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aggregative games

Kang Liu∗, Nadia Oudjane†, Cheng Wan‡
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Abstract

This paper shows the existence of O( 1
nγ )-Nash equilibria in n-player noncooperative

sum-aggregative games where the players’ cost functions depend only on their own ac-
tion and the average of all players’ actions, is lower semicontinuous in the former, while
γ-Hölder continuous in the latter. Neither the action sets nor the cost functions need to
be convex. For an important class of sum-aggregative games which includes congestion
games with γ being 1, a gradient-proximal algorithm is used to construct an O( 1

n )-Nash
equilibria with at most O(n3) iterations. These results are applied to a numerical exam-
ple of demand-side management of the electricity system. The asymptotic performance
of the algorithm is illustrated when n tends to infinity.

Keywords. Shapley-Folkman lemma, sum-aggregative games, nonconvex game, large
finite game, ε-Nash equilibrium, gradient-proximal algorithm, congestion game

MSC Class Primary: 91A06; secondary: 90C26

1 Introduction

This paper studies approximate pure-Nash equilibria (PNE for short) for n-player nonco-
operative games involving non-convexities in players’ costs or action sets. The goal is to
show the existence of such approximate equilibria under certain conditions, and to propose
an algorithm allowing their effective calculation, in some specific cases. In particular, this
paper focuses on a specific class of noncooperative games (which includes congestion games)
referred to as sum-aggregative games (Selten [42], Corchón [9], Jensen [22]). The cost of
each player depends on the weighted sum of the other players’ decisions. These games find
practical applications in various fields in political science, economics, social biology, and
engineering, such as voting [32, 36], market competition [31], public goods provision [2, 15],
rent seeking [11], population dynamics [17], traffic analysis [10, 27], communications net-
work control [26, 33] and electrical system management [18, 21]. However, in these real-life
situations, the players’ action sets and their cost functions are often nonconvex.
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This work is motivated by concrete applications for which it is unreasonable to neglect
the nonconvexities inherent to the problem. In particular, we are interested in demand-side
management in electrical systems [20], where each flexible consumer is considered as a player
trying to minimize her electricity bill by modulating her consumption (e.g. electric vehicle
charging). We design a game where the players’ bills (costs) depend on both their own
consumption and the total consumption of all players in order to ensure that the Nash equi-
libria or ε-Nash equilibria attain the goal of shaving the peak demand and smoothing the
load curve of the power grid. Mathematically, we are interested in the existence and com-
putation of Nash or ε-Nash equilibria of the game. In this context, the technical constraints
of flexible electrical devices (such as the battery of an electric vehicle) limit the number of
feasible electrical consumption profiles. They also generally imply nonconvex action sets, for
example, only allowing for discrete power consumption profiles. However, most theoretical
or algorithmic results concerning games are limited to the convex framework, in which the
players’ action sets as well as their cost functions are convex. Our motivation is precisely
to propose theoretical and algorithmic tools considering large nonconvex sum-aggregative
games, in order to address demand-side management applications in a relevant way.

In the convex framework, a PNE is known to exist under mild regularity conditions (see,
for example, Rosen [38]). Outside the convex framework, it is generally difficult to provide
existence results for PNE and approximation algorithms with performance guarantees.

When players have a finite number of actions, Mondrer and Shapley [30] show that
potential games, where a so-called potential function exists, admit PNEs. As a matter
of fact, every finite potential game is isomorphic to a finite congestion game introduced
by Rosenthal [39], where players have equal weights and non-player-specific resource cost
functions. Recall that, in a congestion game, resources are shared among players, with each
resource having a cost function depending on the aggregate load applied to it. However,
when players have player-specific weights and/or resource cost functions, a potential function
no longer necessarily exists. The existence of PNEs is then not guaranteed, except in
some particular cases (cf. Milchtaich [29]). In integer-splittable congestion games where
the unequally integer-weighted players can split their weight into unit-weight blocks, the
existence of PNE is shown by Tran-Thanh et al. [44] for the case where a pure strategy
consists in a single resource and the non-player-specific resource cost functions are convex
and monotone, and by Meyers [28] for the case where the non-player-specific resource cost
functions are linear. For games with discrete (but not necessarily finitely many) strategies,
Sagratella [40] proposes a branching method to compute the whole solution set of PNEs. He
proves the existence of PNEs for a particular class of such games and proposes an algorithm
leading to one of the equilibria. However, when the players’ cost functions are nonconvex
and/or their action sets are nonconvex but not necessarily finite, there is no general result
for the existence of PNEs.

Even in the convex setting, convergent algorithms for the computation of (ε-)PNE in
games are known only for some special cases. For example, for potential games or (strongly)
monotone games. A common approach is to solve the variational inequality characterizing
the PNEs in such games (cf. Facchinei and Pang [13] and the references therein). Scutari et
al. 2014 [41] consider generic n-player games which need not be large nor aggregative, but
with strongly monotone inequality characterizing the PNE. They use proximal best-reply
algorithms to solve this variational inequality. Paccagnan, Kamgarpour and Lygeros 2016
[35] consider a specific convex aggregative game and use a decentralized gradient projection
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algorithm to solve the strongly monotone variational inequality characterizing the PNE.
Paccagnan et al. 2019 [34] studies ε-PNE in convex large aggregative games with coupling
constraints. Their methodology is close to ours in the sense that they only look for an
ε-PNE (which they call Wardrop equilibrium) instead of an exact one. They use respec-
tively a decentralized gradient projection algorithm and a decentralized best-reply (to the
aggregate term) algorithm to solve the variational inequality characterizing this Wardrop
equilibrium. Compared with their work, our novelty consists in studying nonconvex games.
We proceed by first finding an ε-PNE of an auxiliary convex game. We then develop a
specific algorithm to ensure that the resulting ε-PNE verifies a particular condition called
the stability condition, which is necessary for recovering an ε-PNE of the original nonconvex
game.

The originality of this paper is to circumvent the nonconvexity by exploiting the fact
that large sum-aggregative games approach a convex framework when the number of play-
ers is large. The counterpart of this approach is to search for an additively ε-PNE (cf.
Definition 2.1) instead of an exact PNE. The main inspirations of the present work are
[43] in economics and [48] in optimization. Starr 1969 [43] was interested in computing
general equilibria for nonconvex competitive economy in terms of price and quantity, while
Wang 2017 [48] considered large scale nonconvex separable optimization problems coupled
by sum-aggregative terms. In both cases, the authors proposed to convexify the problem,
taking advantage of the large number of agents or subproblems to bound the error induced
by the convexification, thanks to the Shapley-Folkman Lemma (cf. Lemma 5.4). Roughly
speaking, the Shapley-Folkman Lemma states that the Minkowski sum of a finite number of
sets in Euclidean spaces is close to convex, when the number of sets is very large compared
with their dimensions. It has been applied in nonconvex optimization for its convexification
effect. Aubin and Ekeland [1] used the lemma to derive an upper bound on the duality gap
in an additive, separable nonconvex optimization problem. Since, quite a few papers have
extended or sharpened this result (cf. Ekeland and Temam [12], Bertsekas and coauthors
[4, 7], Pappalardo [37], Kerdreux et al. [24], Bi and Tang [8]). These theoretical results
have found applications in engineering, such as the large-scale unit commitment problem
[3, 25] and optimization of Plug-in Electric Vehicle charging [47], optimization of multi-
carrier communication systems [50], supply-chain management [46], and spatial graphical
model estimation [14].

Main contributions. The main contribution of the present paper is threefold.
(C1) Theoretically, Proposition 2.4 and Theorem 2.7 give the existence of O( 1

nγ )-PNEs
for n-player nonconvex sum-aggregative games where the players’ cost functions depend
only on their own action and the average of all the players’ actions, is lower semicontinuous
in the former, and γ-Hölder continuous in the latter. Neither the action sets nor the cost
functions need to be convex.

This contribution makes use of similar approaches to Starr [43] and Wang [48], who
both used the same technique. Starr (resp. Wang) first found an economy equilibrium
of the convexified economy (resp. an optimum of the convexified optimization problem),
then used the Shapley-Folkman lemma to find a profile of choices by the agents (resp.
subproblems) that are almost all feasible except for very few agents (resp. subproblems),
such that the aggregate term remains unchanged. Then, they showed that such a profile is
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an approximation of the exact equilibrium (resp. optimum). Our first contribution consists
of two novelties. Firstly, in Proposition 2.4 we extend this approach to nonconvex sum-
aggregative games to show the existence of ε-PNE, by the “disaggregation” of an exact
PNE of an auxiliary convexified game. Secondly, in Theorem 2.7 we show that one can also
construct an ε-PNE of the nonconvex game by the “disaggregation” of an ε-PNE (instead
of an exact PNE) of the auxiliary convexified game provided that some stability condition is
satisfied. This second novelty is more significant, and it is crucial for our next contribution.

(C2) Algorithmically, for an important class of n-player nonconvex sum-aggregative
games including congestion games with γ being 1 and where action sets are compact sub-
sets of Euclidean spaces, we present an iterative gradient-proximal algorithm to compute
an ε-PNE of the convexified game which satisfies the above mentioned stability condition
(Proposition 3.1). Then, Theorem 3.2 ensures the performance of this algorithm which al-
lows to recover an O( 1

n)-PNE of the original nonconvex game with at most O(n3) iterations.
We also provide an extremely fast, easy and distributed method to obtain an O( 1√

n
)-mixed-

strategy Nash equilibrium after the same number of iterations (Corollary 3.3).
(C3) Practically, the interest of this approach is demonstrated in Section 4, where a

numerical simulation with the gradient-proximal algorithm is done for a demand-side man-
agement problem involving flexible electric vehicle charging.

Notations. In a Euclidean space, ‖ · ‖ denotes the l2-norm. For a point x ∈ Rd and a
subset X of Rd, d(x,X ) := infy∈X {‖x − y‖} is the distance from the point to the subset.
For two subsets X and Y of Rd, their Minkowski sum is the set {x+ y |x ∈ X , y ∈ Y}. For
x ∈ Rd and r ∈ R+, B(x, r) := {y ∈ Rd | ‖y − x‖ ≤ r}, the r-radial ball centered on x.

For a matrix A ∈ Rd×Rq, ‖ · ‖2 is the 2 -norm of matrices: ‖A‖2 :=
√
λmax(AτA) where

Aτ is the transpose of A and λmax(AτA) stands for the largest eigenvalue of the matrix
AτA.

The proof of Proposition 2.3 and the lemmata used for the proof is given in Appendix
A. All the other proofs and intermediate results are gathered in Appendix B.

2 Existence of ε-PNE in large nonconvex sum-aggregative
games

2.1 A nonconvex sum-aggregative game and its convexification

Consider an n-player noncooperative game Γ. The players are indexed overN = {1, 2, · · · , n}.
Each player i ∈ N has an action set Xi ⊂ Rd, which is closed and bounded but not necessar-
ily convex. Let X̃i := conv(Xi) be the convex hull of Xi (which is also closed and bounded)
and denote X :=

∏
i∈N Xi, X̃ :=

∏
i∈N X̃i, X̃−i :=

∏
j∈N−i X̃j where N−i := N \ {i}. Let

constant ∆ > 0 be such that, for all i ∈ N , the compact set Xi has diameter |Xi| :=
maxxi,yi∈Xi ‖xi − yi‖ that is not greater than ∆.

As usual, let x−i denote the profile of actions of all the players except that of player i.
Each player i has a real-valued cost function fi defined on Xi×X̃−i, which has the following
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specific form:

fi(xi, x−i) := θi

(
xi,

1

n

∑
j∈N

Ajxj

)
, for any xi ∈ Xi , x−i ∈ X̃−i , (2.1)

where each Aj is a q × d matrix for all j ∈ N , and θi is a real-valued function defined on
Xi × Ω, with Ω ⊂ Rq a neighborhood of { 1

n

∑
j∈N Ajyj | yj ∈ X̃j , ∀j ∈ N}.

Let constant M > 0 be such that ‖Ai‖2 ≤M for each i ∈ N .

Remark that Γ is a weighted sum-aggregative game. It is a generalization of sum-
aggregative games, which correspond to the specific case where, for each j ∈ N , Aj reduces
to the identity matrix. For the sake of simplicity, we still call Γ a sum-aggregative game.

Definition 2.1 (Additively ε-pure Nash equilibrium). For a constant ε ≥ 0, an additively
ε-pure Nash equilibrium (additively ε-PNE) xε ∈ X in game Γ is a profile of actions of the
n players such that, for each player i ∈ N ,

fi(x
ε
i , x

ε
−i) ≤ fi(xi, xε−i) + ε , for any xi ∈ Xi .

If ε = 0, then xε is a pure Nash equilibrium (PNE).

For the sake of simplicity, we omit “additively” whenever it causes no confusion.

For nonconvex games (where either action sets or cost functions are not convex), the
existence of a PNE is not clear. This paper uses an auxiliary convexified version of the
nonconvex game, which is helpful both in the proof of the existence of an ε-PNE of the
nonconvex game and in the construction of such an approximate PNE.

Definition 2.2 (Convexified game and Generators). The convexified game Γ̃ associated
with Γ is a noncooperative game played by n players. Each player i ∈ N has an action set
X̃i and a real-valued cost function f̃i defined on X̃ as follows: for all x ∈ X̃ ,

f̃i(xi, x−i) = inf
(αk)d+1

k=1∈Sd; zk∈Xi,∀k

{ d+1∑
k=1

αkfi(z
k, x−i)

∣∣∣xi =

d+1∑
k=1

αkzk
}
, (2.2)

where Sd := {α = (αk)d+1
k=1 ∈ Rd+1 | ∀k , αk ≥ 0 ,

∑d+1
k=1 α

k = 1} denotes the probability
simplex of dimension d.

A set of d + 1 points (zk, k = 1, . . . , d + 1) in Xi that attains the minimum in (2.2) is
called a generator for (i, x).

In the sequel, notation Z(i, x) refers to a certain generator for (i, x), and α(i, x) refers
to the corresponding (d+ 1)-dimensional vector of coefficients.

For a lower semicontinuous (l.s.c.) function, equation (2.2) just defines its convex hull
(cf. Lemma 5.5). This particular form of definition is proposed in [5].

PNE and additively ε-PNE are similarly defined for the convexified game Γ̃.

The remainder of this subsection is dedicated to a preliminary analysis of the convexified
game.

First let us introduce an assumption that will hold in this section. It ensures the existence
of generators for all (i, x) ∈ N ×X (cf. Lemma 5.5 for a proof).
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Assumption 1.
(1) For any player i ∈ N , for any y ∈ Ω, function xi 7→ θi(xi, y) is l.s.c. on Xi.
(2) There exists constants H > 0, γ > 0 such that, for all i ∈ N , for all xi ∈ Xi, function
y 7→ θi(xi, y) is (H, γ)-Hölder on y ∈ Ω, i.e.

|θi(xi, y′)− θi(xi, y)| ≤ H‖y′ − y‖γ . (2.3)

Remark 2.1. It is straightforward from Assumption 1 that fi(·, x−i) is l.s.c. in xi ∈ Xi for
any fixed x−i ∈ X̃−i.

According to Lemma 5.5, xi 7→ f̃i(xi, x−i) is convex and l.s.c on X̃i, its subdifferential
exists and let it be denoted by ∂if̃i(·, x−i). Then, for each xi ∈ X̃i, ∂if̃i(xi, x−i) is a nonempty
convex subset of Rd.

Proposition 2.3 (Existence of PNE in Γ̃). Under Assumption 1, the convexified game Γ̃
admits a PNE.

Proof. It results from Theorem 5.3 in Appendix A.

Remark 2.2. Theorem 5.3 extends Rosen’s theorem on the existence of PNE in games
with convex continuous cost functions [38] to the case where the cost functions are only
l.s.c. instead of being continuous with respect to the players’ own actions. This extension is
not trivial. Our proof follows the same lines as Rosen, and relies on the use of the Kakutani’s
fixed point theorem [23]. In particular, we show in Lemma 5.1 that the conditions required
to apply the Kakutani’s theorem are fulfilled in our case of l.s.c. convex games.

The following example shows that even the continuity of fi on Xi cannot guarantee the
continuity of f̃i on X̃i, so that Rosen’s theorem is not sufficient here.

Consider d = 3, Xi = T ∪B ∪S where T = {(x1, x2, x3) ∈ R3|(x1)2 + (x2)2 = 1, x3 = 1},
B = {(x1, x2, x3) ∈ R3|(x1)2 + (x2)2 = 1, x3 = −1}, S = {(x1, x2, x3) ∈ R3|x1 = 1, x2 =
0,−1 ≤ x3 ≤ 1}; fi is independent of x−i, and fi(x) = 0 for x ∈ T ∪ B, fi(x) = |x3| − 1
for x ∈ S. Then, for all x ∈ {(x1, x2, x3) ∈ R3|(x1)2 + (x2)2 = 1, x3 = 0} ⊂ ∂X̃i, f̃i(x) = 0
except for x∗ = (1, 0, 0), but f̃i(x

∗) = fi(x
∗) = −1.

2.2 Existence and construction of an ε-PNE of the nonconvex game

The following proposition shows the existence of ε-PNE in the nonconvex game Γ and its
construction from an exact PNE of the convexified game Γ̃.

Proposition 2.4 (Existence of ε-PNE). Under Assumption 1, the nonconvex game Γ admits

an ε-PNE, where ε = 2H(
(
√
q+1)M∆
n )γ.

In particular, suppose that x̃ ∈ X̃ is a PNE in Γ̃ (which exists according to Proposition
2.3), and Z(i, x̃) an arbitrary generator, for each player i, then x∗ ∈ X such that

x∗ ∈ argmin
xi∈Z(i,x̃), i∈N

∥∥∥∑
i∈N

Aix̃i −
∑
i∈N

Aixi

∥∥∥2
, (2.4)

is such an ε-PNE of the nonconvex game Γ.
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Sketch of the proof: By the definition of PNE in Γ̃, x̃i is a best response to x̃−i in terms
of f̃i. By Lemma 5.5, all the points in Z(i, x̃) are also best replies to x̃−i in terms of fi.

We then use the Shapley-Folkman lemma (Lemma 5.4) to disaggregate 1
n

∑
iAix̃i over

the sets Z(i, x̃) to obtain a feasible profile x∗.
Finally, we can show that 1

n

∑
iAix

∗
i ≈ 1

n

∑
iAix̃i and x∗i is (almost) a best response to

1
n

∑
iAix

∗
i .

From an algorithmic point of view, a PNE is not always easy or fast to compute for the
convexified Γ̃, even though its existence is guaranteed. Even when we have a convergent
algorithm, the outputs of the algorithm at each iteration provide only approximations of
the exact PNE which may constitute ε-PNE but rarely exact PNE. Then, the question that
naturally arises is whether the idea above is still valid if x̃ is only an ε-PNE of Γ̃, i.e. x̃i
is an ε-best response to x̃−i in terms of f̃i. More explicitly, are points in Z(i, x̃) still ε-best
replies to x̃−i in terms of fi? The answer is YES, if the ε-PNE x̃ of the convexified game Γ̃
satisfies a more demanding condition, introduced by the following definition.

Definition 2.5 (Stability condition). In game Γ̃, a point x̃ ∈ X̃ is said to satisfy the η-
stability condition with respect to (Z(i, x̃))i if, for each player i, f̃i(xi, x̃−i) ≤ f̃i(x̃i, x̃−i) + η
for all xi ∈ Z(i, x̃).

A point x̃ is said to satisfy the η-stability condition if it satisfies the η-stability condition
with respect to a certain generator profile (Z(i, x̃))i.

A point x̃ is said to satisfy the full η-stability condition if it satisfies the η-stability
condition with respect to any generator profile (Z(i, x̃))i.

The stability condition of x̃ with respect to (Z(i, x̃))i means that, for each player i, her
cost is only slightly increased if her choice is unilaterally perturbed within the convex hull
of the generator Z(i, x̃).

According to Lemma 5.5, a PNE of Γ̃ satisfies the full 0-stability condition.

A sufficient condition for the η-stability of x̃ is given by Lemma 2.6.

Lemma 2.6. Under Assumption 1, for any action profile x̃ ∈ X̃ , for any player i, if there
is a generator Z(i, x̃) and h ∈ ∂if̃i(x̃i, x̃−i), such that,〈

h, xi − x̃i
〉
≥ −η‖xi − x̃i‖ , ∀xi ∈ convZ(i, x̃) . (2.5)

then,
|f̃i(xi, x̃−i)− f̃i(x̃i, x̃−i)| ≤ η‖xi − x̃i‖ , for all xi ∈ Z(i, x̃) .

In particular, x̃ satisfies the η∆-stability condition with respect to (Z(i, x̃))i.

The following theorem shows how to construct an O( 1
nγ )-PNE of the original noncon-

vex game Γ, when we know an ε-PNE of the convexified game Γ̃ satisfying the η-stability
condition and the associated generator profile.

Theorem 2.7 (Construction of ε-PNE of Γ). Under Assumption 1, suppose that x̃ ∈ X̃ is
an ε-PNE in Γ̃ which satisfies the η-stability condition with respect to a specific generator
profile (Z(i, x̃))i. Let x∗ ∈ X be such that

x∗ ∈ argmin
xi∈Z(i,x̃), i∈N

∥∥∥∑
i∈N

Aix̃i −
∑
i∈N

Aixi

∥∥∥2
. (2.6)

Then, x∗ is a ε̃-PNE of the nonconvex game Γ, where ε̃ = ε+ η + 2H(
(
√
q+1)M∆
n )γ.
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2.3 A distributed randomized “Shapley-Folkman disaggregation”

Once an exact PNE or an ε-PNE satisfying the η-stability condition, x̃, of the convexified
game Γ̃ is obtained, as well as the associated generator profile (Z(i, x̃))i, we would like
to find an ε̃-PNE of the nonconvex game Γ, whose existence is shown by Proposition 2.4
and Theorem 2.7. However, solving (2.6) is generally hard (cf. Udell and Boyd [45] for
such a “Shapley-Folkman disaggregation” in a particular setting of optimization). In this
section, we present a method to compute an ε̌-mixed-strategy Nash equilibrium (MNE) in
a distributed way, based on the known ε-PNE of Γ̃, its associated generator profile and
coefficients. The algorithm is qualified “distributed” because, for each player i, it computes
her mixed-strategy µi from the information of x̃i, the generator Z(i, x̃) and the coefficients
α(i, x) only.

Proposition 2.8. Under Assumption 1, suppose that x̃ ∈ X̃ is an ε-PNE of Γ̃ satisfying
the η-stability condition with respect to (Z(i, x̃))i, and each player i plays a mixed strategy
µ̃i independently, i.e. a random action Xi following distribution µ̃i over Xi, defined by
P(Xi = xli) = αli, where xli ∈ Z(i, x) for l = 1, . . . , d + 1, and (αli)

d+1
l=1 = α(i, x) is the

corresponding coefficient. Then, for γ ≤ 1, µ̃ = (µ̃i)i is a ε̌-MNE of the nonconvex game Γ,

where ε̌ = ε+ η + 2H( (
√
n+1)M∆
n )γ, in the sense that

E
[
fi(Xi, X−i)

]
≤ E

[
fi(xi, X−i)

]
+ ε̌ , ∀xi ∈ Xi .

Remark 2.3. Note that this is not an algorithm for the players to attain an ε-PNE/MNE
in the nonconvex game in a decentralized adaptation/learning process, but a distributed,
randomized disaggregation algorithm to recover an ε̌-MNE of Γ from a known ε-PNE of Γ̃
satisfying the η-stability condition and its generators.

Besides, when x̃ is an exact PNE of Γ̃, all the generators of x̃ can be used in this
algorithm. On the contrary, when x̃ is only an ε-PNE of Γ̃, we need a specific profile
of generators (Z(i, x))i, with respect to which x̃ satisfies the η-stability condition. It is
not evident to find such a generator profile. However, in the next section, we provide an
algorithm to compute, for a specific class of games, an ε-PNE of Γ̃ satisfying the full η-
stability condition (i.e. with respect to any profile of generators of x̃). In that case, any
profile of generators can be used in the algorithm of Proposition 2.8.

Finally, note that the estimated error ε̌ for the distributed randomized approximate
MNE in Proposition 2.8 is larger than the estimated error ε̃ for the approximate PNE x∗ in
Theorem 2.7.

3 Computing ε-equilibria for large nonconvex congestion games

3.1 Nonconvex generalized congestion game

An extensively studied class of sum-aggregative games are congestion games. In this section,
we present an iterative algorithm to compute an ω(K,n)∆-PNE of the convexification of a
specific congestion game, where ω(K,n) tends to zero when both the number of players n
and the number of iterations K tend to +∞, while n

K tends to zero. Note that any algorithm
returning an approximate PNE of the convexified game will not necessarily ensure that it
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verifies the stability condition. The proposed algorithm is of particular interest because we
can show that the iterates provide an ω(K,n)∆-PNE of the convexified game which satisfies
the full ω(K,n)∆-stability condition (cf. Proposition 3.1). Then, taking K ∼ O(n3),
Theorem 3.2 shows that one can recover a O( 1

n)-PNE of the original nonconvex congestion
game from this ω(K,n)∆-PNE of the convexified game.

Consider a generalized congestion game where each player i ∈ N has an action set
Xi ⊂ Rd and a cost function of the following form:

fi(xi, x−i) =

〈
g
( 1

n

∑
j∈N

ajxj

)
, xi

〉
+ hi

( 1

n

∑
j∈N

ajxj

)
+ ri(xi)

=
d∑
t=1

gt

( 1

n

∑
j∈N

ajxj,t

)
xi,t + hi

( 1

n

∑
j∈N

ajxj

)
+ ri(xi) ,

(3.1)

Suppose that the following assumptions hold on Xi, (aj)j∈N ∈ Rn, gt’s, hi’s and ri’s.

Assumption 2.

• There exist constants m > 0 and M > 0, such that m ≤ ai ≤M for all i ∈ N .

• For t = 1, . . . , d, function gt : R → R is Lgt-Lipschitz continuous and nondecreas-
ing on a neighborhood of [D1, D2], where constants D1 and D2 are such that D1 ≤
mint=1,...,d;x∈X̃

1
n

∑
j∈N ajxj,t ≤ maxt=1,...,d;x∈X̃

1
n

∑
j∈N ajxj,t ≤ D2.

• For each i ∈ N , function hi : Rd → R is Lhi-Lipschitz continuous on [D1, D2]d.

• Players’ local cost functions ri : Rd → R are uniformly bounded, i.e. there exists
constant Br > 0 such that, for all i ∈ N and all xi ∈ Xi, |ri(xi)| ≤ Br.

Notation. Let constant ∆ := max{maxi∈N maxxi∈X̃i ‖xi‖,maxi∈N |X̃i|}. Let Lg :=
max1≤t≤d Lgt , Lh := maxi∈N Lhi , Bg := max1≤t≤d,D1≤s≤D2 |gt(s)|.

The convexification of Γ is rather complicated to compute in the general case. Let us
first introduce an auxiliary game which is very close to Γ but whose convexification is easier
to obtain.

Fix arbitrarily x+
i ∈ Xi for each player i ∈ N . The auxiliary game Γ̄ is defined as follows:

the player set and each player’s action set are the same as in Γ, but player i’s cost function
is, for all xi ∈ Xi and all x−i ∈ X̃−i,

f̄i(xi, x−i) :=
〈
g
( 1

n

∑
j 6=i

ajxj +
1

n
aix

+
i

)
, xi

〉
+ ri(xi) .

The original game Γ can be approximated by the auxiliary game Γ̄ because their equi-
libria are very close to each other as Lemma 5.8 in Appendix B shows.

For any fixed x−i ∈ X̃−i, f̄i(·, x−i) is composed of a linear function of xi and a local
function of xi. By abuse of notation, let us still use f̄i to denote its convexification on X̃i.
More explicitly,

f̄i(xi, x−i) :=
〈
g
( 1

n

∑
j 6=i

ajxj +
1

n
aix

+
i

)
, xi

〉
+ r̃i(xi) , (3.2)
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where r̃i is the convexification of ri defined on X̃i in the same way as f̃i.
By abuse of notation, let Γ̃ denote the convexification of Γ̄ on X̃ .

3.2 A gradient-proximal algorithm

This subsection presents a gradient-proximal algorithm based on the block coordination
proximal algorithm introduced by Xu and Yin [49] to construct an O( 1

n)-PNE of Γ̃ that
satisfies the full O( 1

n)-stability condition.

Algorithm 1: Gradient-proximal algorithm for Γ̃

Initialization: choose initial point x0 = (x0
1, x

0
2, . . . , x

0
n) ∈ X̃

for k = 1, 2, · · · do
for i = 1, 2, . . . , n do

xki = argmin
xi∈X̃i

〈
g
( 1

n

∑
j<i

ajx
k
j+

1

n

∑
j≥i

ajx
k−1
j

)
, xi−xk−1

i

〉
+
aiLg
2n

∥∥xi−xk−1
i

∥∥2
+r̃i(xi)

(3.3)
end
if stopping criterion is satisfied then

return (xk1, x
k
2, . . . , x

k
n). Break.

end

end

Remark 3.1. This is a decentralized-coordinated type algorithm. The coordinator needs to
know the current choices of the players and (ai)i to compute g

(
1
n

∑
j<i ajx

k
j+

1
n

∑
j≥i ajx

k−1
j

)
.

The value of the vector g
(

1
n

∑
j<i ajx

k
j + 1

n

∑
j≥i ajx

k−1
j

)
is sent to player i by the coordi-

nator in iteration k, when it is her turn to compute. No detailed information of the other
players’ choices is revealed. Receiving this value, player i uses her local information, i.e. ai
and r̃i, to update her choice according to (3.3), then sends it to the coordinator.

Proposition 3.1. Under Assumption 2, for K ∈ N∗, there is k∗ ≤ K such that xk
∗

is an
ω(K,n)∆-PNE of game Γ̃ which satisfies the full ω(K,n)∆-stability condition, where

ω(K,n) =

√
2CLgM

m

√
n

K
+

2LgM∆

n
, (3.4)

where C = (d∆Lg + 2Br)M .
In particular, if constant K ≥ 2C

m2Lg
n1+2δ + 1 for some constant δ > 0, then, there exists

some k∗ ≤ K such that xk
∗

is an LgM∆(n−δ + 2∆n−1)-PNE of game Γ̃ satisfying the full
LgM∆(n−δ + 2∆n−1)-stability condition.

Theorem 3.2. Under Assumption 2, for constant δ > 0 and integer K ≥ 2C
m2Lg

n1+2δ + 1,

let x∗ ∈ X be the pure-strategy profile generated by (2.6), where x̃ is replaced by xk
∗

in

Proposition 3.1. Then, x∗ is a
(
2LgM∆

(
n−δ + (q+4)∆

n

)
+ LhM∆

n

)
-PNE of the nonconvex

game Γ.
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In the case where a “Shapley-Folkman” disaggregation of xk
∗

is not easy to obtain,
one can use the distributed randomized disaggregation method introduced in Section 2.3
to immediately obtain a ε̌-MNE, where ε̌ is given by the following corollary. However, the
quality of approximation is less good than a “Shapley-Folkman” disaggregation.

Proposition 3.3. Under Assumption 2, for constant δ > 0 and integer K ≥ 2C
m2Lg

n1+2δ+1,

let µ̃ = (µ̃i)i be a profile of independent mixed strategies defined as in Lemma 5.7, where x̃

is replaced by xk
∗

in Proposition 3.1. Then, µ̃ is a
(
2LgM∆

(
n−δ+ (

√
n+4)∆
n

)
+ LhM∆

n

)
-MNE

of the nonconvex game Γ.

4 Numerical example

Here is an example of flexible electric vehicle charging control whose convex version is studied
by Jacquot et al. [20].

One day is divided into peak hours (e.g. 6 am–10 pm) and off-peak hours. The electricity
production cost function for total flexible load `P and `OP at peak and off-peak hours
are respectively CP (`P ) = αP0 `

P + β0(`P )2 and COP (`OP ) = αOP0 `OP + β0(`OP )2, where
αP0 > αOP0 > and β0 > 0. Player i’s action is denoted by `i = (`Pi , `

OP
i ), where `Pi (resp.

`OPi ) is the peak (resp. off-peak) consumption of player i. Player i’s electricity bill is then
defined by

bi(`i, `−i) :=
CP (`P )

`P
`Pi +

COP (`OP )

`OP
`OPi ,

where `P =
∑

i `
P
i , `OP =

∑
i `
OP
i . Player i’s cost is then defined by

φi(`i, `−i) = bi(`i, `−i) + γi‖`i − `refi ‖
2 (4.1)

where γi indicates her sensitivity to the deviation from her preference `ref . In [20], the
action set of player i is the convex compact set Si = {`i = (`Pi , `

OP
i ) | `Pi + `OPi = ei, `

P
i ≤

`Pi ≤ `Pi , `OPi ≤ `OPi ≤ `OPi }, where ei stands for the energy required by player i to charge an

electric vehicle battery and `Pi and `Pi (resp. `OPi and `OPi ) are the minimum and maximum
power consumption for player i during peak (resp. off-peak) hours. However, for various
reasons such as finite choices for charging power, or battery protection which demands that
the charging must be interrupted as infrequently as possible, the players’ action sets can
be nonconvex. For example, in this paper a particular case where the nonconvex action set
SNCi = {`i = (`Pi , `

OP
i ) | `Pi + `OPi = ei, `

P
i ∈ {`Pi , `Pi }} is adopted for numerical simulation.

Let us apply Algorithm 1 to this game. The asymptotic performance of the algorithm
for large n is illustrated. To avoid rescaling cost functions for each n, multiplicatively ε-PNE
defined below are considered instead of additively ε-PNE defined by Definition 2.1.

Definition 4.1 (Multiplicatively ε-PNE). For a constant ε ≥ 0, a multiplicatively ε-PNE
xε ∈ X in game Γ is a profile of actions of the n players such that, for each player i ∈ N ,

fi(x
ε
i , x

ε
−i)− inf

xi∈Xi
fi(xi, x

ε
−i) ≤ ε

(
sup
xi∈Xi

fi(xi, x
ε
−i)− inf

xi∈Xi
fi(xi, x

ε
−i)
)
.

If ε = 0, then xε is a PNE.
For x ∈ X , ε(x) := min{ε ≥ 0 | x is a multiplicatively ε-PNE } is called the relative error

of x.
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First, game (4.1) is reformulated with uni-dimensional actions. For simplification, sup-
pose that all the players have the same type of EV (Nissan Leaf 2018) with battery capacity
e, and two charging rate levels pmin and pmax. The total consumption of player i is denoted
by ei and determined by a parameter τi as follows: ei = (1−τi)e = `Pi +`OPi , where τi ∈ [0, 1]
signifies the player’s remaining proportion of energy in her battery when arriving at home.

Let xi :=
`Pi
e denote player i’s strategy in the following reformulation of game (4.1):

f̃
(n)
i (xi, x−i) = b̃

(n)
i (xi, x−i) + γ̃i‖xi − xrefi ‖

2 , (4.2)

where γ̃i indicates how player i values the deviation from her preferred consumption profile
and is uniformly set to be ne for simplification, and

b̃
(n)
i (xi, x−i) = (αP0 + β0ne

1

n

∑
j

(1− τj)xj)`Pi + (αOP0 + β0ne
1

n

∑
j

(1− τj)(1− xj))`OPi

= e(1− τi)
[(
αP0 − αOP0 − β0ne+ 2β0ne

1

n

∑
j

(1− τj)xj
)
xi

+ αOP0 + β0ne− β0ne
1

n

∑
j

(1− τj)xj
]
.

The nonconvex action set of player i, introduced in Section 1 as SNCi = {`i = (`Pi , `
OP
i ) | `Pi +

`OPi = ei, `
P
i ∈ {`Pi , `Pi }}, is now translated into Xi = {xi, xi} ⊂ [0, 1], where xi and xi cor-

respond respectively to charging at pmin and pmax.
By extracting the common factor ne(1− τi), player i’s cost function becomes

f
(n)
i (xi, x−i) :=

〈
g(n)

( 1

n

n∑
j=1

(1− τj)xj
)
, xi

〉
+ h(n)

( 1

n

n∑
j=1

(1− τj)xj
)

+
r

(n)
i (xi)

1− τi
, (4.3)

where g(n)(y) :=
αP0 −αOP0

n +β0e(2y−1), h(n)(y) :=
αOP0
n +β0e(1−y), and r

(n)
i (y) := ‖y−xrefi ‖2

for y ∈ R, where αP0 = −4.17 + 0.59 × 12n (e/kWh), αOP0 = −4.17 + 0.59 × 8n (e/kWh),
β0 = 0.295 (e/kWh2) according to Jacquot et al. [20].

Simulation parameters The peak hours are between 6 am and 10 pm while the remain-
ing hours of the day are off-peak. The battery capacity of Nissan Leaf 2018 is e = 40kWh.
The discrete action set of player i is determined as follows. The players’ arrival time at
home is independently generated according to a Von Mises distribution with parameter
κ = 1 between 5 pm and 7 pm. Their departure time is independently generated according
to a Von Mises distribution with parameter κ = 1 between 7 am and 9 am. The propor-
tion τi of energy in the battery when a player arrives at home is independently generated
according to a Beta distribution with parameter β(2, 5). Once a player arrives at home, she
starts charging at one of the two alternative levels, pmin = 3.7kW or pmax = 7kW. This
power level is maintained until the energy requirement ei is reached. The arrival and de-
parture time parameters are defined such that the problem is always feasible i.e. the energy
requirement ei can always be reached during the charging period by choosing power level
pmax. Players are all assumed to prefer charging as fast as possible, so that xrefi = xi for all
i. Fifty instances of the problem are considered for the numerical test. They are obtained
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by independent simulations of those parameters (players’ arrival and departure times and
remaining energy when arriving at home).

Algorithm 1 is applied to EV charging game Γ(n) (4.3) for n = 2s, s = 1, . . . , 15. For
each game Γ(n), for each iteration k of the algorithm, let x(n),k denote the kth iterate of
Algorithm 1 applied to game Γ(n). Then, the relative error ε(n),k of x(n),k is given by

ε(n),k := min

{
ε ≥ 0

∣∣∣ f (n)
i (x

(n),k
i , x

(n),k
−i )− inf

xi∈Xi
f

(n)
i (xi, x

(n),k
−i )

≤ ε
(

sup
xi∈Xi

f
(n)
i (xi, x

(n),k
−i )− inf

xi∈Xi
f

(n)
i (xi, x

(n),k
−i )

)}
.

Figure 1: Log-log chart of relative error ε(n),k (averaged over fifty instances of the problem)
as a function of the number of iterations k (for a fixed number of players n = 26, 27, . . . , 213).

As Figure 1 shows, the relative error decreases with the number of iterations to a certain
limit. This limiting relative error decreases with the number of players n. This observation
is consistent with equation (3.4) in Proposition 3.1. For Figure 2, according to Proposition

3.1, when the iteration number k is fixed, due to the domination term of
2LgM∆

n in equation

(3.4) when n is small, ε(n),k first decreases linearly in n before reaching a certain threshold.

After that,

√
2CLgM

m

√
n
k dominates the relative error value so that ε(n),k may increase in n.

The threshold itself increases with the iteration number k. This is exactly what Figure 2
shows.
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Figure 2: Log-log chart of relative error ε(n),k (averaged over fifty instances of the problem) as
a function of the number of players n (for a fixed number of iterations k = 30, 40, . . . , 90, 100).

5 Perspectives

Distributed and randomized “Shapley-Folkman disaggregation”. In Section 2.3, a
distributed disaggregating method is introduced to obtain a randomized “Shapley-Folkman
disaggregation” for the case γ ≤ 1. It is extremely fast and easy to carry out: once an ε-PNE
x̃ is obtained for the convexified game as well as the profile of generators (Z(i, x̃))i, each
player i chooses randomly one feasible action that is in Z(i, x̃), according to the distribution
law α(i, x). This method renders an O( 1√

n
γ )-MNE, with the error vanishing when the

number of players going to infinity. However, even if an O( 1
nγ )-PNE can be difficult to obtain

by an exact “Shapley-Folkman disaggregation”, especially if a large, centralized program is
involved, for example, to solve (2.6), it would be desirable to find other algorithms to
find better approximations of Nash equilibria of the nonconvex game. Distributed and
randomized algorithms are appealing because they can be faster to carry out, needing less
coordination hence more tractable, and taking advantage of the law of large numbers when
n is large.

Aggregation and disaggregation of clusters. In the setting of power grid manage-
ment, flexible agents can be regrouped into clusters, and each cluster is commanded by
a so-called aggregator. The EV charging game considered in this paper then takes place
between the relatively few aggregators instead of the individuals. This “aggregate game”
is different from the EV charging game in the paper, as the individuals are no longer au-
tonomous but are commanded by their respective aggregators in their choice of charging
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behavior. One can build an aggregate model for each aggregator by defining his action set
as the set of aggregate actions of the individuals in his cluster, and his cost function as
an aggregate of the individuals’ costs. When the clusters are large, it is possible to show,
with the help of the Shapley-Folkman Lemma, that the aggregators’ action sets and cost
functions are almost convex. Then, the game admits an ε-PNE (via Rosen’s existence the-
orem), and its computation could be relatively easier owing to the small number of players.
However, each aggregator then has to reconstruct for each individual under his control a
feasible action consistent with their aggregate action at the equilibrium of this “aggregate
game”. When the constraints of each flexible individuals are non-convex, this aggrega-
tion/disaggregation approach can be rather difficult to implement. An original technique
based on the Shapley-Folkman Lemma is proposed in Hreinsson et al. 2021 [19], within the
optimization framework, with applications to the management of consumption flexibilities
in power systems.

Acknowledgments. We are grateful to Frédéric Bonnans and Rebecca Jeffers for stim-
ulating discussions and comments. We particularly thank the reviewers and the associated
editor for their very relevant remarks that have helped greatly to improve the paper.

Appendix A: PNE in l.s.c. convex games

Lemma 5.1. Let R be a nonempty convex compact set in Rn. If real valued function
ρ(x, y) defined on R × R is continuous in x on R for any fixed y in R, l.s.c. in (x, y) on
R × R, and convex in y on R for any fixed x in R, then the set-valued map ζ : R → R,
x 7→ ζ(x) = arg minz∈R ρ(x, z) has a fixed point.

Proof. The Kakutani fixed-point theorem [23] will be applied for the proof. First, let us
show that ζ is a Kakutani map, i.e. (i) Γ is upper semicontinuous (u.s.c.) in set map sense
and (ii) for all x ∈ R, ζ(x) is non-empty, compact and convex.

(i) Fix x ∈ R. On the one hand, since ρ(x, y) is convex w.r.t y, ζ(x) is convex. On the other
hand, ρ(x, y) is l.s.c in y, while R is compact, hence ρ(x, y) can attain its minimum w.r.t y
and ζ(x) is thus nonempty. Besides, since ρ is l.s.c., ζ(x) = {y|ρ(x, y) ≤ minz∈R ρ(x, z)} is
a closed subset of compact set R, hence it is compact.

(ii) Recall that the set-valued map ζ is u.s.c. if, for any open set w ⊂ R, set {x ∈ R| ζ(x) ⊂
w} is open.

Let us first show by contradiction that, for arbitrary x0 ∈ R, for any ε > 0, there exists
δ > 0 such that for all z ∈ B(x0, δ), ζ(z) ⊂ ζ(x0) + B(0, ε). If it is not true, then there
exists ε0 > 0 and, for all n ∈ N∗, point zn ∈ B(x0,

1
n) such that there exists yn ∈ ζ(zn) with

d(yn, ζ(x0)) > ε0. Since sequence {yn} is in the compact set R, it has a subsequence yφ(n)

converging to some ȳ in R, and d(ȳ, ζ(x0)) ≥ ε0. Then, for all y ∈ R,

ρ(x0, ȳ) ≤ lim
n→∞

ρ(zφ(n), yφ(n)) ≤ lim
n→∞

ρ(zφ(n), y) = ρ(x0, y) ,

where the first inequality is by the lower semicontinuity of ρ in (x, y), the second inequality
is by the definition of ζ(zφ(n)), while the third equality is by the continuity of ρ in x. This
shows that ȳ ∈ ζ(x0), in contradiction with the fact that d(ȳ, ζ(x0)) ≥ ε0.
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Now fix arbitrarily an open set w ⊂ R and some x0 ∈ R such that ζ(x0) ⊂ w. Since
ζ(x0) is compact while w is open, there exists ε > 0 such that ζ(x0)+B(0, ε) ⊂ w. According
to the result of the previous paragraph, for this particular ε, there exists δ > 0 such that
ζ(z) ⊂ ζ(x0) + B(0, ε) ⊂ w for all z ∈ B(x0, δ). This means B(x0, δ) ⊂ {x ∈ R | ζ(x) ⊂ w}.
As a result, the set {x ∈ R | ζ(x) ⊂ w} is open.

Finally, according to the Kakutani fixed-point theorem, there exists x̃ ∈ R such that
x̃ ∈ ζ(x̃).

Definition 5.2. A family of real-valued functions {f(·, y) : X → R | y ∈ Y} indexed by y,
with X ⊂ Rd1 and Y ⊂ Rd2 , is uniformly equicontinuous if, for all ε > 0, there exists δ such
that, for all y ∈ Y, ‖f(x1, y)− f(x2, y)‖ ≤ ε whenever ‖x1 − x2‖ ≤ δ.

Theorem 5.3 (Existence of PNE in l.s.c. convex games). In an n-player game Γ where for
each player i ∈ {1, . . . , n}, if the following three properties hold:

(1) her action set Xi is a convex compact subset of Rd;

(2) her cost function fi(xi, x−i) : Xi ×
∏
j 6=iXj → R is convex and l.s.c.in xi ∈ Xi for any

fixed x−i ∈
∏
j 6=iXj;

(3) the family of functions {fi(xi, ·) :
∏
j 6=iXj → R |xi ∈ Xi} are uniformly equicontinuous,

then Γ admits a PNE.

Proof. Define function ρ(x, y) : X × X → R by ρ(x, y) =
∑n

i=1 fi(yi, x−i), where X =∏
iXi. It is easy to see that a fixed point of the set-valued map ζ : X → X , x 7→ ζ(x) =

arg minz∈R ρ(x, z) is a Nash equilibrium of game Γ.
In order to apply Lemma 5.1, one needs to show that: (i) ρ(x, y) is continuous in x for

each fixed y; (ii) ρ(x, y) is l.s.c. in (x, y); (iii) ρ(x, y) is convex in y for each fixed x.
Results (i) and (iii) are straightforward by the definition of ρ.
For (ii), first note that, by the uniform equicontinuity of {fi(xi, ·) :

∏
j 6=iXj → R |xi ∈

Xi} for each i and the fact that n is finite, {ρ(·, y), y ∈ R} is uniformly equicontinuous. Let
(xk, yk) be a sequence in X × X indexed by k which converges to (x, y) ∈ X × X . Then,

lim
k→∞

(ρ(xk, yk)− ρ(x, y)) = lim
k→∞

(ρ(xk, yk)− ρ(x, yk) + ρ(x, yk)− ρ(x, y))

= lim
k→∞

(ρ(x, yk)− ρ(x, y))

≥0 ,

where the second equality is due to the uniform equicontinuity of {ρ(·, y), y ∈ X} and the
last inequality is because ρ(x, y) is l.s.c. in y for any fixed x.

Remark 5.1. The property (3) is weaker than the condition that fi is continuous on X .
Indeed, since X is compact, fi(xi, x−i) is uniformly continuous on Xi×

∏
j 6=iXj which implies

the equicontinuity of {fi(xi, ·) :
∏
j 6=iXj → R |xi ∈ Xi}. In other words, Rosen’s theorem

on the existence of convex continuous games with compact convex actions sets is a corollary
of Theorem 5.3.
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Appendix B: Other proofs and lemmata

Lemma 5.4 (Shapley-Folkman Lemma [43]). For n compact subsets S1, . . . , Sn of Rq, let
x ∈ conv

∑n
i=1 Si =

∑n
i=1 convSi, where conv signifies the convex hull, and the sum over

sets are to be understood as a Minkowski sum. Then,

• there is a point xi ∈ convSi for each i, such that x =
∑n

i=1 xi, and xi ∈ Si except for
at most q values of i;

• there is a point yi ∈ Si for each i, such that ‖x−
∑n

i=1 yi‖Rq ≤
√

min{q, n}d, where d
denotes the maximal diameter of Si.

In the proofs of Lemmata 5.5, 5.6, 2.6, in order to simplify the notations, i and x−i ∈ X̃−i
are arbitrarily fixed. Index i and the parameter x−i are thus omitted in fi, f̃i, Xi, X̃i and
Z(i, ·).

Lemma 5.5. Under Assumption 1, for each x−i ∈ X̃−i,

(1) f̃i(xi, x−i) ≤ fi(xi, x−i) for all xi ∈ Xi;

(2) the infimum in (2.2) can be attained, i.e. it is in fact a minimum for all xi ∈ Xi;

(3) function f̃i(·, x−i) is l.s.c. and convex on X̃i, and conv (epi fi(·, x−i)) = epi f̃i(·, x−i) =
conv (epi fi(·, x−i));

(4) both f̃i(·, x−i) and fi(·, x−i) attain their minimum respectively on X̃i and Xi, and

min
x̃i∈X̃i

f̃i(x̃i, x−i) = min
xi∈Xi

fi(xi, x−i) . (5.1)

In particular, if x̃i ∈ arg minyi∈X̃i f̃i(yi, x̃−i), then Z(i, x̃) ⊂ arg minyi∈Xi fi(yi, x̃−i)
where Z(i, x̃) is an arbitrary generator for (i, x̃) defined in Definition 2.2.

Proof of Lemma 5.5.
The Lemma is a particular case of more general results well-known in Convex Analysis that
have been shown in various work, such as [16, Lemma X.1.5.3]. Let us provide a proof for
this particular case here for the sake of completeness.
(1) For x ∈ X, in the definition of f̃(x), take xk = x, αk = 1

d+1 for all k. By definition,

f̃(x) ≤
∑d+1

k=1 α
kf(xk) = f(x).

(2) Suppose that ((αk,n)k, (x
k,n)k)n∈N is a minimizing sequence for f̃(x̃), i.e.

f̃(x̃) = limn→∞
∑d+1

k=1 α
k,nf(xk,n), with ((αk,n)k, (x

k,n)k)n∈N satisfying conditions in (2.2).
Since (α1,n) ∈ [0, 1] for all n, so that it has a convergent subsequence α1,φ1(n) which converges
to some α1. Consider sequence α2,φ1(n) which has a subsequence α2,φ2(n) converging to some
α2. Note that φ2(n) is a subsequence of φ1(n). Repeat this operation d + 1 times and ob-
tain subsequences φ1(n), . . . , φd+1(n) such that αk,φk(n) converges to αk, for k = 1, . . . , d+1.
Consider x1,φd+1(n) which is in the compact set X. It has a convergent subsequence x1,φd+2(n)
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converging to x1 ∈ X . Again, take a subsequence φd+3(n) such that x2,φd+3(n) converges to
xk, and so on. Finally, one obtains a subsequence φ2d+2(n) of N such that

f̃(x̃) = lim
n→∞

d+1∑
k=1

αk,φ2d+2(n)f(xk,φ2d+2(n)) , (5.2)

αk = lim
n→∞

αk,φ2d+2(n) , αk ∈ [0, 1] , k = 1, 2, · · · , d+ 1 , (5.3)

d+1∑
k=1

αk = lim
n→∞

d+1∑
k=1

αk,φ2d+2(n) = 1 , (5.4)

xk = lim
n→∞

xk,φ2d+2(n) , xk ∈ X , k = 1, 2, · · · , d+ 1 , (5.5)

d+1∑
k=1

αkxk = lim
n→∞

d+1∑
k=1

αk,φ2d+2(n)xk,φ2d+2(n) = lim
n→∞

x̃ = x̃ . (5.6)

Then,

d+1∑
k=1

αkf(xk) ≤ lim
n→∞

d+1∑
k=1

αkf(xk,φ2d+2(n)) = lim
n→∞

d+1∑
k=1

αk,φ2d+2(n)f(xk,φ2d+2(n))

= f̃(x̃) ≤
d+1∑
k=1

αkf(xk) .

where the first inequality is due to (5.5), the second equality due to (5.3), the third equality
due to (5.2) and the fourth inequality due to (5.4), (5.6) and (2.2). This shows that f̃(x̃) =∑d+1

k=1 α
kf(xk), i.e. (αk, xk)d+1

k=1, is a minimizer.

(3) On the one hand, for all (x, y) ∈ conv (epi f), by Caratheodory theorem [6, Proposition
1.2.1], there exists (xk, yk) ∈ epi f , k = 1, . . . , d+1 such that (x, y) =

∑d+1
k=1 α

k(xk, yk), with

α ∈ Sd. Hence, yk ≥ f(xk), y =
∑d+1

k=1 α
kyk ≥

∑d+1
k=1 α

kf(xk) ≥ f̃(x). This shows that
(x, y) ∈ epi f̃ . Therefore, conv (epi f) ⊂ epi f̃ . Recall that f is l.s.c. hence epi f is a closed
set hence so is conv (epi f). Thus, conv (epi f) ⊂ epi f̃ .

On the other hand, for all (x, y) ∈ epi f̃ , y ≥ f̃(x). Let ((αk,n)k, (x
k,n)k)n∈N be the min-

imizing sequence for f̃(x), i.e. f̃(x) = limn→∞
∑d+1

k=1 α
k,nf(xk,n), with αk,n, xk,n satisfying

conditions in (2.2). Then, y = limn→∞
∑d+1

k=1 α
k,n(f(xk,n) + δ

d+1), where δ = y − f̃(x) ≥ 0.

Denote yn =
∑d+1

k=1 α
k,n(f(xk,n) + δ

d+1). Then, (x, yn) ∈ conv(epi f), and limn→∞(x, yn) =

(x, y). This means that (x, y) ∈ conv(epi f) and, therefore, epi f̃ ⊂ conv (epi f).
In conclusion, epi f̃(·) = conv (epi f(·)), which implies that the epigraph of f̃ is closed

and convex. Thus, f̃ is l.s.c. and convex on X̃ .

(4) By the lower semicontinuity of f̃ and f on compact sets X̃ and X, their minima can be
attained. The equality (5.1) is thus clear by the definition in (2.2).

Remark 5.2. If fi(·, x−i) is not l.s.c, the inclusion relationship in Lemma 5.5(2) can be
strict, as shown respectively by the following two examples of dimension 1.

• X = {0} ∪ {±1
z}z∈N∗ , f(x) = |x| for x ∈ X \ {0}, and f(0) = 1. Then, f̃(x) = |x|, for

all x ∈ X̃ = [−1, 1], and conv (epi f) ( epi f̃ .
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• X = [0, 1], f(x) = 0 for x 6= 0, and f(0) = 1. Then, f̃(x) = f(x) for all x ∈ [0, 1], and
epi f̃ ( conv (epi f).

Lemma 5.6. Under Assumption 1, for any profile x̃ ∈ X̃ , for any player i, for all xi ∈
Z(i, x̃),

(1) fi(xi, x̃−i) = f̃i(xi, x̃−i);

(2) for any h ∈ ∂if̃i(x̃i, x̃−i),

fi(xi, x̃−i) = f̃i(xi, x̃−i) = f̃i(x̃i, x̃−i) + 〈h, xi − x̃i〉 . (5.7)

Proof of Lemma 5.6. Let {x1, . . . , xd+1} ⊂ X a generator of (x̃, f̃(x̃)) and α ∈ Sd their
corresponding weights.

(1) Suppose that there is k such that f(xk) > f̃(xk). Then, there exists (yl)l in X and
β ∈ Sd such that xk =

∑
l β

lyl and f̃(xk) =
∑

l β
lf(yl) < f(xk). In consequence, f̃(x̃) =∑

m α
mf(xm) >

∑
m 6=k α

mf(xm) +
∑

l α
kβlf(yl), while

∑
m6=k α

mxm +
∑

l α
kβlyl = x̃ and∑

m 6=k α
m +

∑
l α

kβl = 1, contradicting the definition of f̃(x̃).

(2) By the definition of subdifferential, one has

f̃(xk) ≥ f̃(x̃) + 〈h, xk − x̃〉 , ∀k = 1, . . . , d+ 1 . (5.8)

Multiplying (5.8) by αk for each k and adding the d+ 1 inequalities yield

d+1∑
k=1

f̃(xk) ≥ f̃(x̃) + 〈h,
∑
k

αkxk − x̃〉 ⇔ f̃(x̃) ≥ f̃(x̃) . (5.9)

If, for at least one k, the inequality in (5.8) is strict, then the inequalities in (5.9) are strict
as well, which is absurd. Therefore, for each k, f̃(xk) = f̃(x̃) + 〈h, xk − x̃〉.

Proof of Lemma 2.6. First note that x̃ is in ri(convZ(x̃)), the relative interior of convZ(x̃).
Hence, for t > 0 small enough, x̃± t(x− x̃) is in ri(convZ(x̃)) ⊂ X̃ . By (2.5),

〈
h, x̃± t(x−

x̃)− x̃
〉
≥ −η‖x̃± t(x− x̃)− x̃‖, which yields

∣∣〈h, x− x̃〉∣∣ ≤ η‖x− x̃‖. Then, by Lemma 5.6,

|f̃(x)− f̃(x̃)| = |〈h, x− x̄〉| ≤ η‖x− x̃‖.

Proof of Theorem 2.7. For each i ∈ N , define a set Ei(x̃) := AiZ(i, x̃) in Rq. Since

x̃i ∈ conv (Z(i, x̃)), one has
∑

i∈N Aix̃i ∈
∑

i∈N conv(Ei(x̃)) = conv
(∑

i∈N Ei(x̃)
)

by the

linearity of Ai’s. According to the Shapley-Folkman lemma, there exists ei ∈ conv(Ei(x̃))
for each i ∈ N , and a subset I ⊂ N with |I| ≤ q, such that: (i)

∑
i∈N Aix̃i =

∑
i∈N ei and

(ii) ei ∈ Ei(x̃) for all i /∈ I. Thus, for all i /∈ I, there exists x̄i ∈ Z(i, x̃), such that ei = Aix̄i.
For all i ∈ I, take arbitrarily x̄i ∈ Z(i, x̃). Then,∥∥∥∑
i∈N

Aix̃i −
∑
i∈N

Aix
∗
i

∥∥∥ ≤ ∥∥∥∑
i∈N

Aix̃i −
∑
i∈N

Aix̄i

∥∥∥ =
∥∥∥∑
i∈N

ei −
∑
i∈N

Aix̄i

∥∥∥ =
∥∥∥∑
i∈I

Ai(x̃i − x̄i)
∥∥∥

≤ √qM∆ . (5.10)
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Now, for all i, x∗i ∈ Z(i, x̃), so that it satisfies

fi(x
∗
i , x̃−i) ≤ f̃i(x̃i, x̃−i) ≤ f̃i(xi, x̃−i) + ε+ η ≤ fi(xi, x̃−i) + ε+ η , for all xi ∈ Xi , (5.11)

according to Lemma 5.6.(1), Lemma 2.6 and Lemma 5.5.(1).
Recall that fi(x) = θi(xi,

1
n

∑
j∈N Aj xj). Hence, for any xi ∈ Xi

fi(xi, x̃−i) = θi

(
xi,

1

n
Ai xi +

1

n

∑
j∈N−i

Aj x̃j

)

= θi

(
xi,

1

n
Ai xi +

1

n

∑
j∈N−i

Aj x
∗
j +

1

n
Ai (x∗i − x̃i) +

1

n

∑
j∈N

Aj (x̃j − x∗j )
)

= θi

(
xi,

1

n
Ai xi +

1

n

∑
j∈N−i

Aj x
∗
j + δi

)
− θi

(
xi,

1

n
Ai xi +

1

n

∑
j∈N−i

Aj x
∗
j

)
+ fi(xi, x

∗
−i) ,

where δi := 1
nAi (x∗i − x̃i) + 1

n

∑
j∈N Aj (x̃j − x∗j ).

By (5.10), ‖δi‖ ≤
(
√
q+1)M∆
n . Using now Assumption 1 yields that, for any xi ∈ Xi,∣∣fi(xi, x∗−i)− fi(xi, x̃−i)∣∣ ≤ H ((

√
q + 1)M∆

n

)γ
.

Injecting this result in (5.11) yields

fi(x
∗
i , x
∗
−i) ≤ fi(xi, x∗−i) + ε+ η + 2H

(
(
√
q + 1)M∆

n

)γ
, ∀xi ∈ Xi , ∀i ∈ N . (5.12)

Lemma 5.7. Under Assumption 1, suppose that x̃ ∈ X̃ is an ε-PNE in Γ̃ satisfying the
η-stability condition with respect to (Z(i, x̃))i, where Z(i, x̃) = {x1

i , x
2
i , . . . , x

li
i } with 1 ≤

li ≤ d + 1 and x̃i =
∑li

l=1 α
l
ix
l
i, where α ∈ Sli−1. Each player i plays a mixed strategy

independently, i.e. a random action Xi following distribution µ̃i over Xi defined by P(Xi =
xli) = αli. In other words,

µ̃i =

li∑
l=1

αliδxli
, (5.13)

where δxli
stands for the Dirac distribution on xli. Then,

E
∥∥∥∑
i∈N

Aix̃i −
∑
i∈N

AiXi

∥∥∥ ≤ √nM∆ .

Proof. By the independence of Xi, AiXi are independent of each other. From the definition
of µ̃i, E(AiXi) = Aix̃i. Therefore,(

E
∥∥∥∑
i∈N

Aix̃i −
∑
i∈N

AiXi

∥∥∥)2

≤ E

[∥∥∥∑
i∈N

Aix̃i −
∑
i∈N

AiXi

∥∥∥2
]

=
∑
i∈N

Var(AiXi) ≤ nM2∆2 ,

where the first inequality is by Jensen’s inequality.
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Proof of Proposition 2.8. By same arguments as in the proof of Theorem 2.7, one has

|fi(xi, x̃−i)− fi(xi, X−j)| ≤ H ‖δi(X)‖γ ,

where δi(X) := 1
nAi (Xi − x̃i) + 1

n

∑
j∈N Aj (x̃j −Xj). By Lemma 5.7,

E‖δi(X)‖ ≤ 1 +
√
n

n
M∆ .

Besides, since Xi takes values in Z(i, x̃),

fi(Xi, X−i) = fi(Xi, X−i)− fi(Xi, x̃−i) + fi(Xi, x̃−i)

≤ fi(Xi, X−i)− fi(Xi, x̃−i) + fi(xi, x̃−i) + ε+ η

= fi(Xi, X−i)− fi(Xi, x̃−i) + fi(xi, x̃−i)− fi(xi, X−i) + fi(xi, X−i) + ε+ η ,

so that

fi(Xi, X−i)− fi(xi, X−i) ≤ |fi(Xi, X−i)− fi(Xi, x̃−i)|+ |fi(xi, x̃−i)− fi(xi, X−i)|+ ε+ η

≤ 2H(δi(X))γ + ε+ η .

Therefore,

E
[
fi(Xi, X−i)− fi(xi, X−i)

]
≤ 2H E

[
‖δi(X)‖γ

]
+ ε+ η ≤ 2H

(
(
√
n+ 1)M∆

n

)γ
+ ε+ η .

Lemma 5.8. Under Assumption 2, , for the auxiliary game Γ̄,

(1) Assumption 1 are verified with H = Lg∆ and γ = 1;

(2) an ε-PNE of Γ̄ is an (ε+ LhM∆
n +

2LgM∆2

n )-PNE of Γ.

Proof of Lemma 5.8. (1) First show that, for any fixed xi ∈ Xi, function θi(xi, y) :=
〈
g(y+

ai
n (x0

i − xi)), xi
〉

+ `i(xi) is Lg∆-Lipschitz in y on Ω. For this, fix xi ∈ Xi. For any y and y′

in Ω,

|θi(xi, y′)− θi(xi, y)|2 =
∣∣∣〈g(y′ + ai

n
(x0
i − xi)

)
− g
(
y +

ai
n

(x0
i − xi)

)
, xi

〉∣∣∣2
≤
∥∥∥g(y′ + ai

n
(x0
i − xi)

)
− g
(
y +

ai
n

(x0
i − xi)

)∥∥∥2
∆2

=

d∑
t=1

(
gt

(
y′t +

ai
n

(x0
i,t − xi,t)

)
− gt

(
yt +

ai
n

(x0
i,t − xi,t)

))2
∆2

≤ L2
g∆

2
d∑
t=1

(y′t − yt)2

= L2
g∆

2‖y′ − y‖2 ,
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where the first inequality results from the Cauchy-Schwarz inequality, while the second one
is because gt is Lgt-Lipschitz.

(2) It is easy to see that |fi(xi, x−i) − hi( 1
n

∑
j∈N ajxj) − f̄i(xi, x−i)| ≤

LgM∆2

n for all

xi ∈ Xi and all x−i ∈ X̃−i. Hence, if x̄ ∈ X is an ε-PNE of Γ̄, then, for each i, for any
xi ∈ Xi,

fi(x̄i, x̄−i) ≤f̄i(x̄i, x̄−i) + hi

( 1

n

∑
j∈N

aj x̄j

)
+
LgM∆2

n

≤f̄i(xi, x̄−i) + ε+ hi

( 1

n
aixi +

1

n

n∑
j 6=i

aj x̄j

)
+
LhM∆

n
+
LgM∆2

n

≤fi(xi, x̄−i) + ε+
LhM∆

n
+

2LgM∆2

n
,

where the second inequality is due to the definition of ε-PNE and the Lipschitz continuity
of hi.

Lemma 5.9. Under Assumption 2, let (xk)k∈N be the sequence generated by Algorithm 1
with some initial point x0 ∈ X̃ . Then,

(1)
∑∞

k=1 ‖xk−1 − xk‖2 ≤ 2n2

m2Lg
C, where C = (d∆Lg + 2Br)M ;

(2) for any K ∈ N∗, there exists some k∗ ≤ K, such that ‖xk∗−1 − xk∗‖ ≤
√

2C n

m
√
LgK

.

Proof of Lemma 5.9. Consider the following two real-valued functions defined on X̃ :

G0(x) :=
d∑
t=1

Gt

( 1

n

∑
j∈N

ajxj,t

)
, G(x) := G0(x) +

∑
j∈N

aj
n
r̃j(xj) , (5.14)

where Gt is a primitive function of gt, which exists thanks to Assumption 2.
Note that function G0 is convex and differentiable on a neighborhood of X̃ , and convex

function r̃j is uniformly bounded on X̃j for all j ∈ N with the same bound B`, according to
Assumption 2.

Besides, it is easy to see that, for any i and fixed x−i ∈ X̃−i,∇iG0(xi, x−i) := ∂G0(xi,x−i)
∂xi

=

ai
n g( 1

naixi + 1
n

∑
j 6=i ajxj) is

a2iLg
n2 -Lipschitz continuous on X̃i.

Therefore, Assumptions 1 and 2 in [49] are verified. One can thus apply Lemma 2.2 in
[49] and obtains ∑

i∈N

a2
iLg
2n2
‖xki − xk+1

i ‖2 ≤ G(xk)−G(xk+1) ,

so that

‖xk − xk+1‖2 ≤ 2n2

m2Lg
(G(xk)−G(xk+1)) .

In consequence,
∞∑
k=0

‖xk − xk+1‖2 ≤ 2n2

m2Lg
(G(x0)−Gmin) , (5.15)
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where Gmin, defined as inf{x∈X̃}G(x), exists and is finite, because G is l.s.c. on compact

set X̃ . Suppose that Gmin is attained at x ∈ X̃ , then

G(x0)−Gmin = G(x0)−G(x)

=
d∑
t=1

∫ 1
n

∑
j∈N ajx

0
j,t

1
n

∑
j∈N ajxj,t

gt(s)ds+
∑
j∈N

aj
n

(r̃j(x
0
j )− r̃j(xj))

≤ dM∆Bg + 2MB ,

(5.16)

where the last inequality is due to mean value theorem and Assumption 2. Combining (5.15)

and (5.16) yields
∑∞

k=0 ‖xk − xk+1‖2 ≤ 2n2

m2Lg
C. This immediately implies

K∑
k=1

‖xk−1 − xk‖2 ≤ 2n2

m2Lg
C .

The second result of the lemma is then straightforward.

Proof of Proposition 3.1. First, notice that vector function ζ : X̃ → Rd, x 7→ ζ(x) =

g
(

1
n

∑
j∈N ajxj

)
is

LgM√
n

-Lipschitz continuous, i.e. ‖ζ(x)−ζ(y)‖ ≤ LgM√
n
‖x−y‖, for all x, y ∈

X̃ . Indeed, ‖ζ(x) − ζ(y)‖2 =
∑d

t=1 |gt(
1
n

∑
j∈N ajxj,t) − gt(

1
n

∑
j∈N ajyj,t)|2 ≤∑d

t=1

∣∣Lgt
n |
∑

j∈N aj(xj,t − yj,t)|
∣∣2 ≤∑d

t=1

(L2
g

n2

∑n
j=1 a

2
j

∑
j∈N (xj,t − yj,t)2

)
≤ L2

gM
2

n ‖x− y‖2,
where the first inequality is because gt is Lgt-Lipschitz, while the second results from the
Cauchy-Schwarz inequality.

Next, suppose that sequence (xk)k∈N is generated by Algorithm 1 with some initial point
x0 ∈ X̃ . Let us show that, if ‖xk−1 − xk‖ ≤ uk, then, xk satisfies the full η(uk)∆-stability

condition and, furthermore, it is an η(uk)∆-PNE of game Γ̃, where η(uk) =
LgMuk√

n
+

2LgM∆
n .

Since ‖xk − xk−1‖ ≤ uk, one has ‖(xk1, . . . , xki−1, x
k
i , x

k
i+1, . . . , x

k
n) − (xk1, . . . , x

k
i−1, x

k−1
i ,

xk−1
i+1 , . . . , x

k−1
n )‖ ≤ uk. This, the Lipschitz continuity of ζ on X̃ and the Lipschitz continuity

of g in xi imply that∥∥∥g( 1

n

∑
j 6=i

ajx
k
j +

1

n
aix

0
i

)
− g
( 1

n

∑
j<i

ajx
k
j +

1

n
aix

k−1
i +

1

n

∑
j>i

ajx
k−1
j

)∥∥∥
≤
∥∥∥g( 1

n

∑
j 6=i

ajx
k
j +

1

n
aix

0
i

)
− g
( 1

n

∑
j∈N

ajx
k
j

)∥∥∥
+
∥∥∥g( 1

n

∑
j∈N

ajx
k
j

)
− g
( 1

n

∑
j<i

ajx
k
j +

1

n
aix

k−1
i +

1

n

∑
j>i

ajx
k−1
j

)∥∥∥
≤ LgM∆

n
+
LgMuk√

n
.

(5.17)

The first order condition of optimality of the optimization problem (3.3) is: there exists
some pi in the subdifferential of r̃i(x

k
i ) at xki , denoted by ∂r̃i(x

k
i ), such that for all xi ∈ X̃i,〈

g
( 1

n

∑
j<i

ajx
k
j +

1

n

∑
j≥i

ajx
k−1
j

)
+
aiLg
n

(xki − xk−1
i ) + pi, xi − xki

〉
≥ 0 . (5.18)
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Then,〈
g
( 1

n

∑
j 6=i

ajx
k
j +

1

n
aix

+
i

)
+ pi, xi − xki

〉
=
〈
g
( 1

n

∑
j 6=i

ajx
k
j +

1

n
aix

+
i

)
− g
( 1

n

∑
j<i

ajx
k
j +

1

n

∑
j≥i

ajx
k−1
j

)
, xi − xki

〉
+
〈
g
( 1

n

∑
j<i

ajx
k
j +

1

n

∑
j≥i

ajx
k−1
j

)
+
aiLg
n

(xki − xk−1
i ) + pi, xi − xki

〉
−
〈aiLg

n
(xki − xk−1

i ), xi − xki
〉

≥
〈
g
( 1

n

∑
j 6=i

ajx
k
j +

1

n
aix

+
i

)
− g
( 1

n

∑
j<i

ajx
k
j +

1

n
aix

k
i +

1

n

∑
j>i

ajx
k−1
j

)
, xi − xki

〉
−
〈aiLg

n
(xki − xk−1

i ), xi − xki
〉

≥ −
(LgMuk√

n
+
LgM∆

n
+
aiLg∆

n

)
‖xi − xki ‖

≥ −
(LgMuk√

n
+

2LgM∆

n

)
‖xi − xki ‖ = −η(uk)‖xi − xki ‖ ,

where the first inequality is due to (5.18), while the second one by (5.17) and the Cauchy-
Schwarz inequality. Then, according to Lemma 2.6, xk satisfies the full η(uk)∆-stability

condition for game Γ̃, where η(uk) =
LgMuk√

n
+

2LgM∆
n .

Furthermore, since r̃i is convex on X̃i,

f̄i(xi, x
k
−i)− f̄i(xk) =

〈
g
( 1

n

∑
j 6=i

ajx
k
j +

1

n
aix

+
i

)
, xi − xki

〉
+ r̃i(xi)− r̃i(xki )

≥
〈
g
( 1

n

∑
j 6=i

ajx
k
j +

1

n
aix

+
i

)
, xi − xki

〉
+ 〈pi, xi − xki 〉

≥ −(
LgMuk√

n
+

2LgM∆

n
)‖xi − xki ‖ .

Thus, xk is an an η(uk)∆-PNE of game Γ̃.

For any K ∈ N∗, there exists some k∗ ≤ K such that ‖xk∗−1−xk∗‖ ≤
√

2Cn

m
√
LgK

according

to Lemma 5.9(2). The conclusion is immediate by taking ω(K,n) = η
( √

2Cn

m
√
LgK

)
.

Proof of Theorem 3.2. Proposition 3.1 shows that xk
∗

is an approximate PNE of game Γ̃
(convexification of the nonconvex auxiliary game Γ̄). Then, Theorem 2.7 is applied to
show that (the “Shapley-Folkman disaggregation” of xk

∗
) x∗ is an approximate PNE of

the nonconvex auxiliary Γ̄. The use of Theorem 2.7 is justified by Lemma 5.8(1). Finally,
Lemma 5.8(2) is evoked to show that x∗ is an approximate PNE of the original nonconvex
game Γ.
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