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aggregative games
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Abstract

This paper shows the existence of O( 1
nγ )-Nash equilibria in n-player noncooperative

aggregative games where the players’ cost functions depend only on their own action
and the average of all the players’ actions, and is lower semicontinuous in the former
while γ-Hölder continuous in the latter. Neither the action sets nor the cost functions
need to be convex. For an important class of aggregative games which includes con-
gestion games with γ being 1, a proximal best-reply algorithm is used to construct an
O( 1

n )-Nash equilibria with at most O(n3) iterations. These results are applied in a nu-
merical example of demand-side management of the electricity system. The asymptotic
performance of the algorithm is illustrated when n tends to infinity.

Keywords. Shapley-Folkman lemma, aggregative games, nonconvex game, large finite
game, ε-Nash equilibrium, proximal best-reply algorithm, congestion game

MSC Class Primary: 91A06; secondary: 90C26

1 Introduction

In this paper, players minimize their costs so that the definition of equilibria and equilibrium
conditions are in the opposite sense of the usual usage where players maximize their payoffs.
Players have actions in Euclidean spaces. If it is not precised, then “Nash equilibrium”
means a pure-strategy Nash equilibrium.

This paper studies the approximation of pure-strategy Nash equilibria (PNE for short)
in a specific class of finite-player noncooperative games, referred to as large nonconvex
aggregative games. Recall that the cost functions of players in an aggregative game depend
on their own action (i.e. pure-strategy) and the aggregate, i.e. weighted sum, of all the
players’ actions. In a large nonconvex aggregative game, players may have nonconvex action
sets and nonconvex cost functions, and the number of players are relatively large so that
the impact of each particular player on the aggregate behavior is relatively small, in a sense
to be specified later.
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Background and motivation. The existence of pure-strategy Nash equilibrium has been
proved only for some specific classes of finite-player noncooperative games.

When players have a finite number of actions, Mondrer and Shapley [29] shows that
potential games where a so-called potential function exists admit PNEs and, as a matter
of fact, every finite potential game is isomorphic to a finite congestion game introduced
by Rosenthal [37], where players have equal weights and non-player-specific resource cost
functions. Recall that in a congestion game, resources are shared among players, with each
resource having a cost function of the aggregate load onto it. However, when players have
player-specific weights and/or cost functions for each resource, a potential function no longer
necessarily exists so that the existence of PNEs is not guaranteed, except in some particular
cases (cf. Milchtaich [28]). In integer-splittable congestion games where the unequally
integer-weighted players can split their weight into unit-weight blocks, the existence of PNE
is shown for the case where a pure-strategy consists in a single resource and the non-player-
specific resource cost functions are convex and monotone by Tran-Thanh et al. [41], and
for the case where the non-player-specific resource cost functions are linear by Meyers [9].
For games with discrete (but not necessarily finitely many) strategies other than congestion
games, Sagratella [38] proposes a branching method to compute the whole solution set of
Nash equilibria. He proves the existence of PNEs for a particular class of such games and
proposes a Jacobi-type algorithm which leads to one of the equilibria.

When players have a continuum of strategies, Rosen [36] shows that a Nash equilibrium
exists if each player has a convex and compact action set in an Euclidean space and her
cost function is continuous in the action profile and convex in her own action. In an atomic
splittable congestion game where unequally weighted players can split their weight into
arbitrary blocks, if the resource cost functions are continuous, then the conditions for Rosen’s
results to be valid are satisfied (cf. Orda, Rom and Shimkin [33]). However, when the
players’ action sets or their cost functions are nonconvex, there is no general result for the
existence of Nash equilibrium.

This paper focuses on a particular class of finite-player noncooperative games which are
aggregative games (Selten [39], Corchón [10], Jensen [22]), which includes congestion games.
These games find practical applications in various fields in political science, economics,
social biology, and engineering such as voting [31, 34], market competition [30], public
good provision [2, 16], rent seeking [12], population dynamics [18], traffic analysis [11, 27],
communications network control [26, 33] and electrical system management [19, 21]. In an
aggregative game, for each particular player, the aggregate behavior of the other players
matters instead of their respective identities. Another particularity of these applications is
that the number of players are often very large so that the influence of a specific player’s
behavior on the others are not significant. However, in these real-life situations, the players’
action sets and their cost functions are often nonconvex. Here is an example of flexible
electric vehicle charging control whose convex version is studied by Jacquot et al. [20].

One day is divided into peak hours (e.g. 6 am–10 pm) and off-peak hours. The electricity
production cost function for total flexible load `P and `OP at peak and off-peak hours
are respectively CP (`P ) = αP0 `

P + β0(`P )2 and COP (`OP ) = αOP0 `OP + β0(`OP )2, where
αP0 > αOP0 > and β0 > 0. Player i’s action is denoted by `i = (`Pi , `

OP
i ), where `Pi (resp.

`OPi ) is the peak (resp. off-peak) consumption of player i. Player i’s electricity bill is then
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defined by

bi(`i, `−i) :=
CP (`P )

`P
`Pi +

COP (`OP )

`OP
`OPi ,

where `P =
∑

i `
P
i , `OP =

∑
i `
OP
i . Player i’s cost is then defined by

φi(`i, `−i) = bi(`i, `−i) + γi‖`i − `refi ‖
2 (1.1)

where γi indicates her sensitivity to the deviation from her preference `ref . In [20], the
action set of player i is the convex compact set Si = {`i = (`Pi , `

OP
i ) | `Pi + `OPi = ei, `

P
i ≤

`Pi ≤ `Pi , `
OP
i ≤ `OPi ≤ `OPi }, where ei stands for the energy required by player i to charge

a electric vehicle battery and `Pi and `Pi (resp. `OPi and `OPi ) are minimum and maximum
power consumption for player i during peak (resp. off-peak) hours. However, for various
reasons such as finite choices for charging power, or battery protection which demands
that the charging must be interrupted as less as possible, etc., the players’ action sets can
be nonconvex. For example, in this paper a particular case where the nonconvex action
set SNCi = {`i = (`Pi , `

OP
i ) | `Pi + `OPi = ei, `

P
i ∈ {`Pi , `Pi }} is to be adopted for numerical

simulation.

When the players’ action sets or their cost functions are nonconvex, the existence of PNE
is not guaranteed. Although mixed-strategy Nash equilibria always exist in the case of a
finite number of strategies [32], pure strategies are often more relevant than mixed strategies
(where players play pure strategies according to a certain probability distribution on their
action set) for engineering applications. Besides, action sets are often not discrete. This
is why the objective of the present paper is to find approximate PNEs that are reasonable
substitutes, at least for practical purpose, for nonconvex aggregative games. More precisely,
this paper aims to prove the existence and provide approximation schemes for ε(n)-Nash
equilibria with ε(n) vanishing to zero, when the number of players, n, is sufficiently large.

Methodology and related work. The main idea is to use the Shapley-Folkman lemma
in order to take advantage of the large number of players to circumvent the difficulty related
to nonconvexities. Shapley and Folkman first derived their eponymous lemma in private
communications before it was officially evoked and applied by Starr [40]. It states that,
for n subsets S1, . . . , Sn of Rq, if x ∈ conv

∑n
i=1 Si =

∑n
i=1 convSi, then there are points

xi ∈ convSi such that x =
∑n

i=1 xi and xi ∈ Si except for at most q values of i, where
conv signifies the convex hull, and the sum over sets are to be understood as a Minkowski
sum. Such a profile (xi)i shall be called a “Shapley-Folkman disaggregation” of x in this
paper. Roughly speaking, it means that the Minkowski sum of a finite number of sets in
Euclidean spaces is close to convex when the number of sets is very large compared with
their dimensions. It has been applied in nonconvex optimization for its convexification
effect. Aubin and Ekeland [1] used the lemma to derive an upper bound on the duality gap
in an additive, separable nonconvex optimization problem. Since, quite a few papers have
extended or sharpened this result (cf. Ekeland and Temam [13], Bertsekas and coauthors
[4, 7], Pappalardo [35], Wang [45], Kerdreux et al. [24], Bi and Tang [8]). These theoretical
results have found applications in engineering, such as the large-scale unit commitment
problem [3, 25] and optimization of Plug-in Electric Vehicles charging [44] in the electricity
system, optimization of multicarrier communication systems [48], supply-chain management
[43], and spatial graphical model estimation [15].
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In the theories of economics and games, Starr [40] first applied the Shapley-Folkman
lemma in the study of finite exchange economy where agents have nonconvex preference to
show the existence of approximate equilibria. Later, Hildenbrand, Schmeidler and Zamir
[46] further extends the existence results to the case where the agents’ preferences are not
complete either. However, as far as we know, there has not yet been applications of the
Shapley-Folkman lemma in the theory of finite-player noncooperative games to approximate
PNEs in the nonconvex case. The present paper aims to make a first attempt in this
direction, and it takes important inspiration from [40].

Here is a brief sketch of the usage of the Shapley-Folkman lemma in this paper. Consider
an n-player aggregative game where player i’s cost function can be written as θi(xi,

1
n

∑n
j=1 xj).

If θi is smooth in its second variable (i.e. the average term), the impact of 1
nxi in the av-

erage term is very small on player i’s own cost when n is large. Therefore, approximately,
a Nash equilibrium x∗ = (x∗j )j , if it exists, can be seen as an action profile such that for

each player i, x∗i is a best reply to the average term ξ∗ := 1
n

∑n
j=1 x

∗
j or, more explicitly, x∗i

minimizes θi(·, ξ∗) over her action set and, furthermore, the average of the best replies of
all the players, 1

n

∑n
j=1 x

∗
j , happen to be ξ∗. In the nonconvex case where the existence of

PNEs are not guaranteed, it is natural to consider the convexification of the players’ action
sets by their convex hulls and the convexification of their cost functions θi (with respect
to xi) by their Fenchel biconjugates, so as to obtain a PNE in the convexified game x̃∗.
However, the recovery of an approximate PNE of the original nonconvex game from x̃∗ is
not immediate. The idea is to keep the average term ξ̃∗ while looking for x∗i in the original
nonconvex action set for each i such that, on the one hand, x∗i is a best reply to ξ̃∗ in terms
of the original nonconvex cost function θ(·, ξ̃∗) whereas, on the other hand, their average
(almost) coincides with ξ̃∗: 1

n

∑n
i=1 x

∗
i ≈ ξ̃∗. The Shapley-Folkman lemma is effectively used

to achieve this end.
However, the paper does not end there. For the theoretical results to be able to be

applied in real-life engineering or economic issues, the computation of (approximate) PNEs
is another major topic of the paper. Even though it is mentioned that one can recover an
approximate PNE of the nonconvex game from a PNE of the convexified game, there are two
difficulties now. Firstly, although the existence of Nash equilibria in general convex games
is guaranteed, their computation is far from immediate. Convergent algorithms are known
only for some special cases, such as for potential games or (strongly) monotone games. A
common approach is to solve the variational inequality characterizing the Nash equilibria
in such games (cf. Facchinei and Pang [14] and the references therein). However, the
convexified game as described above can be rarely strongly monotone. This paper provides
an algorithm, referred to as proximal best-reply algorithm, for a particular yet important class
of aggregative games, which includes atomic splittable congestion games. The algorithm
converges in polynomial time. Secondly, an exact PNE x̃∗ of the convexified game cannot
always be attained (in reasonable time). If only an approximate PNE x̃∗ can be obtained,
the question arising immediately is that whether the recovery of an approximate PNE x∗

is still possible from this approximation. Our answer is yes if this approximate x̃∗ is close
enough to an exact PNE and it satisfies an additional condition called disaggregatability.
Indeed, the proximal best-reply algorithm adopted for that important class of aggregative
games is shown to find such an approximation in polynomial time.
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Main contribution. The main contribution of the present paper is twofold.
Theoretically, Theorem 2.9 gives the existence of O( 1

nγ )-Nash equilibrium for n-player
nonconvex aggregative games where the players’ cost functions depend only on their own
action and the average of all the players’ actions, and is lower semicontinuous in the former
while γ-Hölder continuous in the latter. Neither the action sets nor the cost functions need
to be convex.

Algorithmically, for an important class of n-player nonconvex aggregative games in-
cluding congestion games with γ being 1 and where actions sets are compact subsets of
Euclidean spaces, Theorem 3.4 ensures the performances of a proximal best reply algorithm
which computes an O( 1

n)-Nash equilibrium with at most O(n3) iterations. In the case where
a “Shapley-Folkman disaggregation” is difficult to carry out, an extremely fast, easy and
decentralized method is introduced to obtain an O( 1√

n
)-mixed-strategy Nash equilibrium

after the same number of iterations, as shown by Corollary 3.5.

Structure of the paper. The paper is organized as follows. Section 2 introduces n-player
nonconvex aggregative games and their convexified game, then shows the existence of an
O( 1

nγ )-Nash equilibrium in such nonconvex games when the players’ cost functions is lower
semicontinuous in their own action while γ-Hölder continuous in the average of all the play-
ers’ actions. Section 3 presents a proximal best-response algorithm to obtain an O( 1

n)-Nash
equilibrium in a subclass of nonconvex aggregative games which includes congestion games
with at most O(n3) iterations as well as a decentralized randomized disaggregation method
to obtain an O( 1√

n
)-mixed-strategy Nash equilibrium in case that a centralized “Shapley-

Folkman disaggregation” method is not at hand. In Section 4, a numerical simulation with
the proximal best response algorithm is done for the previously introduced flexible electric
vehicle charging problem. Section 5 concludes with some perspectives. The proofs of some
lemmata are in the appendices.

Notations. In a Euclidean space, ‖ · ‖ denotes the l2-norm. For a point x ∈ Rd and a
subset X of Rd, d(x,X ) = infy∈X {‖x − y‖} is the distance from the point to the subset.
For two subsets X and Y of Rd, their Minkowski sum is the set {x+ y |x ∈ X , y ∈ Y}. For
x ∈ Rd and r ∈ R+, B(x, r) = {y ∈ Rd | ‖y − x‖ ≤ r}, the r-radial ball centered on x.

For a matrix A ∈ Rd×Rq, ‖ · ‖2 is the 2 -norm of matrices: ‖A‖2 =
√
λmax(AτA) where

Aτ is the transpose of A, λmax(AτA) stands for the largest eigenvalue of the matrix AτA.

2 Existence of ε-Nash equilibrium in large nonconvex ag-
gregative games

2.1 A nonconvex aggregative game and its convexification

Consider an n-player noncooperative game Γ. The players are indexed overN = {1, 2, · · · , n}.
Each player i ∈ N has an action set Xi ⊂ Rd, which is closed and bounded but not necessar-
ily convex. Let X̃i := conv(Xi) be the convex hull of Xi (which is also closed and bounded)
and denote X =

∏
i∈N Xi, X̃ :=

∏
i∈N X̃i, X̃−i :=

∏
j∈N−i X̃j where N−i := N \ {i}. Let

constant ∆ > 0 be such that, for all i ∈ N , the compact set Xi has diameter |Xi| :=
maxxi,yi∈Xi ‖xi − yi‖ that is not greater than ∆.
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As usual, let x−i denote the profile of actions of all the players except that of player i.
Each player i has a real-valued cost function fi defined on Xi× X̃−i which has the following
specific form:

fi(xi, x−i) := θi

(
xi,

1

n

∑
j∈N

Ajxj

)
, for any xi ∈ Xi , x−i ∈ X̃−i , (2.1)

where Aj ’s are q × d matrices for all j ∈ N , and θi is a real-valued function defined on
Xi × Ω, with Ω ⊂ Rq a neighborhood of { 1

n

∑
j∈N Ajyj | yj ∈ X̃j , ∀j ∈ N}. Let constant

M > 0 be such that ‖Ai‖2 ≤M for each i ∈ N , where ‖ · ‖2 is the 2-norm of matrices.
Remark that Γ is a generalization of aggregative games, which correspond to the specific

case where, for each j ∈ N , Aj reduces to the identity matrix.

Definition 2.1. For a constant ε ≥ 0, an ε-Nash equilibrium xε ∈ X in game Γ is a profile
of actions of the n players such that, for each player i ∈ N ,

fi(x
ε
i , x

ε
−i) ≤ fi(xi, xε−i) + ε , for any xi ∈ Xi .

If ε = 0, then xε is a Nash equilibrium.

For nonconvex games (where either action sets or cost functions are not convex), the
existence of Nash equilibria is not clear. In this paper, we show the existence of ε-Nash
equilibria with the help of the convexified game associated with Γ defined as follows.

Definition 2.2. [5] The convexified game Γ̃ associated with Γ is a noncooperative game
played by n players. Each player i ∈ N has an action set X̃i and a real-valued cost function
f̃i defined on X̃ as follows: for all x ∈ X̃ ,

f̃i(xi, x−i) = inf

{ d+1∑
k=1

αkfi(x
k
i , x−i)

∣∣∣xi =
d+1∑
k=1

αkxki , α ∈ Sd and ∀k , xki ∈ Xi
}
, (2.2)

where Sd := {α = (αk)d+1
k=1 ∈ Rd+1 | ∀k , αk ≥ 0 ,

∑d+1
k=1 α

k = 1} denotes the probability
simplex in dimension d.

Nash equilibria and ε-Nash equilibria are similarly defined for the convexified game Γ̃.

The remaining of this subsection is dedicated to some preliminary analysis of the con-
vexified game.

First let us introduce two assumptions that will hold in this section.

Assumption 1. For any player i ∈ N , for any x−i ∈ X̃−i, fi(·, x−i) is lower semicontinuous
(l.s.c.) with respect to its first variable on Xi.

Assumption 2. For all i ∈ N , for all xi ∈ Xi, function y → θi(xi, y) is (H, γ)-Hölder on
y ∈ Ω, i.e.

|θi(xi, y′)− θi(xi, y)| ≤ H‖y′ − y‖γ , (2.3)

with constants H > 0, γ > 0.

Lemma 2.3. For each x−i ∈ X̃−i,
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(1) f̃i(xi, x−i) ≤ fi(xi, x−i) for all xi ∈ Xi;

(2) the infimum in (2.2) can be attained, i.e. it is in fact a minimum for all xi ∈ Xi;

(3) function f̃i(·, x−i) is l.s.c. and convex on X̃i, and conv (epi fi(·, x−i)) = epi f̃i(·, x−i) =
conv (epi fi(·, x−i));

(4) both f̃i(·, x−i) and fi(·, x−i) attain their minimum respectively on X̃i and Xi, and

min
x̃i∈X̃i

f̃i(x̃i, x−i) = min
xi∈Xi

fi(xi, x−i) . (2.4)

In particular, if x̃i ∈ arg minyi∈X̃i f̃i(yi, x̃−i), then Wi(x̃) ⊂ arg minyi∈Xi fi(yi, x̃−i) where
Wi(x̃) is defined in Definition 2.4.

Definition 2.4. Let Wi(xi, x−i) :=
⋃
λ∈Λi

W λ
i (xi, x−i) denote the collection of all groups of

d+ 1 (not necessarily distinct) elements of Xi that attain the minimum in the definition of
f̃i(xi, x−i) (cf. (2.2)), indexed by indices λ ∈ Λi ⊂ N. Such a group, W λ

i (xi, x−i), is called a

generator of (xi, f̃i(xi, x−i)). In other words, for any λ ∈ Λi, W
λ
i (x) = {x1,λ

i , . . . , xd+1,λ
i } ⊂

Xi and there is αλ ∈ Sd such that
∑

k α
k,λxk,λi = xi and

∑
k α

k,λf(xk,λi , x−i) = f̃i(xi, x−i).

Remark 2.1. If fi(·, x−i) is not l.s.c, the inclusion relationship in Lemma 2.3(2) can be
strict, as shown respectively by the following two examples in dimension 1.

• X = {0} ∪ {±1
z}z∈N∗ , f(x) = |x| for x ∈ X \ {0}, and f(0) = 1. Then, f̃(x) = |x|, for

all x ∈ X̃ = [−1, 1], and conv (epi f) ( epi f̃ .

• X = [0, 1], f(x) = 0 for x 6= 0, and f(0) = 1. Then, f̃(x) = f(x) for all x ∈ [0, 1], and
epi f̃ ( conv (epi f).

Notation. Since xi 7→ f̃i(xi, x−i) is convex and l.s.c on X̃i, its subdifferential exists and
let it be denoted by ∂if̃i(·, x−i). Then, for each xi ∈ X̃i, ∂if̃i(xi, x−i) is a nonempty convex
subset of Rd.

Proposition 2.5. The convexified game Γ̃ has a Nash equilibrium.

Proof. It results from Theorem 5.3 in Appendix B.

Remark 2.2. Theorem 5.3 extends Rosen’s theorem on the existence of Nash equilibria
in games with convex continuous cost functions [36] to the case where the cost functions
are only l.s.c. instead of being continuous with respect to the players’ own actions. The
following example shows that even the continuity of fi on Xi cannot guarantee the continuity
of f̃i on X̃i so that Rosen’s theorem is not sufficient here.

Consider d = 3, Xi = T ∪B ∪S where T = {(x1, x2, x3) ∈ R3|(x1)2 + (x2)2 = 1, x3 = 1},
B = {(x1, x2, x3) ∈ R3|(x1)2 + (x2)2 = 1, x3 = −1}, S = {(x1, x2, x3) ∈ R3|x1 = 1, x2 =
0,−1 ≤ x3 ≤ 1}; fi is independent of x−i, and fi(x) = 0 for x ∈ T ∪ B, fi(x) = |x3| − 1
for x ∈ S. Then, for all x ∈ {(x1, x2, x3) ∈ R3|(x1)2 + (x2)2 = 1, x3 = 0} ⊂ ∂X̃i, f̃i(x) = 0
except for x∗ = (1, 0, 0), but f̃i(x

∗) = fi(x
∗) = −1.
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2.2 η-disaggregability

As explained in the Introduction, once a Nash equilibrium x̃ of the convexified game Γ̃ is
found, the next step is to find a feasible action profile x∗ of the original nonconvex game Γ
such that 1

n

∑
iAix

∗
i ≈ 1

n

∑
iAix̃i and x∗i is (almost) a best response to 1

n

∑
iAix̃i, in the

sense that x∗i (almost) minimizes θi(·, 1
n

∑
iAix̃i) on Xi. Indeed, as is shown below, such a

feasible action profile x∗ exists, with x∗i in Wi(x̃) for each i, thanks to the Shapley-Folkman
lemma.

However, from an algorithmic point of view, a Nash equilibrium is not always easy or
fast to compute for the convexified Γ̃ even if its existence is guaranteed. The question that
naturally arises then is whether the idea above is still valid if x̃ is only an approximate Nash
equilibrium of Γ̃. More explicitly, is there still a feasible action profile x∗ of Γ such that
1
n

∑
iAix

∗
i ≈ 1

n

∑
iAix̃i and x∗i is (almost) a best response to 1

n

∑
iAix̃i, while x∗i ’s are in

Wi(x̃)? The answer is YES, if the approximate Nash equilibrium x̃ of the convexified game
Γ̃ satisfies more demanding conditions.

Definition 2.6. In game Γ̃, a point x̃ ∈ X̃ is said to satisfy the η-disaggregatable condition
with (λi)i ∈ (Λi)i if, for each player i, fi(xi, x̃−i) ≤ f̃i(x̃i, x̃−i) + η for all xi ∈W λi

i (x̃i, x̃−i).

Note that a Nash equilibrium of Γ̃ satisfies the 0-disaggregatable condition with any
(λi)i ∈ (Λi)i.

Lemma 2.7. For any profile x̃ ∈ X̃ , for any player i, for all xi ∈Wi(x̃i, x̃−i),

(1) fi(xi, x̃−i) = f̃i(xi, x̃−i);

(2) for any h ∈ ∂if̃i(x̃i, x̃−i),

fi(xi, x̃−i) = f̃i(xi, x̃−i) = f̃i(x̃i, x̃−i) + 〈h, xi − x̃i〉 . (2.5)

The following lemma provides a sufficient condition for the η-disaggregatability of x̃.

Lemma 2.8. For any action profile x̃ ∈ X̃ , for any player i, if there is λi ∈ Λi and
h ∈ ∂f̃i(x̃i, x̃−i), such that,〈

h, xi − x̃i
〉
≥ −η‖xi − x̃i‖ , ∀xi ∈ convW λi

i (x̃i, x̃−i) . (2.6)

then,
|fi(xi, x̃−i)− f̃i(x̃i, x̃−i)| ≤ η‖xi − x̃i‖ , for all xi ∈W λi

i (x̃i, x̃−i) .

In particular, x̃ satisfies the η∆-disaggregatable condition with (λi)i.

2.3 Approximate Nash equilibrium in the large nonconvex aggregative
game Γ

This subsection is dedicated to the construction of an O( 1
nγ )-Nash equilibrium of the original

nonconvex game Γ.
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Theorem 2.9. Suppose that x̃ ∈ X̃ is an ε-Nash equilibrium in Γ̃ which satisfies the η-
disaggregatable condition with (λi)i. Let x∗ ∈ X be such that

x∗ ∈ argmin
xi∈W

λi
i (x̃), i∈N

∥∥∥∑
i∈N

Aix̃i −
∑
i∈N

Aixi

∥∥∥2
. (2.7)

Then, x∗ is a ε̃-Nash equilibrium of the nonconvex game Γ, where ε̃ = ε+η+2H( (q+1)M∆
n )γ.

In particular, this shows the existence of 2H( (q+1)M∆
n )γ-Nash equilibrium of Γ, by taking

x̃ to be a Nash equilibrium of Γ̃, which exists according to Proposition 2.5.

Proof. For each i ∈ N , define a set Ei(x̃) := AiW
λi
i (x̃) in Rq. Since x̃i ∈ conv (W λi

i (x̃)),

one has
∑

i∈N Aix̃i ∈
∑

i∈N conv(Ei(x̃)) = conv
(∑

i∈N Ei(x̃)
)

by the linearity of Ai’s.

According to the Shapley-Folkman lemma, there exists ei ∈ conv(Ei(x̃)) for each i ∈ N ,
and a subset I ⊂ N with |I| ≤ q, such that: (i)

∑
i∈N Aix̃i =

∑
i∈N ei and (ii) ei ∈ Ei(x̃)

for all i /∈ I. Thus, for all i /∈ I, there exists x̄i ∈W λi
i (x̃), such that ei = Aix̄i. For all i ∈ I,

take arbitrarily x̄i ∈W λi
i (x̃). Then,∥∥∥∑

i∈N
Aix̃i −

∑
i∈N

Aix
∗
i

∥∥∥ ≤ ∥∥∥∑
i∈N

Aix̃i −
∑
i∈N

Aix̄i

∥∥∥ =
∥∥∥∑
i∈N

ei −
∑
i∈N

Aix̄i

∥∥∥ =
∥∥∥∑
i∈I

Ai(x̃i − x̄i)
∥∥∥

≤ qM∆ . (2.8)

Now, for all i, x∗i ∈W
λi
i (x̃), so that it satisfies

fi(x
∗
i , x̃−i) ≤ f̃i(x̃i, x̃−i) ≤ f̃i(xi, x̃−i) + ε+ η ≤ fi(xi, x̃−i) + ε+ η , for all xi ∈ Xi , (2.9)

according to Lemma 2.7.(1), Lemma 2.8.(3) and Lemma 2.3.(1).
Recall that fi(x) = θi(xi,

1
n

∑
j∈N Aj xj). Hence, for any xi ∈ Xi

fi(xi, x̃−i) = θi

(
xi,

1

n
Ai xi +

1

n

∑
j∈N−i

Aj x̃j

)

= θi

(
xi,

1

n
Ai xi +

1

n

∑
j∈N−i

Aj x
∗
j +

1

n
Ai (x∗i − x̃i) +

1

n

∑
j∈N

Aj (x̃j − x∗j )
)

= θi

(
xi,

1

n
Ai xi +

1

n

∑
j∈N−i

Aj x
∗
j + δi

)
− θi

(
xi,

1

n
Ai xi +

1

n

∑
j∈N−i

Aj x
∗
j

)
+ fi(xi, x

∗
−i) ,

where δi := 1
nAi (x∗i − x̃i) + 1

n

∑
j∈N Aj (x̃j − x∗j ).

By (2.8), ‖δi‖ ≤ (q+1)M∆
n . Using now Assumption 2 yields that, for any xi ∈ Xi,∣∣fi(xi, x∗−i)− fi(xi, x̃−i)∣∣ ≤ H ((q + 1)M∆

n

)γ
.

Injecting this result in (2.9) yields

fi(x
∗
i , x
∗
−i) ≤ fi(xi, x∗−i) + ε+ η + 2H

(
(q + 1)M∆

n

)γ
, ∀xi ∈ Xi , ∀i ∈ N . (2.10)
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2.4 A decentralized randomized “Shapley-Folkman disaggregation”

In the proof of Theorem 2.9, the Shapley-Folkman lemma is used to show the existence (ei)i,
which can be called a “Shapley-Folkman disaggregation” of x̃ or, more precisely,

∑
iAix̃i.

Nevertheless, the Shapley-Folkman lemma is not constructive and there has been few prac-
tical algorithms proposed in the literature to find such a “Shapley-Folkman disaggregation”
(see Udell and Boyd [42] for a particular setting of optimization) and the disaggregation
is done in a centralized way for the n sets Ei(x̃) = AiW

λi
i (x̃). This is the reason why

optimization problem (2.7) is introduced as a constructive solution. Note that x̄ and x∗

are not “Shapley-Folkman disaggregations” strictly speaking, but feasible action profiles for
the original nonconvex game while

∑
iAix̄ and

∑
iAix

∗
i are close enough to

∑
iAix̃. For

simplification, they are also called “Shapley-Folkman disaggregation” of x̃.
Although this paper does not aim to propose a generic algorithm for the resolution of

discrete optimization program (2.7), let us introduce a fast, easy and decentralized method
which finds a feasible mixed-strategy profile that is an ε̌-mixed strategy Nash equilibrium
of the original nonconvex game, and such that the error ε̌ is decreasing in n though less fast
than x∗ in Theorem 2.9.

Lemma 2.10. Suppose that x̃ ∈ X̃ is an ε-Nash equilibrium in Γ̃ satisfying the η-disaggregatable
condition with (λi)i, where W λi

i (x̃) = {x1
i , x

2
i , . . . , x

li
i } with 1 ≤ li ≤ d + 1 and x̃i =∑li

l=1 α
l
ix
l
i, where α ∈ Sli−1. Each player i plays a mixed strategy independently, i.e. a

random action Xi following distribution µ̃i over Xi defined by P(Xi = xli) = αli. In other
words,

µ̃i =

li∑
l=1

αliδxli
, (2.11)

where δxli
stands for the Dirac distribution on xli. Then,

E
∥∥∥∑
i∈N

Aix̃i −
∑
i∈N

AiXi

∥∥∥ ≤ √nM∆ .

Proof. By the independence of Xi, AiXi are independent of each other. From the definition
of µ̃i, E(AiXi) = Aix̃i. Therefore,(

E
∥∥∥∑
i∈N

Aix̃i −
∑
i∈N

AiXi

∥∥∥)2

≤ E

[∥∥∥∑
i∈N

Aix̃i −
∑
i∈N

AiXi

∥∥∥2
]

=
∑
i∈N

Var(AiXi) ≤ nM2∆2 ,

where the first inequality is by Jensen’s inequality.

Proposition 2.11. Suppose that x̃ ∈ X̃ is an ε-Nash equilibrium in Γ̃ satisfying the η-
disaggregatable condition with (λi)i, and each player i plays a mixed strategy µ̃i as introduced
in Lemma 2.10. Then, for γ ≤ 1, µ̃ = (µ̃i)i is a ε̌-mixed-strategy Nash equilibrium of the

nonconvex game Γ, where ε̌ = ε+ η + 2H( (
√
n+1)M∆
n )γ, in the sense that

E
[
fi(Xi, X−i)

]
≤ E

[
fi(xi, X−i)

]
+ ε̌ , ∀xi ∈ Xi ,

where Xi follows µ̃i independently.

10



Proof. By same arguments as in the proof of Theorem 2.9, one has

|fi(xi, x̃−i)− fi(xi, X−j)| ≤ H ‖δi(X)‖γ ,

where δi(X) := 1
nAi (Xi − x̃i) + 1

n

∑
j∈N Aj (x̃j −Xj). By Lemma 2.10,

E‖δi(X)‖ ≤ 1 +
√
n

n
M∆ .

Besides, since Xi takes values in W λi
i (x̃),

fi(Xi, X−i) = fi(Xi, X−i)− fi(Xi, x̃−i) + fi(Xi, x̃−i)

≤ fi(Xi, X−i)− fi(Xi, x̃−i) + fi(xi, x̃−i) + ε+ η

= fi(Xi, X−i)− fi(Xi, x̃−i) + fi(xi, x̃−i)− fi(xi, X−i) + fi(xi, X−i) + ε+ η ,

so that

fi(Xi, X−i)− fi(xi, X−i) ≤ |fi(Xi, X−i)− fi(Xi, x̃−i)|+ |fi(xi, x̃−i)− fi(xi, X−i)|+ ε+ η

≤ 2H(δi(X))γ + ε+ η .

Therefore,

E
[
fi(Xi, X−i)− fi(xi, X−i)

]
≤ 2H E

[
‖δi(X)‖γ

]
+ ε+ η ≤ 2H

(
(
√
n+ 1)M∆

n

)γ
+ ε+ η .

3 Computing ε-equilibria for large nonconvex congestion games

3.1 Nonconvex generalized congestion game

An extensively studied class of aggregative games are congestion games.
Consider a generalized congestion game where each player i ∈ N has a action set Xi ⊂ Rd

and a cost function of the following form:

fi(xi, x−i) =

〈
g
( 1

n

∑
j∈N

ajxj

)
, xi

〉
+ hi

( 1

n

∑
j∈N

ajxj

)
+ ri(xi)

=

d∑
t=1

gt

( 1

n

∑
j∈N

ajxj,t

)
xi,t + hi

( 1

n

∑
j∈N

ajxj

)
+ ri(xi) ,

(3.1)

Suppose that the following assumptions hold on Xi, (aj)j∈N ∈ Rn, gt’s, hi’s and ri’s.

Assumption 3.

• There exist constants m > 0 and M > 0, such that m ≤ ai ≤M for all i ∈ N .

• For t = 1, . . . , d, function gt : R → R is Lgt-Lipschitz continuous and nondecreas-
ing on a neighborhood of [D1, D2], where constants D1 and D2 are such that D1 ≤
mint=1,...,d;x∈X̃

1
n

∑
j∈N ajxj,t ≤ maxt=1,...,d;x∈X̃

1
n

∑
j∈N ajxj,t ≤ D2.

11



• For each i ∈ N , function hi : Rd → R is Lhi-Lipschitz continuous on [D1, D2]d.

• Players’ local cost functions ri : Rd → R are uniformly bounded, i.e. there exists
constant Br > 0 such that, for all i ∈ N and all xi ∈ Xi, |ri(xi)| ≤ Br.

Notation. Let constant ∆ = max{maxi∈N maxxi∈X̃i ‖xi‖,maxi∈N |X̃i|}. Let Lg = max1≤t≤d Lgt ,
Lh = maxi∈N Lhi , Bg = max1≤t≤d,D1≤s≤D2 |gt(s)|.

The convexification of Γ is rather complicated to compute in the general case. Let us
first introduce an auxiliary game which is very close to Γ but whose convexification is easier
to obtain.

Fix arbitrarily x+
i ∈ Xi for each player i ∈ N . Auxiliary game Γ̄ is defined as follows:

the player set and each player’s action set are the same as in Γ, but player i’s cost function
is, for all xi ∈ Xi and all x−i ∈ X̃−i,

f̄i(xi, x−i) :=
〈
g
( 1

n

∑
j 6=i

ajxj +
1

n
aix

+
i

)
, xi

〉
+ ri(xi) .

The following lemma shows why Γ can be approximated by Γ̄.

Lemma 3.1. For auxiliary game Γ̄,

(1) Assumptions 1 and 2 are verified with H = Lg∆ and γ = 1;

(2) an ε-Nash equilibrium of Γ̄ is an (ε+ LhM∆
n +

2LgM∆2

n )-Nash equilibrium of Γ.

For any fixed x−i ∈ X̃−i, f̄i(·, x−i) is composed by a linear function of xi and a local
function of xi. By abuse of notation, let us still use f̄i to denote its convexification on X̃i.
More explicitly,

f̄i(xi, x−i) :=
〈
g
( 1

n

∑
j 6=i

ajxj +
1

n
aix

+
i

)
, xi

〉
+ r̃i(xi) , (3.2)

where r̃i is the convexification of ri defined on X̃i in the same way as f̃i.
By abuse of notation, let Γ̃ denote the convexification of Γ̄ on X̃ .

3.2 A proximal best-reply algorithm

This subsection presents a proximal best-reply algorithm based on the block coordination
proximal algorithm introduced by Xu and Yin [47] to construct an O( 1

n)-Nash equilibrium

of Γ̃ that satisfies the O( 1
n)-disaggregatable condition.
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Algorithm 1: Proximal best-reply algorithm for Γ̃

Initialization: choose initial point x0 = (x0
1, x

0
2, . . . , x

0
n) ∈ X̃

for k = 1, 2, · · · do
for i = 1, 2, . . . , n do

xki = argmin
xi∈X̃i

〈
g
( 1

n

∑
j<i

ajx
k
j+

1

n

∑
j≥i

ajx
k−1
j

)
, xi−xk−1

i

〉
+
aiLg
2n

∥∥xi−xk−1
i

∥∥2
+r̃i(xi)

(3.3)
end
if stopping criterion is satisfied then

return (xk1, x
k
2, . . . , x

k
n). Break.

end

end

Lemma 3.2. Let (xk)k∈N be the sequence generated by Algorithm 1 with some initial point
x0 ∈ X̃ . Then,

(1)
∑∞

k=1 ‖xk−1 − xk‖2 ≤ 2n2

m2Lg
C, where C = (d∆Lg + 2Br)M ;

(2) for any K ∈ N∗, there exists some k∗ ≤ K, such that ‖xk∗−1 − xk∗‖ ≤
√

2C n

m
√
LgK

.

Proposition 3.3. For K ∈ N∗, there is k∗ ≤ K such that xk
∗

is an ω(K,n)∆-Nash
equilibrium of game Γ̃ which is ω(K,n)∆-disaggregatable, where

ω(K,n) =

√
2CLgM

m

√
n

K
+

2LgM∆

n
, (3.4)

where C = (d∆Lg + 2Br)M .
In particular, if constant K ≥ 2C

m2Lg
n1+2δ + 1 for some constant δ > 0, then, there

exists some k∗ ≤ K such that xk
∗

is an LgM∆(n−δ + 2∆n−1)-Nash equilibrium of game Γ̃
satisfying LgM∆(n−δ + 2∆n−1)-disaggregatable condition.

Proof. First, notice that vector function ζ : X̃ → Rd, x 7→ ζ(x) = g
(

1
n

∑
j∈N ajxj

)
is

LgM√
n

-Lipschitz continuous, i.e. ‖ζ(x) − ζ(y)‖ ≤ LgM√
n
‖x − y‖, for all x, y ∈ X̃ . Indeed,

‖ζ(x)−ζ(y)‖2 =
∑d

t=1 |gt(
1
n

∑
j∈N ajxj,t)−gt(

1
n

∑
j∈N ajyj,t)|2 ≤

∑d
t=1

∣∣Lgt
n |
∑

j∈N aj(xj,t−

yj,t)|
∣∣2 ≤∑d

t=1

(L2
g

n2

∑n
j=1 a

2
j

∑
j∈N (xj,t − yj,t)2

)
≤ L2

gM
2

n ‖x− y‖2, where the first inequality
is because gt is Lgt-Lipschitz, while the second results from the Cauchy-Schwarz inequality.

Next, suppose that sequence (xk)k∈N is generated by Algorithm 1 with some initial
point x0 ∈ X̃ . Let us show that, if ‖xk−1 − xk‖ ≤ uk, then, xk satisfies the η(uk)∆-
disaggregatable condition and, furthermore, it is an η(uk)∆-Nash equilibrium of game Γ̃,

where η(uk) =
LgMuk√

n
+

2LgM∆
n .

Since ‖xk − xk−1‖ ≤ uk, one has ‖(xk1, . . . , xki−1, x
k
i , x

k
i+1, . . . , x

k
n) − (xk1, . . . , x

k
i−1, x

k−1
i ,

xk−1
i+1 , . . . , x

k−1
n )‖ ≤ uk. This, the Lipschitz continuity of ζ on X̃ and the Lipschitz continuity
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of g in xi imply that∥∥∥g( 1

n

∑
j 6=i

ajx
k
j +

1

n
aix

0
i

)
− g
( 1

n

∑
j<i

ajx
k
j +

1

n
aix

k−1
i +

1

n

∑
j>i

ajx
k−1
j

)∥∥∥
≤
∥∥∥g( 1

n

∑
j 6=i

ajx
k
j +

1

n
aix

0
i

)
− g
( 1

n

∑
j∈N

ajx
k
j

)∥∥∥
+
∥∥∥g( 1

n

∑
j∈N

ajx
k
j

)
− g
( 1

n

∑
j<i

ajx
k
j +

1

n
aix

k−1
i +

1

n

∑
j>i

ajx
k−1
j

)∥∥∥
≤ LgM∆

n
+
LgMuk√

n
.

(3.5)

The first order condition of optimality of the optimization problem (3.3) is: there exists
some pi in the subdifferential of r̃i(x

k
i ) at xki , denoted by ∂r̃i(x

k
i ), such that for all xi ∈ X̃i,〈

g
( 1

n

∑
j<i

ajx
k
j +

1

n

∑
j≥i

ajx
k−1
j

)
+
aiLg
n

(xki − xk−1
i ) + pi, xi − xki

〉
≥ 0 . (3.6)

Then,〈
g
( 1

n

∑
j 6=i

ajx
k
j +

1

n
aix

+
i

)
+ pi, xi − xki

〉
=
〈
g
( 1

n

∑
j 6=i

ajx
k
j +

1

n
aix

+
i

)
− g
( 1

n

∑
j<i

ajx
k
j +

1

n

∑
j≥i

ajx
k−1
j

)
, xi − xki

〉
+
〈
g
( 1

n

∑
j<i

ajx
k
j +

1

n

∑
j≥i

ajx
k−1
j

)
+
aiLg
n

(xki − xk−1
i ) + pi, xi − xki

〉
−
〈aiLg

n
(xki − xk−1

i ), xi − xki
〉

≥
〈
g
( 1

n

∑
j 6=i

ajx
k
j +

1

n
aix

+
i

)
− g
( 1

n

∑
j<i

ajx
k
j +

1

n
aix

k
i +

1

n

∑
j>i

ajx
k−1
j

)
, xi − xki

〉
−
〈aiLg

n
(xki − xk−1

i ), xi − xki
〉

≥ −
(LgMuk√

n
+
LgM∆

n
+
aiLg∆

n

)
‖xi − xki ‖

≥ −
(LgMuk√

n
+

2LgM∆

n

)
‖xi − xki ‖ = −η(uk)‖xi − xki ‖ ,

where the first inequality is due to (3.6), while the second one by (3.5) and the Cauchy-
Schwarz inequality. Then, according to Lemma 2.8, xk satisfies the η(uk)∆-disaggregatable

conditoin for game Γ̃, where η(uk) =
LgMuk√

n
+

2LgM∆
n .
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Furthermore, since r̃i is convex on X̃i,

f̄i(xi, x
k
−i)− f̄i(xk) =

〈
g
( 1

n

∑
j 6=i

ajx
k
j +

1

n
aix

+
i

)
, xi − xki

〉
+ r̃i(xi)− r̃i(xki )

≥
〈
g
( 1

n

∑
j 6=i

ajx
k
j +

1

n
aix

+
i

)
, xi − xki

〉
+ 〈pi, xi − xki 〉

≥ −(
LgMuk√

n
+

2LgM∆

n
)‖xi − xki ‖ .

Thus, xk is an an η(uk)∆-Nash equilibrium of game Γ̃.

For any K ∈ N∗, there exists some k∗ ≤ K such that ‖xk∗−1−xk∗‖ ≤
√

2Cn

m
√
LgK

according

to Lemma 3.2(2). The conclusion is immediate by taking ω(K,n) = η
( √

2Cn

m
√
LgK

)
.

Theorem 3.4. For constant δ > 0 and integer K ≥ 2C
m2Lg

n1+2δ + 1, let x∗ ∈ X be the

pure-strategy profile generated by (2.7), where x̃ is replaced by xk
∗

in Proposition 3.3. Then,

x∗ is a
(
2LgM∆

(
n−δ + (q+4)∆

n

)
+ LhM∆

n

)
-Nash equilibrium of the nonconvex game Γ.

Proof. Proposition 3.3 shows that xk
∗

is an approximate equilibrium of game Γ̃ (convexifi-
cation of the nonconvex auxiliary game Γ̄). Then, Theorem 2.9 is applied to show that (the
“Shapley-Folkman disaggregation” of xk

∗
) x∗ is an approximate equilibrium of the noncon-

vex auxiliary Γ̄. The use of Theorem 2.9 is justified by Lemma 3.1(1). Finally, Lemma
3.1(2) is evoked to show that x∗ is an approximate equilibrium of the original nonconvex
game Γ.

Remark 3.1. For each fixed n, Algorithm 1 converges to a so-called block coordinatewise

minimum point ofG(x) =
∑d

t=1Gt

(
1
n

∑
j∈N ajxj,t

)
+
∑

j∈N
aj
n r̃j(xj), whereGt is a primitive

function of gt. (For more details, see Xu and Yin [47].) However, a block coordinatewise
minimum point is not a Nash equilibrium of the convexification of the auxiliary game Γ̃.
Indeed, by Definitions 2.3 and 2.4 in Xu and Yin [47], a block coordinatewise minimum
point x∞ of G satisfies that, for each i, there exists some pi in ∂r̃i(x

∞
i ) such that〈

g
(

1
n

∑
j

ajx
∞
j

)
+ pi, xi − x∞i

〉
≥ 0 , ∀xi ∈ X̃i ,

while a Nash equilibrium x̄ of the convexification of the auxiliary game Γ̃ satisfies that, for
each i, there exists some pi in ∂r̃i(x̄i) such that〈

g
(

1
n

∑
j 6=i

aj x̄j + 1
naix

+
i

)
+ pi, xi − x̄i

〉
≥ 0 , ∀xi ∈ X̃i .

Even if Xi’s and gt’s are convex sets and functions, and hi’s are neglected, x∞ is still not a
Nash equilibrium x̃ of the convexified game of Γ which satisfies that, for each i, there exists
some pi in ∂r̃i(x̃i) such that〈

g
(

1
n

∑
j

aj x̃j
)

+ ai
n

(
g′t
(

1
n

∑
j

aj x̃j
))

t
+ pi, xi − x̃i

〉
≥ 0 , ∀xi ∈ X̃i .
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In particular, it means that Gt is not a potential function of the convexified game Γ̃ in the
sense of Monderer and Shapley [29].

Nevertheless, it is easy to see that, thanks to the Lipschitz continuity of g, x∞ is an O( 1
n)-

Nash equilibrium of both Γ̄ and Γ̃. However, there is no need to wait for the algorithm to
converge to x∞, because xk

∗
is sufficient to generate an approximate Nash equilibrium of Γ

with an error bound of the same magnitude as x∞ can achieve.
Finally, note that Γ̃ is getting closer to a potential game when n tends to ∞.

In the case where a “Shapley-Folkman” disaggregation of xk
∗

is not easy to obtain, one
can use the decentralized randomized disaggregation method introduced in Section 2.4 to
obtain immediately an approximate mixed-strategy Nash equilibrium, though the quality of
approximation is less good than a “Shapley-Folkman” disaggregation.

Corollary 3.5. For constant δ > 0 and integer K ≥ 2C
m2Lg

n1+2δ + 1, let µ̃ = (µ̃i)i be a

profile of independent mixed strategies defined as in Lemma 2.10, where x̃ is replaced by xk
∗

in Proposition 3.3. Then, µ̃ is a
(
2LgM∆

(
n−δ + (

√
n+4)∆
n

)
+ LhM∆

n

)
-mixed-strategy Nash

equilibrium of the nonconvex game Γ.

4 Numerical example

This section applies Algorithm 1 to game (1.1) to a specific problem in the field of elec-
tric systems taking the form of (3.1) in dimension d = 1. The asymptotic performance of
the algorithm for large n is illustrated. To avoid rescaling cost functions for each n, rela-
tive ε-Nash equilibria defined below are considered instead of ε-Nash equilibria defined by
Definition 2.1.

Definition 4.1. For a constant ε ≥ 0, a relative ε-Nash equilibrium xε ∈ X in game Γ is a
profile of actions of the n players such that, for each player i ∈ N ,

fi(x
ε
i , x

ε
−i)− inf

xi∈Xi
fi(xi, x

ε
−i) ≤ ε

(
sup
xi∈Xi

fi(xi, x
ε
−i)− inf

xi∈Xi
fi(xi, x

ε
−i)
)
.

If ε = 0, then xε is a Nash equilibrium.

First, game (1.1) is reformulated with uni-dimensional actions. For simplification, sup-
pose that all the players have the same type of EV (Nissan Leaf 2018) with battery capacity
e, and two charging rate levels pmin and pmax. The total consumption of player i is denoted
by ei and determined by a parameter τi as follows: ei = (1−τi)e = `Pi +`OPi , where τi ∈ [0, 1]
signifies the player’s remaining proportion of energy in her battery when arriving at home.

Let xi :=
`Pi
e denote player i’s strategy in the following reformulation of game (1.1):

f̃
(n)
i (xi, x−i) = b̃

(n)
i (xi, x−i) + γ̃i‖xi − xrefi ‖

2 , (4.1)

where γ̃i indicates how player i values the deviation from her preferred consumption profile
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and is uniformly set to be ne for simplification, and

b̃
(n)
i (xi, x−i) = (αP0 + β0ne

1

n

∑
j

(1− τj)xj)`Pi + (αOP0 + β0ne
1

n

∑
j

(1− τj)(1− xj))`OPi

= e(1− τi)
[(
αP0 − αOP0 − β0ne+ 2β0ne

1

n

∑
j

(1− τj)xj
)
xi

+ αOP0 + β0ne− β0ne
1

n

∑
j

(1− τj)xj
]
.

The nonconvex action set of player i, introduced in Section 1 as SNCi = {`i = (`Pi , `
OP
i ) | `Pi +

`OPi = ei, `
P
i ∈ {`Pi , `Pi }}, is now translated into Xi = {xi, xi} ⊂ [0, 1], where xi and xi cor-

respond respectively to charging at pmin and pmax.
By extracting the common factor ne(1− τi), player i’s cost function becomes

f
(n)
i (xi, x−i) :=

〈
g(n)

( 1

n

n∑
j=1

(1− τj)xj
)
, xi

〉
+ h(n)

( 1

n

n∑
j=1

(1− τj)xj
)

+
r

(n)
i (xi)

1− τi
, (4.2)

where g(n)(y) :=
αP0 −αOP0

n +β0e(2y−1), h(n)(y) :=
αOP0
n +β0e(1−y), and r

(n)
i (y) := ‖y−xrefi ‖2

for y ∈ R, where αP0 = −4.17 + 0.59 × 12n (e/kWh), αOP0 = −4.17 + 0.59 × 8n (e/kWh),
β0 = 0.295 (e/kWh2) according to Jacquot et al. [20].

Simulation parameters The peak hours are between 6 am and 10 pm while the remain-
ing of the day is off-peak hours. The battery capacity of Nissan Leaf 2018 is e = 40kWh.
The discrete action set of player i is determined as follows. The players’ arrival time at home
is independently generated according to a Von Mises distribution with parameter κ = 1 be-
tween 5 pm and 7 pm. Their departure time is independently generated according to a Von
Mises distribution with parameter κ = 1 between 7 am and 9 am. The remaining energy
proportion τi is independently generated according to a Beta distribution with parameter
β(2, 5). Once a player arrives at home, she starts charging at one of the two alternative
levels, pmin = 3.7kW or pmax = 7kW. This power level is maintained until the energy need
ei is reached. Indeed the arrival and departure times parameters are such that the problem
is always feasible i.e. the energy need ei can always be reached during the charging period
by choosing power level pmax. Players are all assumed to prefer charging as fast as possible,
so that xrefi = xi for all i. Fifty instances of the problem are considered for the numerical
test. They are obtained by independent simulations of those parameters (players’ arrival
and departure time and remaining energies).

Algorithm 1 is applied to EV charging game Γ(n) (4.2) for n = 2s, s = 1, . . . , 15. For
each game Γ(n), for each iteration k of the algorithm, relative error ε(n),k is defined by

ε(n),k := min

{
ε ≥ 0

∣∣∣ f (n)
i (x

(n),k
i , x

(n),k
−i )− inf

xi∈Xi
f

(n)
i (xi, x

(n),k
−i )

≤ ε
(

sup
xi∈Xi

f
(n)
i (xi, x

(n),k
−i )− inf

xi∈Xi
f

(n)
i (xi, x

(n),k
−i )

)}
,

where x(n),k denotes the kth iterate of Algorithm 1 applied to game Γ(n).
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Figure 1 represents the minimum current error at iterationK i.e. error(n),K := min{ε(n),k, k ≤
K} averaged over fifty instances of the problem for different numbers of players n and dif-
ferent values of iteration number K of the algorithm.

Figure 1: Log-log chart of epsilon-n (player number) relation with k iterations.

According to Proposition 3.3, when the iteration number K is fixed, due to the domina-
tion term of

2LgM∆
n in (3.4) when n is small, error(n),K first decreases linearly in n before

reaching a certain threshold. After that,

√
2CLgM

m

√
n
K dominates the error value so that

error(n),K may increase in n. The threshold itself increases with the iteration number K.
Figure 1 is consistent with this analysis.

5 Perspectives

In Section 2.4, a decentralized disaggregating method is introduced to obtain a randomized
“Shapley-Folkman disaggregation” for the case γ ≤ 1. It is extremely fast and easy to
carry out: once an (approximate) Nash equilibrium x̃ is obtained for the convexified game,
each player i chooses randomly one feasible action that is in W λi

i (x̃), the generator of x̃i,
according to a suitable distribution law.

This method renders an O( 1√
n
γ )-mixed strategy Nash equilibrium, with the error van-

ishing when the number of players going to infinity. However, even if an O( 1
nγ )-PNE can

be difficult to obtain by an exact “Shapley-Folkman disaggregation”, especially if a large,
centralized program is involved, for example, to solve (2.7), it would be desirable to find
other algorithms to find better approximations of Nash equilibria of the nonconvex game.
Decentralized and randomized algorithms are appealing because they can be faster to carry
out, needing less coordination hence more tractable, and taking advantage of the law of
large numbers when n is large.
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Appendix A: Proofs of Lemmata 2.3, 2.7, 2.8, 3.1 and 3.2

For Lemmata 2.3, 2.7, 2.8, in order to simplify the notations, i and x−i ∈ X̃−i are arbitrarily
fixed. Index i and the parameter x−i are thus omitted in fi, f̃i, Xi, X̃i and Wi.

Proof of Lemma 2.3.
The Lemma is a particular case of more general results well-known in Convex Analysis that
have been shown in various work, such as [17, Lemma X.1.5.3]. Let us provide a proof for
this particular case here for the sake of completeness.
(1) For x ∈ X, in the definition of f̃(x), take xk = x, αk = 1

d+1 for all k. By definition,

f̃(x) ≤
∑d+1

k=1 α
kf(xk) = f(x).

(2) Suppose that ((αk,n)k, (x
k,n)k)n∈N is a minimizing sequence for f̃(x̃), i.e.

f̃(x̃) = limn→∞
∑d+1

k=1 α
k,nf(xk,n), with ((αk,n)k, (x

k,n)k)n∈N satisfying conditions in (2.2).
Since (α1,n) ∈ [0, 1] for all n, so that it has a convergent subsequence α1,φ1(n) which converges
to some α1. Consider sequence α2,φ1(n) which has a subsequence α2,φ2(n) converging to some
α2. Note that φ2(n) is a subsequence of φ1(n). Repeat this operation d + 1 times and ob-
tain subsequences φ1(n), . . . , φd+1(n) such that αk,φk(n) converges to αk, for k = 1, . . . , d+1.
Consider x1,φd+1(n) which is in the compact set X. It has a convergent subsequence x1,φd+2(n)

converging to x1 ∈ X . Again, take a subsequence φd+3(n) such that x2,φd+3(n) converges to
xk, and so on. Finally, one obtains a subsequence φ2d+2(n) of N such that

f̃(x̃) = lim
n→∞

d+1∑
k=1

αk,φ2d+2(n)f(xk,φ2d+2(n)) , (5.1)

αk = lim
n→∞

αk,φ2d+2(n) , αk ∈ [0, 1] , k = 1, 2, · · · , d+ 1 , (5.2)

d+1∑
k=1

αk = lim
n→∞

d+1∑
k=1

αk,φ2d+2(n) = 1 , (5.3)

xk = lim
n→∞

xk,φ2d+2(n) , xk ∈ X , k = 1, 2, · · · , d+ 1 , (5.4)

d+1∑
k=1

αkxk = lim
n→∞

d+1∑
k=1

αk,φ2d+2(n)xk,φ2d+2(n) = lim
n→∞

x̃ = x̃ . (5.5)

Then,

d+1∑
k=1

αkf(xk) ≤ lim
n→∞

d+1∑
k=1

αkf(xk,φ2d+2(n)) = lim
n→∞

d+1∑
k=1

αk,φ2d+2(n)f(xk,φ2d+2(n))

= f̃(x̃) ≤
d+1∑
k=1

αkf(xk) .

where the first inequality is due to (5.4), the second equality due to (5.2), the third equality
due to (5.1) and the fourth inequality due to (5.3), (5.5) and (2.2). This shows that f̃(x̃) =∑d+1

k=1 α
kf(xk), i.e. (αk, xk)d+1

k=1, is a minimizer.

(3) On the one hand, for all (x, y) ∈ conv (epi f), by Caratheodory theorem [6, Proposition
1.2.1], there exists (xk, yk) ∈ epi f , k = 1, . . . , d+1 such that (x, y) =

∑d+1
k=1 α

k(xk, yk), with
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α ∈ Sd. Hence, yk ≥ f(xk), y =
∑d+1

k=1 α
kyk ≥

∑d+1
k=1 α

kf(xk) ≥ f̃(x). This shows that
(x, y) ∈ epi f̃ . Therefore, conv (epi f) ⊂ epi f̃ . Recall that f is l.s.c. hence epi f is a closed
set hence so is conv (epi f). Thus, conv (epi f) ⊂ epi f̃ .

On the other hand, for all (x, y) ∈ epi f̃ , y ≥ f̃(x). Let ((αk,n)k, (x
k,n)k)n∈N be the min-

imizing sequence for f̃(x), i.e. f̃(x) = limn→∞
∑d+1

k=1 α
k,nf(xk,n), with αk,n, xk,n satisfying

conditions in (2.2). Then, y = limn→∞
∑d+1

k=1 α
k,n(f(xk,n) + δ

d+1), where δ = y − f̃(x) ≥ 0.

Denote yn =
∑d+1

k=1 α
k,n(f(xk,n) + δ

d+1). Then, (x, yn) ∈ conv(epi f), and limn→∞(x, yn) =

(x, y). This means that (x, y) ∈ conv(epi f) and, therefore, epi f̃ ⊂ conv (epi f).
In conclusion, epi f̃(·) = conv (epi f(·)), which implies that the epigraph of f̃ is closed

and convex. Thus, f̃ is l.s.c. and convex on X̃ .

(4) By the lower semicontinuity of f̃ and f on compact sets X̃ and X, their minima can be
attained. The equality (2.4) is thus clear by the definition in (2.2).

Proof of Lemma 2.7. Let {x1, . . . , xd+1} ⊂ X a generator of (x̃, f̃(x̃)) and α ∈ Sd their
corresponding weights.

(1) Suppose that there is k such that f(xk) > f̃(xk). Then, there exists (yl)l in X and
β ∈ Sd such that xk =

∑
l β

lyl and f̃(xk) =
∑

l β
lf(yl) < f(xk). In consequence, f̃(x̃) =∑

m α
mf(xm) >

∑
m 6=k α

mf(xm) +
∑

l α
kβlf(yl), while

∑
m6=k α

mxm +
∑

l α
kβlyl = x̃ and∑

m 6=k α
m +

∑
l α

kβl = 1, contradicting the definition of f̃(x̃).

(2) By the definition of subdifferential, one has

f̃(xk) ≥ f̃(x̃) + 〈h, xk − x̃〉 , ∀k = 1, . . . , d+ 1 . (5.6)

Multiplying (5.6) by αk for each k and adding the d+ 1 inequalities yield

d+1∑
k=1

f̃(xk) ≥ f̃(x̃) + 〈h,
∑
k

αkxk − x̃〉 ⇔ f̃(x̃) ≥ f̃(x̃) . (5.7)

If, for at least one k, the inequality in (5.6) is strict, then the inequalities in (5.7) are strict
as well, which is absurd. Therefore, for each k, f̃(xk) = f̃(x̃) + 〈h, xk − x̃〉.

Proof of Lemma 2.8. First note that x̃ is in ri(convW λ(x̃)), the relative interior of convW λ(x̃).
Hence, for t > 0 small enough, x̃± t(x− x̃) is in ri(convW (x̃)) ⊂ X̃ . By (2.6),

〈
h, x̃± t(x−

x̃)− x̃
〉
≥ −η‖x̃± t(x− x̃)− x̃‖, which yields

∣∣〈h, x− x̃〉∣∣ ≤ η‖x− x̃‖. Then, by Lemma 2.7,

|f̃(x)− f̃(x̃)| = |〈h, x− x̄〉| ≤ η‖x− x̃‖.

Proof of Lemma 3.1. (1) First show that, for any fixed xi ∈ Xi, function θi(xi, y) :=
〈
g(y+

ai
n (x0

i − xi)), xi
〉

+ `i(xi) is Lg∆-Lipschitz in y on Ω. For this, fix xi ∈ Xi. For any y and y′
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in Ω,

|θi(xi, y′)− θi(xi, y)|2 =
∣∣∣〈g(y′ + ai

n
(x0
i − xi)

)
− g
(
y +

ai
n

(x0
i − xi)

)
, xi

〉∣∣∣2
≤
∥∥∥g(y′ + ai

n
(x0
i − xi)

)
− g
(
y +

ai
n

(x0
i − xi)

)∥∥∥2
∆2

=
d∑
t=1

(
gt

(
y′t +

ai
n

(x0
i,t − xi,t)

)
− gt

(
yt +

ai
n

(x0
i,t − xi,t)

))2
∆2

≤ L2
g∆

2
d∑
t=1

(y′t − yt)2

= L2
g∆

2‖y′ − y‖2 ,

where the first inequality results from the Cauchy-Schwarz inequality, while the second one
is because gt is Lgt-Lipschitz.

(2) It is easy to see that |fi(xi, x−i) − hi( 1
n

∑
j∈N ajxj) − f̄i(xi, x−i)| ≤

LgM∆2

n for all

xi ∈ Xi and all x−i ∈ X̃−i. Hence, if x̄ ∈ X is an ε-Nash equilibrium of Γ̄, then, for each i,
for any xi ∈ Xi,

fi(x̄i, x̄−i) ≤f̄i(x̄i, x̄−i) + hi

( 1

n

∑
j∈N

aj x̄j

)
+
LgM∆2

n

≤f̄i(xi, x̄−i) + ε+ hi

( 1

n
aixi +

1

n

n∑
j 6=i

aj x̄j

)
+
LhM∆

n
+
LgM∆2

n

≤fi(xi, x̄−i) + ε+
LhM∆

n
+

2LgM∆2

n
,

where the second inequality is due to the definition of ε-Nash equilibrium and the Lipschitz
continuity of hi.

Proof of Lemma 3.2. Consider the following two real-valued functions defined on X̃ :

G0(x) :=

d∑
t=1

Gt

( 1

n

∑
j∈N

ajxj,t

)
, G(x) := G0(x) +

∑
j∈N

aj
n
r̃j(xj) , (5.8)

where Gt is a primitive function of gt, which exists thanks to Assumption 3.
Note that function G0 is convex and differentiable on a neighborhood of X̃ , and convex

function r̃j is uniformly bounded on X̃j for all j ∈ N with the same bound B`, according to
Assumption 3. Besides, it is easy to see that, for any i and fixed x−i ∈ X̃−i, ∇iG0(xi, x−i) :=
∂G0(xi,x−i)

∂xi
= ai

n g( 1
naixi + 1

n

∑
j 6=i ajxj) is

a2iLg
n2 -Lipschitz continuous on X̃i.

Therefore, Assumptions 1 and 2 in [47] are verified. One can thus apply Lemma 2.2 in
[47] and obtains ∑

i∈N

a2
iLg
2n2
‖xki − xk+1

i ‖2 ≤ G(xk)−G(xk+1) ,

so that

‖xk − xk+1‖2 ≤ 2n2

m2Lg
(G(xk)−G(xk+1)) .
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In consequence,
∞∑
k=0

‖xk − xk+1‖2 ≤ 2n2

m2Lg
(G(x0)−Gmin) , (5.9)

where Gmin, defined as inf{x∈X̃}G(x), exists and is finite, because G is l.s.c. on compact

set X̃ . Suppose that Gmin is attained at x ∈ X̃ , then

G(x0)−Gmin = G(x0)−G(x)

=

d∑
t=1

∫ 1
n

∑
j∈N ajx

0
j,t

1
n

∑
j∈N ajxj,t

gt(s)ds+
∑
j∈N

aj
n

(r̃j(x
0
j )− r̃j(xj))

≤ dM∆Bg + 2MB ,

(5.10)

where the last inequality is due to mean value theorem and Assumption 3. Combining (5.9)

and (5.10) yields
∑∞

k=0 ‖xk − xk+1‖2 ≤ 2n2

m2Lg
C. This immediately implies

K∑
k=1

‖xk−1 − xk‖2 ≤ 2n2

m2Lg
C .

The second result of the lemma is then straightforward.

Appendix B: Nash equilibria in l.s.c. convex games

Lemma 5.1. Let R be a nonempty convex compact set in Rn. If real valued function
ρ(x, y) defined on R × R is continuous in x on R for any fixed y in R, l.s.c. in (x, y) on
R × R, and convex in y on R for any fixed x in R, then the set-valued map ζ : R → R,
x 7→ ζ(x) = arg minz∈R ρ(x, z) has a fixed point.

Proof. The Kakutani fixed-point theorem [23] will be applied for the proof. First, let us
show that ζ is a Kakutani map, i.e. (i) Γ is upper semicontinuous (u.s.c.) in set map sense
and (ii) for all x ∈ R, ζ(x) is non-empty, compact and convex.

(i) Fix x ∈ R. On the one hand, since ρ(x, y) is convex w.r.t y, ζ(x) is convex. On the other
hand, ρ(x, y) is l.s.c in y, while R is compact, hence ρ(x, y) can attain its minimum w.r.t y
and ζ(x) is thus nonempty. Besides, since ρ is l.s.c., ζ(x) = {y|ρ(x, y) ≤ minz∈R ρ(x, z)} is
a closed subset of compact set R, hence it is compact.

(ii) Recall that the set-valued map ζ is u.s.c. if, for any open set w ⊂ R, set {x ∈ R| ζ(x) ⊂
w} is open.

Let us first show by contradiction that, for arbitrary x0 ∈ R, for any ε > 0, there exists
δ > 0 such that for all z ∈ B(x0, δ), ζ(z) ⊂ ζ(x0) + B(0, ε). If it is not true, then there
exists ε0 > 0 and, for all n ∈ N∗, point zn ∈ B(x0,

1
n) such that there exists yn ∈ ζ(zn) with

d(yn, ζ(x0)) > ε0. Since sequence {yn} is in the compact set R, it has a subsequence yφ(n)

converging to some ȳ in R, and d(ȳ, ζ(x0)) ≥ ε0. Then, for all y ∈ R,

ρ(x0, ȳ) ≤ lim
n→∞

ρ(zφ(n), yφ(n)) ≤ lim
n→∞

ρ(zφ(n), y) = ρ(x0, y) ,
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where the first inequality is by the lower semicontinuity of ρ in (x, y), the second inequality
is by the definition of ζ(zφ(n)), while the third equality is by the continuity of ρ in x. This
shows that ȳ ∈ ζ(x0), in contradiction with the fact that d(ȳ, ζ(x0)) ≥ ε0.

Now fix arbitrarily an open set w ⊂ R and some x0 ∈ R such that ζ(x0) ⊂ w. Since
ζ(x0) is compact while w is open, there exists ε > 0 such that ζ(x0)+B(0, ε) ⊂ w. According
to the result of the previous paragraph, for this particular ε, there exists δ > 0 such that
ζ(z) ⊂ ζ(x0) + B(0, ε) ⊂ w for all z ∈ B(x0, δ). This means B(x0, δ) ⊂ {x ∈ R | ζ(x) ⊂ w}.
As a result, the set {x ∈ R | ζ(x) ⊂ w} is open.

Finally, according to the Kakutani fixed-point theorem, there exists x̃ ∈ R such that
x̃ ∈ ζ(x̃).

Definition 5.2. A family of real-valued function {f(·, y) : X → R | y ∈ Y} indexed by y,
with X ⊂ Rd1 and Y ⊂ Rd2 , is uniformly equicontinuous if, for all ε > 0, there exists δ such
that, for all y ∈ Y, ‖f(x1, y)− f(x2, y)‖ ≤ ε whenever ‖x1 − x2‖ ≤ δ.

Theorem 5.3 (Existence of Nash equilibrium in l.s.c. convex games). In an n-player game
Γ where for each player i ∈ {1, . . . , n}, if the following three properties hold:

(1) her action set Xi is a convex compact subset of Rd;

(2) her cost function fi(xi, x−i) : Xi ×
∏
j 6=iXj → R is convex and l.s.c.in xi ∈ Xi for any

fixed x−i ∈
∏
j 6=iXj;

(3) the family of functions {fi(xi, ·) :
∏
j 6=iXj → R |xi ∈ Xi} are uniformly equicontinuous,

then Γ has a Nash equilibrium.

Proof. Define function ρ(x, y) : X × X → R by ρ(x, y) =
∑n

i=1 fi(yi, x−i), where X =∏
iXi. It is easy to see that a fixed point of the set-valued map ζ : X → X , x 7→ ζ(x) =

arg minz∈R ρ(x, z) is a Nash equilibrium of game Γ.
In order to apply Lemma 5.1, one needs to show that: (i) ρ(x, y) is continuous in x for

each fixed y; (ii) ρ(x, y) is l.s.c. in (x, y); (iii) ρ(x, y) is convex in y for each fixed x.
Results (i) and (iii) are straightforward by the definition of ρ.
For (ii), first note that, by the uniform equicontinuity of {fi(xi, ·) :

∏
j 6=iXj → R |xi ∈

Xi} for each i and the fact that n is finite, {ρ(·, y), y ∈ R} is uniformly equicontinuous. Let
(xk, yk) be a sequence in X × X indexed by k which converges to (x, y) ∈ X × X . Then,

lim
k→∞

(ρ(xk, yk)− ρ(x, y)) = lim
k→∞

(ρ(xk, yk)− ρ(x, yk) + ρ(x, yk)− ρ(x, y))

= lim
k→∞

(ρ(x, yk)− ρ(x, y))

≥0 ,

where the second equality is due to the uniform equicontinuity of {ρ(·, y), y ∈ X} and the
last inequality is because ρ(x, y) is l.s.c. in y for any fixed x.

Remark 5.1. The property (3) is weaker than the condition that fi is continuous on X .
Indeed, since X is compact, fi(xi, x−i) is uniformly continuous on Xi×

∏
j 6=iXj which implies

the equicontinuity of {fi(xi, ·) :
∏
j 6=iXj → R |xi ∈ Xi}. In other words, Rosen’s theorem

on the existence of convex continuous games with compact convex actions sets is a corollary
of Theorem 5.3.
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