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Approximate Nash equilibria in large non-convex

aggregative games

Kang Liu∗, Nadia Oudjane†, Cheng Wan‡

September 26, 2022

Abstract

This paper shows the existence of O( 1
nγ )-Nash equilibria in n-player noncooperative

sum-aggregative games in which the players’ cost functions, depending only on their own
action and the average of all players’ actions, are lower semicontinuous in the former
while γ-Hölder continuous in the latter. Neither the action sets nor the cost functions
need to be convex. For an important class of sum-aggregative games, which includes
congestion games with γ equal to 1, a gradient-proximal algorithm is used to construct
O( 1n )-Nash equilibria with at most O(n3) iterations. These results are applied to a
numerical example concerning the demand-side management of an electricity system.
The asymptotic performance of the algorithm when n tends to infinity is illustrated.

Keywords. Shapley-Folkman lemma, sum-aggregative games, non-convex game, large
finite game, ϵ-Nash equilibrium, gradient-proximal algorithm, congestion game

MSC Class Primary: 91A06; secondary: 90C26

1 Introduction

This paper studies approximate pure-Nash equilibria (PNE) for n-player noncooperative
games involving non-convexities in players’ costs or action sets. The goal is to show the
existence of such approximate equilibria under certain conditions and to propose an algo-
rithm that allows them to be calculated effectively in some specific cases. In particular, this
paper focuses on a specific class of noncooperative games (which includes congestion games)
referred to as sum-aggregative games (Selten [40], Corchón [9], Jensen [22]). The cost of
each player depends on the weighted sum of the other players’ decisions. These games have
practical applications in various aspects of political science, economics, social biology, and
engineering, such as voting [30, 34], market competition [29], public goods provision [2, 15],
rent seeking [11], population dynamics [17], traffic analysis [10, 27], communications net-
work control [26, 31] and electrical system management [18, 21]. However, in these real-life
situations, the players’ action sets and their cost functions are often non-convex. This paper
is actually motivated by concrete applications for which it is unreasonable to neglect the
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non-convexities inherent to the problem. In particular, we are interested in demand-side
management in electrical systems [20], where each flexible consumer is considered as a player
trying to minimize her electricity bill by modulating her consumption (e.g., electric vehicle
charging) which is subject to non-convex constraints.

In the convex framework, a PNE is known to exist under mild regularity conditions (see,
for example, Rosen [36]). Outside the convex framework, it is generally difficult to provide
existence results for PNEs and approximation algorithms with performance guarantees. Our
work addresses these two issues and makes the following contributions.

(i) Theoretically, Proposition 2.4 and Theorem 2.7 show the existence of O( 1
nγ )-PNEs for n-

player non-convex sum-aggregative games in which the players’ cost functions are γ-Hölder
continuous with respect to the aggregate. Neither the action sets nor the cost functions
need to be convex.

(ii) Algorithmically, in the specific case of congestion games in which the cost functions are
Lipschitz continuous with respect to the aggregate (i.e., γ = 1), we present an iterative
gradient-proximal algorithm to compute an O( 1n)-PNE of the original non-convex game
within at most O(n3) iterations, according to Theorem 3.3.

(iii) Practically, the usefulness of this approach is demonstrated in Section 4, where a nu-
merical simulation with the gradient-proximal algorithm is performed for a demand-side
management problem involving flexible electric vehicle charging.

The originality of this paper lies in the circumvention of the non-convexity through the
exploitation the fact that large sum-aggregative games approach a convex framework when
the number of players is large. The counterpart of this approach is to search for an ϵ-PNE
(cf. Definition 2.1) instead of an exact PNE. The main inspirations for the present work
are [41] (in economics) and [46] (in optimization). Starr [41] was interested in computing
general equilibria for a non-convex competitive economy in terms of price and quantity,
while Wang [46] considered large-scale non-convex separable optimization problems coupled
by sum-aggregative terms. In both cases, the authors proposed to convexify the problem,
taking advantage of the large number of agents or subproblems to bound the error induced
by the convexification thanks to the Shapley-Folkman Lemma (cf. Lemma 5.4). Roughly
speaking, the Shapley-Folkman Lemma states that the Minkowski sum of a finite number of
sets in a Euclidean space is close to convex when the number of sets is very large compared
with their common dimension. Our first contribution consists of two novelties. First, in
Proposition 2.4, we extend their approach to non-convex sum-aggregative games to show
the existence of an ϵ-PNE. Second, in Theorem 2.7 we show that one can also construct an
ϵ-PNE of the non-convex game from an ϵ-PNE of the auxiliary convexified game provided
that some stability condition is satisfied. This second novelty is more significant, and it is
crucial for our algorithmic contribution. Our second contribution consists in proposing an
algorithm returning an ϵ-PNE of the convexified game. This ϵ-PNE verifies the stability
condition that allows us to recover an ϵ-PNE of the original non-convex game.

Related works. The existence of PNEs is not guaranteed in non-convex games, except
in some particular cases. For example, for games in which players have a finite number
of actions, the existence of PNE is known for Rosenthal’s congestion games [37] and some
other specific class of congestion games [28, 42]. For games with discrete (but not necessarily
finitely many) strategies, Sagratella [38] proved the existence of PNEs for a particular class
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of such games and proposed an algorithm leading to one of the equilibria. However, when
the players’ cost functions are non-convex and/or their action sets are non-convex but not
necessarily finite, there is no general result for the existence of PNEs.

Concerning algorithms for the computation of (ϵ-)PNE, there are few results. The ex-
isting results are almost restricted to some special cases in the convex setting. A common
approach is to solve the variational inequality characterizing the PNEs (cf. Facchinei and
Pang [13] and the references therein). Scutari et al. [39] considered generic n-player games
that need not be large nor aggregative but must have a strongly monotone inequality char-
acterizing the PNE. They used proximal best-reply algorithms to solve this variational in-
equality. Paccagnan, Kamgarpour and Lygeros [33] considered a specific convex aggregative
game and used a decentralized gradient projection algorithm to solve the strongly mono-
tone variational inequality characterizing the PNE. Paccagnan et al. [32] studied ϵ-PNEs
in large convex aggregative games with coupling constraints. Their methodology is close to
ours in the sense that they only look for an ϵ-PNE (which they call the Wardrop equilib-
rium) instead of an exact PNE. They used, respectively, a decentralized gradient projection
algorithm and a decentralized best-reply (to the aggregate term) algorithm to solve the
variational inequality characterizing this Wardrop equilibrium.

Finally, the Shapley-Folkman lemma has been extensively applied in non-convex opti-
mization for its convexification effect. Aubin and Ekeland [1] used the lemma to derive an
upper bound for the duality gap in an additive, separable non-convex optimization prob-
lem. Since then, quite a few papers have extended or sharpened this result (cf. Ekeland
and Temam [12], Bertsekas and coauthors [4, 7], Pappalardo [35], Kerdreux et al. [24], Bi
and Tang [8]). These theoretical results have applications in engineering problems, such as
the large-scale unit commitment problem [3, 25], the optimization of plug-in electric vehicle
charging [45], the optimization of multicarrier communication systems [48], supply-chain
management [44], and spatial graphical model estimation [14].

Organization. Section 2 focuses on the existence of ϵ-PNE in large non-convex aggrega-
tive games. Section 3 presents an algorithm to compute such an ϵ-equilibrium for congestion
games. A numerical application in Section 4 illustrates the usefulness of our results. Section
5 concludes.

Notation. In a Euclidean space, ∥ · ∥ denotes the l2-norm. For a point x ∈ Rd and a
subset X of Rd, d(x,X ) := infy∈X {∥x − y∥} is the distance from the point to the subset.
For two subsets X and Y of Rd, their Minkowski sum is the set {x+ y |x ∈ X , y ∈ Y}. For
x ∈ Rd and r ∈ R+, B(x, r) := {y ∈ Rd | ∥y − x∥ ≤ r}, with the r-radial ball centered on x.

For a matrix A ∈ Rd × Rq, ∥ · ∥2 is the 2–norm of the matrix: ∥A∥2 :=
√
λmax(AτA)

where Aτ is the transpose of A and λmax(A
τA) stands for the largest eigenvalue of the

matrix AτA.

The proof of Proposition 2.3 and the lemmata used for the proof are given in Appendix
A. All the other proofs and intermediate results are contained in Appendix B.
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2 Existence of ϵ-PNE in large non-convex sum-aggregative
games

2.1 A non-convex sum-aggregative game and its convexification

Consider an n-player noncooperative game Γ. The players are indexed overN = {1, 2, · · · , n}.
Each player i ∈ N has an action set Xi ⊂ Rd, which is closed and bounded but not necessar-
ily convex. Let X̃i := conv(Xi) be the convex hull of Xi (which is also closed and bounded)
and denote X :=

∏
i∈N Xi, X̃ :=

∏
i∈N X̃i, X̃−i :=

∏
j∈N−i

X̃j , where N−i := N \ {i}.
Let the constant ∆ > 0 be such that, for all i ∈ N , the compact set Xi has a diameter
|Xi| := maxxi,yi∈Xi ∥xi − yi∥ that is not greater than ∆.

As usual, let x−i denote the profile of actions of all the players except player i. Each
player i has a real-valued cost function fi defined on Xi × X̃−i, which has the following
specific form:

fi(xi, x−i) := θi

(
xi,

1

n

∑
j∈N

Ajxj

)
, for any xi ∈ Xi , x−i ∈ X̃−i , (2.1)

where each Aj is a q × d matrix for all j ∈ N , and θi is a real-valued function defined on
Xi × Ω, with Ω ⊂ Rq being a neighborhood of { 1

n

∑
j∈N Ajyj | yj ∈ X̃j , ∀j ∈ N}.

Let the constant M > 0 be such that ∥Ai∥2 ≤ M for each i ∈ N .

The game Γ is a sum-aggregative game because each player’s cost function depends on
her own action and an aggregate of all the players’ actions.

Definition 2.1 (ϵ-pure Nash equilibrium). For a constant ϵ ≥ 0, an ϵ-pure Nash equilibrium
(ϵ-PNE) xϵ ∈ X in game Γ is a profile of actions of the n players such that, for each player
i ∈ N ,

fi(x
ϵ
i , x

ϵ
−i) ≤ fi(xi, x

ϵ
−i) + ϵ , for any xi ∈ Xi .

If ϵ = 0, then xϵ is a pure Nash equilibrium (PNE).

This definition of ϵ-PNE corresponds to the notion of additively ϵ-PNE in the literature.

For non-convex games (in which either action sets or cost functions are not convex), the
existence of a PNE is not established for the general cases. This paper uses an auxiliary
convexified version of the non-convex game, which is helpful both in the proof of the existence
of an ϵ-PNE of the non-convex game and in the construction of such an approximate PNE.

Definition 2.2 (Convexified game and generators). The convexified game Γ̃ associated with
Γ is a noncooperative game played by n players. Each player i ∈ N has an action set X̃i

and a real-valued cost function f̃i defined on X̃ as follows: for all x ∈ X̃ ,

f̃i(xi, x−i) = inf
(αk)d+1

k=1∈Sd; (zk)
d+1
k=1∈X

d+1
i

{ d+1∑
k=1

αkfi(z
k, x−i)

∣∣∣xi = d+1∑
k=1

αkzk
}
, (2.2)

where Sd := {α = (αk)d+1
k=1 ∈ Rd+1 | ∀k , αk ≥ 0 ,

∑d+1
k=1 α

k = 1} denotes the probability
simplex of dimension d.
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For all i ∈ N and x ∈ X̃ , let a minimizer in (2.2) be generically denoted by (α(i, x), z(i, x)) ∈
Sd × X d+1

i . For such a vector z(i, x), we denote the set of its d + 1 components by Z(i, x)
and call it a generator for (i, x).

For a lower semicontinuous (l.s.c.) function, equation (2.2) just defines its convex hull
(cf. Lemma 5.5). This particular form of definition is proposed in [5].

PNEs and ϵ-PNEs for the convexified game Γ̃ are defined in the same way as for the
game Γ in Definition 2.1.

The remainder of this subsection is dedicated to a preliminary analysis of the convexified
game.

First let us introduce an assumption on the functions θi’s characterizing the cost func-
tions according to (2.1). It ensures the existence of generators for all (i, x) ∈ N × X (cf.
Lemma 5.5 for a proof).

Assumption 1.
(1) For any player i ∈ N , for any y ∈ Ω⊂ Rq, the function xi 7→ θi(xi, y) is l.s.c. on Xi.
(2) There exist constants H > 0, γ > 0 such that, for all i ∈ N , for all xi ∈ Xi, the function
y 7→ θi(xi, y) is (H, γ)-Hölder continuous on y ∈ Ω, i.e.,

|θi(xi, y′)− θi(xi, y)| ≤ H∥y′ − y∥γ . (2.3)

Remark 2.1. It is straightforward from Assumption 1 that fi(·, x−i) is l.s.c. in xi ∈ Xi for
any fixed x−i ∈ X̃−i.

According to Lemma 5.5, xi 7→ f̃i(xi, x−i) is convex and l.s.c on X̃i. Its subdifferential
exists; let it be denoted by ∂if̃i(·, x−i). Then, for each xi ∈ X̃i, ∂if̃i(xi, x−i) is a nonempty
convex subset of Rd.

Proposition 2.3 (Existence of PNE in Γ̃). Under Assumption 1, the convexified game Γ̃
admits a PNE.

Proof. This results from Theorem 5.3 in Appendix A.

Remark 2.2. Theorem 5.3 is a natural extension of Rosen’s theorem on the existence
of PNEs in games with convex continuous cost functions [36] to the case where the cost
functions are only l.s.c. instead of being continuous with respect to the players’ own actions.

The following example shows that even the continuity of fi on Xi cannot guarantee the
continuity of f̃i on X̃i, meaning that Rosen’s theorem is not sufficient here.

Consider d = 3, Xi = T ∪B ∪S where T = {(x1, x2, x3) ∈ R3|(x1)2 +(x2)2 = 1, x3 = 1},
B = {(x1, x2, x3) ∈ R3|(x1)2 + (x2)2 = 1, x3 = −1}, and S = {(x1, x2, x3) ∈ R3|x1 = 1, x2 =
0,−1 ≤ x3 ≤ 1}; fi is independent of x−i, and fi(x) = 0 for x ∈ T ∪ B, fi(x) = |x3| − 1
for x ∈ S. Then, for all x ∈ {(x1, x2, x3) ∈ R3|(x1)2 + (x2)2 = 1, x3 = 0} ⊂ ∂X̃i, f̃i(x) = 0
except for x∗ = (1, 0, 0), but f̃i(x

∗) = fi(x
∗) = −1.
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2.2 Existence and construction of an ϵ-PNE of the non-convex game

The following proposition shows the existence of an ϵ-PNE in the non-convex game Γ and
its construction from an exact PNE of the convexified game Γ̃. In particular, we observe
that ϵ is small when the number of players n is large with respect to q, the dimension of the
space in which the aggregate 1

n

∑
i∈N Aixi lies.

Proposition 2.4 (Existence of ϵ-PNE). Under Assumption 1, the non-convex game Γ ad-

mits an ϵ-PNE, where ϵ = 2H(
(
√
q+1)M∆

n )γ.

In particular, suppose that x̃ ∈ X̃ is a PNE in Γ̃ (which exists according to Proposition
2.3), and Z(i, x̃) is an arbitrary generator for each player i; then, x∗ ∈ X such that

x∗ ∈ argmin
xi∈Z(i,x̃), i∈N

∥∥∥∑
i∈N

Aix̃i −
∑
i∈N

Aixi

∥∥∥2 , (2.4)

is an ϵ-PNE of the non-convex game Γ.

Sketch of the proof: By the definition of the PNE in Γ̃, x̃i is a best response to x̃−i in
terms of f̃i. By Lemma 5.5, all the points in Z(i, x̃) are also best replies to x̃−i in terms of
fi.

We then use the Shapley-Folkman Lemma (Lemma 5.4) to disaggregate 1
n

∑
iAix̃i over

the sets Z(i, x̃) to obtain a feasible profile x∗. Finally, we can show that 1
n

∑
iAix

∗
i ≈

1
n

∑
iAix̃i and that x∗i is (almost) a best response to 1

n

∑
iAix

∗
i .

From an algorithmic point of view, a PNE is not always easy or fast to compute for
the convexified game Γ̃, even though its existence is guaranteed. Even when we have a
convergent algorithm, the outputs of the algorithm at each iteration provide only approxi-
mations of the exact PNE which may constitute ϵ-PNEs but rarely exact PNEs. Then, the
question that naturally arises is whether the idea above is still valid if x̃ is only an ϵ-PNE
of Γ̃, i.e., x̃i is an ϵ-best response to x̃−i in terms of f̃i. The answer is yes if the ϵ-PNE x̃ of
the convexified game Γ̃ satisfies a more demanding condition, introduced by the following
definition.

Definition 2.5 (Stability condition). In game Γ̃, for a given η ≥ 0, a point x̃ ∈ X̃ is said to
satisfy the η-stability condition with respect to (Z(i, x̃))i if, for each player i, f̃i(xi, x̃−i) ≤
f̃i(x̃i, x̃−i) + η for all xi ∈ Z(i, x̃).

A point x̃ is said to satisfy the η-stability condition if it satisfies the η-stability condition
with respect to a certain generator profile (Z(i, x̃))i.

A point x̃ is said to satisfy the full η-stability condition if it satisfies the η-stability
condition with respect to any generator profile (Z(i, x̃))i.

The stability condition of x̃ with respect to (Z(i, x̃))i means that the cost for each player
i is only slightly increased if the player’s choice is unilaterally perturbed within the convex
hull of the generator Z(i, x̃).

According to Lemma 5.5, a PNE of Γ̃ satisfies the full 0-stability condition.

A sufficient condition for the η-stability of x̃ is given by Lemma 2.6.
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Lemma 2.6. Under Assumption 1, for any action profile x̃ ∈ X̃ , for any player i, if there
is a generator Z(i, x̃) and h ∈ ∂if̃i(x̃i, x̃−i) such that〈

h, xi − x̃i
〉
≥ −η∥xi − x̃i∥ , ∀xi ∈ convZ(i, x̃) , (2.5)

then,
|f̃i(xi, x̃−i)− f̃i(x̃i, x̃−i)| ≤ η∥xi − x̃i∥ , for all xi ∈ Z(i, x̃) .

In particular, x̃ satisfies the η∆-stability condition with respect to (Z(i, x̃))i.

The following theorem describes how to construct an O( 1
nγ )-PNE of the original non-

convex game Γ when we know both an ϵ-PNE of the convexified game Γ̃ satisfying the
η-stability condition and the associated generator profile.

Theorem 2.7 (Construction of ϵ-PNE of Γ). Under Assumption 1, suppose that x̃ ∈ X̃
is an ϵ-PNE in Γ̃ that satisfies the η-stability condition with respect to a specific generator
profile (Z(i, x̃))i. Let x∗ ∈ X be such that

x∗ ∈ argmin
xi∈Z(i,x̃), i∈N

∥∥∥∑
i∈N

Aix̃i −
∑
i∈N

Aixi

∥∥∥2 . (2.6)

Then, x∗ is an ϵ̃-PNE of the non-convex game Γ, where ϵ̃ = ϵ+ η + 2H(
(
√
q+1)M∆

n )γ.

2.3 A distributed randomized “Shapley-Folkman disaggregation”

Once an exact PNE or an ϵ-PNE x̃ satisfying the η-stability condition of the convexified
game Γ̃ is obtained, as well as the associated generator profile (Z(i, x̃))i, we would like to
find an ϵ̃-PNE of the non-convex game Γ whose existence is shown by Proposition 2.4 and
Theorem 2.7. However, solving (2.6) is generally hard (cf. Udell and Boyd [43] for such
a “Shapley-Folkman disaggregation” in a particular optimization setting). In this section,
we present a method for computing an ϵ̌-mixed-strategy Nash equilibrium (MNE) in a
distributed way, based on the known ϵ-PNE of Γ̃, its associated generator profile, and its
coefficients. The algorithm is called “distributed” because it computes the mixed-strategy
µi of each player i from the information of x̃i, the generator Z(i, x̃) and the corresponding
coefficients only.

Proposition 2.8. Under Assumption 1, suppose that x̃ ∈ X̃ is an ϵ-PNE of Γ̃ satisfying
the η-stability condition with respect to (Z(i, x̃))i, and each player i plays a mixed strategy
µ̃i independently, i.e., a random action Xi following the distribution µ̃i over Xi, defined
by P(Xi = xli) = αl

i, where xli ∈ Z(i, x) for l = 1, . . . , d + 1, and (αl
i)
d+1
l=1 = α(i, x) is

the corresponding vector of coefficients. Then, for γ ≤ 1, µ̃ = (µ̃i)i is an ϵ̌-MNE of the

non-convex game Γ, where ϵ̌ = ϵ+ η + 2H( (
√
n+1)M∆

n )γ, in the sense that

E
[
fi(Xi, X−i)

]
≤ E

[
fi(xi, X−i)

]
+ ϵ̌ , ∀xi ∈ Xi .

Remark 2.3. Note that this is not an “adaptive” algorithm that allows the players to
attain an ϵ-PNE/MNE in the non-convex game through a decentralized adaptation/learning
process; instead, it is a distributed, randomized disaggregation algorithm to recover an ϵ̌-
MNE of Γ from a known ϵ-PNE of Γ̃ satisfying the η-stability condition and its generators.
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Besides, when x̃ is an exact PNE of Γ̃, all the generators of x̃ can be used in this
algorithm. On the contrary, when x̃ is only an ϵ-PNE of Γ̃, we need a specific profile of
generators (Z(i, x))i, with respect to which x̃ satisfies the η-stability condition. How to
find such a generator profile is not evident. However, in the next section, we provide an
algorithm to compute, for a specific class of games, an ϵ-PNE of Γ̃ satisfying the full η-
stability condition (i.e., with respect to any profile of generators of x̃). In that case, any
profile of generators can be used in the algorithm of Proposition 2.8.

Finally, note that the estimated error ϵ̌ for the distributed randomized approximate
MNE in Proposition 2.8 is larger than the estimated error ϵ̃ for the approximate PNE x∗ in
Theorem 2.7.

3 Computing ϵ-equilibria for large non-convex congestion games

3.1 Non-convex congestion games

Congestion games are an extensively studied class of sum-aggregative games. In this section,
we present an iterative algorithm to compute an ω(K,n)∆-PNE of the convexification of a
specific congestion game, in which ω(K,n) tends to zero when both the number of players n
and the number of iterations K tend to +∞, while n

K tends to zero. Note that any algorithm
returning an approximate PNE of the convexified game will not necessarily ensure that it
verifies the stability condition. The proposed algorithm is of particular interest because we
can show that the iterates provide an ω(K,n)∆-PNE of the convexified game that satisfies
the full ω(K,n)∆-stability condition (cf. Proposition 3.2). Then, taking K ∼ O(n3),
Theorem 3.3 shows that one can recover an O( 1n)-PNE of the original non-convex congestion
game from this ω(K,n)∆-PNE of the convexified game.

Consider a congestion game in which each player i ∈ N has an action set Xi ⊂ Rd and
a cost function of the following form:

fi(xi, x−i) =

〈
g
( 1
n

∑
j∈N

ajxj

)
, xi

〉
+ hi

( 1
n

∑
j∈N

ajxj

)
+ ri(xi)

=
d∑

t=1

gt

( 1
n

∑
j∈N

ajxj,t

)
xi,t + hi

( 1
n

∑
j∈N

ajxj

)
+ ri(xi) .

(3.1)

Suppose that the following assumptions hold on Xi, (aj)j∈N ∈ Rn, gt, hi and ri.

Assumption 2.

• There exist constants m > 0 and M > 0 such that m ≤ ai ≤ M for all i ∈ N .

• For t = 1, . . . , d, the function gt : R → R is Lgt-Lipschitz continuous and nondecreasing
on a neighborhood of [D1, D2], where the constants D1 and D2 are such that D1 ≤
mint=1,...,d;x∈X̃

1
n

∑
j∈N ajxj,t ≤ maxt=1,...,d;x∈X̃

1
n

∑
j∈N ajxj,t ≤ D2.

• For each i ∈ N , the function hi : Rd → R is Lhi
-Lipschitz continuous on [D1, D2]

d.

• Players’ local cost functions ri : Rd → R are uniformly bounded, i.e., there exists a
constant Br > 0 such that, for all i ∈ N and all xi ∈ Xi, |ri(xi)| ≤ Br.
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Notation. Let the constant ∆ := max{maxi∈N maxxi∈X̃i
∥xi∥,maxi∈N |X̃i|}. Let Lg :=

max1≤t≤d Lgt , Lh := maxi∈N Lhi
, Bg := max1≤t≤d,D1≤s≤D2 |gt(s)|.

The convexification of Γ is rather complicated to compute in the general case. Let us
first introduce an auxiliary game that is very close to Γ whose convexification is easier to
obtain.

Fix arbitrarily x+i ∈ Xi for each player i ∈ N . The auxiliary game Γ̄ is defined as follows:
the player set and each player’s action set are the same as in Γ, but player i’s cost function
is, for all xi ∈ Xi and all x−i ∈ X̃−i,

f̄i(xi, x−i) :=
〈
g
( 1
n

∑
j ̸=i

ajxj +
1

n
aix

+
i

)
, xi

〉
+ ri(xi) .

The original game Γ can be approximated by the auxiliary game Γ̄ because their approx-
imate equilibria are very close to each other, as the following lemma shows (see its proof in
Appendix B).

Lemma 3.1. Under Assumption 2, for the auxiliary game Γ̄,

(1) Assumption 1 is verified with H = Lg∆ and γ = 1;

(2) an ϵ-PNE of Γ̄ is an (ϵ+ LhM∆
n +

2LgM∆2

n )-PNE of Γ.

For any fixed x−i ∈ X̃−i, f̄i(·, x−i) is composed of a linear function of xi and a local
function of xi. By abuse of notation, let us still use f̄i to denote its convexification on X̃i.
More explicitly,

f̄i(xi, x−i) :=
〈
g
( 1
n

∑
j ̸=i

ajxj +
1

n
aix

+
i

)
, xi

〉
+ r̃i(xi) , (3.2)

where r̃i is the convexification of ri defined on X̃i in the same way as (2.2).
By abuse of notation, let Γ̃ denote the convexification of Γ̄ on X̃ .

3.2 A gradient-proximal algorithm

This subsection presents a gradient-proximal algorithm based on the block coordination
proximal algorithm introduced by Xu and Yin [47] that can be used to construct an O( 1n)-

PNE of Γ̃ that satisfies the full O( 1n)-stability condition.
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Algorithm 1: Gradient-proximal algorithm for Γ̃

Initialization: choose initial point x0 = (x01, x
0
2, . . . , x

0
n) ∈ X̃

for k = 1, 2, · · · do
for i = 1, 2, . . . , n do

xki = argmin
xi∈X̃i

〈
g
( 1
n

∑
j<i

ajx
k
j+

1

n

∑
j≥i

ajx
k−1
j

)
, xi−xk−1

i

〉
+
aiLg

2n

∥∥xi−xk−1
i

∥∥2+r̃i(xi)

(3.3)
end
if stopping criterion is satisfied then

return (xk1, x
k
2, . . . , x

k
n). Break.

end

end

Remark 3.1. This is a decentralized-coordinated type of algorithm. The coordinator
needs to know the current choices of the players and (ai)i to compute g

(
1
n

∑
j<i ajx

k
j +

1
n

∑
j≥i ajx

k−1
j

)
. The value of the vector g

(
1
n

∑
j<i ajx

k
j +

1
n

∑
j≥i ajx

k−1
j

)
is sent to player

i by the coordinator in iteration k, when it is that player’s turn to compute. No detailed
information concerning the other players’ choices is revealed. Receiving this value, player i
uses her local information, i.e., ai, r̃i and X̃i, to update her choice according to (3.3) and
then sends it to the coordinator.

Proposition 3.2. Under Assumption 2, for K ∈ N∗, there is k∗ ≤ K such that xk
∗
is an

ω(K,n)∆-PNE of game Γ̃ that satisfies the full ω(K,n)∆-stability condition, where

ω(K,n) =

√
2CLgM

m

√
n

K
+

2LgM∆

n
, (3.4)

where C = (d∆Lg + 2Br)M .
In particular, if the constant K ≥ 2C

m2Lg
n1+2δ + 1 for some constant δ > 0, then there

exists some k∗ ≤ K such that xk
∗
is an LgM∆(n−δ + 2∆n−1)-PNE of game Γ̃ satisfying

the full LgM∆(n−δ + 2∆n−1)-stability condition.

Theorem 3.3. Under Assumption 2, for a constant δ > 0 and integer K ≥ 2C
m2Lg

n1+2δ +1,

let x∗ ∈ X be the pure-strategy profile generated by (2.6), where x̃ is replaced by xk
∗
in

Proposition 3.2. Then, x∗ is a
(
2LgM∆

(
n−δ +

(
√
q+4)∆
n

)
+ LhM∆

n

)
-PNE of the non-convex

game Γ.

For the case in which a “Shapley-Folkman” disaggregation of xk
∗
is not easy to obtain,

one can use the distributed randomized disaggregation method introduced in Section 2.3 to
immediately obtain an ϵ̌-MNE, where ϵ̌ is given by the following corollary. However, the
quality of approximation is worse than that of a “Shapley-Folkman” disaggregation.

Proposition 3.4. Under Assumption 2, for a constant δ > 0 and integer K ≥ 2C
m2Lg

n1+2δ+

1, let µ̃ = (µ̃i)i be a profile of independent mixed strategies defined as in Lemma 5.7, where x̃

is replaced by xk
∗
in Proposition 3.2. Then, µ̃ is a

(
2LgM∆

(
n−δ+ (

√
n+4)∆
n

)
+ LhM∆

n

)
-MNE

of the non-convex game Γ.
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4 Numerical example

In this section, we consider an example of flexible electric vehicle charging control; the convex
version of this problem was studied by Jacquot et al. [20]. Each player must charge the
battery of her electric vehicle when she arrives home after work. A player’s cost is defined
in the form of (2.1) so that it depends on both her own consumption and the aggregate
consumption of all the players. Such a design is intended to ensure that the Nash equilibria
or ϵ-Nash equilibria attain the goal of decreasing the peak demand and smoothing the load
curve of the power grid. In this context, the technical constraints of the battery of an
electric vehicle limit the number of feasible consumption profiles. They also generally imply
non-convex action sets; for example, they only allow for discrete power consumption profiles.

More specifically, one day is divided into peak hours (e.g., 6 am–10 pm) and off-peak
hours. The electricity production cost function for total flexible loads of ℓP and ℓOP at
peak and off-peak hours are, respectively, CP (ℓP ) = αP

0 ℓ
P + β0(ℓ

P )2 and COP (ℓOP ) =
αOP
0 ℓOP + β0(ℓ

OP )2, where αP
0 > αOP

0 > 0 and β0 > 0. Player i’s action is denoted by
ℓi = (ℓPi , ℓ

OP
i ), where ℓPi (resp. ℓOPi ) is the peak (resp. off-peak) consumption of player i.

Player i’s electricity bill is then defined by

bi(ℓi, ℓ−i) :=
CP (ℓP )

ℓP
ℓPi +

COP (ℓOP )

ℓOP
ℓOPi ,

where ℓP =
∑

i ℓ
P
i , and ℓOP =

∑
i ℓ

OP
i . Player i’s cost is then defined by

ϕi(ℓi, ℓ−i) = bi(ℓi, ℓ−i) + γi∥ℓi − ℓrefi ∥2 (4.1)

where γi indicates the player’s sensitivity to the deviation from her preference ℓref . In
[20], the action set of player i is the convex compact set Si = {ℓi = (ℓPi , ℓ

OP
i ) | ℓPi + ℓOPi =

ei, ℓ
P
i ≤ ℓPi ≤ ℓPi , ℓ

OP
i ≤ ℓOPi ≤ ℓOPi }, where ei stands for the energy required by player i to

charge an electric vehicle battery and ℓPi and ℓPi (resp. ℓOPi and ℓOPi ) are the minimum and
maximum power consumption for player i during peak (resp. off-peak) hours. However, for
various reasons, such as finite choices for charging power or battery protection guidelines
that indicate that the charging must be interrupted as infrequently as possible, the players’
action sets can be non-convex. For example, in this paper a particular case with the non-
convex action set SNC

i = {ℓi = (ℓPi , ℓ
OP
i ) | ℓPi + ℓOPi = ei, ℓ

P
i ∈ {ℓPi , ℓPi }} is adopted for

numerical simulation.

Let us apply Algorithm 1 to this game. The asymptotic performance of the algorithm
for large n is illustrated.

First, game (4.1) is reformulated with uni-dimensional actions. For simplification, sup-
pose that all the players have the same type of electric vehicle (EV), a 2018 Nissan Leaf, with
a battery capacity e, and two charging rate levels pmin and pmax. The total consumption
of player i is denoted by ei and determined by a parameter τi as follows: ei = (1 − τi)e =
ℓPi + ℓOPi , where τi ∈ [0, 1] signifies the remaining proportion of energy in the player’s bat-

tery when she arrives at home. Let xi :=
ℓPi
e denote player i’s strategy in the following

reformulation of game (4.1):

f̃
(n)
i (xi, x−i) = b̃

(n)
i (xi, x−i) + γ̃i∥xi − xrefi ∥2 , (4.2)
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where γ̃i indicates how much player i cares about deviating from her preferred consumption
profile and is uniformly set to be ne for simplification, and

b̃
(n)
i (xi, x−i) = (αP

0 + β0ne
1

n

∑
j

(1− τj)xj)ℓ
P
i + (αOP

0 + β0ne
1

n

∑
j

(1− τj)(1− xj))ℓ
OP
i

= e(1− τi)
[(
αP
0 − αOP

0 − β0ne+ 2β0ne
1

n

∑
j

(1− τj)xj
)
xi

+ αOP
0 + β0ne− β0ne

1

n

∑
j

(1− τj)xj

]
.

The non-convex action set of player i, introduced in Section 1 as SNC
i = {ℓi = (ℓPi , ℓ

OP
i ) | ℓPi +

ℓOPi = ei, ℓ
P
i ∈ {ℓPi , ℓPi }}, is now translated into Xi = {xi, xi} ⊂ [0, 1], where xi and xi cor-

respond, respectively, to charging at pmin and pmax.
By extracting the common factor ne(1− τi), player i’s cost function becomes

f
(n)
i (xi, x−i) :=

〈
g(n)

( 1
n

n∑
j=1

(1− τj)xj

)
, xi

〉
+ h(n)

( 1
n

n∑
j=1

(1− τj)xj

)
+

r
(n)
i (xi)

1− τi
, (4.3)

where g(n)(y) :=
αP
0 −αOP

0
n +β0e(2y−1), h(n)(y) :=

αOP
0
n +β0e(1−y), and r

(n)
i (y) := ∥y−xrefi ∥2

for y ∈ R, where αP
0 = −4.17 + 0.59 × 12n (e/kWh), αOP

0 = −4.17 + 0.59 × 8n (e/kWh),
and β0 = 0.295 (e/kWh2) according to Jacquot et al. [20].

Simulation parameters The peak hours are between 6 am and 10 pm, while the remain-
ing hours of the day are off-peak hours. The battery capacity of a 2018 Nissan Leaf is e = 40
kWh. The discrete action set of player i is determined as follows. The players’ arrival times
at home are independently generated according to a Von Mises distribution with κ = 1
between 5 pm and 7 pm. Their departure times are independently generated according to a
Von Mises distribution with κ = 1 between 7 am and 9 am. The proportion τi of energy in
the battery when a player arrives at home is independently generated according to a Beta
distribution with the parameter β(2, 5). Once a player arrives at home, she starts charging
at one of the two available levels, pmin = 3.7 kW or pmax = 7 kW. This power level is
maintained until the energy requirement ei is reached. The arrival and departure time pa-
rameters are defined such that the problem is always feasible, i.e., the energy requirement ei
can always be reached during the charging period by choosing the power level pmax. Players
are all assumed to prefer to charge their vehicle as fast as possible, so that xrefi = xi for all i.
Fifty instances of the problem are considered for the numerical test. They are obtained by
independent simulations of the aforementioned parameters (players’ arrival and departure
times and remaining energy when they arrive at home).

Algorithm 1 is applied to the EV charging game Γ(n) (4.3) for n = 2s, s = 1, . . . , 15.
For each game Γ(n), for each iteration k of the algorithm, let x(n),k denote the kth iterate of
Algorithm 1 applied to game Γ(n). Then, the relative error ϵ(n),k of x(n),k is given by

ϵ(n),k := min

{
ϵ ≥ 0

∣∣∣ f (n)
i (x

(n),k
i , x

(n),k
−i )− inf

xi∈Xi

f
(n)
i (xi, x

(n),k
−i )

≤ ϵ
(
sup
xi∈Xi

f
(n)
i (xi, x

(n),k
−i )− inf

xi∈Xi

f
(n)
i (xi, x

(n),k
−i )

)}
.
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Figure 1: Log-log chart of relative error ϵ(n),k (averaged over fifty instances of the problem)
as a function of the number of iterations k (for a fixed number of players n = 26, 27, . . . , 213).

Figure 2: Log-log chart of relative error ϵ(n),k (averaged over fifty instances of the problem) as
a function of the number of players n (for a fixed number of iterations k = 30, 40, . . . , 90, 100).

13



As Figure 1 shows, the relative error decreases with the number of iterations to a certain
limit. This limiting relative error decreases with the number of players n. This observation
is consistent with equation (3.4) in Proposition 3.2. For Figure 2, according to Proposition

3.2, when the iteration number k is fixed, due to the domination of the term
2LgM∆

n in

equation (3.4) when n is small, ϵ(n),k first decreases linearly with n before reaching a certain

threshold. After that,

√
2CLgM

m

√
n
k dominates the relative error value so that ϵ(n),k may

increase with n. The threshold itself increases with the iteration number k. This is exactly
what Figure 2 shows.

5 Conclusion and perspectives

This paper developed an original approach for the study of non-convex games. Non-
convexities are widely present in real applications, and they are known to add nontrivial
difficulties in the analysis of existence and computation of equilibria. Our approach is re-
stricted to large aggregative games because it is based on the Shapley-Folkman Lemma which
essentially exploits the aggregative form with a large number of players. This category cov-
ers nevertheless a broad class of games with practical interest, including congestion games.
In particular, we illustrated the relevance of this approach with an industrial application to
the coordination of electric vehicle charging.

Distributed and randomized “Shapley-Folkman disaggregation”. In Section 2.3, a
distributed disaggregating method is introduced to obtain a randomized “Shapley-Folkman
disaggregation” for the case γ ≤ 1. It is extremely fast and easy to carry out: once an ϵ-PNE
x̃ is obtained for the convexified game, as well as the profile of generators (Z(i, x̃))i, each
player i randomly chooses one feasible action that is in Z(i, x̃), according to the distribution
law α(i, x). This procedure returns an O( 1√

n
γ )-MNE, with the error vanishing when the

number of players goes to infinity. However, even if an O( 1
nγ )-PNE can be difficult to obtain

using an exact “Shapley-Folkman disaggregation” especially if a large centralized program is
involved, for example, to solve (2.6), it would be desirable to find other algorithms that can
find better approximations of the Nash equilibria of a non-convex game. Distributed and
randomized algorithms are appealing because they can be faster to carry out, they require
less coordination and hence are more tractable, and they take advantage of the law of large
numbers when n is large.

Aggregation and disaggregation of clusters. In a power grid management setting,
flexible agents can be regrouped into clusters, and each cluster is commanded by a so-called
aggregator. The EV charging game considered in this paper then takes place between the
relatively few aggregators instead of the individuals. This “aggregate game” is different from
the EV charging game described in this paper, as the individuals are no longer autonomous
but are commanded by their respective aggregators rather than choosing their own charging
behaviors. One can build an aggregate model for each aggregator by defining his action set
as the set of the aggregate actions of the individuals in his cluster and his cost function as an
aggregate of the individuals’ costs. When the clusters are large, it is possible to show, with
the help of the Shapley-Folkman Lemma, that the aggregators’ action sets and cost functions
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are almost convex. Then, the game admits an ϵ-PNE (via Rosen’s existence theorem), and
its computation could be relatively easier owing to the small number of players. However,
each aggregator then has to reconstruct for each individual under his control a feasible action
consistent with their aggregate action at the equilibrium of this “aggregate game.” When
the constraints of each flexible individual are non-convex, this aggregation/disaggregation
approach can be rather difficult to implement. An original technique based on the Shapley-
Folkman Lemma is proposed in Hreinsson et al. [19] within the optimization framework,
with applications to the management of consumption flexibilities in power systems.

Acknowledgments. We are grateful to J. Frédéric Bonnans and Rebecca Jeffers for stim-
ulating discussions and comments. We particularly thank the reviewers and the associated
editor for their very relevant remarks, which have helped greatly to improve the paper.

Appendix A: PNE in l.s.c. convex games

Since we have not found a specific reference of the extension of Rosen’s theorem to the l.s.c.
case, we prefer to provide our own proof for the sake of completeness.

Lemma 5.1. Let R be a nonempty convex compact set in Rn. If the real-valued function
ρ(x, y) defined on R × R is continuous in x on R for any fixed y in R, l.s.c. in (x, y) on
R × R, and convex in y on R for any fixed x in R, then the set-valued map ζ : R → R,
x 7→ ζ(x) = argminz∈R ρ(x, z) has a fixed point.

Proof. Kakutani’s fixed-point theorem [23] will be applied for the proof. First, let us show
that ζ is a Kakutani map, i.e., (i) Γ is upper semicontinuous (u.s.c.) in the set map sense
and (ii) for all x ∈ R, ζ(x) is non-empty, compact and convex.

(i) Fix x ∈ R. On the one hand, since ρ(x, y) is convex w.r.t y, ζ(x) is convex. On the other
hand, ρ(x, y) is l.s.c in y, while R is compact; hence ρ(x, y) can attain its minimum w.r.t y
and ζ(x) is thus nonempty. Besides, since ρ is l.s.c., ζ(x) = {y|ρ(x, y) ≤ minz∈R ρ(x, z)} is
a closed subset of compact set R; hence it is compact.

(ii) Recall that the set-valued map ζ is u.s.c. if, for any open set w ⊂ R, set {x ∈ R| ζ(x) ⊂
w} is open.

Let us first show by contradiction that, for arbitrary x0 ∈ R, for any ϵ > 0, there exists
δ > 0 such that for all z ∈ B(x0, δ), ζ(z) ⊂ ζ(x0) + B(0, ϵ). If this is not true, then there
exists ϵ0 > 0 and, for all n ∈ N∗, the point zn ∈ B(x0,

1
n) such that there exists yn ∈ ζ(zn)

with d(yn, ζ(x0)) > ϵ0. Since the sequence {yn} is in the compact set R, it has a subsequence
yϕ(n) converging to some ȳ in R, and d(ȳ, ζ(x0)) ≥ ϵ0. Then, for all y ∈ R,

ρ(x0, ȳ) ≤ lim
n→∞

ρ(zϕ(n), yϕ(n)) ≤ lim
n→∞

ρ(zϕ(n), y) = ρ(x0, y) ,

where the first inequality is due to the lower semicontinuity of ρ in (x, y), the second in-
equality is due to the definition of ζ(zϕ(n)), and the third equality is due to the continuity
of ρ in x. This shows that ȳ ∈ ζ(x0), in contradiction with the fact that d(ȳ, ζ(x0)) ≥ ϵ0.

Now fix arbitrarily an open set w ⊂ R and some x0 ∈ R such that ζ(x0) ⊂ w. Since
ζ(x0) is compact while w is open, there exists ϵ > 0 such that ζ(x0)+B(0, ϵ) ⊂ w. According
to the result of the previous paragraph, for this particular ϵ, there exists δ > 0 such that
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ζ(z) ⊂ ζ(x0) +B(0, ϵ) ⊂ w for all z ∈ B(x0, δ). This means that B(x0, δ) ⊂ {x ∈ R | ζ(x) ⊂
w}. As a result, the set {x ∈ R | ζ(x) ⊂ w} is open.

Finally, according to Kakutani’s fixed-point theorem, there exists x̃ ∈ R such that
x̃ ∈ ζ(x̃).

Definition 5.2. A family of real-valued functions {f(·, y) : X → R | y ∈ Y} indexed by y,
with X ⊂ Rd1 and Y ⊂ Rd2 , is uniformly equicontinuous if, for all ϵ > 0, there exists δ such
that, for all y ∈ Y, ∥f(x1, y)− f(x2, y)∥ ≤ ϵ whenever ∥x1 − x2∥ ≤ δ.

Theorem 5.3 (Existence of PNE in l.s.c. convex games). In an n-player game Γ, if, for
each player i ∈ {1, . . . , n},

(1) the action set Xi is a convex compact subset of Rd,

(2) the cost function fi(xi, x−i) : Xi ×
∏

j ̸=iXj → R is convex and l.s.c.in xi ∈ Xi for any
fixed x−i ∈

∏
j ̸=iXj, and

(3) the family of functions {fi(xi, ·) :
∏

j ̸=iXj → R |xi ∈ Xi} are uniformly equicontinuous,

then Γ admits a PNE.

Proof. Define the function ρ(x, y) : X × X → R by ρ(x, y) =
∑n

i=1 fi(yi, x−i), where X =∏
iXi. It is easy to see that a fixed point of the set-valued map ζ : X → X , x 7→ ζ(x) =

argminz∈R ρ(x, z) is a Nash equilibrium of game Γ.
In order to apply Lemma 5.1, one needs to show the following: (i) ρ(x, y) is continuous

in x for each fixed y; (ii) ρ(x, y) is l.s.c. in (x, y); (iii) ρ(x, y) is convex in y for each fixed x.
Results (i) and (iii) follow straightforwardly from the definition of ρ.
For (ii), first note that, by the uniform equicontinuity of {fi(xi, ·) :

∏
j ̸=iXj → R |xi ∈

Xi} for each i and the fact that n is finite, {ρ(·, y), y ∈ R} is uniformly equicontinuous. Let
(xk, yk) be a sequence in X × X indexed by k that converges to (x, y) ∈ X × X . Then,

lim
k→∞

(ρ(xk, yk)− ρ(x, y)) = lim
k→∞

(ρ(xk, yk)− ρ(x, yk) + ρ(x, yk)− ρ(x, y))

= lim
k→∞

(ρ(x, yk)− ρ(x, y))

≥0 ,

where the second equality is due to the uniform equicontinuity of {ρ(·, y), y ∈ X} and the
last inequality is because ρ(x, y) is l.s.c. in y for any fixed x.

Remark 5.1. The property (3) is weaker than the condition that fi is continuous on X .
Indeed, since X is compact, fi(xi, x−i) is uniformly continuous on Xi×

∏
j ̸=iXj which implies

the equicontinuity of {fi(xi, ·) :
∏

j ̸=iXj → R |xi ∈ Xi}. In other words, Rosen’s theorem
on the existence of convex continuous games with compact convex actions sets is a corollary
of Theorem 5.3.
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Appendix B: Other proofs and lemmata

Lemma 5.4 (Shapley-Folkman Lemma [41]). For n compact subsets S1, . . . , Sn of Rq, let
x ∈ conv

∑n
i=1 Si =

∑n
i=1 convSi, where conv signifies the convex hull, and the sum over

sets is to be understood as a Minkowski sum. Then,

• there is a point xi ∈ convSi for each i such that x =
∑n

i=1 xi, and xi ∈ Si except for
at most q values of i; and

• there is a point yi ∈ Si for each i such that ∥x−
∑n

i=1 yi∥Rq ≤
√
min{q, n}d, where d

denotes the maximal diameter of Si.

In the proofs of Lemmata 5.5, 5.6, and 2.6, in order to simplify the notation, i and
x−i ∈ X̃−i are arbitrarily fixed. Index i and the parameter x−i are thus omitted in fi, f̃i,
Xi, X̃i and Z(i, ·).

Lemma 5.5. Under Assumption 1, for each x−i ∈ X̃−i,

(1) f̃i(xi, x−i) ≤ fi(xi, x−i) for all xi ∈ Xi;

(2) the infimum in (2.2) can be attained, i.e., it is in fact a minimum for all xi ∈ Xi;

(3) the function f̃i(·, x−i) is l.s.c. and convex on X̃i, and conv (epi fi(·, x−i)) = epi f̃i(·, x−i) =
conv (epi fi(·, x−i));

(4) both f̃i(·, x−i) and fi(·, x−i) attain their minima on X̃i and Xi respectively; and

min
x̃i∈X̃i

f̃i(x̃i, x−i) = min
xi∈Xi

fi(xi, x−i) . (5.1)

In particular, if x̃i ∈ argminyi∈X̃i
f̃i(yi, x̃−i), then Z(i, x̃) ⊂ argminyi∈Xi fi(yi, x̃−i),

where Z(i, x̃) is an arbitrary generator for (i, x̃) defined in Definition 2.2.

Proof of Lemma 5.5.
The lemma is a particular case of more general results well-known in the field of convex
analysis that have been shown in various works, such as [16, Lemma X.1.5.3]. We will
provide a proof for this particular case for the sake of completeness.
(1) For x ∈ X, in the definition of f̃(x), take xk = x, αk = 1

d+1 for all k. By definition,

f̃(x) ≤
∑d+1

k=1 α
kf(xk) = f(x).

(2) Suppose that ((αk,n)k, (x
k,n)k)n∈N is a minimizing sequence for f̃(x̃), i.e.,

f̃(x̃) = limn→∞
∑d+1

k=1 α
k,nf(xk,n), with ((αk,n)k, (x

k,n)k)n∈N satisfying the conditions in
(2.2). Since (α1,n) ∈ [0, 1] for all n, it has a convergent subsequence α1,ϕ1(n), which con-
verges to some α1. Consider sequence α2,ϕ1(n) which has a subsequence α2,ϕ2(n) converging
to some α2. Note that ϕ2(n) is a subsequence of ϕ1(n). Repeat this operation d + 1
times and obtain the subsequences ϕ1(n), . . . , ϕd+1(n) such that αk,ϕk(n) converges to αk,
for k = 1, . . . , d+1. Consider x1,ϕd+1(n), which is in the compact set X. It has a convergent
subsequence x1,ϕd+2(n) converging to x1 ∈ X . Again, take a subsequence ϕd+3(n) such that
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x2,ϕd+3(n) converges to xk, and so on. Finally, one obtains a subsequence ϕ2d+2(n) of N such
that

f̃(x̃) = lim
n→∞

d+1∑
k=1

αk,ϕ2d+2(n)f(xk,ϕ2d+2(n)) , (5.2)

αk = lim
n→∞

αk,ϕ2d+2(n) , αk ∈ [0, 1] , k = 1, 2, · · · , d+ 1 , (5.3)

d+1∑
k=1

αk = lim
n→∞

d+1∑
k=1

αk,ϕ2d+2(n) = 1 , (5.4)

xk = lim
n→∞

xk,ϕ2d+2(n) , xk ∈ X , k = 1, 2, · · · , d+ 1 , (5.5)

d+1∑
k=1

αkxk = lim
n→∞

d+1∑
k=1

αk,ϕ2d+2(n)xk,ϕ2d+2(n) = lim
n→∞

x̃ = x̃ . (5.6)

Then,

d+1∑
k=1

αkf(xk) ≤ lim
n→∞

d+1∑
k=1

αkf(xk,ϕ2d+2(n)) = lim
n→∞

d+1∑
k=1

αk,ϕ2d+2(n)f(xk,ϕ2d+2(n))

= f̃(x̃) ≤
d+1∑
k=1

αkf(xk) .

where the first inequality is due to (5.5), the second equality is due to (5.3), the third
equality is due to (5.2) and the fourth inequality due to (5.4), (5.6) and (2.2). This shows
that f̃(x̃) =

∑d+1
k=1 α

kf(xk), i.e., (αk, xk)d+1
k=1, is a minimizer.

(3) On the one hand, for all (x, y) ∈ conv (epi f), by the Caratheodory theorem [6, Proposi-
tion 1.2.1], there exist (xk, yk) ∈ epi f , k = 1, . . . , d+ 1 such that (x, y) =

∑d+1
k=1 α

k(xk, yk),

with α ∈ Sd. Hence, yk ≥ f(xk), and y =
∑d+1

k=1 α
kyk ≥

∑d+1
k=1 α

kf(xk) ≥ f̃(x). This shows
that (x, y) ∈ epi f̃ . Therefore, conv (epi f) ⊂ epi f̃ . Recall that f is l.s.c.; hence, epi f is a
closed set and thus so is conv (epi f). Thus, conv (epi f) ⊂ epi f̃ .

On the other hand, for all (x, y) ∈ epi f̃ , y ≥ f̃(x). Let ((αk,n)k, (x
k,n)k)n∈N be the min-

imizing sequence for f̃(x), i.e., f̃(x) = limn→∞
∑d+1

k=1 α
k,nf(xk,n), with αk,n, xk,n satisfying

the conditions in (2.2). Then, y = limn→∞
∑d+1

k=1 α
k,n(f(xk,n)+ δ

d+1), where δ = y−f̃(x) ≥ 0.

Denote yn =
∑d+1

k=1 α
k,n(f(xk,n) + δ

d+1). Then, (x, yn) ∈ conv(epi f), and limn→∞(x, yn) =

(x, y). This means that (x, y) ∈ conv(epi f) and, therefore, epi f̃ ⊂ conv (epi f).
In conclusion, epi f̃(·) = conv (epi f(·)), which implies that the epigraph of f̃ is closed

and convex. Thus, f̃ is l.s.c. and convex on X̃ .

(4) By the lower semicontinuity of f̃ and f on the compact sets X̃ and X, their minima can
be attained. The equality (5.1) is thus clear by the definition in (2.2).

Remark 5.2. If fi(·, x−i) is not l.s.c, the inclusion relationship in Lemma 5.5(2) can be
strict, as shown, respectively, by the following two examples of dimension 1.

• X = {0} ∪ {±1
z}z∈N∗ , f(x) = |x| for x ∈ X \ {0}, and f(0) = 1. Then, f̃(x) = |x|, for

all x ∈ X̃ = [−1, 1], and conv (epi f) ⊊ epi f̃ .
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• X = [0, 1], f(x) = 0 for x ̸= 0, and f(0) = 1. Then, f̃(x) = f(x) for all x ∈ [0, 1], and
epi f̃ ⊊ conv (epi f).

Lemma 5.6. Under Assumption 1, for any profile x̃ ∈ X̃ , for any player i, for all xi ∈
Z(i, x̃),

(1) fi(xi, x̃−i) = f̃i(xi, x̃−i);

(2) for any h ∈ ∂if̃i(x̃i, x̃−i),

fi(xi, x̃−i) = f̃i(xi, x̃−i) = f̃i(x̃i, x̃−i) + ⟨h, xi − x̃i⟩ . (5.7)

Proof of Lemma 5.6. Let {x1, . . . , xd+1} ⊂ X be a generator of (x̃, f̃(x̃)) and let α ∈ Sd be
their corresponding weights.

(1) Suppose that there is a k such that f(xk) > f̃(xk). Then, there exists (yl)l in X and
β ∈ Sd such that xk =

∑
l β

lyl and f̃(xk) =
∑

l β
lf(yl) < f(xk). In consequence, f̃(x̃) =∑

m αmf(xm) >
∑

m ̸=k α
mf(xm) +

∑
l α

kβlf(yl), while
∑

m̸=k α
mxm +

∑
l α

kβlyl = x̃ and∑
m ̸=k α

m +
∑

l α
kβl = 1, contradicting the definition of f̃(x̃).

(2) By the definition of the subdifferential, one has

f̃(xk) ≥ f̃(x̃) + ⟨h, xk − x̃⟩ , ∀k = 1, . . . , d+ 1 . (5.8)

Multiplying (5.8) by αk for each k and adding the d+ 1 inequalities yield

d+1∑
k=1

f̃(xk) ≥ f̃(x̃) + ⟨h,
∑
k

αkxk − x̃⟩ ⇔ f̃(x̃) ≥ f̃(x̃) . (5.9)

If, for at least one k, the inequality in (5.8) is strict, then the inequalities in (5.9) are strict
as well, which is absurd. Therefore, for each k, f̃(xk) = f̃(x̃) + ⟨h, xk − x̃⟩.

Proof of Lemma 2.6. First note that x̃ is in ri(convZ(x̃)), the relative interior of convZ(x̃).
Hence, for t > 0 small enough, x̃± t(x− x̃) is in ri(convZ(x̃)) ⊂ X̃ . By (2.5),

〈
h, x̃± t(x−

x̃)− x̃
〉
≥ −η∥x̃± t(x− x̃)− x̃∥, which yields

∣∣〈h, x− x̃
〉∣∣ ≤ η∥x− x̃∥. Then, by Lemma 5.6,

|f̃(x)− f̃(x̃)| = |⟨h, x− x̄⟩| ≤ η∥x− x̃∥.

Proof of Theorem 2.7. For each i ∈ N , define a set Ei(x̃) := AiZ(i, x̃) in Rq. Since x̃i ∈
conv (Z(i, x̃)), one has

∑
i∈N Aix̃i ∈

∑
i∈N conv(Ei(x̃)) = conv

(∑
i∈N Ei(x̃)

)
by the linear-

ity of the Ai’s. According to the Shapley-Folkman Lemma, there exists ei ∈ conv(Ei(x̃)) for
each i ∈ N , and a subset I ⊂ N with |I| ≤ q, such that (i)

∑
i∈N Aix̃i =

∑
i∈N ei, and (ii)

ei ∈ Ei(x̃) for all i /∈ I. Thus, for all i /∈ I, there exists x̄i ∈ Z(i, x̃), such that ei = Aix̄i.
For all i ∈ I, take arbitrarily x̄i ∈ Z(i, x̃). Then,∥∥∥∑

i∈N
Aix̃i −

∑
i∈N

Aix
∗
i

∥∥∥ ≤
∥∥∥∑
i∈N

Aix̃i −
∑
i∈N

Aix̄i

∥∥∥ =
∥∥∥∑
i∈N

ei −
∑
i∈N

Aix̄i

∥∥∥ =
∥∥∥∑

i∈I
Ai(x̃i − x̄i)

∥∥∥
≤ √

qM∆ . (5.10)
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Now, for all i, x∗i ∈ Z(i, x̃), so that it satisfies

fi(x
∗
i , x̃−i) ≤ f̃i(x̃i, x̃−i) ≤ f̃i(xi, x̃−i) + ϵ+ η ≤ fi(xi, x̃−i) + ϵ+ η , for all xi ∈ Xi , (5.11)

according to Lemma 5.6.(1), Lemma 2.6 and Lemma 5.5.(1).
Recall that fi(x) = θi(xi,

1
n

∑
j∈N Aj xj). Hence, for any xi ∈ Xi

fi(xi, x̃−i) = θi

(
xi,

1

n
Ai xi +

1

n

∑
j∈N−i

Aj x̃j

)

= θi

(
xi,

1

n
Ai xi +

1

n

∑
j∈N−i

Aj x
∗
j +

1

n
Ai (x

∗
i − x̃i) +

1

n

∑
j∈N

Aj (x̃j − x∗j )

)

= θi

(
xi,

1

n
Ai xi +

1

n

∑
j∈N−i

Aj x
∗
j + δi

)
− θi

(
xi,

1

n
Ai xi +

1

n

∑
j∈N−i

Aj x
∗
j

)
+ fi(xi, x

∗
−i) ,

where δi :=
1
nAi (x

∗
i − x̃i) +

1
n

∑
j∈N Aj (x̃j − x∗j ).

By (5.10), ∥δi∥ ≤ (
√
q+1)M∆

n . Using Assumption 1, we can show that, for any xi ∈ Xi,∣∣fi(xi, x∗−i)− fi(xi, x̃−i)
∣∣ ≤ H

(
(
√
q + 1)M∆

n

)γ

.

Injecting this result into (5.11) yields

fi(x
∗
i , x

∗
−i) ≤ fi(xi, x

∗
−i) + ϵ+ η + 2H

(
(
√
q + 1)M∆

n

)γ

, ∀xi ∈ Xi , ∀i ∈ N . (5.12)

Lemma 5.7. Under Assumption 1, suppose that x̃ ∈ X̃ is an ϵ-PNE in Γ̃ satisfying the
η-stability condition with respect to (Z(i, x̃))i, where Z(i, x̃) = {x1i , x2i , . . . , x

li
i } with 1 ≤

li ≤ d + 1 and x̃i =
∑li

l=1 α
l
ix

l
i, where α ∈ Sli−1. Each player i plays a mixed strategy

independently, i.e., a random action Xi following the distribution µ̃i over Xi defined by
P(Xi = xli) = αl

i. In other words,

µ̃i =

li∑
l=1

αl
iδxl

i
, (5.13)

where δxl
i
stands for the Dirac distribution on xli. Then,

E
∥∥∥∑
i∈N

Aix̃i −
∑
i∈N

AiXi

∥∥∥ ≤
√
nM∆ .

Proof. By the independence of Xi, the AiXi are independent of each other. From the
definition of µ̃i, E(AiXi) = Aix̃i. Therefore,(

E
∥∥∥∑
i∈N

Aix̃i −
∑
i∈N

AiXi

∥∥∥)2

≤ E

[∥∥∥∑
i∈N

Aix̃i −
∑
i∈N

AiXi

∥∥∥2] =
∑
i∈N

Var(AiXi) ≤ nM2∆2 ,

where the first inequality is due to Jensen’s inequality.
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Proof of Proposition 2.8. By the same arguments used in the proof of Theorem 2.7, one has

|fi(xi, x̃−i)− fi(xi, X−j)| ≤ H ∥δi(X)∥γ ,

where δi(X) := 1
nAi (Xi − x̃i) +

1
n

∑
j∈N Aj (x̃j −Xj). By Lemma 5.7,

E∥δi(X)∥ ≤ 1 +
√
n

n
M∆ .

Besides, since Xi takes values in Z(i, x̃),

fi(Xi, X−i) = fi(Xi, X−i)− fi(Xi, x̃−i) + fi(Xi, x̃−i)

≤ fi(Xi, X−i)− fi(Xi, x̃−i) + fi(xi, x̃−i) + ϵ+ η

= fi(Xi, X−i)− fi(Xi, x̃−i) + fi(xi, x̃−i)− fi(xi, X−i) + fi(xi, X−i) + ϵ+ η ,

so that

fi(Xi, X−i)− fi(xi, X−i) ≤ |fi(Xi, X−i)− fi(Xi, x̃−i)|+ |fi(xi, x̃−i)− fi(xi, X−i)|+ ϵ+ η

≤ 2H(δi(X))γ + ϵ+ η .

Therefore,

E
[
fi(Xi, X−i)− fi(xi, X−i)

]
≤ 2H E

[
∥δi(X)∥γ

]
+ ϵ+ η ≤ 2H

(
(
√
n+ 1)M∆

n

)γ

+ ϵ+ η .

Proof of Lemma 3.1. (1) First show that, for any fixed xi ∈ Xi, the function θi(xi, y) :=〈
g(y + ai

n (x
0
i − xi)), xi

〉
+ ℓi(xi) is Lg∆-Lipschitz in y on Ω. For this, fix xi ∈ Xi. For any y

and y′ in Ω,

|θi(xi, y′)− θi(xi, y)|2 =
∣∣∣〈g(y′ + ai

n
(x0i − xi)

)
− g
(
y +

ai
n
(x0i − xi)

)
, xi

〉∣∣∣2
≤
∥∥∥g(y′ + ai

n
(x0i − xi)

)
− g
(
y +

ai
n
(x0i − xi)

)∥∥∥2∆2

=
d∑

t=1

(
gt

(
y′t +

ai
n
(x0i,t − xi,t)

)
− gt

(
yt +

ai
n
(x0i,t − xi,t)

))2
∆2

≤ L2
g∆

2
d∑

t=1

(y′t − yt)
2

= L2
g∆

2∥y′ − y∥2 ,

where the first inequality results from the Cauchy-Schwarz inequality, while the second
inequality is true because gt is Lgt-Lipschitz.

(2) It is easy to see that |fi(xi, x−i) − hi(
1
n

∑
j∈N ajxj) − f̄i(xi, x−i)| ≤ LgM∆2

n for all

xi ∈ Xi and all x−i ∈ X̃−i. Hence, if x̄ ∈ X is an ϵ-PNE of Γ̄, then, for each i, for any
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xi ∈ Xi,

fi(x̄i, x̄−i) ≤f̄i(x̄i, x̄−i) + hi

( 1
n

∑
j∈N

aj x̄j

)
+

LgM∆2

n

≤f̄i(xi, x̄−i) + ϵ+ hi

( 1
n
aixi +

1

n

n∑
j ̸=i

aj x̄j

)
+

LhM∆

n
+

LgM∆2

n

≤fi(xi, x̄−i) + ϵ+
LhM∆

n
+

2LgM∆2

n
,

where the second inequality is due to the definition of ϵ-PNE and the Lipschitz continuity
of hi.

Lemma 5.8. Under Assumption 2, let (xk)k∈N be the sequence generated by Algorithm 1
with some initial point x0 ∈ X̃ . Then,

(1)
∑∞

k=1 ∥xk−1 − xk∥2 ≤ 2n2

m2Lg
C, where C = (d∆Lg + 2Br)M ;

(2) for any K ∈ N∗, there exists some k∗ ≤ K, such that ∥xk∗−1 − xk
∗∥ ≤

√
2C n

m
√

LgK
.

Proof of Lemma 5.8. Consider the following two real-valued functions defined on X̃ :

G0(x) :=

d∑
t=1

Gt

( 1
n

∑
j∈N

ajxj,t

)
, G(x) := G0(x) +

∑
j∈N

aj
n
r̃j(xj) , (5.14)

where Gt is a primitive function of gt, which exists thanks to Assumption 2.
Note that the function G0 is convex and differentiable on a neighborhood of X̃ , and

the convex function r̃j is uniformly bounded on X̃j for all j ∈ N with the same bound Bℓ,
according to Assumption 2.

Besides, it is easy to see that, for any i and fixed x−i ∈ X̃−i,∇iG0(xi, x−i) :=
∂G0(xi,x−i)

∂xi
=

ai
n g(

1
naixi +

1
n

∑
j ̸=i ajxj) is

a2iLg

n2 -Lipschitz continuous on X̃i.
Therefore, Assumptions 1 and 2 in [47] are verified. One can thus apply Lemma 2.2 from

[47] and obtain ∑
i∈N

a2iLg

2n2
∥xki − xk+1

i ∥2 ≤ G(xk)−G(xk+1) ,

so that

∥xk − xk+1∥2 ≤ 2n2

m2Lg
(G(xk)−G(xk+1)) .

In consequence,
∞∑
k=0

∥xk − xk+1∥2 ≤ 2n2

m2Lg
(G(x0)−Gmin) , (5.15)
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where Gmin, defined as inf{x∈X̃}G(x), exists and is finite, because G is l.s.c. on the compact

set X̃ . Suppose that Gmin is attained at x ∈ X̃ ; then,

G(x0)−Gmin = G(x0)−G(x)

=
d∑

t=1

∫ 1
n

∑
j∈N ajx

0
j,t

1
n

∑
j∈N ajxj,t

gt(s)ds+
∑
j∈N

aj
n
(r̃j(x

0
j )− r̃j(xj))

≤ dM∆Bg + 2MB ,

(5.16)

where the last inequality is due to the mean value theorem and Assumption 2. Combining
(5.15) and (5.16) yields

∑∞
k=0 ∥xk − xk+1∥2 ≤ 2n2

m2Lg
C. This immediately implies

K∑
k=1

∥xk−1 − xk∥2 ≤ 2n2

m2Lg
C .

The second result of the lemma is then straightforward.

Proof of Proposition 3.2. First, notice that the vector function ζ : X̃ → Rd, x 7→ ζ(x) =

g
(
1
n

∑
j∈N ajxj

)
is

LgM√
n
-Lipschitz continuous, i.e., ∥ζ(x)−ζ(y)∥ ≤ LgM√

n
∥x−y∥, for all x, y ∈

X̃ . Indeed, ∥ζ(x) − ζ(y)∥2 =
∑d

t=1 |gt(
1
n

∑
j∈N ajxj,t) − gt(

1
n

∑
j∈N ajyj,t)|2 ≤∑d

t=1

∣∣Lgt
n |
∑

j∈N aj(xj,t − yj,t)|
∣∣2 ≤∑d

t=1

(L2
g

n2

∑n
j=1 a

2
j

∑
j∈N (xj,t − yj,t)

2
)
≤ L2

gM
2

n ∥x− y∥2,
where the first inequality is because gt is Lgt-Lipschitz, while the second results from the
Cauchy-Schwarz inequality.

Next, suppose that the sequence (xk)k∈N is generated by Algorithm 1 with some initial
point x0 ∈ X̃ . Let us show that, if ∥xk−1 − xk∥ ≤ uk, then, x

k satisfies the full η(uk)∆-

stability condition and, furthermore, it is an η(uk)∆-PNE of game Γ̃, where η(uk) =
LgMuk√

n
+

2LgM∆
n .

Since ∥xk − xk−1∥ ≤ uk, one has ∥(xk1, . . . , xki−1, x
k
i , x

k
i+1, . . . , x

k
n) − (xk1, . . . , x

k
i−1, x

k−1
i ,

xk−1
i+1 , . . . , x

k−1
n )∥ ≤ uk. Thus, the Lipschitz continuity of ζ on X̃ and the Lipschitz continuity

of g in xi imply that∥∥∥g( 1
n

∑
j ̸=i

ajx
k
j +

1

n
aix

0
i

)
− g
( 1
n

∑
j<i

ajx
k
j +

1

n
aix

k−1
i +

1

n

∑
j>i

ajx
k−1
j

)∥∥∥
≤
∥∥∥g( 1

n

∑
j ̸=i

ajx
k
j +

1

n
aix

0
i

)
− g
( 1
n

∑
j∈N

ajx
k
j

)∥∥∥
+
∥∥∥g( 1

n

∑
j∈N

ajx
k
j

)
− g
( 1
n

∑
j<i

ajx
k
j +

1

n
aix

k−1
i +

1

n

∑
j>i

ajx
k−1
j

)∥∥∥
≤ LgM∆

n
+

LgMuk√
n

.

(5.17)

The first order condition of optimality of the optimization problem (3.3) is the following:
there exists some pi in the subdifferential of r̃i(x

k
i ) at x

k
i , denoted by ∂r̃i(x

k
i ), such that for
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all xi ∈ X̃i,〈
g
( 1
n

∑
j<i

ajx
k
j +

1

n

∑
j≥i

ajx
k−1
j

)
+

aiLg

n
(xki − xk−1

i ) + pi, xi − xki

〉
≥ 0 . (5.18)

Then,〈
g
( 1
n

∑
j ̸=i

ajx
k
j +

1

n
aix

+
i

)
+ pi, xi − xki

〉
=
〈
g
( 1
n

∑
j ̸=i

ajx
k
j +

1

n
aix

+
i

)
− g
( 1
n

∑
j<i

ajx
k
j +

1

n

∑
j≥i

ajx
k−1
j

)
, xi − xki

〉
+
〈
g
( 1
n

∑
j<i

ajx
k
j +

1

n

∑
j≥i

ajx
k−1
j

)
+

aiLg

n
(xki − xk−1

i ) + pi, xi − xki

〉
−
〈aiLg

n
(xki − xk−1

i ), xi − xki

〉
≥
〈
g
( 1
n

∑
j ̸=i

ajx
k
j +

1

n
aix

+
i

)
− g
( 1
n

∑
j<i

ajx
k
j +

1

n
aix

k
i +

1

n

∑
j>i

ajx
k−1
j

)
, xi − xki

〉
−
〈aiLg

n
(xki − xk−1

i ), xi − xki

〉
≥ −

(LgMuk√
n

+
LgM∆

n
+

aiLg∆

n

)
∥xi − xki ∥

≥ −
(LgMuk√

n
+

2LgM∆

n

)
∥xi − xki ∥ = −η(uk)∥xi − xki ∥ ,

where the first inequality is due to (5.18), while the second inequality is due to (5.17)
and the Cauchy-Schwarz inequality. Then, according to Lemma 2.6, xk satisfies the full
η(uk)∆-stability condition for game Γ̃, where η(uk) =

LgMuk√
n

+
2LgM∆

n .

Furthermore, since r̃i is convex on X̃i,

f̄i(xi, x
k
−i)− f̄i(x

k) =
〈
g
( 1
n

∑
j ̸=i

ajx
k
j +

1

n
aix

+
i

)
, xi − xki

〉
+ r̃i(xi)− r̃i(x

k
i )

≥
〈
g
( 1
n

∑
j ̸=i

ajx
k
j +

1

n
aix

+
i

)
, xi − xki

〉
+ ⟨pi, xi − xki ⟩

≥ −(
LgMuk√

n
+

2LgM∆

n
)∥xi − xki ∥ .

Thus, xk is an η(uk)∆-PNE of game Γ̃.

For any K ∈ N∗, there exists some k∗ ≤ K such that ∥xk∗−1−xk
∗∥ ≤

√
2Cn

m
√

LgK
according

to Lemma 5.8(2). The conclusion is immediately obtained by taking ω(K,n) = η
( √

2Cn

m
√

LgK

)
.

Proof of Theorem 3.3. Proposition 3.2 shows that xk
∗
is an approximate PNE of game Γ̃

(obtained through the convexification of the non-convex auxiliary game Γ̄). Then, Theorem
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2.7 is applied to show that (the “Shapley-Folkman disaggregation” of xk
∗
) x∗ is an approx-

imate PNE of the non-convex auxiliary game Γ̄. The use of Theorem 2.7 is justified by
Lemma 3.1(1). Finally, Lemma 3.1(2) is evoked to show that x∗ is an approximate PNE of
the original non-convex game Γ.
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