workloads. The green vertical line
and the dashed black vertical line respectively represent the median value of the runtimes and the result of a clustering algorithm (Section 3.3) and
allow to easily discriminate between “small” and “large” jobs.

3 PRELIMINARY OBSERVATIONS

3.1 Workload Traces

We use a data-driven approach, which relies on the char-
acterization and identification of workload patterns from
execution logs (traces) of HPC platforms. To ensure that
our approach can be generalized and is not specific to
a particular cluster or machine, we used datasets from
six HPC platforms available from the Parallel Workloads
Archive [18]. We show their main characteristics in Table 1.

TABLE 1
Workload traces characteristics

Name Year # CPUs # Jobs # Months
HPC2N 2002 240 202,871 42
SDSC-BLUE 2003 1,152 243,306 32
SDSC-SP2 1998 128 59,715 24
CTC-SP2 1997 338 77,222 11
KTH-SP2 1996 100 28,476 11
MetaCentrum 2013 576 79,546 24

In this work, we adopt the simple model of an HPC
job as a rectangle, representing the runtime (width) and the
number of requested resources (height). For each job j, we
consider the following characteristics:

• The actual runtime pj , which is known only after job
completion;

• The requested runtime p̃j , provided by the user at
job submission. It is an upper bound of pj ≤ p̃j and
is generally used as an estimate of pj in scheduling
heuristics;

• The number of requested processors qj , which is static
and provided by the user at job submission;

• The submission time rj , also known only as release
date.

Job runtime distributions change from one system to
another, and building a unified runtime distribution model
has proven to be a challenging task [19]. Nevertheless, the
density of requested runtimes for all six traces shows one or
two peaks at small values, showing that most jobs have rel-
atively small processing time requirements (Figure 1, upper
row). Other peaks also appear in some traces, with some

containing a peak near the maximum allowed processing
time. However, when comparing to the actual runtimes
(Figure 1, bottom row), we can easily see the well-known
mismatch between the requested and actual runtimes. We
also notice that the six traces share an interesting similarity,
with all actual runtime distributions having a sharp peak at
the small values and a large tail towards longer execution
times. These distributions indicate that we can always di-
vide jobs into two classes: (i) small, encompassing the jobs
at the peaks of the distributions, and (ii) large, comprising
jobs at the tails of the distribution.

3.2 Evaluation Metrics

There exist several cost metrics, and each evaluates the
performance of specific aspects of HPC platforms [20]. In
this work, we focus on the bounded slowdown (bsld) metric,
which represents the ratio between the time a job spent in
the system and its running time. This ratio represents the
slowdown perceived by the job when running on the system
with all other jobs compared the situation where it would
have had the whole system for itself only. It is defined as:

bsldj = max

(
waitj + pj
max(pj , τ)

, 1

)
The value waitj is the time the job spent in the sub-

mission queue, pj is the actual execution time, and τ is a
constant that prevents very short job times from generating
arbitrarily large slowdown values. We set τ to 60 seconds as
it is commonly done. The reasoning behind the slowdown
metric is that the response time and the waiting time of a job
should be proportional to its runtime. In our study, we use
the cumulative and the mean bounded slowdown, which
are computed as the sum (resp. mean) of bsld of all the jobs
that have been executed so far. It is updated every time a
job finishes its execution. It is well known that the mean
bounded slowdown, which represents the responsiveness
of the system, is generally optimized by giving a higher
priority to short jobs. A strict prioritization comes at the risk
of potential starvation of larger jobs but can be mitigated by
fairness and reservation mechanisms.
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TABLE 2
Percentage of premature and non premature jobs: 22 to 49% of all jobs
(Small premature jobs) requested their time allocation to be larger than

the divider (5 to 20 minutes) but actually executed less than this

Trace Divider (s) Small non premature (%) Small premature (%)
CTC-SP2 1,114 17.11 32.89
HPC2N 2,287 27.63 22.38
KTH-SP2 847 15.37 34.63
MetaCentrum 915 3.94 46.07
SDSC-BLUE 229 0.36 49.70
SDSC-SP2 359 12.02 38.01

TABLE 3
Contribution of job size classes to platform resource usage: half of the

jobs (Large) consume more than 98% of resources. Small jobs incur an
unsignificant workload and running them first (provided they can

properly be identified) should thus be harmless to large jobs

Trace Large (%) Small non premature (%) Small premature (%)
CTC-SP2 98.37 1.34 0.29
HPC2N 99.35 0.50 0.15
KTH-SP2 99.59 0.36 0.05
MetaCentrum 99.33 0.20 0.47
SDSC-BLUE 99.32 0.57 0.11
SDSC-SP2 98.33 1.45 0.22

3.3 Characterizing Small and Large Jobs

From now on, we consider a job as small if its runtime
is smaller than the median of the runtimes (green line on
Figure 1), which we call the (divider), and we consider the
job as large otherwise. For the sake of comparison, we also
applied two clustering algorithms, DBSN [21] and EM [22],
to divide the classes into two groups, which generated com-
parable divisions (dashed black line in Figure 1). Although
divisions achieved by the median and clustering algorithms
are not the same, they are relatively similar. As we generally
aim for simplicity, we considered that the rolling median is
sufficient to separate the initial peak from the rest of the
distribution. Furthermore, having two classes with similar
sizes simplifies the comparison in terms of fairness.

We further divide the small job class into two subclasses:
(i) premature small jobs: short jobs that had requested
runtimes larger than divider and which therefore terminate
prematurely, and (ii) non-premature small jobs: those that
also requested runtimes smaller than divider but managed
to execute within this time bound. When analyzing the
traces from the six evaluated platforms, we notice that there
is always a large fraction (22% to 50%) of premature jobs
(Table 2). Premature small jobs have a wildly over-estimated
processing time, causing them to wait longer for execution,
which results in large slowdown values. This is problematic
as it artificially inflates the overall slowdown. Moreover, we
note that the total area1 of these premature jobs represents a
negligible fraction (less than 0.5%) of the total area (Table 3).
If one could correctly detect these premature small jobs, we
would obtain a significant reduction in the overall average
slowdown in the platform. In the next section, we propose
a method for performing this classification.

1. The area aj of a job j is defined as its runtime multiplied by the
number of resources it requested: aj = pj ∗ qj .
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Figure 2. Each category c allows to extract a series (ordered by
submission dates) of actual runtimes p(c) for which we can estimate
the autocorrelation coefficient for each lag value l as follows: ρp(c) (l) =

1
n−l

∑n−l
i=1

(
p
(c)
i − µp(c)

)
.
(
p
(c)
i+l − µp(c)

)
σ2
p(c)

, where µp(c) and σp(c) are

respectively the sample average and sample standard deviation of p(c).
This autocorrelation coefficient lies in [−1, 1] and indicates how strongly
p
(c)
i is correlated with p(c)i+l. The graph illustrates how the distribution of

the autocorrelation coefficient evolves with the lag between the jobs that
belong to the same category (u, q) of a specific user.

4 JOB SIZE CLASSIFICATION

4.1 Classification Features

In this section, we detail the features we used for the classifi-
cation and the reasoning behind our choices. A job is charac-
terized by a set of features, which are pieces of information
that can be used to predict the class of the jobs (Small or
Large in our context). When a job is submitted, the scheduler
has accesss to the following information: the id of its user,
the dimensions of the jobs (requested number of processors,
requested runtime), and the exact date of submission. We
start by making two observations about the scheduling data:
(i) it has been empirically observed that the runtime of a job
is highly correlated with the user’s submission history [12];
(ii) although there are clear regularities, the user identity is
not sufficient to characterize job duration because the users
often submit more than one category of job. For example,
user 2 of the SDSC-SP2 submitted 796 jobs with 8 different
requested node numbers and 11 different requested runtime
values2. For a given user, the requested runtime of jobs, their
size and the day when they are submitted are however a
good indicator of the similarity of their actual runtime. We
therefore introduce a category for each pair of factor (u, q),
(u, p̃), and (u, d) and consider that two jobs from the same
user u belong to category (u, q) (resp. (u, p̃), or (u, d)) if they
have the same number of requested resources q (resp. same
requested runtime p̃, or same submission day d).

To illustrate how useful such categories could be, let us
come back to the user 2 of SDSC-SP2. Figure 2 illustrates
how the autocorrelation coefficient decreases with the lag
l: jobs that are very close in time have a relatively strong
correlation and the first few lags have significantly higher
correlation values than the rest. The notion of category

2. Although p̃ ∈ R+ may be arbitrary, in most HPC environments
users tend to restrict themselves to a finite and small set of round values
(e.g., 1 hour). This value can thus be treated as a factor.
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TABLE 4
Features used for job classification

Type Feature Description
Job features p̃i user supplied runtime estimate

qi user supplied number of resources
Temporal features h hour of the day

Dweek day of the week
dmonth day of the month
m Month
w Week
Q Quarter

Lag features Cp̃i−1, Cp̃i−2,
Cp̃i−3

Class of the previous, second to previous, third to
previous jobs that belong to the same category (u, p̃)

Cqi−1,Cqi−2,
Cqi−3

Class of the previous, second to previous, third to
previous jobs that belong to the same category (u, q)

Cdi−1,Cdi−2,
Cdi−3

Class of the previous, second to previous, third to
previous jobs that belong to the same category (u, d)

Aggregation features meaniq
percentage of jobs that belong to the same category
(u, p̃) and are classified as small

meanip̃
percentage of jobs that belong to the same
category (u, q) and are classified as small

meanid
percentage of jobs that that belong to the same
category (u, d) and are classified as small

therefore structures the job flow and can be used to perform
online prediction of the jobs actual duration.

For each job, we extract all previous jobs that belong to
the same categories and we derive the following features
(see Table 4.1):
Job features : The requested execution time and requested

number of resources of the job.
Temporal features : The hour of the day, the day of the

week, the month and the quarter in which a job was
submitted;

Lag features : contains the class (Small/Large) of the previ-
ous three jobs of the same category;

Aggregation feature : contains the percentage of jobs that
belong to the same category and are classified as small.
The goal of these features is to include the rest of the
category’s history. Although older jobs are less indica-
tive of the class of the current job, they still contain
information that is valuable to the learning process.

4.2 Classifier Training and Update
In an online scheduling context, the full information about
the jobs is only known after their execution. Thus, the
classical learning scheme, which consists in dividing the
full dataset into a training and a testing set is not possible
in this context. The learning process should adapt to the
increasing amount of available data. We adopt a weekly
training process illustrated in Figure 3:

• Training is performed at the end of every week.
• All the data gathered during the week is cleaned and

processed to create the features presented in Table 4.1.
• A new classifier is then trained and will be used during

the next week.
We chose the period of one week because it seemed ad-
equate. Indeed, retraining every day would be wasteful
because in most cases a single day is not sufficient to
generate enough new data to significantly change the out-
put of the training. And retraining when the size of the
new data reaches a certain threshold (e.g., training every
5000 new jobs) would cause the classifier to be updated at
”unpredictable time”, possibly in the middle of a workload
spike, which is quite undesirable.

The data of the current week jobs are thus not added to
the training data since we perform a weekly training. Note

Figure 3. Learning process: At the end of each week the new jobs are
added to the dataset and a new training process is performed

that, to simplify the implementation of our simulations and
the tuning of the learning algorithms, we have decoupled
the batch scheduling simulation from the learning and
prediction mechanism. As a consequence, when performing
predictions, the lag and the aggregation feature are also
solely extracted from the jobs of previous weeks, which
slightly decreases the reactivity of our predictions as they
are built on information that is not the most up-to-date.

We use the Random Forest algorithm [23] to perform
the classifications as it allows to easily combine numerical
and categorical features. Random forests create multiple
decision trees on randomly selected data samples, getting
a prediction from each tree, and select the best solution by
majority voting, which makes them particularly resilient to
“outliers”.

4.3 Online Learning Quality

In this section we investigate the quality of the pro-
posed online classification scheme and we explore some of
the strengths and weaknesses while applying learning on
scheduling data.

4.3.1 Accuracy, Precision and Recall
We measure the quality of our classifications using the three
following indicators3:
• Accuracy is the ratio of correctly predicted observation

over the total number of observations:

accuracy =
TL+ TS

TL+ TS + FL+ FS
(1)

• Precision is the ratio of correctly predicted small jobs to the
total number of jobs that are predicted to be small:

precision =
TS

TS + FS
(2)

• Recall is the ratio of correctly predicted small jobs to all
observations in the small class:

recall =
TS

TS + FL
(3)

As explained in section 4.2 the learning process is repeated
at the end of every week and every week may thus have

3. TL –True Large– (resp. TS) represents the number of jobs correctly
predicted as Large (resp. Small), while FL –False Large– (resp. FS)
represents the number of jobs incorrectly classified.
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Figure 4. Evolution of the quality of the learning for individual weeks

a different classification performance. Some week may sud-
denly behave very differently from the previous ones and
thus, it is interesting to study the process in more detail.
Figure 4 depicts the weekly quality of the learning through
time for each platform, and from which several observations
can be made.

Although the quality of the learning process varies be-
tween traces, which is expected because every trace has
its own specific characteristics (number of jobs, number of
users, frequency of job arrival, etc.) and may be more or
less variable, for CTC-SP2, KTH-SP2, SDSC-SP2, and SDSC-
BLUE all the weekly evaluation metrics maintain high val-
ues from the beginning to the end (with a few exceptions).
For the other two traces; MetaCentrum and HPC2N, the
results are not as stable as the others over time. For several
weeks of MetaCentrum, the learning even seems to be very
poor as the precision and recall values are extremely low
and even drop to 0 for some cases. A closer look at these
weeks allows to understand why such low values occur.

Week 58 (identified by the rightmost red dashed line in
the MetaCentrum trace of Figure 4) comprises 48 jobs, only
1 of which is a small job. The classifier in this instance made
a single error and misclassified this single small job as large.
This leads to a significant reduction in the accuracy value;
85% (due to the small number of jobs in that week), a 0%
recall, and an undefined value for the precision (TS = 0
and FS = 0)

TABLE 5
General classification performance: For each trace, we count the

values of TS,FS,TL and FL for all the weeks then, we compute the
general value of the accuracy, precision and recall

Trace Accuracy(%) Precision(%) Recall(%)
TL+ TS/Total TS/(TS + FS) TS/(TS + FL)

CTC-SP2 85 82 86
HPC2N 90 87 89
KTH-SP2 86 79 90
SDSC-BLUE 80 78 83
SDSC-SP2 87 89 91
MetaCentrum 85 83 87

TABLE 6
Classification error per trace: 7–11% of Large jobs are misclassified

while 4–8% of Small jobs are misclassified

Trace False Large(%) False Small(%)
FL/(FL+ TL) FS/(FS + TS)

CTC-SP2 8.16 6.29
HPC2N 7.59 5.05
KTH-SP2 9.27 4.03
MetaCentrum 8.43 6.36
SDSC BLUE 11.29 8.52
SDSC-SP2 7.20 5.85

Week 12 (identified by the leftmost red dashed line in
the MetaCentrum trace of Figure 4) comprises only 78 jobs
but 0 small jobs and all the jobs are properly classified,
which results in an accuracy of 100% but the values of
the precision and recall (Equations (2) and (3)) cannot be
computed because TS = 0 and FS = 0 and FL = 0.

The misclassification of a single job may thus signifi-
cantly impact the learning metrics for a week comprising
few jobs but it has a relatively low impact on a trace of more
than 79,000 jobs (Table 1). These absolute fine grain weekly
learning performance indicators should be interpreted with
care, especially because some weeks with a relatively low
workload or missing classes (e.g., week 30 of MetaCentrum)
often make the learning look artificially inefficient.

Fortunately, the overall (i.e., when the ratios of Equa-
tions (1) to (3) are not broken down per week) performance
of the classifier is particularly good. Table 5 shows the
performance of all the jobs regardless of the week. The
overall recall, precision and accuracy are always above 78%
and even generally around 90%.

4.3.2 Classification Errors
During the training phase, the goal is to reduce prediction
errors as much as possible. However, incorrect predictions
and errors are an unavoidable part of any learning process.
The two types of prediction errors are related to the number
of false large (FL) and false small (FS) jobs. Table 6 shows
the percentage of classification errors of each type. Although
the values vary from one trace to another, the percentage of
FS tends to be smaller than that of FL. We note that the
percentages of FS jobs we obtained are comparable to the
values presented in [10] where the authors use a method
to specifically manage the problem of underestimation in
runtimes predictions and reported an FS rate of ≈ 5–8%. We
do not aim at designing a perfect classifier nor at fine-tuning
the learning algorithm parameters so we argue that such
classification error is representative of what can be achieved
with a reasonable effort. Although the predicted class is a
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Figure 5. Importance of individual features during the weekly learning
process. The larger the weights, the more important the feature in the
classification. Weights are normalized such that their sum equals 1.

precious qualitative information, a scheduler should thus
be aware of potential prediction errors and manage them
accordingly.

4.4 Feature importance analysis

In this section, we provide insight on the importance and the
stability of each of the features during the learning process.
We use the Gini impurity measure [24], which estimates the
probability of miss-classifying an observation, to evaluate
the importance of the constructed features. Note that it is
also the measure used during the training phase of our
classification. For an in-depth review of feature importance
analysis, we refer the reader to [25]. This measure provides
us for each week with a weight representing the importance
of each feature in the classification.

Figure 5 represents the distribution (summarized with
a box-plot) of the weekly weights of each feature for each
trace. These box-plots reveal several useful information on
the learning process.

• First, we observe similarities between the results of
various traces. (i) The requested execution time appears
to be the most important feature for the majority of the
traces (expect METACENTRUM). This is expected since
a sizable portion of the jobs belong to the class Small
because the users themselves requested a processing

time that is smaller than the divider (see table 2). (ii) For
the lag features, the first lag always holds most of the
weight followed by the second and the third lag respec-
tively. (iii) Aggregation features are about as important
as the first lag features. (iv) Temporal features generally
hold the lowest weights for all the traces.

• This supports the idea that performing a single unified
learning process for all traces like the ones presented
in [26] and [11] is reasonable and can yield good results.
However, there are also clear differences between the
traces. For example, the requested time, the feature with
the highest weight, holds different importance scores
from one trace to another and it is outweighed by the
lag features for in the case of the METACENTRUM
trace. Also, For some traces (CTC-SP2 and KTH-SP2),
we observe a very small difference between the weeks.
For others (METACENTRUM and HPC2N), there is a
noticeable difference between the weeks, which can be
explained that this workload seems harder to predict
than the others and supports the importance of con-
stantly updating the learning process.

5 PROPOSAL

As indicated by the previous trace analysis, small jobs rep-
resent a negligible fraction of the total load of the platform
(Table 3) but are quite numerous (Table 2) and often wildly
over-estimate the runtime they request. Scheduling them
using a policy based on this estimation leads to particularly
poor slowdown and to an overall poor performance of the
system. Fortunately, the learning algorithm presented in
Section 4 allows to efficiently distinguish between small and
large jobs. To improve the mean bounded slowdown, we
propose that any job classified as small is executed with a
higher priority than those classified as large. Specific care
must be taken though to avoid starvation and to deal with
classification errors. This section describes how this was
done and how we evaluated our proposal.

We aimed our work to be as transparent and repro-
ducible as possible [27]. We provide a snapshot of the
workflow used throughout this work4, which includes a
nix [28] file that describes all the software dependencies and
an R notebook that allows reproducing all the figures.

We consider HPC platforms as a collection of homoge-
neous resources, with jobs stored in a centralized waiting
queue, following the submission described in the workload
logs. We implemented all simulations using Batsim [29],
a simulator based on SimGrid [30] that allows us to ob-
serve the behavior of scheduling algorithms under different
conditions. We evaluate our method using the six traces
presented in Table 1 and four scheduling policies presented
in the following section.

5.1 Scheduling Policies

We considered four scheduling policies:
• FCFS: First Come First Served [7] orders the jobs by

their arrival time rj . FCFS is the most commonly used
scheduling policy.

4. https://gitlab.inria.fr/szrigui/job classification/

https://gitlab.inria.fr/szrigui/job_classification/
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• WFP: is a scheduling policy adopted by the
Argonne National Labs [31] and is given by:
WFPj = (

waitj
p̃j

)3 ∗ qj . This policy attempts to strike a
balance between the number requested resources, the
requested runtime and the waiting time of jobs. It puts
emphasis on the number of requested resources while
preventing small jobs from waiting too long in the
queue.

• SPF: Shortest (requested) Processing time First [6] or-
ders the jobs by the requested processing time (p̃j)
given by the user.

• SAF: Smallest Area First [13] orders the jobs by their
requested area ãj = p̃j ∗ qj .

We chose FCFS and WFP because several existing HPC
systems use them. SAF and SPF are less common, mostly
because they are perceived as too risky since they could
potentially induce job starvation. Starvation occurs when a
job waits for an indefinite or a very long time in the queue.
However, some studies [13], [15] show that SAF and SPF
provide better results on performance metrics in almost all
cases. Furthermore, one can prevent starvation by putting
a threshold on the waiting time [14]. When the waiting time
of a job surpasses the threshold, the scheduler transfers the
job to the head of the queue. In [14] the authors perform a
detailed analysis of the thresholding mechanism and of its
impact.

We implemented the four aforementioned policies in
conjunction with the EASY backfilling heuristic and the
thresholding/starvation prevention mechanism. The sched-
uler orders and executes the jobs following the order set
by the chosen policy. When it reaches a job that cannot
start immediately, it makes a reservation for that job. The
scheduler then allows the next tasks to skip the queue if
they do not delay the initial reservation.

5.2 Learning and Scheduling Algorithms

When a user submits a job for execution, the classifier uses
the job features to assign it to the small or large classes,
represented by queues Qsmall and Q, respectively. In the
first week of the trace, since the classifier does not have
prior data to learn the classification task, it classifies all jobs
as large and does not behave differently from a classical
policy. After that, we update the classifier at the beginning of
every week, with data from all previous weeks as explained
in Section 4.

The resource manager calls the scheduler whenever a job
finishes its execution, and computational resources become
available. The scheduler then sorts the two queues, Q and
Qsmall, independently, according to a chosen policy (FCFS,
SAF, SPF, or SQF), and merge them in a single queue Qtotal,
with the jobs belonging to the small class first. Finally,
resource allocation is done using the EASY heuristic, as
shown in Algorithm 1.

The only additional relevant overhead compared to the
basic EASY scheduling heuristic is the cost of updating the
classifier. The update includes finding the median execution
time over the workload log of the previous week and
training the classifier using the pairs (features, jobclass).
The full execution of this procedure takes only a few seconds

Algorithm 1: Perform scheduling
Input : Queue of large jobs Q

Queue of small jobs Qsmall

Scheduling policy Policy (FCFS|WFP| . . . )
1 Order Q according to Policy
2 Order Qsmall according to Policy
3 Qtotal = concat(Qsmall, Q) # small jobs are always put

in the head of the final queue
4 EASY(Qtotal) # Schedule the jobs in the final queue

using the EASY heuristic

Algorithm 2: Kill False Small jobs

1 Q = {} # queue of large jobs
2 Qsmall = {} # queue of small jobs
3 job counter = 0 # number of submitted jobs
4 while Running do
5 # go through all jobs currently running
6 if jobj .class == “small” & jobj .runtime > divider

then
7 kill(jobj)
8 Qsmall.remove(jobj) Q.add(jobj)
9 end

10 end

and occurs only at the end of every week. Moreover, it runs
independently from the scheduler, without blocking it.

5.3 Dealing with Classification Errors

As explained in Section 4.3.2, no classifier is perfect and
some jobs will inevitably be wrongly classified. False Small
jobs are large jobs that were wrongly classified as small.
This is similar to runtime underestimation in the case of
exact runtimes prediction. Although the resource manager
may allow these jobs to execute until completion, it can
significantly impact performance in some cases, e.g, when
there are many True Small jobs following the misclassified
large job. This type of misclassification is arguably more
dangerous than False Large: if a small job is classified as
large it will be delayed but it will not impact the waiting
time of other jobs.

One way to correct this problem is to kill false small
jobs. When the execution time of a job classified as small
exceeds the divider value, it is killed and put back to the
waiting queue as a large job. To ensure that the killing and
restart process happen without problems, we consider that
jobs are idempotent. Formally an idempotent operation is
defined as an operation that can be applied multiple times
without changing the result from the initial application. In
this context, we consider a job to be idempotent if it can
be killed and restarted without changing the final execution
outcome.

The scheduler periodically goes through the list of run-
ning jobs (Algorithm 2). If it detects a job classified as small
and has been executing for a period longer than the divider
value, it kills the job and classifies it as large.
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Figure 6. Evolution of the Cumulative Bounded Slowdown for the six platforms, using the base policies (black) and the same policies augmented with
job size classification and idempotence (cyan). The cumulative bounded slowdown is always such that SAF≈SPF<WFP<FCFS, which is expected
as prioritizing small jobs is known to optimize the average slowdown whereas FCFS rather bounds the largest waiting time. Since these heuristics
solely rely on the requested runtime, they cannot be very efficient. Activating our classification-based prioritization systematically and significantly
improves the performance of all heuristics at any point in time and not simply at the end of the evaluation period. In steady state (see SDSC-SP2),
it is clear that the cumulative bounded slowdown increases more slowly when our classification-based mechanism is activated. It may happen that
burst of jobs are submitted and incur sudden and large jumps in the cumulative bounded slowdown. These jumps are always significantly reduced
(see Megacentrum-zegox) with our mechanism and even sometimes completely avoided (see SDSC-BLUE).

6 EXPERIMENTAL RESULTS

In Section 4, we presented the job size classifier and showed
its accuracy from a pure learning perspective. However,
achieving a high-quality classification is not our final goal.
In the scheduling context, the effectiveness of an approach
is measured by how much it improves the end-to-end per-
formance metrics, such as the average bounded slowdown
(Section 3.2).

6.1 Overall Impact on Scheduling Performance

We evaluate the impact of the cumulative bounded slow-
down when applying the EASY-backfilling with the four
scheduling policies (FCFS, WFP, SAF, and SPF). Figure 6
shows the results for the scenarios with the job size clas-
sification and job-killing mechanism (in cyan) and without
them (in black).

Comparing the curves for the four basic scheduling poli-
cies, we note that SPF and SAF generate the lowest cumula-
tive slowdown in all platforms. WFP has cumulative values

close to SPF and SAF, while FCFS has the worst values by
a large margin in all cases. These results are consistent with
previous comparisons of scheduling policies [14], [15].

Applying the job size classification reduced the cumula-
tive slowdown values in all scenarios, with the improve-
ment depending on the trace and scheduling policy. For
FCFS, we observed substantial improvements for all the six
traces, ranging between 33% to 79%. For the other policies,
we observed smaller, albeit consistent, improvements in
performance, ranging from 3% to 32% for SPF and 10% to
51% for SAF. We explore these results further in Section 6.5.

The cumulative slowdown increases most of the time
smoothly, with some sharp rises. The slower increments
occur during lightly or moderately loaded periods, in which
we see steady increments in the gap between the scenarios
with and without job size classification. The jumps are the
result of high load periods and seem unavoidable, as they
occur with all policies. However, regardless of the policy
and the trace used, our method always results in smaller
cumulative slowdowns.



10

Figure 7. Monthly average bounded slowdown. Each line links the values from the same month when using the base and classification-idempotent
schedulers.
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Figure 8. Average bounded slowdown for small and large jobs, using the four base policies and the corresponding classification-idempotent
schedulers. Breaking down the average bounded slowdown between small and large jobs allows to evaluate how both classes benefit from the
classification and whether one is unfairly treated compared to the other. The benefit for the Small job class is huge and can go up to 55% while
the loss for the Large job class never exceeds 15% (the higher losses always occur in trace/policies with extremely small base slowdown). The
difference for Large jobs is therefore negligible and would be barely noticeable by users. Last, note that, although there are visible differences
between the base policies (SAF, SPF, WFP, in black), they tend to vanish whenever using our classification (in green).

Since FCFS performed poorly compared to other poli-
cies, we decided to exclude it from the subsequent analysis.
However, we note that the observations in the next sections
also apply to FCFS.

6.2 Impacts on Individual Months
The evolution of the cumulative bounded slowdown over
long periods, although informative, can mask important
details about the behavior of a scheduler at a smaller time
scale, such as individual weeks or months. Ideally, a good
scheduler should provide improvements that are somewhat
equitably distributed throughout the evaluation period.

We investigate the effects of our approach on individual
months in Figure 7. Each pair of connected points represents
the average bounded slowdown of a single month from
the full workload execution, for the base and classification-
idempotent cases. We note a reduction in the slowdown
in most cases, with a decrease proportional to the base

value. There are a few months where our approach seems
to degrade performance substantially, such as in MetaCen-
trum/WFP. These are artifacts that emerge from splitting the
results into one month periods, where workloads “spills”
from one month to the other during periods of very high
load. Overall, the results show that improvements are fairly
distributed between months, even for the clusters that have
large jumps in the cumulative slowdown, such as MetaCen-
trum and HPC2N.

6.3 Impact of Small Job Prioritization over Large Jobs
Our algorithm reduces the overall bounded slowdown by
prioritizing small jobs. This mechanism naturally raises one
crucial question: What is the impact of favoring small jobs
over the jobs classified as large?

We compute the average bounded slowdown of the
jobs for each of the two classes (Figure 8). As expected,
the small jobs have the most substantial reductions in the
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average slowdowns. The extent of the reduction depends
on the platform and policy and is mostly proportional to
the improvements in the cumulative bounded slowdown,
shown in Figure 6. More importantly, there is only a small
increase in the average slowdown of large jobs.

The use of the job size classifier results in substantial im-
provements for small jobs, with little or no impact on large
jobs. Consequently, we argue that there are no perceivable
hidden costs for large jobs when prioritizing small jobs.

6.4 Impact of the Safeguard Mechanism
Assigning a large job to the small class can cause an overall
increase in the average bounded slowdown of other jobs
since it occupies resources for an extended period. We
prevent this problem by killing the job when it reaches
the job size divider value. But we cannot apply it for non-
idempotent jobs. A subsequent question that arises is: can
we still improve the performance if we allow miss-classified
jobs to run until completion?

We compared the cumulative bounded slowdown values
at the end of the full workload trace simulations, for the
six platforms, for three scenarios: (i) base, (ii) classification-
idempotent, where we kill false small jobs, and (iii) classifica-
tion, where we use classification without job-killing.

Preventing job-killing reduces the effectiveness of the
classification in almost all scenarios (Figure 9). We note,
however, that classification without job-killing still managed
to improve the total slowdown for most cases, but to a
worse extent than classification-idempotent. The exceptions
are the combinations where the classification-idempotent only
managed to improve results by a small margin. In these
cases, the classification without job-killing did not improve or
caused a negligible degradation in performance. Removing
the safeguard mechanism reduces the effectiveness of our
method without rendering it completely useless. Note that
only False Small jobs are restarted, which corresponds to
2-4% of all jobs at most (See Table 6).

6.5 Comparison with Clairvoyant Schedulers
Finally, we evaluate the hypothetical optimum obtainable
by a clairvoyant scheduler that knows the actual execution
times of each job in advance. We compare three strategies
that build the base policies (SPF, SAF, and WFP): (i) runtimes-
clairvoyant, where the scheduling heuristic is provided with
the actual pj , instead of the requested processing times
p̃j , (ii) class-clairvoyant, where the scheduler is indicated
which class the jobs belong to (i.e., as if a perfect job class
classification was achieved), and (iii) classification-idempotent,
the method we propose and which only uses estimated
execution times. Although the clairvoyant versions cannot
occur in practice, they provide us with a useful benchmark
on the achievable improvements.

Using the classification-idempotent results in improve-
ments comparable to the class-clairvoyant (Figure 9), except
for MetaCentrum. This result indicates that the job-killing
mechanism is effective in counteracting the misclassifica-
tions and that the overhead of job-killing has a small impact
on performance. Moreover, it shows that our strategy of
combining classification with job-killing is already very
efficient and has little room for further improvements.

The two clairvoyant strategies, class-clairvoyant and
runtimes-clairvoyant, also have comparable performance,
with slightly better results when using runtimes-clairvoyant.
This result shows that a simple classification in two cat-
egories is, in most cases, sufficient to obtain important
improvements for the bounded slowdown metric. It indi-
cates that trying to predict job execution time accurately
with elaborate regression techniques will not bring large
improvements over the use of a simpler binary job size
classification.

The most notable exception to the conclusions above
is the MetaCentrum trace. We observe consistent improve-
ments when moving from base to classification-idempotent,
class-clairvoyant, and runtimes-clairvoyant. For this particular
trace, there were several jumps in the cumulative bounded
slowdown (Figure 6), caused by abnormally high loads. In
these situations, a perfect knowledge of execution times
appears to have a larger impact on scheduling performance.

Finally, we look at the cases were class-clairvoyant
provided minor improvement: SDSC-SP2/SPF and KTH-
SP2/SPF. In Figure 9, we can see that even with full
knowledge, there were no significant improvements. class-
clairvoyant only improved over base SPF by 10% and 13%
for SDSC-SP2 and KTH-SP2 respectively indicating that, for
these two traces, SPF was already a very good policy.

7 CONCLUSIONS AND DISCUSSION

Scheduling parallel jobs is a hard problem, especially in
online contexts. Important information, such as the actual
job execution time, is often very imprecise. In particular it
is common that users request a much longer runtime than
what their jobs actually need, which prevents them from
being backfilled and decreases the overall responsiveness
of the system. Yet, predicting job execution time from the
limited historical information provided by the platform is
challenging and often generates only imprecise estimates.

In this work, we showed that a coarse classification of
jobs into small and large is sufficient to improve scheduling
performance. A simple safeguard mechanism that kills large
jobs misclassified as small is important to prevent these jobs
from unduly delaying others. Since the misclassification is
detected very early, when the job execution time reaches
the divider value between classes, which is never more
than a few minutes, it results in a small overhead over the
average slowdown metrics. We obtained improvements in
scheduling performance for all combinations of six work-
load traces and four scheduling policies evaluated (see Fig-
ure 6). Moreover, in most scenarios, we managed to obtain
improvements in scheduling performance comparable to
that of clairvoyant schedulers with perfect knowledge of job
execution times. Finally, we showed that our performance
not unfair (Figure 8) in the sense that although the perfor-
mance gain mostly targets small jobs (which are prioritized),
it is not detrimental to large jobs.

We claim that in this context, using a classification ap-
proach is more effective than using regression for improv-
ing scheduling performance. Compared to regression-based
techniques, our approach has two major advantages: (i) a
two-class classification task is easier to learn than regression,
requiring less training data, and (ii) misclassification of large
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Figure 9. Total accumulated bounded slowdown for the base schedulers (base), schedulers with perfect classification (class-clairvoyant), sched-
ulers with classification and job-killing mechanism (classification-idempotent), and schedulers with perfect execution time information (runtimes-
clairvoyant). Regardless the heuristic, it is interesting to note that, in general, Base ' Classification > Classification-Idempotant ' Class-
clairvoyant > Runtime-clairvoyant, which is consistant with the fact that more accurate information allow to produce better schedules

TABLE 7
Improvement (in %) over EASY-FCFS using regression ( [8] and [9])
and classification (SPF-CI and FCFS-CI). Values between brackets

correspond to the evaluation performed by the original authors whose
methodology may slightly differ from ours. Our classification based

approach systematically and significantly improves upon the previous
strategies, regardless of the the base scheduling heuristic (FCFS or

SPF)

Classification-Idempotent
EASY++ [8] Gaussier et. al. [9] FCFS-CI SPF-CI

KTH-SP2 23 [36] [44] 50 59
CTC-SP2 1 [37] [59] 79 85
SDSC-BLUE 38 [47] [05] 63 74
SDSC-SP2 32 [29] [15] 66 75

jobs as small is detected very quickly during execution,
opposed to regression, where underestimates are evident
only after the job executed for the entire actual period. To
substantiate this claim, we can compare the improvements
obtained by our approach with two regression-based ap-
proaches: the relatively simple EASY++ [8], which replaces
user-provided runtimes estimates by the average runtime of
the two previous jobs from the same user, and the one pro-
posed by Gaussier et al. [9], which relies on more elaborate
regression technique using an asymmetrical loss function.
Both works used the workload traces from SDSC-BLUE,
SDSC-SP2, KTH-SP2, and CTC-SP2 and reported improve-
ments over the base EASY-backfilling with FCFS ordering
policy (see Table 7). Although there are a few methodolog-
ical differences (simulation technique, trace cleanups, etc.)
between our evaluations, our classification approach com-
bined with FCFS reduced the cumulative bounded slow-
down by 50–79%, compared to 29–47% from EASY++, and
5–59% from Gaussier et al.. Relying on SPF instead of FCFS
allows decreasing the cumulative bounded slowdown even
further (59–85%), with most of the gain provided by the
classification mechanism. Finally, our mechanism greatly re-
duces the performance difference between heuristics (with-
out classification, FCFS is significantly worse than SPF or
SAF) without loosing most of the fundamental properties
that make FCFS an appealing option: its simplicity in terms

of explainability to users and its predictable behavior [13].
Consequently, we believe that using the proposed scheme
of job size classification is more appropriate for deployment
in real HPC platforms than regression-based approaches.

Since the gains we report are particularly substantial, one
may wonder whether further gain can still be expected or
not. For most of the traces we studied, not only the learning
is very good (Table 5) but there is almost no difference
between the performance of our classification-based scheme
and the one a fully informed (clairvoyant) approach would
give (Figure 9), which means that very little gain may
be expected from the learning perspective. It may be the
case that some gain could be obtained with more elaborate
scheduling heuristics though, which could be evaluated by
trying to compute lower bound approximations on perfor-
mance (e.g., using black box optimization as done in [15]).

Note that a potential improvement perspective can be
foreseen by closely inspecting the only trace (METACEN-
TRUM) where the weekly performance of the learning did
not seem stable (Figure 4). This trace exhibits particularly
irregular job submissions with burst of jobs that lead to sud-
den jumps in the cumulative bounded slowdown (Figure 6).
We suspect that our batched (weekly) learning strategy
may not be able to adapt well to such rapidly changing
situations. Online monitoring of the classification error may
then be a good indication that the situation has evolved and
that the learning should quickly be updated.

A final future work related to the interplay between
learning and scheduling we envision is the exploitation of
the information on the uncertainty provided by the learning
algorithm. Currently, we only perform a hard assignment to
the small/large class whereas the learning algorithm returns
an estimation of the probability of belonging to one class or
the other. This information could be exploited, for example
to perform a less (or more) aggressive prioritization of small
tasks and decrease the number of restarted tasks. More gen-
erally, although our work advocates the use of classification
in this context, we believe that designing scheduling and
backfilling strategies that would be provided with a run-
time probability distribution (estimated through learning)
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instead of a simple duration bound would be particularly
interesting.
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