ULRICH BUNDLES ON CUBIC FOURFOLDS

Daniele Faenzi, Yeongrak Kim

To cite this version:

Daniele Faenzi, Yeongrak Kim. ULRICH BUNDLES ON CUBIC FOURFOLDS. 2020. hal03023101v1

HAL Id: hal-03023101 https://hal.science/hal-03023101v1

Preprint submitted on 25 Nov 2020 (v1), last revised 16 Sep 2022 (v3)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

ULRICH BUNDLES ON CUBIC FOURFOLDS

DANIELE FAENZI AND YEONGRAK KIM

Abstract

We show the existence of rank 6 Ulrich bundles on a smooth cubic fourfold. First, we construct a simple sheaf \mathcal{E} of rank 6 as an elementary modification of an ACM bundle of rank 6 on a smooth cubic fourfold. Such an \mathcal{E} appears as an extension of two Lehn-Lehn-Sorger-van Straten sheaves. Then we prove that a general deformation of $\mathcal{E}(1)$ becomes Ulrich. In particular, this says that general cubic fourfolds have Ulrich complexity 6 .

Introduction

An Ulrich sheaf on a closed subscheme X of \mathbb{P}^{N} of dimension n and degree d is a non-zero coherent sheaf \mathcal{F} on X satisfying $\mathrm{H}^{*}(X, \mathcal{F}(-j))=0$ for $1 \leq j \leq n$. In particular, the cohomology table $\left\{h^{i}(X, \mathcal{F}(j))\right\}$ of \mathcal{F} is a multiple of the cohomology table of \mathbb{P}^{n}. It turns out that the reduced Hilbert polynomial $\mathrm{p}_{\mathcal{F}}(t)=\chi(\mathcal{F}(t)) / \operatorname{rk}(\mathcal{F})$ of an Ulrich sheaf \mathcal{F} must be:

$$
\mathrm{u}(t):=\frac{d}{n!} \prod_{i=1}^{n}(t+i)
$$

Ulrich sheaves first appeared in commutative algebra in the 1980s, namely, in the form of maximally generated maximal Cohen-Macaulay modules [Ulr84]. Pioneering work of Eisenbud and Schreyer [ES03 popularized them in algebraic geometry in view of their many connections and applications. Eisenbud and Schreyer asked whether every projective scheme supports an Ulrich sheaf. That this should be the case is now called a conjecture of Eisenbud-Schreyer (see also [ES11]). They also proposed another question about what is the smallest possible rank of an Ulrich sheaf on X. This is called the Ulrich complexity uc(X) of X (cf. [BES17]).

Both the Ulrich existence problem and the Ulrich complexity problem have been elucidated only for a few cases. We focus here on the case when X is a hypersurface in \mathbb{P}^{n+1} over an algebraically closed field \mathbb{k}. Using the generalized Clifford algebra, Backelin and Herzog proved in BH89 that any hypersurface X has an Ulrich sheaf. However, their construction yields an Ulrich sheaf of rank $d^{\tau(X)-1}$, where $\tau(X)$ is the Chow rank of X (i.e. the smallest length of an expression of the defining equation of X as sums of products of d linear forms), often much bigger than uc (X).

Looking in more detail at the Ulrich complexity problem for smooth hypersurfaces of degree d in \mathbb{P}^{n+1}, the situation is well-understood for arbitrary n only for $d=2$. Indeed, in this case the only indecomposable Ulrich bundles on X are spinor bundles, which have rank $2^{\lfloor(n-1) / 2\rfloor}$ BEH87. On the other hand, for $d \geq 3$, the Ulrich complexity problem is wide open except for a very few small-dimensional cases. For instance, smooth cubic curves and surfaces always X satisfy $\operatorname{uc}(X)=1$, while for smooth cubic threefolds X we have $\operatorname{uc}(X)=2$, (cf. Bea00, Bea02, LMS15]).

When X is a smooth cubic fourfold, which is the main object of this paper, there can be several possibilities. In any case, X does not have an Ulrich bundle of rank 1, but some X can have an

[^0]Ulrich bundle \mathcal{F} of rank 2 . Since \mathcal{F} is globally generated, one can consider the locus defined by a general global section of \mathcal{F}, which is a del Pezzo surface of degree 5. The moduli space of cubic fourfolds containing a del Pezzo surface of degree 5 forms a divisor $\mathcal{C}_{14} \subset \mathcal{C}$, so a general cubic fourfold X has $\operatorname{uc}(X) \geq 3$. A few more cubic fourfolds which have an Ulrich bundle of rank 3 or 4 have been reported very recently by Troung and Yen TY20. However, all these cases are special cubic fourfolds which contain a surface not homologous to a complete intersection. Indeed, it turns out that the Ulrich complexity of a very general cubic fourfold is divisible by 3 and at least 6 , see [KS20]. On the other hand, it is known that a general cubic fourfold has a rank 9 Ulrich bundle (cf. [IM14, Man19, KS20). Therefore, the Ulrich complexity of a (very) general cubic fourfold is either 6 or 9 .

The goal of this paper is to prove the following result. This implies that a general cubic fourfold X satisfies uc $(X)=6$.
Theorem. Any smooth cubic fourfold admits an Ulrich bundle of rank 6 .
To achieve this, we use a deformation theoretic argument. In order to sketch it, let us first review a construction of a rank-2 Ulrich bundle on a smooth cubic threefold. First, starting from a line L contained in the threefold, one constructs an ACM bundle of rank 2 having $\left(c_{1}, c_{2}\right)=(0, L)$. Such a bundle is unstable since it has a unique global section which vanishes along L. By choosing a line L^{\prime} disjoint from L, we may take an elementary modification of it so that we have a simple and semistable sheaf \mathcal{E} of $\left(c_{1}, c_{2}\right)=(0,2 L)$. The sheaf \mathcal{E} is not Ulrich, but one can show that its general deformation becomes Ulrich. A similar argument is used to prove the existence of rank 2 Ulrich bundles on K3 surfaces [Fae19] and prime Fano threefolds BF11.

For fourfolds, twisted cubics play a central role in the construction, rather than lines. Note that twisted cubics in X form a 10 -dimensional family. For each twisted cubic $C \subset X$, its linear span $V=\langle C\rangle$ defines a linear section $Y \subset X$ which is a cubic surface. When Y is smooth, the rank-3 sheaf $\mathcal{G}=\operatorname{ker}\left[3 \mathcal{O}_{X} \rightarrow \mathcal{O}_{Y}(C)\right]$ is stable. The family of such stable sheaves of rank 3 forms an 8 -dimensional moduli space, which is indeed a very well-studied smooth hyperkähler manifold [LSvS17, LLMS18]. We will call them Lehn-Lehn-Sorger-van Straten sheaves and the Lehn-Lehn-Sorger-van Straten eightfold. Roughly speaking, we first consider two Lehn-Lehn-Sorger-van Straten sheaves associated with two points of this manifold. We choose the points so that the associated pair of twisted cubics spans the same smooth surface section of X and intersects at 4 points. Then, we define a simple sheaf \mathcal{E} as extension of such sheaves and show that this it enjoys a large part of the cohomology vanishing required to be Ulrich. In particular this will show that \mathcal{E} lies in the Kuznetsov category $\operatorname{Ku}(X)$ of X, Kuz04]. Finally, we obtain an Ulrich sheaf by taking a generic deformation \mathcal{F} of \mathcal{E} in the moduli space of simple sheaves over X and using that the cohomology vanishing of \mathcal{E} propagates to \mathcal{F} by semicontinuity. This step relies on deformation-obstruction theory of the sheaf as developed in [KM09, $\left.\mathrm{BLM}^{+}\right]$and makes substantial use of the fact that $\mathrm{Ku}(X)$ is a K 3 category.

The structure of this paper is as follows. In Section 1, we recall basic notions and set up some background. In Section 2, we introduce an ACM bundle of rank 6 which arises as a (higher) syzygy sheaf of a twisted cubic and review some material on Lehn-Lehn-Sorger-van Straten sheaves as syzygy sheaves. Then we take an elementary modification to define a strictly semistable sheaf \mathcal{E} of rank 6 whose reduced Hilbert polynomial is $u(t)$. In Section 3, we show that a general deformation of \mathcal{E} is Ulrich. We first prove this claim for cubic fourfolds which do not contain surfaces of small degrees other than linear sections. Then we extend it for every smooth cubic fourfold.

Acknowledgment. We wish to thank Fédération Bourgogne Franche-Comté Mathématiques FR CNRS 2011 for supporting the visit of Y.K. in Dijon. We would like to thank Frank-Olaf Schreyer and Paolo Stellari for valuable advice and helpful discussion.

1. Background

Let us collect here some basic material. We work over an algebraically closed field \mathbb{k} of characteristic other than 2.
1.1. Background definitions and notation. Consider a smooth connected n-dimensional projective subvariety $X \subseteq \mathbb{P}^{N}$ and denote by H_{X} the hyperplane divisor on X and $\mathcal{O}_{X}(1)=\mathcal{O}_{X}\left(H_{X}\right)$. Given a coherent sheaf \mathcal{F} on X and $t \in \mathbb{Z}$, write $\mathcal{F}(t)$ for $\mathcal{F} \otimes \mathcal{O}_{X}\left(t H_{X}\right)$. Let \mathcal{F} be a torsion-free sheaf on X. The reduced Hilbert polynomial of \mathcal{F} is defined as

$$
\mathrm{p}_{\mathcal{F}}(t):=\frac{1}{\operatorname{rk}(\mathcal{F})} \chi(\mathcal{F}(t)) \in \mathbb{Q}[t] .
$$

Let \mathcal{F}, \mathcal{G} be torsion-free sheaves on X. We say that $\mathrm{p}_{\mathcal{F}}<\mathrm{p}_{\mathcal{G}}$ if $\mathrm{p}_{\mathcal{F}}(t)<\mathrm{p}_{\mathcal{G}}(t)$ for $t \gg 0$. The slope of \mathcal{F} is defined as:

$$
\mu(\mathcal{F})=\frac{c_{1}(\mathcal{F}) \cdot H_{X}^{n-1}}{\operatorname{rk}(\mathcal{F})}
$$

A torsion-free sheaf \mathcal{F} on X is stable (respectively, semistable, μ-stable, μ-semistable) if, for any subsheaf $0 \neq \mathcal{F}^{\prime} \subsetneq \mathcal{F}$, we have:

$$
\mathrm{p}_{\mathcal{F}^{\prime}}<\mathrm{p}_{\mathcal{F}}, \quad\left(\text { respectively }, \mathrm{p}_{\mathcal{F}^{\prime}} \leq \mathrm{p}_{\mathcal{F}}, \mu\left(\mathcal{F}^{\prime}\right)<\mu(\mathcal{F}), \mu\left(\mathcal{F}^{\prime}\right) \leq \mu(\mathcal{F})\right.
$$

A polystable sheaf is a direct sum of stable sheaves having the same reduced Hilbert polynomial.
1.2. ACM and Ulrich sheaves. We are mostly interested in coherent sheaves on X which admit nice minimal free resolutions over \mathbb{P}^{N}, namely ACM and Ulrich sheaves. Equivalently, such properties are characterized by cohomology vanishing conditions as follows:
Definition 1.1. Let $X \subseteq \mathbb{P}^{N}$ be as above, and let \mathcal{F} be a coherent sheaf on X. Then \mathcal{F} is:
i) $A C M$ if it is locally Cohen-Macaulay and $\mathrm{H}^{i}(X, \mathcal{F}(j))=0$ for $0<i<n$ and $j \in \mathbb{Z}$.
ii) Ulrich if $\mathrm{H}^{i}(X, \mathcal{F}(-j))=0$ for $i \in \mathbb{Z}$ and $1 \leq j \leq n$.

We refer to [ES03, Proposition 2.1] for several equivalent definitions for Ulrich sheaves. In particular, every Ulrich sheaf is ACM. If X is smooth, then a coherent sheaf is locally CohenMacaulay if and only if is locally free. Moreover, for Ulrich sheaves, (semi-)stability is equivalent to μ-(semi-)stability, see CH12.

Let us review some previous works on the existence of Ulrich bundles on a smooth cubic fourfold X, possibly of small rank. In terms of Hilbert polynomial, an Ulrich bundle \mathcal{U} satisfies:

$$
\mathrm{p} \mathcal{U}(t)=\mathrm{u}(t):=\frac{1}{8}(t+4)(t+3)(t+2)(t+1) .
$$

Note that X carries an Ulrich line bundle if and only if it is linearly determinantal, which is impossible since a determinantal hypersurface is singular along a locus of codimension 3. X carries a rank 2 Ulrich bundle if and only if it is linearly Pfaffian. Equivalently, such an X contains a quintic del Pezzo surface Bea00. Note that a Pfaffian cubic fourfold also carries a rank 5 Ulrich bundle Man19]. For rank 3 and 4, Truong and Yen provided computer-aided construction of a rank 3 Ulrich bundle on a general element in the moduli of special cubic fourfolds \mathcal{C}_{18} of discriminant 18, and of a rank 4 Ulrich bundle on a general element in \mathcal{C}_{8} TY20].

All the above cases were made over special cubic fourfolds, i.e., they contain a surface which is not homologous to a complete intersection. Such cubic fourfolds form a countable union of irreducible divisors in the moduli space of smooth cubic fourfolds \mathcal{C}. We refer to [Has00] for the convention and more details. On a very general cubic fourfold X (so that any surface contained in X is homologous to a complete intersection), it is easy to find the following necessary condition on Chern classes of a coherent sheaf to be Ulrich:

Proposition 1.2 ([KS20, Proposition 2.5]). Let \mathcal{E} be an Ulrich bundle of rank r on a very general cubic fourfold $X \subset \mathbb{P}^{5}$. Let $c_{i}:=c_{i}(\mathcal{E}(-1))$. Then r is divisible by $3, r \geq 6$, and

$$
c_{1}=0, \quad c_{2}=\frac{1}{3} r H^{2}, \quad c_{3}=0, \quad c_{4}=\frac{1}{6} r(r-9) .
$$

The existence of rank 9 Ulrich bundles on a general cubic fourfold X is known according to [IM14, Man19, KS20. Therefore, the Ulrich complexity of a very general cubic fourfold is either 6 or 9. It is thus natural to ask the question: Does a smooth cubic fourfold carry an Ulrich bundle of rank 6? The goal of this paper is to give a positive answer to this question. In particular, the Ulrich complexity uc (X) of a (very) general cubic fourfold X is 6 .
1.3. Reflexive sheaves. Let \mathcal{E} be a torsion-free sheaf on a smooth connected projective n dimensional variety X. The following lemma is standard.

Lemma 1.3. For each $k \in\{0, \ldots, n-2\}$ there is $p_{k} \in \mathbb{Q}[t]$, with $\operatorname{deg}\left(p_{k}\right) \leq k$ such that:

$$
\mathrm{h}^{k+1}(\mathcal{E}(-t))=p_{k}(t), \quad \mathrm{h}^{0}(\mathcal{E}(-t))=0 \quad \text { for } t \gg 0
$$

Assume \mathcal{E} is reflexive. Then $\forall k \in\{0, \ldots, n-3\}$ there is $q_{k} \in \mathbb{Q}[t]$, with $\operatorname{deg}\left(q_{k}\right) \leq k$ such that:

$$
\mathrm{h}^{k+2}(\mathcal{E}(-t))=q_{k}(t), \quad \mathrm{h}^{0}(\mathcal{E}(-t))=\mathrm{h}^{1}(\mathcal{E}(-t))=0 \quad \text { for } t \gg 0,
$$

Moreover, \mathcal{E} is locally free if and only if $p_{k}=0$ for all $k \in\{0, \ldots, n-2\}$, equivalently if $q_{k}=0$ for all $k \in\{0, \ldots, n-3\}$.

Proof. Given positive integers p, q with $p+q \leq n$, Serre duality and the local-global spectral sequence give, for all $t \in \mathbb{Z}$:

$$
\begin{equation*}
\mathrm{H}^{n-p-q}(\mathcal{E}(-t))^{\vee} \simeq \operatorname{Ext}_{X}^{p+q}\left(\mathcal{E}, \omega_{X}(t)\right) \Leftarrow \mathrm{H}^{p}\left(\mathcal{E} x t_{X}^{q}\left(\mathcal{E}, \omega_{X}\right) \otimes \mathcal{O}_{X}(t)\right)=E_{2}^{p, q} . \tag{1}
\end{equation*}
$$

For $t \gg 0$ and $p>0$ we have $\mathrm{H}^{p}\left(\mathcal{E} x t_{X}^{q}\left(\mathcal{E}, \omega_{X}\right) \otimes \mathcal{O}_{X}(t)\right)=0$ by Serre vanishing. Then:

$$
\mathrm{h}^{n-q}(\mathcal{E}(-t)) \simeq \mathrm{h}^{0}\left(\mathcal{E} x t_{X}^{q}\left(\mathcal{E}, \omega_{X}\right) \otimes \mathcal{O}_{X}(t)\right), \quad \text { for } t \gg 0
$$

Hence $\mathrm{h}^{n-q}(\mathcal{E}(-t))$ is a rational polynomial function of t for $t \gg 0$. By [HL10, Proposition 1.1.10], since \mathcal{E} is torsion-free, for $q \geq 1$ we have:

$$
\operatorname{codim}\left(\mathcal{E} x t_{X}^{q}\left(\mathcal{E}, \omega_{X}\right)\right) \geq q+1
$$

while when \mathcal{E} is reflexive, for $q \geq 1$:

$$
\operatorname{codim}\left(\mathcal{E} x t_{X}^{q}\left(\mathcal{E}, \omega_{X}\right)\right) \geq q+2
$$

Thus, for $t \gg 0$, the degree of the polynomial function $\mathrm{h}^{n-q}(\mathcal{E}(-t))$ is at most $n-q-1$, actually of $n-q-2$ if \mathcal{E} is reflexive.

Finally, \mathcal{E} is locally free if and only if $\mathcal{E} x t_{X}^{q}\left(\mathcal{E}, \omega_{X}\right)=0$ for all $q>1$. Since this happens if and only if $\mathrm{h}^{0}\left(\mathcal{E} x t_{X}^{q}\left(\mathcal{E}, \omega_{X}\right) \otimes \mathcal{O}_{X}(t)\right)$ for $t \gg 0$, the last statement follows.
1.4. Minimal resolutions and syzygies. We recall some notions from commutative algebra. Let $R=\mathbb{k}\left[x_{0}, \cdots, x_{N}\right]$ be a polynomial ring over a field \mathbb{k} with the standard grading, and let $R_{X}=R / I_{X}$ be the homogeneous coordinate ring of X where I_{X} is the ideal of X. Let Γ be a finitely generated graded R_{X}-module. The minimal free resolution of Γ over R_{X} is constructed by choosing minimal generators of Γ of degrees $\left(a_{0,0}, \ldots, a_{0, r_{0}}\right)$ so that there is a surjection

$$
F_{0}=\bigoplus_{j=0}^{r_{0}} R_{X}\left(-a_{0, j}\right) \rightarrow \Gamma .
$$

Taking a minimal set of generators of degrees $\left(a_{1,0}, \ldots, a_{1, r_{1}}\right)$ of its kernel we get a minimal presentation of Γ of the form $F_{1}=\bigoplus_{j=0}^{r_{1}} R_{X}\left(-a_{1, j}\right) \rightarrow F_{0}$. Repeating this process, we have a free resolution of Γ :

$$
F_{\bullet}(\Gamma): \cdots \rightarrow F_{i} \xrightarrow{d_{i}} F_{i-1} \xrightarrow{d_{i-1}} \cdots \longrightarrow F_{1} \xrightarrow{d_{1}} F_{0} \rightarrow \Gamma \rightarrow 0, \quad \text { with: } \quad F_{i}=\bigoplus_{j=0}^{r_{i}} R_{X}\left(-a_{i, j}\right)
$$

Note that the resolution obtained this way is minimal, i.e. $d_{i} \otimes_{R_{X}} \mathrm{k}=0$ for every i, and is unique up to homotopy, see Eis80, Corollary 1.4]. In general, it has infinitely many terms.

We define the minimal resolution of a coherent sheaf \mathcal{F} on X as the sheafification of the minimal graded free resolution of its module of global sections $\Gamma_{*}(\mathcal{F})=\bigoplus_{j \in \mathbb{Z}} \Gamma(X, \mathcal{F}(j))$, provided that this is finitely generated. In this case, for $i \in \mathbb{N}$, we call i-th syzygy of \mathcal{F} the sheafification of $\operatorname{Im}\left(d_{i}\right)$ and we denote this by $\Sigma_{i}^{X}(\mathcal{F})$. Of course for positive j we have $\Sigma_{i+j}^{X}(\mathcal{F}) \simeq \Sigma_{j}^{X} \Sigma_{i}^{X}(\mathcal{F})$.
1.5. Matrix factorizations and ACM/Ulrich sheaves. We recall the notion of matrix factorization which is introduced by Eisenbud [Eis80] to study free resolutions over hypersurfaces.
Definition 1.4. Let $X \subseteq \mathbb{P}^{N}$ be a hypersurface defined by a homogeneous polynomial f of
 $\psi: \mathcal{G}(-d) \rightarrow \mathcal{F}$ is called a matrix factorization of f (of X) if

$$
\varphi \circ \psi=f \cdot i d_{\mathcal{G}(-d)}, \quad \psi(d) \circ \varphi=f \cdot i d_{\mathcal{F}} .
$$

Matrix factorizations have a powerful application to ACM/Ulrich bundles as follows:
Proposition 1.5 ([Eis80, Corollary 6.3]). The association

$$
(\varphi, \psi) \mapsto M_{(\varphi, \psi)}:=\operatorname{coker} \varphi
$$

induces a bijection between the set of equivalence classes of reduced matrix factorizations of f and the set of isomorphism classes of indecomposable ACM sheaves. In particular, when (φ, ψ) is completely linear, that is, $\varphi: \mathcal{O}_{\mathbb{P}^{N}}(-1)^{\oplus t} \rightarrow \mathcal{O}_{\mathbb{P}^{N}}^{\oplus t}$ for some $t \in \mathbb{Z}$ then the corresponding sheaf is Ulrich.
1.6. Twisted cubics and Lehn-Lehn-Sorger-van Straten eightfold. Let us briefly recall how can we construct a rank 2 Ulrich bundle on a cubic threefold X via deformation theory. If there is such an Ulrich bundle \mathcal{F}, then $\mathcal{F}(-1)$ must have the Chern classes $\left(c_{1}, c_{2}\right)=(0,2)$ by Riemann-Roch. Note that X has an ACM bundle \mathcal{F}_{1} of rank 2 with $\left(c_{1}, c_{2}\right)=(0,1)$ which fits into the following short exact sequence

$$
0 \rightarrow \mathcal{O}_{X} \rightarrow \mathcal{F}_{1} \rightarrow \mathcal{I}_{\ell} \rightarrow 0
$$

where $\ell \subset X$ is a line. We see that \mathcal{F}_{1} is unstable due to its unique global section. We can take an elementary modification with respect to $\mathcal{O}_{\ell^{\prime}}$ where $\ell^{\prime} \subset X$ is a line disjoint to ℓ. The resulting sheaf $\mathcal{F}_{2}:=\operatorname{ker}\left[\mathcal{F}_{1} \rightarrow \mathcal{O}_{\ell^{\prime}}\right]$ is simple, strictly semistable, and non-reflexive. One can check that its general deformation is stable and locally free, and becomes Ulrich after twisting by $O_{X}(1)$. One major difference between the case of cubic threefolds is that not lines but twisted cubics play a significant role both in finding an ACM bundle (of same c_{1} as Ulrich) and taking an elementary modification.

Let $X \subset \mathbb{P}^{5}$ be a smooth cubic fourfold which does not contain a plane, and let $M_{3}(X)$ be the irreducible component of the Hilbert scheme of X containing the twisted cubics. Then $M_{3}(X)$ is a smooth irreducible projective variety of dimension 10 [LSSvS17, Theorem A]. Let C be a twisted cubic contained in X, and $V \simeq \mathbb{P}^{3}$ be its linear span. According to [LLSvS17], the natural morphism $C \mapsto V \in G r(4,6)$ factors through a smooth projective eightfold \mathcal{Z}^{\prime} so that $M_{3}(X) \rightarrow \mathcal{Z}^{\prime}$ is a \mathbb{P}^{2}-fibration. In \mathcal{Z}^{\prime}, there is an effective divisor coming from non-CM twisted cubics on X
which induces a further contraction $\mathcal{Z}^{\prime} \rightarrow \mathcal{Z}$ so that \mathcal{Z} is a smooth hyperkähler eightfold which contains X as a Lagrangian submanifold, and the map $\mathcal{Z}^{\prime} \rightarrow \mathcal{Z}$ is the blow-up along X [LLSvS17, Theorem B]. The variety \mathcal{Z} is called the Lehn-Lehn-Sorger-van Straten eightfold.

We are interested in a moduli description of \mathcal{Z}^{\prime}. Let $Y:=V \cap X$ be a cubic surface containing C. The sheaf $\mathcal{I}_{C / Y}(2)$ is indeed an Ulrich line bundle on Y, and hence it fits into the following short exact sequence

$$
0 \rightarrow \mathcal{G}_{C} \rightarrow 3 \mathcal{O}_{X} \rightarrow \mathcal{I}_{C / Y}(2) \rightarrow 0
$$

Lahoz, Lehn, Macrì and Stellari showed that the sheaf \mathcal{G}_{C} is stable, and the moduli space of Gieseker stable sheaves with the same Chern character is isomorphic to \mathcal{Z}^{\prime} LLMS18. Since we are only interested in general CM twisted cubics and corresponding Lehn-Lehn-Sorger-van Straten sheaves, we may regard that a general point of the Lehn-Lehn-Sorger-van Straten eightfold \mathcal{Z} corresponds to a rank 3 sheaf \mathcal{G}_{C}, where C is a CM twisted cubic on X, even when X potentially contains a plane.

2. SyZYgies of twisted cubics

Let $X \subset \mathbb{P}^{5}$ be a smooth cubic fourfold.
2.1. Twisted cubics and 6 -bundles. Here we show that taking the fourth syzygy of the structure sheaf of a twisted cubic C is a vector bundle of rank 6 which admits a trivial subbundle of rank 3. Factoring out this quotient gives back the second syzygy of C, with a degree shift. We will use this filtration later on.

Proposition 2.1. Let $C \subset X$ be a twisted cubic, V its linear span and set $Y=X \cap V$. Put:

$$
\mathcal{S}=\Sigma_{4}^{X}\left(\mathcal{O}_{C}(5)\right), \quad \mathcal{G}_{C}=\Sigma_{1}^{X}\left(\mathcal{I}_{C / Y}(2)\right) .
$$

Then \mathcal{S} is an ACM sheaf of rank 6 on X with:

$$
\mathrm{p}_{\mathcal{S}}(t)=\frac{1}{8}(t+2)^{2}(t+1)^{2}, \quad \mathrm{H}^{*}(\mathcal{S}(-1))=\mathrm{H}^{*}(\mathcal{S}(-2))=0 .
$$

Moreover, $\mathrm{h}^{0}(X, \mathcal{S})=3$ and there is an exact sequence:

$$
\begin{equation*}
0 \rightarrow 3 \mathcal{O}_{X} \rightarrow \mathcal{S} \rightarrow \mathcal{G}_{C} \rightarrow 0 \tag{2}
\end{equation*}
$$

To keep notation lighter, we remove the subscript C from \mathcal{G}_{C} so we just write \mathcal{G}, as soon as no confusion occurs, i.e. until \$2.2,

Proof. For the sake of this proof, for any integer i we omit writing \mathcal{O}_{C} from expressions of the form $\Sigma_{i}^{X}\left(\mathcal{O}_{C}\right)$ and $\Sigma_{i}^{Y}\left(\mathcal{O}_{C}\right)$, so that for instance:

$$
\begin{equation*}
\Sigma_{1}^{X} \simeq \mathcal{I}_{C / X}, \quad \Sigma_{1}^{Y} \simeq \mathcal{I}_{C / Y} . \tag{3}
\end{equation*}
$$

The curve C is Cohen-Macaulay of degree 3 and arithmetic genus 0 , its linear span V is a \mathbb{P}^{3}, and the linear section Y is a cubic surface equipped with the Ulrich line bundle $\mathcal{I}_{C / Y}(2)$. Hence, we have a linear resolution on V :

$$
0 \rightarrow 3 \mathcal{O}_{V}(-3) \xrightarrow{M} 3 \mathcal{O}_{V}(-2) \rightarrow \mathcal{I}_{C / Y} \rightarrow 0,
$$

where M is a matrix of linear forms whose determinant is an equation of Y in V. Put $G_{1}=$ $3 \mathcal{O}_{Y}(-2)$ and $G_{2}=3 \mathcal{O}_{Y}(-3)$. Thanks to Eis80, Theorem 6.1], taking the adjugate matrix M^{\prime} of M forms a matrix factorization $\left(M, M^{\prime}\right)$ of Y which provides the following 2-periodic resolution on Y (we still denote by M, M^{\prime} the reduction of M and M^{\prime} modulo Y):

$$
\begin{equation*}
\cdots \xrightarrow{M^{\prime}} G_{2}(-3) \xrightarrow{M} G_{1}(-3) \xrightarrow{M^{\prime}} G_{2} \xrightarrow{M} G_{1} \rightarrow \mathcal{I}_{C / Y} \rightarrow 0 . \tag{4}
\end{equation*}
$$

This gives, for all $i \in \mathbb{N}$:

$$
\begin{equation*}
\Sigma_{2 i+1}^{Y} \simeq \mathcal{I}_{C / Y}(-3 i) \tag{5}
\end{equation*}
$$

Next, set $K_{0}=\mathcal{O}_{X}, K_{1}=2 \mathcal{O}_{X}(-1), K_{2}=\mathcal{O}_{X}(-2)$ and write the obvious Kozsul resolution:

$$
\begin{equation*}
0 \rightarrow K_{2} \rightarrow K_{1} \rightarrow K_{0} \rightarrow \mathcal{O}_{Y} \rightarrow 0 \tag{6}
\end{equation*}
$$

We look now at the exact sequence:

$$
\begin{equation*}
0 \rightarrow \mathcal{I}_{Y / X} \rightarrow \mathcal{I}_{C / X} \rightarrow \mathcal{I}_{C / Y} \rightarrow 0 . \tag{7}
\end{equation*}
$$

Set $F_{1}=3 \mathcal{O}_{X}(-2), F_{2}=3 \mathcal{O}_{X}(-3)$. We proceed now in two directions. On one hand, the composition $F_{1} \rightarrow G_{1} \rightarrow \Sigma_{1}^{Y}$ lifts to $F_{1} \rightarrow \Sigma_{1}^{X}$ to give a diagram (we omit zeroes all around for brevity):

Looking at the above diagram and using that $\Gamma_{*}\left(K_{2}\right)$ is free, we get:

$$
\begin{equation*}
0 \rightarrow K_{2} \rightarrow \Sigma_{2}^{X} \rightarrow \Sigma_{1}^{X} \Sigma_{1}^{Y} \rightarrow 0, \quad \Sigma_{i+1}^{X} \simeq \Sigma_{i}^{X} \Sigma_{1}^{Y}, \quad \forall i \geq 2 \tag{8}
\end{equation*}
$$

Next, (7), (3) and (4) induce a diagram

This in turn gives the exact sequence

$$
\begin{equation*}
0 \rightarrow F_{1} \otimes \mathcal{I}_{Y / X} \rightarrow \Sigma_{1}^{X} \Sigma_{1}^{Y} \rightarrow \Sigma_{2}^{Y} \rightarrow 0 \tag{9}
\end{equation*}
$$

Lifting $F_{2} \rightarrow \Sigma_{2}^{Y}$ to $F_{2} \rightarrow \Sigma_{1}^{X} \Sigma_{1}^{Y}$, we get the exact diagram:

Using the diagram and the fact that $\Gamma_{*}\left(F_{1} \otimes K_{2}\right)$ is free we get:

$$
\begin{equation*}
0 \rightarrow F_{1} \otimes K_{2} \rightarrow \Sigma_{2}^{X} \Sigma_{1}^{Y} \rightarrow \Sigma_{1}^{X} \Sigma_{2}^{Y} \rightarrow 0, \quad \Sigma_{i+1}^{X} \Sigma_{1}^{Y} \simeq \Sigma_{i}^{X} \Sigma_{2}^{Y}, \forall i \geq 2 \tag{10}
\end{equation*}
$$

Repeating once more this procedure and using the periodicity of (4) we get:

$$
0 \rightarrow F_{2} \otimes \mathcal{I}_{Y / X} \rightarrow \Sigma_{1}^{X} \Sigma_{2}^{Y} \rightarrow \Sigma_{3}^{Y} \rightarrow 0
$$

Then, using (5) and lifting $F_{1}(-3) \rightarrow \mathcal{I}_{C / Y}(-3) \simeq \Sigma_{3}^{Y}$ to $F_{1}(-3) \rightarrow \Sigma_{1}^{X} \Sigma_{2}^{Y}$, we have the exact sequence:

$$
0 \rightarrow F_{2} \otimes K_{2} \rightarrow \Sigma_{2}^{X} \Sigma_{2}^{Y} \rightarrow \Sigma_{1}^{X} \Sigma_{3}^{Y} \rightarrow 0
$$

Summing up, (8) and (10) give $\Sigma_{4}^{X} \simeq \Sigma_{3}^{X} \Sigma_{1}^{Y} \simeq \Sigma_{2}^{X} \Sigma_{2}^{Y}$, so that the above sequence tensored with $\mathcal{O}_{X}(5)$ becomes:

$$
0 \rightarrow 3 \mathcal{O}_{X} \rightarrow \mathcal{S} \rightarrow \Sigma_{1}^{X}\left(\mathcal{I}_{C / Y}(2)\right) \rightarrow 0
$$

which is the sequence appearing in the statement. The fact that $\mathrm{h}^{0}(X, \mathcal{S})=3$ is clear from the sequence. Since X is smooth and $C \subset X$ is arithmetically Cohen-Macaulay of codimension 3, the syzygy sheaf Σ_{4}^{X} is ACM and hence locally free. Looking at the above resolution we compute the following invariants of \mathcal{S} :

$$
\operatorname{rk}(\mathcal{S})=6, \quad c_{1}(\mathcal{S})=0, \quad c_{2}(\mathcal{S})=H^{2}, \quad \mathrm{p}_{\mathcal{S}}(t)=\frac{1}{8}(t+1)^{2}(t+2)^{2}
$$

It remains to prove $\mathrm{H}^{*}(\mathcal{S}(-1))=\mathrm{H}^{*}(\mathcal{S}(-2))=0$. By (2), it suffices to show $\mathrm{H}^{*}(\mathcal{G}(-1))=$ $\mathrm{H}^{*}(\mathcal{G}(-2))=0$. By definition we have

$$
\begin{equation*}
0 \rightarrow \mathcal{G} \rightarrow 3 \mathcal{O}_{X} \rightarrow \mathcal{I}_{C / Y}(2) \rightarrow 0 \tag{11}
\end{equation*}
$$

and $\mathcal{I}_{C / Y}(2)$ is Ulrich on Y so $\mathrm{H}^{*}\left(\mathcal{I}_{C / Y}(1)\right)=\mathrm{H}^{*}\left(\mathcal{I}_{C / Y}\right)=0$. We conclude that $\mathrm{H}^{*}(\mathcal{G}(-1))=$ $\mathrm{H}^{*}(\mathcal{G}(-2))=0$.

Along the way we found the following minimal free resolution of \mathcal{O}_{C} over X :

This is an instance of Shamash's resolution. It becomes periodic after three steps. We record that \mathcal{S} fits into:

$$
\cdots \rightarrow 9 \mathcal{O}_{X}(-2) \oplus 3 \mathcal{O}_{X} \underbrace{d_{5}}_{\left.\Sigma_{5}^{X}(-3) \longrightarrow \mathcal{O}_{C}(5)\right)} 3 \mathcal{O}_{X} \oplus 9 \mathcal{O}_{X}(-1) \xrightarrow{d_{4}} 9 \mathcal{O}_{X}(1) \oplus 3 \mathcal{O}_{X} \rightarrow \cdots
$$

Let us fix the notation:

$$
\mathcal{R}=\Sigma_{1}^{Y}\left(\mathcal{I}_{C / Y}(2)\right) \simeq \operatorname{Im}(M), \quad \text { with } \quad M: 3 \mathcal{O}_{Y}(-1) \rightarrow 3 \mathcal{O}_{Y}
$$

The following lemma is essentially [LLMS18, Proposition 2.5], we reproduce it here for selfcontainedness. In fact, given a Cohen-Macaulay twisted cubic $C \subset X$, the sheaf $\mathcal{G}=\mathcal{G}_{C}$ represents uniquely a point of the Lehn-Lehn-Sorger-van Straten eightfold \mathcal{Z} associated with the cubic fourfold X.

Lemma 2.2. Assume that Y is integral. Then the sheaf \mathcal{G} is stable with:

$$
\mathrm{p}_{\mathcal{G}}(t)=\mathrm{u}(t-1)=\frac{1}{8}(t+3)(t+2)(t+1) t, \quad \mathrm{H}^{*}(X, \mathcal{G}(-t))=0, \quad \text { for } t=0,1,2 .
$$

Finally, we have $\mathcal{E} x t_{X}^{i}\left(\mathcal{G}, \mathcal{O}_{X}\right)=0$ except for $i=0,1$, in which case:

$$
\mathcal{G}^{\vee} \simeq 3 \mathcal{O}_{X}, \quad \mathcal{E} x t_{X}^{1}\left(\mathcal{G}, \mathcal{O}_{X}\right) \simeq \mathcal{H o m}_{Y}\left(\mathcal{I}_{C / Y}, \mathcal{O}_{Y}\right)=\mathcal{O}_{Y}(C)
$$

Proof. The Hilbert polynomial of \mathcal{G} is computed directly from the previous proposition. Next, we use the sheaf \mathcal{R} which satisfies $\mathcal{R} \simeq \Sigma_{2}^{Y}\left(\mathcal{O}_{C}(2)\right)$. Recall from the proof of the previous proposition the sequence (9) that we rewrite as:

$$
\begin{equation*}
0 \rightarrow 3 \mathcal{I}_{Y / X} \rightarrow \mathcal{G} \rightarrow \mathcal{R} \rightarrow 0 \tag{12}
\end{equation*}
$$

By definition of $\mathcal{G}=\Sigma_{1}^{X}\left(\mathcal{I}_{C / Y}(2)\right)$, the map $3 \mathcal{O}_{X} \rightarrow \mathcal{I}_{C / Y}(2)$ in (11) induces an isomorphism on global sections, hence $\mathrm{H}^{*}(X, \mathcal{G})=0$. The vanishing $\mathrm{H}^{*}(X, \mathcal{G}(-1))=\mathrm{H}^{*}(X, \mathcal{G}(-2))=0$ was proved in the previous proposition.

Next, we show first that \mathcal{G} is simple. Applying $\operatorname{Hom}_{X}(-, \mathcal{G})$ to (11), we get:

$$
\operatorname{End}_{X}(\mathcal{G}) \simeq \operatorname{Ext}_{X}^{1}\left(\mathcal{I}_{C / Y}(2), \mathcal{G}\right)
$$

We note that $\mathcal{I}_{C / Y}$ is simple, $\operatorname{Hom}_{X}\left(\mathcal{I}_{C / Y}(2), \mathcal{O}_{X}\right)=0$ as $\mathcal{I}_{C / Y}$ is torsion and:

$$
\operatorname{Ext}_{X}^{1}\left(\mathcal{I}_{C / Y}(2), \mathcal{O}_{X}\right) \simeq \mathrm{H}^{3}\left(\mathcal{I}_{C / Y}(-1)\right)^{\vee}=0
$$

since $\operatorname{dim}(Y)=2$. Hence applying $\operatorname{Hom}_{X}\left(\mathcal{I}_{C / Y}(2),-\right)$ to (11), we observe that \mathcal{G} is simple:

$$
\operatorname{End}_{X}(\mathcal{G}) \simeq \operatorname{Ext}_{X}^{1}\left(\mathcal{I}_{C / Y}(2), \mathcal{G}\right) \simeq \operatorname{End}_{X}\left(\mathcal{I}_{C / Y}\right) \simeq \mathbb{k}
$$

Suppose that \mathcal{G} is not stable. Consider a saturated destabilizing subsheaf \mathcal{K} of $\mathcal{G} \operatorname{so} \operatorname{rk}(\mathcal{K}) \in$ $\{1,2\}$ and $\mathrm{p}_{\mathcal{K}} \geq \mathrm{p}_{\mathcal{G}}$ so that $\mathcal{Q}=\mathcal{G} / \mathcal{K}$ is torsion-free with $\operatorname{rk}(\mathcal{Q})=3-\operatorname{rk}(\mathcal{K})$. Since $\mathcal{K} \subset \mathcal{G} \subset 3 \mathcal{O}_{X}$, we have $\mu(\mathcal{K}) \leq 0$. From $\mathrm{p}_{\mathcal{K}} \geq \mathrm{p}_{\mathcal{G}}$ we deduce that $c_{1}(\mathcal{K})=c_{1}(\mathcal{Q})=0$.

We look at the two possibilities for $\operatorname{rk}(\mathcal{K})$. $\operatorname{If} \operatorname{rk}(\mathcal{K})=1$, then \mathcal{K} is torsion-free with $c_{1}(\mathcal{K})=0$ so there is a closed subscheme $Z \subset X$ of codimension at least 2 such that $\mathcal{K} \simeq \mathcal{I}_{Z / X}$. If $Z=\emptyset$ then $\mathcal{K} \simeq \mathcal{O}_{X}$, which is impossible as $\mathrm{H}^{0}(X, \mathcal{G})=0$. Now for $Z \neq \emptyset$ consider the inclusion $\mathcal{I}_{Z / X} \subset \mathcal{G} \subset 3 \mathcal{O}_{X}$. Taking reflexive hulls, we see that this factors through a single copy of \mathcal{O}_{X} in $3 \mathcal{O}_{X}$. Looking at (11), we get that the quotient $\mathcal{O}_{Z}=\mathcal{O}_{X} / \mathcal{I}_{Z / X}$ inherits a non-zero map to $\mathcal{I}_{C / Y}(2)$. The image of this map is \mathcal{O}_{Y} itself because $\mathcal{I}_{C / Y}(2)$ is torsion-free of rank 1 over Y as Y is integral.

Note that $\mathrm{p}_{\mathcal{I}_{Z / X}}=\mathrm{p}_{\mathcal{G}}$ precisely when Z is a linear subspace \mathbb{P}^{2} contained in X, and that $\mathrm{p}_{\mathcal{I}_{Z / X}}<\mathrm{p}_{\mathcal{G}}$ if $\operatorname{deg}(Z) \geq 2$ and $\operatorname{dim}(Z)=2$. Hence, the image of $\mathcal{O}_{Z} \rightarrow \mathcal{I}_{C / Y}(2)$ cannot be the whole \mathcal{O}_{Y} as then $Y \subseteq Z$, so we have $\operatorname{dim}(Z)=2$ and $\operatorname{deg}(Z) \geq 3$, while we are assuming $\mathrm{p}_{\mathcal{I}_{Z / X}} \geq \mathrm{p}_{\mathcal{G}}$. Therefore, the possibility $\operatorname{rk}(\mathcal{K})=1$ is ruled out.

We may now assume $\operatorname{rk}(\mathcal{K})=2$. Arguing as in the previous case, we deduce that there is a closed subscheme $Z \subset X$ of codimension at least 2 such that $\mathcal{Q} \simeq \mathcal{I}_{Z / X}$. Using (12) and noting that $3 \mathcal{I}_{Y / X}$ cannot be contained in \mathcal{K} for $\operatorname{rk}(\mathcal{K})=2$, we get a non-zero map $3 \mathcal{I}_{Y / X} \rightarrow \mathcal{I}_{Z / X}$ by composing $3 \mathcal{I}_{Y / X} \hookrightarrow \mathcal{G}$ with $\mathcal{G} \rightarrow \mathcal{I}_{Z / X}$. The image of this map is of the form $\mathcal{I}_{Z^{\prime} / X} \subset \mathcal{I}_{Z / X}$ for some closed subscheme $Z^{\prime} \supseteq Z$ of X. Since $3 \mathcal{I}_{Y / X}$ is polystable and $3 \mathcal{I}_{Y / X} \rightarrow \mathcal{I}_{Z^{\prime} / X}$, we have $\mathcal{I}_{Z^{\prime} / X} \simeq \mathcal{I}_{Y / X}$ so $Z^{\prime}=Y$. In particular, we have $Z \subseteq Y$.

Again, we use that $\mathrm{p}_{\mathcal{I}_{Z / X}}>\mathrm{p}_{\mathcal{G}}$ as soon as $\operatorname{dim}(Z) \leq 1$, so the assumption that \mathcal{K} destabilizes \mathcal{G} forces $\operatorname{dim}(Z) \geq 2$. Hence, Z is a surface contained in Y so that $Z=Y$ since Y is integral. Then $\mathcal{I}_{Y / X}$ is a direct summand of \mathcal{G} which therefore splits as $\mathcal{G}=\mathcal{K} \oplus \mathcal{I}_{Y / X}$. But this contradicts the fact that \mathcal{G} is simple. We conclude that \mathcal{G} must be stable.

Finally, we apply $\mathcal{H o m} x_{X}\left(-, \omega_{X}\right)$ to (11) and use Grothendieck duality to compute $\mathcal{E} x t_{X}^{i}\left(\mathcal{G}, \mathcal{O}_{X}\right)$ using that $\mathcal{I}_{C / Y}$ is reflexive on Y to get:

$$
\mathcal{E} x t_{X}^{1}\left(\mathcal{G}, \omega_{X}\right) \simeq \mathcal{E} x t_{X}^{2}\left(\mathcal{I}_{C / Y}(2), \omega_{X}\right) \simeq \mathcal{H o m}_{Y}\left(\mathcal{I}_{C / Y}(2), \omega_{Y}\right) .
$$

Since $\omega_{X} \simeq \mathcal{O}_{X}(-3)$ and $\omega_{Y} \simeq \mathcal{O}_{Y}(-1)$, the conclusion follows.
The next lemma analyzes the restriction of \mathcal{S} onto Y.

Lemma 2.3. There is a surjection $\xi:\left.\mathcal{S}\right|_{Y} \rightarrow \mathcal{R}$ whose kernel fits into:

$$
\begin{equation*}
0 \rightarrow \mathcal{R}(1) \rightarrow \operatorname{ker}(\xi) \rightarrow 2 \mathcal{I}_{C / Y}(1) \rightarrow 0 \tag{13}
\end{equation*}
$$

Proof. First of all, restricting the Koszul resolution (6) to Y we find:

$$
\mathcal{T o r}_{1}^{X}\left(\mathcal{I}_{C / Y}, \mathcal{O}_{Y}\right) \simeq 2 \mathcal{I}_{C / Y}(-1), \quad \mathcal{T o r}_{2}^{X}\left(\mathcal{I}_{C / Y}, \mathcal{O}_{Y}\right) \simeq \mathcal{I}_{C / Y}(-2)
$$

Therefore, restricting (11) to Y we get:

$$
\left.0 \rightarrow 2 \mathcal{I}_{C / Y}(1) \rightarrow \mathcal{G}\right|_{Y} \rightarrow 3 \mathcal{O}_{Y} \rightarrow \mathcal{I}_{C / Y}(2) \rightarrow 0
$$

and hence:

$$
\begin{equation*}
\left.0 \rightarrow 2 \mathcal{I}_{C / Y}(1) \rightarrow \mathcal{G}\right|_{Y} \rightarrow \mathcal{R} \rightarrow 0 \tag{14}
\end{equation*}
$$

We also get:

$$
\mathcal{T}_{\operatorname{or}_{1}^{X}}\left(\mathcal{G}, \mathcal{O}_{Y}\right) \simeq \mathcal{T}_{\operatorname{or}}^{2}{ }_{2}^{X}\left(\mathcal{I}_{C / Y}(2), \mathcal{O}_{Y}\right) \simeq \mathcal{I}_{C / Y}
$$

Next, we restrict (2) to Y to obtain:

$$
\left.\left.0 \rightarrow \mathcal{I}_{C / Y} \rightarrow 3 \mathcal{O}_{Y} \rightarrow \mathcal{S}\right|_{Y} \rightarrow \mathcal{G}\right|_{Y} \rightarrow 0
$$

Looking at (5), we see that the image of the middle map is $\mathcal{R}(1)$, so we obtain:

$$
\begin{equation*}
\left.\left.0 \rightarrow \mathcal{R}(1) \rightarrow \mathcal{S}\right|_{Y} \rightarrow \mathcal{G}\right|_{Y} \rightarrow 0 \tag{15}
\end{equation*}
$$

Composing $\left.\left.\mathcal{S}\right|_{Y} \rightarrow \mathcal{G}\right|_{Y}$ with the surjection appearing in (14) we get the surjection ξ. Using (14) and (15) we get the desired filtration for $\operatorname{ker}(\xi)$.
2.2. Elementary modification along a cubic surface. In 2.1 we constructed an ACM bundle \mathcal{S} of rank 6 . Recall that $\mathrm{h}^{0}(X, \mathcal{S})=3$, and these three global sections of \mathcal{S} make it unstable. Hence, it is natural to consider an elementary modification of \mathcal{S} by a sheaf \mathcal{A} such that $H^{0}(\mathcal{S}) \xrightarrow{\sim} H^{0}(\mathcal{A})$. Moreover, Proposition 1.2 suggests a good candidate for \mathcal{A} to get closer to an Ulrich bundle on X. Indeed, we should have:

$$
\chi_{\mathcal{A}}(t)=6 \mathrm{p}_{\mathcal{S}}(t)-6 \mathrm{u}(t-1)=\frac{3}{2}(t+2)(t+1) .
$$

A natural choice for \mathcal{A} would thus be an Ulrich line bundle on Y. In terms of Chern classes (as a coherent sheaf on X), we should have:

$$
c_{1}(\mathcal{A})=0, \quad c_{2}(\mathcal{A})=-H_{X}^{2} .
$$

Since an Ulrich line bundle on a cubic surface comes from a twisted cubic, we need to choose another twisted cubic D in Y, construct a surjection $\mathcal{S} \rightarrow \mathcal{O}_{Y}(D)$ so that the induced map on H^{0} is an isomorphism, and take the kernel to perform an elementary modification. To do this, from now on in this section, we assume that Y is the blow-up of \mathbb{P}^{2} at the six points p_{1}, \ldots, p_{6} in general position and that the blow-down map $\pi: Y \rightarrow \mathbb{P}^{2}$ is associated with the linear system $\left|\mathcal{O}_{Y}(C)\right|$. Write L for the class of a line in \mathbb{P}^{2} and denote by E_{1}, \ldots, E_{6} the exceptional divisors of π, so that $C=\pi^{*} L$ and $H_{Y}=3 C-E_{1}-\cdots-E_{6}$. Note that $\mathcal{R}(1) \simeq \pi^{*}\left(\Omega_{\mathbb{P}^{2}}(2)\right)$.
Lemma 2.4. Let $Z=\left\{p_{1}, p_{2}, p_{3}\right\}$. Then we have:

$$
0 \rightarrow \mathcal{O}_{\mathbb{P}^{2}}(-2) \rightarrow \Omega_{\mathbb{P}^{2}}(1) \rightarrow \mathcal{I}_{Z / \mathbb{P}^{2}}(1) \rightarrow 0
$$

Proof. By assumption Z is contained in no line, hence by the Cayley-Bacharach property (see for instance [HL10, Theorem 5.1.1]) there is a vector bundle \mathcal{F} of rank 2 fitting into:

$$
0 \rightarrow \mathcal{O}_{\mathbb{P}^{2}}(-2) \rightarrow \mathcal{F} \rightarrow \mathcal{I}_{Z / \mathbb{P}^{2}}(1) \rightarrow 0
$$

Note that $c_{1}(\mathcal{F})=-L$ and $c_{2}(\mathcal{F})=L^{2}$. By the above sequence $\mathrm{H}^{0}(\mathcal{F})=0$ so \mathcal{F} is stable. But the only stable bundle on \mathbb{P}^{2} with $c_{1}(\mathcal{F})=-L$ and $c_{2}(\mathcal{F})=L^{2}$ is $\Omega_{\mathbb{P}^{2}}(1)$.

Set $D=2 C-E_{1}-E_{2}-E_{3}$. This is a class of a twisted cubic in Y with:

$$
D \cdot C=2 .
$$

Lemma 2.5. There is a surjection $\eta: \mathcal{R}(1) \rightarrow \mathcal{O}_{Y}(D)$ such that the induced map on global sections $\mathrm{H}^{0}(\mathcal{R}(1)) \rightarrow \mathrm{H}^{0}\left(\mathcal{O}_{Y}(D)\right)$ is an isomorphism.

Proof. Recall the exact sequence:

$$
0 \rightarrow \mathcal{O}_{Y}(-C) \rightarrow 3 \mathcal{O}_{Y} \rightarrow \mathcal{R}(1) \rightarrow 0
$$

so that $\mathcal{R}(1) \simeq \pi^{*}\left(\Omega_{\mathbb{P}^{2}}(2)\right)$. There is an exact sequence:

$$
\begin{equation*}
0 \rightarrow \bigoplus_{i=1}^{3} \mathcal{O}_{E_{i}}(-1) \rightarrow \pi^{*}\left(\mathcal{I}_{Z / \mathbb{P}^{2}}(2)\right) \rightarrow \mathcal{O}_{Y}(D) \rightarrow 0 \tag{16}
\end{equation*}
$$

By the previous lemma, we have

$$
\begin{equation*}
0 \rightarrow \mathcal{O}_{\mathbb{P}^{2}}(-1) \rightarrow \Omega_{\mathbb{P}^{2}}(2) \rightarrow \mathcal{I}_{Z / \mathbb{P}^{2}}(2) \rightarrow 0 \tag{17}
\end{equation*}
$$

and thus via π^{*} an exact sequence:

$$
0 \rightarrow \mathcal{O}_{Y}(-C) \rightarrow \mathcal{R}(1) \rightarrow \pi^{*}\left(\mathcal{I}_{Z / \mathbb{P}^{2}}(2)\right) \rightarrow 0
$$

Composing $\mathcal{R}(1) \rightarrow \pi^{*}\left(\mathcal{I}_{Z / \mathbb{P}^{2}}(2)\right)$ with the surjection appearing in (16), we get the following:

$$
0 \rightarrow \mathcal{O}_{Y}\left(-C+E_{1}+E_{2}+E_{3}\right) \rightarrow \mathcal{R}(1) \rightarrow \mathcal{O}_{Y}(D) \rightarrow 0
$$

The map on global sections $\mathrm{H}^{0}(\mathcal{R}(1)) \rightarrow \mathrm{H}^{0}\left(\mathcal{O}_{Y}(D)\right)$ is induced by the map $\mathrm{H}^{0}\left(\Omega_{\mathbb{P}^{2}}(2)\right) \rightarrow$ $\mathrm{H}^{0}\left(\mathcal{I}_{Z / \mathbb{P}^{2}}(2)\right)$ arising from (17) and as such it is an isomorphism since $\mathrm{H}^{*}\left(\mathcal{O}_{\mathbb{P}^{2}}(-1)\right)=0$.

Given the class of a twisted cubic C in Y, we observe that $C^{\mathrm{t}}=2 H_{Y}-C$ is also the class of a twisted cubic. We denote:

$$
C^{\mathrm{t}}=2 H_{Y}-C .
$$

This notation is justified by the fact that $\mathcal{I}_{C^{t} / Y}$ is presented by the transpose matrix M^{t} of M. We have:

$$
C^{\mathrm{t}} \cdot D=C \cdot D^{\mathrm{t}}=4
$$

Lemma 2.6. There is a surjection $\zeta: \mathcal{S} \rightarrow \mathcal{O}_{Y}(D)$ inducing an isomorphism:

$$
\mathrm{H}^{0}(X, \mathcal{S}) \rightarrow \mathrm{H}^{0}\left(\mathcal{O}_{Y}(D)\right)
$$

Proof. According to the previous lemma, we have $\eta: \mathcal{R}(1) \rightarrow \mathcal{O}_{Y}(D)$ inducing an isomorphism on global sections. We would like to use Lemma 2.3 to lift η to a surjection $\left.\mathcal{S}\right|_{Y} \rightarrow \mathcal{O}_{Y}(D)$ and compose this lift with the restriction $\left.\mathcal{S} \rightarrow \mathcal{S}\right|_{Y}$ preserving the isomorphism on global sections.

So in the notation of Lemma 2.3 we first lift η to $\operatorname{ker}(\xi)$. To do this, we apply $\operatorname{Hom}_{Y}\left(-, \mathcal{O}_{Y}(D)\right)$ to (13) and get:

$$
\cdots \rightarrow \operatorname{Hom}_{Y}\left(\operatorname{ker}(\xi), \mathcal{O}_{Y}(D)\right) \rightarrow \operatorname{Hom}_{Y}\left(\mathcal{R}(1), \mathcal{O}_{Y}(D)\right) \rightarrow 2 \mathrm{H}^{1}\left(\mathcal{O}_{Y}\left(C+D-H_{Y}\right)\right) \rightarrow \cdots
$$

Now, $C+D-H_{Y}=E_{4}+E_{5}+E_{6}$ so $H^{1}\left(\mathcal{O}_{Y}\left(C+D-H_{Y}\right)\right)=0$. Therefore η lifts to $\hat{\eta}: \operatorname{ker}(\xi) \rightarrow \mathcal{O}_{Y}(D)$. Note that by (13) the map $\mathcal{R}(1) \rightarrow \operatorname{ker}(\xi)$ induces an isomorphism on global sections, so $\hat{\eta}$ gives an isomorphism $\mathrm{H}^{0}(\operatorname{ker}(\xi)) \simeq \mathrm{H}^{0}\left(\mathcal{O}_{Y}(D)\right)$.

Next, write:

$$
\left.0 \rightarrow \operatorname{ker}(\xi) \rightarrow \mathcal{S}\right|_{Y} \rightarrow \mathcal{R} \rightarrow 0
$$

and apply $\operatorname{Hom}_{Y}\left(-, \mathcal{O}_{Y}(D)\right)$. We get an exact sequence:

$$
\cdots \rightarrow \operatorname{Hom}_{Y}\left(\left.\mathcal{S}\right|_{Y}, \mathcal{O}_{Y}(D)\right) \rightarrow \operatorname{Hom}_{Y}\left(\operatorname{ker}(\xi), \mathcal{O}_{Y}(D)\right) \rightarrow \operatorname{Ext}_{Y}^{1}\left(\mathcal{R}, \mathcal{O}_{Y}(D)\right) \rightarrow \cdots
$$

So $\hat{\eta}$ lifts to $\left.\mathcal{S}\right|_{Y} \rightarrow \mathcal{O}_{Y}(D)$ if we prove $\operatorname{Ext}_{Y}^{1}\left(\mathcal{R}, \mathcal{O}_{Y}(D)\right)=0$. To do it, write again the defining sequence of \mathcal{R} as:

$$
0 \rightarrow \mathcal{R} \rightarrow 3 \mathcal{O}_{Y} \rightarrow \mathcal{O}_{Y}\left(C^{\mathrm{t}}\right) \rightarrow 0
$$

Applying $\operatorname{Hom}_{Y}\left(-, \mathcal{O}_{Y}(D)\right)$ to this sequence we get:

$$
\cdots \rightarrow 3 \mathrm{H}^{1}\left(\mathcal{O}_{Y}(D)\right) \rightarrow \operatorname{Ext}_{Y}^{1}\left(\mathcal{R}, \mathcal{O}_{Y}(D)\right) \rightarrow \mathrm{H}^{2}\left(\mathcal{O}_{Y}\left(C+D-2 H_{Y}\right)\right) \cdots
$$

Now, $\mathcal{O}_{Y}(D)$ is Ulrich so $\mathrm{H}^{1}\left(\mathcal{O}_{Y}(D)\right)=0$, and $H_{Y}-C-D=-E_{4}-E_{5}-E_{6}$:

$$
\mathrm{h}^{2}\left(\mathcal{O}_{Y}\left(C+D-2 H_{Y}\right)\right)=\mathrm{h}^{0}\left(\mathcal{O}_{Y}\left(H_{Y}-C-D\right)\right)=0 .
$$

This provides a lift $\tilde{\eta}:\left.\mathcal{S}\right|_{Y} \rightarrow \mathcal{O}_{Y}(D)$ of $\hat{\eta}$ and again $\left.\operatorname{ker}(\xi) \hookrightarrow \mathcal{S}\right|_{Y}$ induces an isomorphism on global sections, hence so does $\tilde{\eta}$.

Finally we define $\zeta: \mathcal{S} \rightarrow \mathcal{O}_{Y}(D)$ as composition of the restriction $\left.\mathcal{S} \rightarrow \mathcal{S}\right|_{Y}$ and $\tilde{\eta}$. Since $H^{*}(\mathcal{S}(-1))=H^{*}(\mathcal{S}(-2))=0$, tensoring the Koszul resolution (6) by \mathcal{S} we see that $\left.\mathcal{S} \rightarrow \mathcal{S}\right|_{Y}$ induces an isomorphism on global sections. Therefore, so does ζ and the lemma is proved.

Consider $D^{\mathrm{t}}=2 H_{Y}-D$ and $\mathcal{G}_{D^{\mathrm{t}}}=\operatorname{ker}\left(3 \mathcal{O}_{X} \rightarrow \mathcal{O}_{Y}(D)\right)$. Let $\mathcal{E}=\operatorname{ker}(\zeta)$, so we have:

$$
\begin{equation*}
0 \rightarrow \mathcal{E} \rightarrow \mathcal{S} \rightarrow \mathcal{O}_{Y}(D) \rightarrow 0 \tag{18}
\end{equation*}
$$

Lemma 2.7. The sheaf \mathcal{E} is simple and has a Jordan-Hölder filtration :

$$
\begin{equation*}
0 \rightarrow \mathcal{G}_{D^{\mathrm{t}}} \rightarrow \mathcal{E} \rightarrow \mathcal{G}_{C} \rightarrow 0 \tag{19}
\end{equation*}
$$

Also, we have:

$$
\mathcal{E}^{\vee} \simeq \mathcal{S}^{\vee}, \quad \mathrm{p} \mathcal{E}(t)=\mathrm{u}(t-1), \quad \mathrm{H}^{*}(\mathcal{E}(-t))=0, \quad \text { for } t=0,1,2
$$

Proof. The sheaves $\mathcal{G}_{D^{\mathrm{t}}}$ and \mathcal{G}_{C} are stable by Lemma 2.2 and the reduced Hilbert polynomial of both of them is $\mathrm{u}(t-1)$. Hence \mathcal{E} is semistable and has the same reduced Hilbert polynomial as soon as it fits in (19). Also, \mathcal{E} is simple if this sequence is non-split. Moreover, by Lemma 2.2, we get $\mathrm{H}^{*}(\mathcal{E}(-t))=0$, for $t=0,1,2$ as well by (19).

Summing up, it suffices to prove that \mathcal{E} fits in (19) and that this sequence is non-split. To do it, use the previous lemma to show that the evaluation of global sections gives an exact commutative diagram:

We thus have (19). By contradiction, assume that it splits as $\mathcal{E} \simeq \mathcal{G}_{C} \oplus \mathcal{G}_{D^{\mathrm{t}}}$. Note that, since \mathcal{S} is locally free, (18) gives:

$$
\mathcal{E}^{\vee} \simeq \mathcal{S}^{\vee}, \quad \mathcal{E} x t_{X}^{1}\left(\mathcal{E}, \mathcal{O}_{X}\right) \simeq \mathcal{E} x t_{X}^{2}\left(\mathcal{O}_{Y}(D), \mathcal{O}_{X}\right) \simeq \mathcal{O}_{Y}\left(D^{\mathrm{t}}\right)
$$

On the other hand, if $\mathcal{E} \simeq \mathcal{G}_{C} \oplus \mathcal{G}_{D^{\mathrm{t}}}$ then by Lemma 2.2 we would have $\mathcal{E}^{\vee} \simeq 6 \mathcal{O}_{X}$ and $\mathcal{E} x t_{X}^{1}\left(\mathcal{E}, \mathcal{O}_{X}\right) \simeq \mathcal{O}_{Y}(C) \oplus \mathcal{O}_{Y}\left(D^{\mathrm{t}}\right)$, which is not the case.

3. Smoothing the modified sheaves

In the previous section we constructed a simple and semistable sheaf \mathcal{E} with $\mathrm{p}_{\mathcal{E}}(t)=u(t-1)$. In particular, the sheaf $\mathcal{E}(1)$ has the same reduced Hilbert polynomial as an Ulrich bundle \mathcal{U}. However, $\mathcal{E}(1)$ itself cannot be Ulrich: for instance it is not locally free since $\mathcal{E} x t_{X}^{1}\left(\mathcal{E}, \mathcal{O}_{X}\right) \simeq$ $\mathcal{O}_{Y}\left(D^{\mathrm{t}}\right)$. The goal of this section is to show that $\mathcal{E}(1)$ admits a flat deformation to an Ulrich bundle.
3.1. The Kuznetsov category. The bounded derived category $\mathrm{D}(X)$ of coherent sheaves on X has the semiorthogonal decomposition:

$$
\left\langle\operatorname{Ku}(X), \mathcal{O}_{X}, \mathcal{O}_{X}(1), \mathcal{O}_{X}(2)\right\rangle,
$$

where $\operatorname{Ku}(X)$ is a K 3 category. Indeed, $\mathrm{Ku}(X)$ equips with the K 3 -type Serre duality

$$
\operatorname{Ext}^{i}(\mathcal{F}, \mathcal{G}) \simeq \operatorname{Ext}^{2-i}(\mathcal{G}, \mathcal{F})^{\vee}
$$

for any $\mathcal{F}, \mathcal{G} \in \operatorname{Ku}(X)$ Kuz04. We have:

$$
\mathrm{H}^{*}(X, \mathcal{E})=\mathrm{H}^{*}(X, \mathcal{E}(-1))=\mathrm{H}^{*}(X, \mathcal{E}(-2))=0
$$

and therefore:

$$
\mathcal{E} \in \operatorname{Ku}(X) .
$$

Lemma [2.2] says that for a Cohen-Macaulay twisted cubic $C \subset X$ spanning an irreducible cubic surface we have that \mathcal{G}_{C} is stable and:

$$
\mathcal{G}_{C} \in \operatorname{Ku}(X)
$$

We also know that \mathcal{G}_{C} represents a point of the Lehn-Lehn-Sorger-van Straten irreducible symplectic eightfold \mathcal{Z} and that \mathcal{Z} contains a Zariski-open dense subset \mathcal{Z}° whose points are in bijection with the sheaves of the form \mathcal{G}_{C} [LSvS17, LLMS18].
Lemma 3.1. We have $\mathrm{h}^{3}(\mathcal{E}(-3))=\mathrm{h}^{4}(\mathcal{E}(-3))=3$, $\operatorname{ext}_{X}^{i}(\mathcal{E}, \mathcal{E})=0$ for $i \geq 3$ and:

$$
\operatorname{ext}_{X}^{1}(\mathcal{E}, \mathcal{E})=26, \quad \operatorname{ext}_{X}^{2}(\mathcal{E}, \mathcal{E})=1
$$

Proof. First note that $\mathrm{h}^{3}(\mathcal{E}(-3))=\mathrm{h}^{2}\left(\mathcal{O}_{Y}\left(D-3 H_{Y}\right)\right)=3$ since $\mathcal{O}_{Y}(D)$ is an Ulrich line bundle on a cubic surface Y. We also have $\mathrm{h}^{4}(\mathcal{E}(-3))=\mathrm{h}^{4}(\mathcal{S}(-3))=3$ since $\chi(\mathcal{S}(-3))=6 \mathrm{p} \mathcal{S}(-3)=3$ and $\mathrm{h}^{i}(\mathcal{S}(-3))=0$ for $i<4$.

Recall that \mathcal{E} is a simple sheaf and that \mathcal{E} lies in $\operatorname{Ku}(X)$. Since $\operatorname{Ku}(X)$ is a K 3 category, we have $\operatorname{ext}_{X}^{2}(\mathcal{E}, \mathcal{E})=\operatorname{hom}_{X}(\mathcal{E}, \mathcal{E})=1$ and $\operatorname{ext}_{X}^{i}(\mathcal{E}, \mathcal{E})=0$ for $i \geq 3$. The equality $\operatorname{ext}_{X}^{1}(\mathcal{E}, \mathcal{E})=26$ now follows from Riemann-Roch.
3.2. Deforming to Ulrich bundles. We assume in this subsection that X does not contain an integral surface of degree up to 3 other than linear sections. In other words, X does not contain a plane (equivalently, a quadric surface) nor a smooth cubic scroll, nor a cone over a rational normal cubic curve.

The content of our main result is that there is a smooth connected quasi-projective variety T° of dimension 26 and a sheaf \mathcal{F} on $T^{\circ} \times X$, flat over T°, together with a distinguished point $s_{0} \in T^{\circ}$ such that $\mathcal{F}_{s_{0}} \simeq \mathcal{E}$ and such that $\mathcal{F}_{s}(1)$ is an Ulrich bundle on X, for all s in $T^{\circ} \backslash\left\{s_{0}\right\}$ - here we write $\mathcal{F}_{s}=\left.\mathcal{F}\right|_{\{s\} \times X}$ for all $s \in T^{\circ}$. Stated in short form this gives the next result.

Theorem 3.2. If Y is smooth, then the sheaf $\mathcal{E}(1)$ deforms to an Ulrich bundle on X.
Proof. We divide the proof into several steps.
Step 1. Compute negative cohomology of \mathcal{E}, i.e. $\mathrm{h}^{k}(\mathcal{E}(-t))$ for $t \gg 0$ and $k \in\{0,1,2,3\}$.

Let $C \subset Y \subset X$ be a twisted cubic with Y smooth. The sheaf \mathcal{G}_{C} is stable and lies in $\operatorname{Ku}(X)$ by Lemma [2.2. We note that $\mathrm{h}^{1}\left(\mathcal{O}_{Y}\left(D+t H_{Y}\right)\right)=0$ for $t \in \mathbb{Z}$, while $\mathrm{h}^{2}\left(\mathcal{O}_{Y}\left(D-t H_{Y}\right)\right)$ for $t \leq 1$ while:

$$
\mathrm{h}^{2}\left(\mathcal{O}_{Y}\left(D-t H_{Y}\right)\right)=\frac{3}{2}(t-1)(t-2), \quad \text { for } t \geq 2
$$

Also, $\mathrm{H}^{0}(\mathcal{E})=\mathrm{H}^{1}(\mathcal{E})=0$ since the surjection (18) induces an isomorphism on global sections. This also implies that, since $\mathrm{H}^{0}\left(\mathcal{O}_{Y}(D)\right) \otimes \mathrm{H}^{0}\left(\mathcal{O}_{X}(t)\right)$ generates $\mathrm{H}^{0}\left(\mathcal{O}_{Y}\left(D+t H_{Y}\right)\right)$ for all $t \geq 0$, the map $\mathrm{H}^{0}(\mathcal{S}(t)) \rightarrow \mathrm{H}^{0}\left(\mathcal{O}_{Y}\left(D+t H_{Y}\right)\right)$ induced by (18) is surjective. Since $\mathrm{H}^{1}(\mathcal{S}(t))=0$ for all $t \in \mathbb{Z}$, we obtain $\mathrm{H}^{1}(\mathcal{E}(t))=0$ for $t \in \mathbb{Z}$. By (18) we have:

$$
\begin{cases}\mathrm{h}^{0}(\mathcal{E}(-t))=0, & t \geq 0, \\ \mathrm{~h}^{1}(\mathcal{E}(t))=0, & t \in \mathbb{Z}, \\ \mathrm{~h}^{2}(\mathcal{E}(t))=0, & t \in \mathbb{Z} \\ \mathrm{~h}^{3}(\mathcal{E}(-t))=\frac{3}{2}(t-1)(t-2), & t \geq 2\end{cases}
$$

Step 2. Argue that \mathcal{E} is unobstructed.
This follows from the argument of [$\left.\mathrm{BLM}^{+}, \S 31\right]$, which applies to the sheaf \mathcal{E} as it is simple and lies in $\mathrm{Ku}(X)$. To sketch this, recall that the framework is based on a combination of Mukai's unobstructedness theorem [Muk84] and Buchweitz-Flenner's approach to the deformation theory of \mathcal{E}, see [BF00, BF03]. To achieve this step, we use the proof of [BLM ${ }^{+}$, Theorem 31.1] which goes as follows. Let $\operatorname{At}(\mathcal{E}) \in \operatorname{Ext}_{X}^{1}\left(\mathcal{E}, \mathcal{E} \otimes \Omega_{X}\right)$ be the Atiyah class of \mathcal{E}.

- Via a standard use of the infinitesimal lifting criterion, one reduces to show that \mathcal{E} has a formally smooth deformation space.
- We show that the deformation space of \mathcal{E} is formally smooth by observing that \mathcal{E} extends over any square-zero thickening of X, conditionally to the vanishing of the product of the Atiyah class $\operatorname{At}(\mathcal{E})$ and the Kodaira-Spencer class κ of the thickening, see [HT10] - note that this holds in arbitrary characteristic.
- We use KM09 in order to show $\kappa \cdot \operatorname{At}(\mathcal{E})=0$. Indeed, in view of KM09, Theorem 4.3], this takes place if the $\operatorname{trace} \operatorname{Tr}\left(\kappa \cdot \operatorname{At}^{2}(\mathcal{E})\right)$ vanishes as element of $\mathrm{H}^{3}\left(\Omega_{X}\right)$.
- We use that $\operatorname{Tr}\left(\kappa \cdot \operatorname{At}(\mathcal{E})^{2}\right)=2 \kappa \cdot \operatorname{ch}(\mathcal{E})$, (cf. the proof of [BLM ${ }^{+}$, Theorem 31.1]) and note that this vanishes as the Chern character $\operatorname{ch}(\mathcal{E})$ remains algebraic under any deformation of X. It holds as all components of $\operatorname{ch}(\mathcal{E})$ are multiples of powers of the hyperplane class, while $\kappa \cdot \operatorname{ch}(\mathcal{E})$ is the obstruction to algebraicity of $\operatorname{ch}(\mathcal{E})$ along the thickening of X - again, cf. the proof of $\left[\mathrm{BLM}^{+}\right.$, Theorem 31.1].

Note that the assumption that that \mathbb{k} has characteristic other than 2 is needed to use the formula $\operatorname{Tr}\left(\kappa \cdot \operatorname{At}(\mathcal{E})^{2}\right)=2 \operatorname{Tr}(\kappa \cdot \exp (\operatorname{At}(\mathcal{E})))=2 \kappa \cdot \operatorname{ch}(\mathcal{E})$.
According to the above deformation argument, there is a smooth quasi-projective scheme T representing an open piece of the moduli space of simple sheaves over X containing \mathcal{E}. In other words, there is a point $s_{0} \in T$, together with a coherent sheaf \mathcal{F} over $T \times X$, such that $\mathcal{F}_{s_{0}} \simeq \mathcal{E}$, and the Zariski tangent space of T at s_{0} is identified with $\operatorname{Ext}_{X}^{1}(\mathcal{E}, \mathcal{E})$. Note that all the sheaves \mathcal{F}_{s} are simple. By the openness of semistability and torsion-freeness, there is a connected open dense subset $T_{0} \subset T$, with $s_{0} \in T_{0}$, such that \mathcal{F}_{s} is simple, semistable and torsion-free for all $s \in T_{0}$.
Step 3. Compute the cohomology of the reflexive hull $\mathcal{F}_{s}^{\vee \vee}$ of \mathcal{F}_{s} and of $\mathcal{F}_{s}^{\vee \vee} / \mathcal{F}_{s}$.
For $s \in T_{0}$, let us consider the reflexive hull $\mathcal{F}_{s}^{\vee \vee}$ and the torsion sheaf $\mathcal{Q}_{s}=\mathcal{F}_{s}^{\vee \vee} / \mathcal{F}_{s}$. Let us write the reflexive hull sequence:

$$
\begin{equation*}
0 \rightarrow \mathcal{F}_{s} \rightarrow \mathcal{F}_{s}^{\vee \vee} \rightarrow \mathcal{Q}_{s} \rightarrow 0 \tag{20}
\end{equation*}
$$

By the upper-semicontinuity of cohomology, there is a Zariski-open dense subset $s_{0} \in T_{1}$ of T_{0} such that for all $s \in T_{1}$ we have:

$$
\mathrm{H}^{*}\left(\mathcal{F}_{s}\right)=\mathrm{H}^{*}\left(\mathcal{F}_{s}(-1)\right)=\mathrm{H}^{*}\left(\mathcal{F}_{s}(-2)\right)=0
$$

In particular, for $s \in T_{1}$ and $t \geq 0$:

$$
\mathrm{h}^{k}\left(\mathcal{F}_{s}(-t)\right)=0, \quad \text { for } k \leq 2 .
$$

By Lemma 1.3, since \mathcal{F}_{s} is torsion-free there is a polynomial $q_{2} \in \mathbb{Q}[t]$, with $\operatorname{deg}\left(q_{2}\right) \leq 2$, such that $\mathrm{h}^{3}\left(\mathcal{F}_{s}(-t)\right)=q_{2}(t)$ for $t \gg 0$. By semicontinuity, there is a Zariski-open dense subset T_{2} of T_{1}, with $s_{0} \in T_{2}$, such that for all $s \in T_{2}$ we have $q_{2}(t) \leq \frac{3}{2}(t-1)(t-2)$.

Since $\operatorname{codim}\left(\mathcal{Q}_{s}\right) \geq 2$, we get $\mathrm{H}^{k}\left(\mathcal{Q}_{s}(t)\right)=0$ for each $k \geq 3$ and $t \in \mathbb{Z}$. Using Lemma 1.3, we get the vanishing $\mathrm{H}^{0}\left(\mathcal{F}_{s}^{\vee \vee}(-t)\right)=\mathrm{H}^{1}\left(\mathcal{F}_{s}^{\vee \vee}(-t)\right)=0$ for $t \gg 0$, and the existence of polynomials $q_{0}, q_{1} \in \mathbb{Q}[t]$ with $\operatorname{deg}\left(q_{k}\right) \leq k$ such that $\mathrm{h}^{k+2}\left(\mathcal{F}_{s}^{\vee \vee}(-t)\right)=q_{k}(t)$ for $t \gg 0$. By ((20), for $t \gg 0$ and $k \neq 2$ we have:

$$
\left\{\begin{array}{l}
\mathrm{h}^{2}\left(\mathcal{Q}_{s}(-t)\right)=q_{2}(t)-q_{1}(t)+q_{0}, \\
\mathrm{~h}^{k}\left(\mathcal{Q}_{s}(-t)\right)=0
\end{array}\right.
$$

Next, we use again the local-global spectral sequence

$$
\operatorname{Ext}_{X}^{p+q}\left(\mathcal{Q}_{s}, \mathcal{O}_{X}(t-3)\right) \Leftarrow \mathrm{H}^{p}\left(\mathcal{E} x t_{X}^{q}\left(\mathcal{Q}_{s}, \mathcal{O}_{X}(t-3)\right)\right)=E_{2}^{p, q}
$$

Via Serre vanishing for $t \gg 0$ and Serre duality this gives:

$$
\begin{align*}
& \mathrm{h}^{2}\left(\mathcal{Q}_{s}(-t)\right)=\mathrm{h}^{0}\left(\mathcal{E} x t_{X}^{2}\left(\mathcal{Q}_{s}, \mathcal{O}_{X}(t-3)\right)\right), \\
& \mathcal{E} x t_{X}^{k}\left(\mathcal{Q}_{s}, \mathcal{O}_{X}\right)=0, \quad \text { for } k \neq 2 \tag{21}
\end{align*}
$$

Assume $\mathcal{Q}_{s} \neq 0$. By the above discussion, \mathcal{Q}_{s} is a non-zero reflexive sheaf supported on a codimension 2 subvariety Y_{s} of X, in which case $h^{2}\left(\mathcal{Q}_{s}(-t)\right)$ must agree with a polynomial function of degree 2 of t for $t \gg 0$. Hence the sheaf $\hat{\mathcal{Q}}_{s}=\mathcal{E} x t_{X}^{2}\left(\mathcal{Q}_{s}, \mathcal{O}_{X}(-3)\right)$ supported on Y_{s} satisfies:

$$
\begin{equation*}
\chi\left(\hat{\mathcal{Q}}_{s}(t)\right)=h^{2}\left(\mathcal{Q}_{s}(-t)\right)=q_{2}(t)-q_{1}(t)+q_{0} \leq \frac{3}{2}(t-1)(t-2), \quad \operatorname{deg}\left(\chi\left(\hat{\mathcal{Q}}_{s}(t)\right)\right)=2 . \tag{22}
\end{equation*}
$$

Note that (21) and [HL10, Proposition 1.1.10] imply $\mathcal{E} x t_{X}^{k}\left(\mathcal{F}_{s}^{\vee \vee}, \mathcal{O}_{X}\right)=0$ for $k \geq 3$ and therefore, via (20), also $\mathcal{E} x t_{X}^{k}\left(\mathcal{F}_{s}, \mathcal{O}_{X}\right)=0$ for $k \geq 3$. We prove along the way that:

$$
\begin{equation*}
\mathrm{H}^{1}\left(\mathcal{E} x t_{X}^{2}\left(\mathcal{F}_{s}(t), \mathcal{O}_{X}\right)\right)=0, \quad \text { for } t \gg 0 . \tag{23}
\end{equation*}
$$

Indeed, dualizing (20) and using (21) we get an epimorphism, for $t \in \mathbb{Z}$:

$$
\mathcal{E} x t_{X}^{2}\left(\mathcal{F}_{s}^{\vee \vee}(t), \mathcal{O}_{X}\right) \rightarrow \mathcal{E} x t_{X}^{2}\left(\mathcal{F}_{s}(t), \mathcal{O}_{X}\right)
$$

By [HL10, Proposition 1.1.10], if the sheaf $\mathcal{E} x t_{X}^{2}\left(\mathcal{F}_{s}^{\vee \vee}, \mathcal{O}_{X}\right)$ is non-zero then it is supported on a zero-dimensional subscheme of X, hence the same happens to $\mathcal{E} x t_{X}^{2}\left(\mathcal{F}_{s}, \mathcal{O}_{X}(-t)\right)$ by the above epimorphism. Therefore $\mathrm{H}^{1}\left(\mathcal{E} x t_{X}^{2}\left(\mathcal{F}_{s}, \mathcal{O}_{X}(-t)\right)\right)=0$ for $t \gg 0$.
Step 4. Show that, if \mathcal{F}_{s} is not reflexive, then it is an extension of sheaves coming from \mathcal{Z}°.
We have proved that, if \mathcal{F}_{s} is not reflexive, the support Y_{s} of $\hat{\mathcal{Q}}_{s}$ is a surface of degree at most 3 . But then, since X contains no integral surface of degree up to 3 other than complete intersections, the reduced structure of each primary component of Y_{s} must be a cubic surface contained in X, and hence Y_{s} itself must be a cubic surface. So the open subset $T_{2} \subset T_{1}$ provides a family of cubic surfaces $\mathcal{Y} \rightarrow T_{2}$ whose fibre over T_{2} is the cubic surface Y_{s}, where $Y_{s_{0}}=Y$ is smooth. Since smoothness is an open condition, there is a Zariski-open dense subset T_{3} of T_{2}, with $s_{0} \in T_{3}$, such that Y_{s} is smooth for all $s \in T_{3}$.

It follows again by (22) that \mathcal{Q}_{s} is reflexive of rank 1 over Y_{s}, i.e. \mathcal{Q}_{s} is a line bundle on Y_{s} since Y_{s} is smooth. Hence, we have a family of sheaves $\left\{\mathcal{Q}_{s} \mid s \in T_{3}\right\}$ where \mathcal{Q}_{s} is a line bundle over Y_{s} and $\mathcal{Q}_{s_{0}} \simeq \mathcal{O}_{Y}(D)$. Since the Picard group of Y_{s} is discrete, this family must be locally constant. In other words, for each $s \in T_{3}$ there is a divisor class D_{s} on Y_{s} corresponding to a twisted cubic contained in Y_{s} such that $\mathcal{Q}_{s} \simeq \mathcal{O}_{Y_{s}}\left(D_{s}\right)$ and $D_{s_{0}} \equiv D$.

Since $\mathrm{H}^{0}\left(\mathcal{F}_{s}\right)=\mathrm{H}^{1}\left(\mathcal{F}_{s}\right)=0$, the evaluation map of global sections $3 \mathcal{O}_{X} \rightarrow \mathcal{O}_{Y_{s}}\left(D_{s}\right)$ lifts to a non-zero map $\beta_{s}: 3 \mathcal{O}_{X} \rightarrow \mathcal{F}_{s}^{\vee \vee}$. The snake lemma yields an exact sequence:

$$
0 \rightarrow \operatorname{ker}\left(\beta_{s}\right) \rightarrow \mathcal{G}_{D_{s}^{\mathrm{t}}} \rightarrow \mathcal{F}_{s} \rightarrow \operatorname{coker}\left(\beta_{s}\right) \rightarrow 0
$$

Since the sheaves \mathcal{F}_{s} and $\mathcal{G}_{D_{s}^{t}}$ share the same reduced Hilbert polynomial, with \mathcal{F}_{s} semistable and $\mathcal{G}_{D_{s}^{\mathrm{t}}}$ stable, we must have $\operatorname{ker}\left(\beta_{s}\right)=0$. By semistability of \mathcal{F}_{s}, we note that $\mathcal{D}_{s}=\operatorname{coker}\left(\beta_{s}\right)$ is torsion-free, since otherwise the reduced Hilbert polynomial of the torsion-free part of \mathcal{D}_{s} would be strictly smaller than $\mathrm{p}_{\mathcal{D}_{s}}=\mathrm{p}_{\mathcal{F}_{s}}$.

Therefore, we have a flat family of sheaves over T_{3} whose fibre over s is \mathcal{D}_{s}, with $\mathcal{D}_{s_{0}} \simeq \mathcal{G}_{C}$. Hence, for all $s \in T_{3}$, the sheaf \mathcal{D}_{s} corresponds to a point of the open part \mathcal{Z}° of the Lehn-Lehn-Sorger-van Straten eightfold, i.e. $\mathcal{D}_{s_{0}} \simeq \mathcal{G}_{C_{s}}$ for some twisted cubic $C_{s} \subset X$. We take a further Zariski-open dense subset T_{4} of T_{3} such that C_{s} is Cohen-Macaulay and spans a smooth cubic surface, for all $s \in T_{4}$.

Summing up, in a Zariski-open neighbourhood T_{4} of s_{0}, dense in T, the hypothesis $\mathcal{Q}_{s} \neq 0$ for $s \in T_{4}$ implies the existence of twisted cubics D_{s}, C_{s} in X such that \mathcal{F}_{s} fits into:

$$
0 \rightarrow \mathcal{G}_{D_{s}^{t}} \rightarrow \mathcal{F}_{s} \rightarrow \mathcal{G}_{C_{s}} \rightarrow 0,
$$

where the twisted cubic C_{s} is Cohen-Macaulay, so that $\mathcal{G}_{C_{s}}$ lies in $\operatorname{Ku}(X)$. Therefore the sheaves $\mathcal{G}_{C_{s}}$ and $\mathcal{G}_{D_{s}^{t}}$ correspond uniquely to well-defined points of \mathcal{Z}°.

Step 5. Conclude that $\mathcal{F}_{s}(1)$ is Ulrich for generic $s \in T$.
We compute the dimension of the family \mathcal{W} of sheaves \mathcal{F}_{s} fitting into extensions as in the previous display. Indeed, \mathcal{W} is equipped with a regular map $\mathcal{W} \rightarrow \mathcal{Z}^{\circ} \times \mathcal{Z}^{\circ}$ defined by $\mathcal{F}_{s} \mapsto$ $\left(\mathcal{G}_{D_{s}^{\mathrm{t}}}, \mathcal{G}_{C_{s}}\right)$, whose fibre is $\mathbb{P}\left(\operatorname{Ext}_{X}^{1}\left(\mathcal{G}_{C_{s}}, \mathcal{G}_{D_{s}^{\mathrm{t}}}\right)\right)$. Since $D^{\mathrm{t}}=D_{s_{0}}^{\mathrm{t}}$ and $C=C_{s_{0}}$ are contained in Y and satisfy $C \cdot D^{\mathrm{t}}=4, C \cdot C^{\mathrm{t}}=5$, we have $C \not \equiv D^{\mathrm{t}}$ so $\mathcal{G}_{D_{s_{0}}} \not 千 \mathcal{G}_{C_{s_{0}}}$. Therefore $\mathcal{G}_{D_{s}} \not 千 \mathcal{G}_{C_{s}}$ for all s in a Zariski-open dense subset $T_{5} \subset T_{4}$, with $s_{0} \in T_{5}$. Since $\mathcal{G}_{D_{s}^{t}}$ and $\mathcal{G}_{C_{s}}$ lie in $\operatorname{Ku}(X)$ and represent stable non-isomorphic sheaves, we have:

$$
\operatorname{hom}_{X}\left(\mathcal{G}_{C_{s}}, \mathcal{G}_{D_{s}^{\mathrm{t}}}\right)=0, \quad \operatorname{ext}_{X}^{2}\left(\mathcal{G}_{C_{s}}, \mathcal{G}_{D_{s}^{\mathrm{t}}}\right) \simeq \operatorname{hom}_{X}\left(\mathcal{G}_{D_{s}^{\mathrm{t}}}, \mathcal{G}_{C_{s}}\right)=0
$$

Also, $\operatorname{ext}_{X}^{k}\left(\mathcal{G}_{C_{s}}, \mathcal{G}_{D_{s}^{t}}\right)=0$ for $k \geq 3$ hence :

$$
\operatorname{ext}_{X}^{1}\left(\mathcal{G}_{C_{s}}, \mathcal{G}_{D_{s}^{t}}\right)=-\chi\left(\mathcal{G}_{C_{s}}, \mathcal{G}_{D_{s}^{t}}\right)=6
$$

Therefore the fibre of $\mathcal{W} \rightarrow \mathcal{Z}^{\circ} \times \mathcal{Z}^{\circ}$ is 5-dimensional and:

$$
\operatorname{dim}(\mathcal{W})=2 \cdot \operatorname{dim}\left(\mathcal{Z}^{\circ}\right)+\operatorname{ext}_{X}^{1}\left(\mathcal{G}_{C_{s}}, \mathcal{G}_{D_{s}^{\mathrm{t}}}\right)-1=21
$$

So there is a Zariski-open dense subset $T_{6} \subset T_{5}$ with $s_{0} \in T_{6}$, such that $\mathcal{Q}_{s}=0$ for all $s \in T_{6} \backslash\left\{s_{0}\right\}$. Hence \mathcal{F}_{s} is reflexive for all $s \in T_{6} \backslash\left\{s_{0}\right\}$. Then \mathcal{F}_{s}^{\vee} is also semistable and shares the same reduced Hilbert polynomial as \mathcal{F}_{s}, hence we have:

$$
\mathrm{h}^{4}\left(\mathcal{F}_{s}(-3)\right)=\operatorname{ext}_{X}^{4}\left(\mathcal{O}_{X}(3), \mathcal{F}_{s}\right)=\mathrm{h}^{0}\left(\mathcal{F}_{s}^{\vee}\right)=0
$$

Since $\mathrm{h}^{k}\left(\mathcal{F}_{s}(-3)\right)=0$ for $k \leq 2$, by Riemann-Roch we obtain $\mathrm{h}^{3}\left(\mathcal{F}_{s}(-3)\right)=0$, i.e. $\mathrm{H}^{*}\left(\mathcal{F}_{s}(-3)\right)=$ 0 . We have now proved that $\mathcal{F}_{s}(1)$ is Ulrich for $s \in T_{6} \backslash\left\{s_{0}\right\}$.

Put $T^{\circ}=T_{6}$. We have proved that, for all $s \in T^{\circ} \backslash\left\{s_{0}\right\}$, the sheaf $\mathcal{F}_{s}(1)$ is an Ulrich bundle of rank 6 .
3.3. Fourfolds containing planes or cubic scrolls. We turn now our attention to the case of smooth cubic fourfolds X containing a surface of degree up to three, other than linear sections.

The goal is to prove our main theorem from the introduction, in other words, we would like to extend Theorem 3.2 to these fourfolds. Note that Steps 1,2 and 3 of the proof of Theorem 3.2 are still valid. Also, the argument of Step 5 holds once Step 4 is established. Summing up, it remains to work out Step 4. Recalling the base scheme T_{2} introduced in Step 3, we are done as soon as we prove the following result.

Proposition 3.3. There is a Zariski-open neighborhood of s_{0} in T_{2}° such that, for all $s \in T_{2}^{\circ}$, the sheaf $\mathcal{Q}_{s}=\mathcal{F}_{s}^{\vee \vee} / \mathcal{F}_{s}$ is either zero or it is supported on a linear section surface of X.
Proof. We proved in Step 3 that, for $s \in T_{2}$, the sheaf \mathcal{Q}_{s} is zero or it is a locally Cohen-Macaulay sheaf supported on a projective surface $Y_{s} \subset X$ with $\operatorname{deg}\left(Y_{s}\right) \leq 3$. Assuming $\mathcal{Q}_{s} \neq 0$, we would like to show that Y_{s} does not contain any surface Z other than linear sections of X. Passing to the purely two-dimensional part of the reduced structure of each primary component of Z, we may assume without loss of generality that Z is integral, still of degree at most 3 and not a linear section: we must then seek a contradiction. The surface Z is either a plane, or a quadric surface, or a smooth cubic scroll, or a cone over a rational normal cubic. The Hilbert polynomial of \mathcal{O}_{Z} is thus either $r_{1}=(t+1)(t+2) / 2, r_{2}=(t+1)^{2}$, or $r_{3}=(t+1)(3 t+2) / 2$, and Z is locally a complete intersection in any case.

We denote by \mathcal{H} union of primary components of $\operatorname{Hilb}_{r}(X)$ containing integral subschemes $Z \subset X$ having Hilbert polynomial r, with $r \in\left\{r_{1}, r_{2}, r_{3}\right\}$. Note that $\operatorname{Hilb}_{r_{1}}(X)$ is a finite reduced scheme consisting of planes contained in X. For $r=r_{2}$ or $r=r_{3}$, a priori a surface in $\operatorname{Hilb}_{r}(X)$ might be badly singular. However, we have the following claim.

Claim 1. Each surface of $\operatorname{Hilb}_{r_{2}}(X)$ is a reduced quadric. For $r=r_{3}$, all surfaces of \mathcal{H} are purely 2-dimensional Cohen-Macaulay. For $r=r_{2}$ or $r=r_{3}$, each component of \mathcal{H} is a projective plane.

Proof. Take a surface $Z=Z_{h}$ in $\operatorname{Hilb}_{r_{2}}(X)$. If Z is reduced, then Z is a quadric. Otherwise, the reduced structure of a component of Z must be a plane $L \subset X$. By computing the Hilbert polynomial of $\mathcal{I}_{L / Z}$, we see that this sheaf must be supported on a plane $L^{\prime} \subset Z$ and have rank one over L^{\prime}. Hence its $\mathcal{O}_{L^{\prime}}$-torsion-free part is of the form $\mathcal{I}_{B / L^{\prime}}(b)$ for a subscheme $B \subset L^{\prime}$ and some $b \in \mathbb{Z}$. Note that $\mathcal{I}_{L / Z} \simeq \mathcal{I}_{L / X} / \mathcal{I}_{Z / X}$, so the surjection $3 \mathcal{O}_{X}(-1) \rightarrow \mathcal{I}_{L / X}$ induces an epimorphism $3 \mathcal{O}_{L^{\prime}}(-1) \rightarrow \mathcal{I}_{B / L^{\prime}}(b)$, whence $b \in\{-1,0\}$.

Computing Hilbert polynomials and arguing that the leading term of the Hilbert polynomial of the possible L^{\prime}-torsion part of $\mathcal{I}_{L / Z}$ must be non-negative, we see that actually $b=-1$. This in turn implies $B=\emptyset$, i.e. $\mathcal{I}_{L / Z} \simeq \mathcal{O}_{L^{\prime}}(-1)$. This says that Z is a quadric surface. A direct computation shows that Z must be reduced, for a cubic fourfold containing a non-reduced quadric surface is singular at least along a subscheme of length 4.

All surfaces of a component of $\operatorname{Hilb}_{r_{2}}(X)$ are residual to the same plane in X so each component of $\operatorname{Hilb}_{r_{2}}(X)$ is the projective plane of linear sections of X containing a given plane.

Assume now $r=r_{3}$ and let $Z=Z_{h} \subset X$ be an integral surface, so that Z is a smooth cubic scroll or a cone over a rational normal cubic. We work roughly like in Proposition 2.1. The linear span V of Z is a \mathbb{P}^{4} that cuts X along a cubic threefold W and $\mathcal{I}_{Z / W}(2)$ is an Ulrich sheaf of rank 1 over W so we have a presentation:

$$
\begin{equation*}
0 \rightarrow 3 \mathcal{O}_{V}(-1) \xrightarrow{M} 3 \mathcal{O}_{V} \rightarrow \mathcal{I}_{Z / W}(2) \rightarrow 0 \tag{24}
\end{equation*}
$$

Note that the threefold W can have only finitely many singular points as if W had a 1dimensional family of singular points then X would singular along the intersection of this family and a quadric in V.

The idea is to prove that, on one hand, denoting by $\mathcal{N}_{Z / X}$ the normal sheaf of Z in X, we have $h^{0}\left(\mathcal{N}_{Z / X}\right)=2$. On the other hand, inspired by [Has00, §4.1.2], we describe an explicit projective plane parametrizing elements of \mathcal{H} by proving that each global section of $\mathcal{I}_{Z / W}(2)$ gives an element of \mathcal{H} and that all elements obtained this way are Cohen-Macaulay and indeed contained in W.

Let us first accomplish the second task. By (24), the projectivization $P=\mathbb{P}\left(\mathcal{I}_{Z / W}(2)\right)$ is embedded into $V \times \mathbb{P}^{2}=\mathbb{P}\left(3 \mathcal{O}_{V}\right)$ and the subscheme P is cut in $V \times \mathbb{P}^{2}$ by 3 linear equations defined by the columns of M. Write π and σ for the projections to V and \mathbb{P}^{2} from $V \times \mathbb{P}^{2}$ and by $\mathfrak{h}, \mathfrak{l}$ the pull-back to $V \times \mathbb{P}^{2}$ of the hyperplane divisors of V and \mathbb{P}^{2} via π and σ. Use the same letters upon restriction to P. From the Koszul resolution we obtain:

$$
0 \rightarrow \mathcal{O}_{\mathbb{P}^{2} \times V}(-2 \mathfrak{h}-3 \mathfrak{l}) \rightarrow 3 \mathcal{O}_{\mathbb{P}^{2} \times V}(-\mathfrak{h}-2 \mathfrak{l}) \rightarrow 3 \mathcal{O}_{\mathbb{P}^{2} \times V}(-\mathfrak{l}) \rightarrow \mathcal{O}_{\mathbb{P}^{2} \times V}(\mathfrak{h}) \rightarrow \mathcal{O}_{P}(\mathfrak{h}) \rightarrow 0
$$

Taking σ_{*}, we get that the sheaf $\mathcal{V}=\sigma_{*}\left(\mathcal{O}_{P}(\mathfrak{h})\right)$ fits into:

$$
0 \rightarrow 3 \mathcal{O}_{\mathbb{P}^{2}}(-1) \xrightarrow{N} 5 \mathcal{O}_{\mathbb{P}^{2}} \rightarrow \mathcal{V} \rightarrow 0 .
$$

Observe that $\mathrm{H}^{0}\left(\mathcal{O}_{\mathbb{P}^{2}}(1)\right)$ is naturally identified with $\mathrm{H}^{0}\left(\mathcal{I}_{Z / W}(2)\right)$. The choice of a line $\ell \subset \mathbb{P}^{2}$ corresponds uniquely to surjection $\ell: \mathrm{H}^{0}\left(\mathcal{O}_{\mathbb{P}^{2}}(1)\right) \rightarrow 2 \mathbb{k}$ and thus to an epimorphism $3 \mathcal{O}_{V} \rightarrow 2 \mathcal{O}_{V}$. Composing with M, the line ℓ gives uniquely a matrix $M_{\ell}: 3 \mathcal{O}_{V}(-1) \rightarrow 2 \mathcal{O}_{V}$.

We have $\mathbb{P}(\mathcal{V}) \simeq P$. Note that the map $\pi: P \rightarrow W$ is birational since $\mathcal{I}_{Z / W}(2)$ has rank 1 over W and \mathcal{O}_{W} has the same Hilbert polynomial as $\mathcal{O}_{P}(\mathfrak{h})$. Therefore, P is irreducible and thus \mathcal{V} is torsion-free. In particular, for any line $\ell \subset \mathbb{P}^{2}$, the restriction $\left.N\right|_{\ell}$ is injective and yields by restriction of π :

$$
\pi_{\ell}: \mathbb{P}\left(\left.\mathcal{V}\right|_{\ell}\right) \rightarrow Z_{\ell} \subset W,
$$

where $Z_{\ell}=\operatorname{Im}\left(\pi_{\ell}\right)$ is a surface in W. The scheme $\mathbb{P}\left(\left.\mathcal{V}\right|_{\ell}\right)$ is equipped with two divisor classes inherited from P, which we still denote by \mathfrak{l} and \mathfrak{h}. The surface Z_{ℓ} is the image of $\mathbb{P}\left(\left.\mathcal{V}\right|_{\ell}\right)$ by the linear system $\left|\mathcal{O}_{\mathbb{P}}(\mathcal{V} \mid \ell)(\mathfrak{h})\right|$.

Now $\left.\mathcal{V}\right|_{\ell} \simeq \operatorname{coker}\left(\left.N\right|_{\ell}\right)$ is of the form $\mathcal{O}_{\ell}\left(a_{1}\right) \oplus \mathcal{O}_{\ell}\left(a_{2}\right) \oplus \mathcal{B}$, where $0 \leq a_{1} \leq a_{2} \leq 3$, and \mathcal{B} is a torsion sheaf on ℓ of length b, with $a_{1}+a_{2}+b=3$. According to [BCS97, Chapter 19], in a suitable basis of $\mathrm{H}^{0}(\mathcal{V})$ and $\mathrm{H}^{1}(\mathcal{V}(-1))$ and choosing coordinates $\left(y_{0}: y_{1}\right)$ on ℓ, we may write a normal form of N_{ℓ}. Removing the cases forbidden by the smoothness of X, the possibilities are:

- $\left(a_{1}, a_{2}, b\right)=(1,2,0): Z_{\ell}$ is a smooth cubic scroll and:

$$
N_{\ell}^{\mathrm{t}}=\left(\begin{array}{ccccc}
y_{0} & y_{1} & 0 & 0 & 0 \\
0 & 0 & y_{0} & y_{1} & 0 \\
0 & 0 & 0 & y_{0} & y_{1}
\end{array}\right) .
$$

- $\left(a_{1}, a_{2}, b\right)=(0,3,0): Z_{\ell}$ is a cone over a rational normal cubic curve and:

$$
N_{\ell}^{\mathrm{t}}=\left(\begin{array}{ccccc}
y_{0} & y_{1} & 0 & 0 & 0 \\
0 & y_{0} & y_{1} & 0 & 0 \\
0 & 0 & y_{0} & y_{1} & 0
\end{array}\right)
$$

- $\left(a_{1}, a_{2}, b\right)=(1,1,1): Z_{\ell}$ is the union of a \mathbb{P}^{2} and a smooth quadric meeting along a line.

$$
N_{\ell}^{\mathrm{t}}=\left(\begin{array}{ccccc}
y_{0} & y_{1} & 0 & 0 & 0 \\
0 & 0 & y_{0} & y_{1} & 0 \\
0 & 0 & 0 & 0 & y_{0}
\end{array}\right) .
$$

- $\left(a_{1}, a_{2}, b\right)=(0,2,1): Z_{\ell}$ is the cone over the union of a smooth conic and a line meeting at a single point, spanning a $\mathbb{P}^{3} \subset V$ and having apex at a point outside V.

$$
N_{\ell}^{\mathrm{t}}=\left(\begin{array}{ccccc}
y_{0} & y_{1} & 0 & 0 & 0 \\
0 & y_{0} & y_{1} & 0 & 0 \\
0 & 0 & 0 & y_{0} & 0
\end{array}\right) .
$$

- $\left(a_{1}, a_{2}, b\right)=(0,1,2): Z_{\ell}$ is the cone over the union of a line and reducible conic, meeting at a length-two subscheme of the line, spanning a $\mathbb{P}^{3} \subset V$. The apex of the cone is a point outside V.

$$
N_{\ell}^{\mathrm{t}}=\left(\begin{array}{ccccc}
y_{0} & y_{1} & 0 & 0 & 0 \\
0 & 0 & y_{0} & 0 & 0 \\
0 & 0 & 0 & y_{1} & 0
\end{array}\right)
$$

- $\left(a_{1}, a_{2}, b\right)=(0,0,3): Z_{\ell}$ is a cone over a non-colinear subscheme of length 3 in $\mathbb{P}^{2} \subset V$, having a skew $\mathbb{P}^{1} \subset V$ as apex.

$$
N_{\ell}^{\mathrm{t}}=\left(\begin{array}{ccccc}
y_{0} & 0 & 0 & 0 & 0 \\
0 & y_{1} & 0 & 0 & 0 \\
0 & 0 & y_{0}+y_{1} & 0 & 0
\end{array}\right) .
$$

In all these cases the resulting subscheme Z_{ℓ} lies in \mathcal{H} and has projective dimension 2 with a Hilbert-Burch resolution given M_{ℓ}^{t}. Then the dual plane parametrizing lines $\ell \subset \mathbb{P}^{2}$ describes an explicit projective plane of arithmetically Cohen-Macaulay surfaces in \mathcal{H}.

Finally we have to show that $\mathrm{h}^{0}\left(\mathcal{N}_{Z / X}\right)=2$. We have an exact sequence:

$$
0 \rightarrow \mathcal{O}_{X}(-1) \rightarrow \mathcal{I}_{Z / X} \rightarrow \mathcal{I}_{Z / W} \rightarrow 0
$$

Applying $\mathcal{H o m}_{X}\left(-, \mathcal{O}_{Z}\right)$ we get:

$$
0 \rightarrow \mathcal{N}_{Z / W} \rightarrow \mathcal{N}_{Z / X} \rightarrow \mathcal{O}_{Z}(1) \xrightarrow{\delta} \mathcal{E} x t_{X}^{1}\left(\mathcal{I}_{Z / W}, \mathcal{O}_{Z}\right) \rightarrow{\mathcal{E} x t_{X}^{1}}^{\left(\mathcal{I}_{Z / X}, \mathcal{O}_{Z}\right) \rightarrow 0 ~}
$$

Since the surfaces Z under consideration are locally complete intersection in X, we get that $\mathcal{E} x t_{X}^{1}\left(\mathcal{I}_{Z / X}, \mathcal{O}_{Z}\right) \simeq \mathcal{E} x t_{X}^{2}\left(\mathcal{O}_{Z}, \mathcal{O}_{Z}\right)$ is the determinant of the normal bundle $\mathcal{N}_{Z / X}$ and is thus identified with the line bundle $\mathcal{N}_{Z / W}(1)$. On the other hand, using (24) we see that the sheaf $\mathcal{E} x t_{X}^{1}\left(\mathcal{I}_{Z / W}, \mathcal{O}_{Z}\right)$ fails to be locally free of rank 1 at the subscheme $\Upsilon \subset W$ defined by the 2-minors of M. Since Υ is contained in (though sometimes not equal to) the singular locus of W, we have $\operatorname{dim}(\Upsilon)=0$ so the resolution of Υ is obtained by the Gulliksen-Negard complex:

$$
0 \rightarrow \mathcal{O}_{V}(-6) \rightarrow 9 \mathcal{O}_{V}(-4) \rightarrow 16 \mathcal{O}_{V}(-3) \rightarrow 9 \mathcal{O}_{V}(-2) \rightarrow \mathcal{I}_{\Upsilon / V} \rightarrow 0
$$

Thus Υ has length 6 and $\mathrm{H}^{0}\left(\mathcal{I}_{\Upsilon / V}(1)\right)=0$, which in turn implies $\mathrm{H}^{0}\left(\mathcal{I}_{\Upsilon / Z}(1)\right)=0$. Therefore, $\operatorname{ker}(\delta) \subset \mathcal{I}_{\Upsilon / Z}(1)$ gives $\mathrm{H}^{0}(\operatorname{ker}(\delta))=0$. In turn we get $\mathrm{H}^{0}\left(\mathcal{N}_{Z / X}\right) \simeq \mathrm{H}^{0}\left(\mathcal{N}_{Z / W}\right)$ so it only remains to show $\mathrm{h}^{0}\left(\mathcal{N}_{Z / W}\right)=2$. To get this, since Z and W are locally complete intersection, we may use adjunction to the effect that $\mathcal{N}_{Z / W} \simeq \mathcal{H} o m_{W}\left(\omega_{W}, \omega_{Z}\right) / \mathcal{O}_{W}$. Therefore, using $\omega_{W} \simeq \mathcal{O}_{W}(-2)$ and restricting (24) to W we get:

$$
0 \rightarrow \mathcal{I}_{Z / W}(-1) \rightarrow 3 \mathcal{O}_{W}(-1) \rightarrow 2 \mathcal{O}_{W} \rightarrow \mathcal{N}_{Z / W} \rightarrow 0
$$

Taking cohomology we obtain $\mathrm{h}^{0}\left(\mathcal{N}_{Z / W}\right)=2$ as desired.
Write $\mathcal{Z} \subset X \times \mathcal{H}$ for the tautological surface. For each point $h \in \mathcal{H}$, we denote by $Z_{h}=$ $\mathcal{Z} \cap X \times\{h\}$ the corresponding surface. Consider $\mathcal{X}=X \times T_{2} \times \mathcal{H}$ and write $\pi_{1,2}, \pi_{1,3}$ and $\pi_{2,3}$ for the projections from \mathcal{X} onto $X \times T_{2}, X \times \mathcal{H}$ and $T_{2} \times \mathcal{H}$. We have the following claim.

Claim 2. For any $(s, h) \in T_{2} \times \mathcal{H}$, the surfaces Z_{h} and Y_{s} share a component if and only if:

$$
\mathrm{H}^{2}\left(\mathcal{E} x t_{X}^{1}\left(\mathcal{F}_{s}(t), \mathcal{O}_{Z_{h}}\right)\right) \neq 0, \quad \text { for } t \gg 0
$$

Proof. Take $(s, h) \in T_{2} \times \mathcal{H}$ and set $Z=Z_{h}$. Since \mathcal{F}_{s} is torsion-free and $\mathcal{F}_{s}^{\vee \vee}$ is reflexive, we have, for any coherent sheaf \mathcal{B} on X :

$$
\begin{equation*}
\mathcal{E} x t_{X}^{q}\left(\mathcal{F}_{s}^{\vee \vee}, \mathcal{B}\right)=\mathcal{E} x t_{X}^{q+1}\left(\mathcal{F}_{s}, \mathcal{B}\right)=0 \quad \text { for } q \geq 3 \tag{25}
\end{equation*}
$$

and, for $q \in\{1,2\}$:

$$
\begin{equation*}
\operatorname{dim}\left(\mathcal{E} x t_{X}^{q}\left(\mathcal{F}_{s}^{\vee \vee}, \mathcal{B}\right)\right) \leq 2-q, \quad \operatorname{dim}\left(\mathcal{E} x t_{X}^{q}\left(\mathcal{F}_{s}, \mathcal{B}\right)\right) \leq 3-q \tag{26}
\end{equation*}
$$

Indeed, this follows from [HL10, Proposition 1.1.10] if \mathcal{B} is locally free. Then, (25) and (26) hold for an arbitrary coherent sheaf \mathcal{B} as we see by applying $\mathcal{H o m}_{X}\left(\mathcal{F}_{s},-\right)$ and $\mathcal{H o m}_{X}\left(\mathcal{F}_{s}^{\vee \vee},-\right)$ to a finite locally resolution of \mathcal{B} and using that (25) and (26) hold for the terms of the resolution.

Applying $\mathcal{H o m}_{X}\left(-, \mathcal{O}_{Z}\right)$ to (20) we get, for $q \geq 1$:

$$
\cdots \rightarrow \mathcal{E} x t_{X}^{q}\left(\mathcal{F}_{s}^{\vee \vee}, \mathcal{O}_{Z}\right) \rightarrow \mathcal{E} x t_{X}^{q}\left(\mathcal{F}_{s}, \mathcal{O}_{Z}\right) \rightarrow \mathcal{E} x t_{X}^{q+1}\left(\mathcal{Q}_{s}, \mathcal{O}_{Z}\right) \rightarrow \mathcal{E} x t_{X}^{q+1}\left(\mathcal{F}_{s}^{\vee \vee}, \mathcal{O}_{Z}\right) \rightarrow \cdots
$$

We deduce that $\mathcal{E} x t_{X}^{q}\left(\mathcal{F}_{s}, \mathcal{O}_{Z}\right)=0$ for $q \geq 3$ and

$$
\operatorname{dim}\left(\mathcal{E} x t_{X}^{1}\left(\mathcal{F}_{s}, \mathcal{O}_{Z}\right)\right)=2 \Longleftrightarrow \operatorname{dim}\left(\mathcal{E} x t_{X}^{2}\left(\mathcal{Q}_{s}, \mathcal{O}_{Z}\right)\right)=2
$$

Therefore

$$
\begin{equation*}
\mathrm{H}^{p}\left({\mathcal{E} x t_{X}^{1}}^{1}\left(\mathcal{F}_{s}(t), \mathcal{O}_{Z}\right)\right)=0 \text { for } p \geq 3 \text { and all } t \in \mathbb{Z} \tag{27}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{H}^{2}\left(\mathcal{E} x t_{X}^{1}\left(\mathcal{F}_{s}(t), \mathcal{O}_{Z}\right)\right) \neq 0 \text { for } t \gg 0 \Longleftrightarrow \operatorname{dim}\left(\mathcal{E} x t_{X}^{2}\left(\mathcal{Q}_{s}, \mathcal{O}_{Z}\right)\right)=2 \tag{28}
\end{equation*}
$$

By Claim [1, we may assume that Z is a locally Cohen-Macaulay in X. Let M be a matrix of size $p \times(p+1)$ whose p-minors define Z locally in X, then the sheaf $\mathcal{E} x t_{X}^{2}\left(\mathcal{Q}_{s}, \mathcal{O}_{Z}\right)$ is locally presented as cokernel of the rightmost map in:

$$
\begin{equation*}
0 \rightarrow p \hat{\mathcal{Q}}_{s} \xrightarrow{\mathcal{H} \operatorname{lom}\left(\hat{\mathcal{Q}}_{s}, M\right)}(p+1) \hat{\mathcal{Q}}_{s} \xrightarrow{\mathcal{H} \operatorname{lom}\left(\hat{\mathcal{Q}}_{s}, \wedge^{p} M\right)} \hat{\mathcal{Q}}_{s} \tag{29}
\end{equation*}
$$

Now the p-minors of M vanish on an irreducible component of Y_{s} if and only if such component also lies in Z, in which case (29) shows that the support of $\mathcal{E} x t_{X}^{2}\left(\mathcal{Q}_{s}, \mathcal{O}_{Z}\right)$ is the whole component. Conversely, if Y_{s} and Z share no irreducible component so that the p-minors do not vanish identically on any component of Y_{s}, then again by (29) the sheaf $\mathcal{E} x t_{X}^{2}\left(\mathcal{Q}_{s}, \mathcal{O}_{Z}\right)$ is supported along a closed subset of Z having dimension at most 1 . This shows that $\operatorname{dim}\left(\mathcal{E} x t_{X}^{2}\left(\mathcal{Q}_{s}, \mathcal{O}_{Z}\right)\right)=2$ if and only if \mathcal{Q}_{s} and Z share a common component. Together with (28), this finishes the proof.
Claim 3. For $t \in \mathbb{Z}$, put $\mathcal{B}=\mathcal{E} x t_{\mathcal{X}}^{1}\left(\pi_{12}^{*}(\mathcal{F}(-t)), \pi_{13}^{*}\left(\mathcal{O}_{\mathcal{Z}}\right)\right)$ and $\mathcal{P}=\mathrm{R}^{2} \pi_{23 *}(\mathcal{B})$. For $(s, h) \in$ $T_{2} \times \mathcal{H}$, we have $\mathcal{P}_{(s, h)} \neq 0$ for $t \gg 0$ if and only if Z_{h} and Y_{s} have a common component.

Proof. Since \mathcal{F} and $\mathcal{O}_{\mathcal{Z}}$ are flat over $T_{2} \times \mathcal{H}$, we have an identification $\mathcal{B}_{(s, h)} \simeq \mathcal{E} x t_{X}^{1}\left(\mathcal{F}_{s}(-t), \mathcal{O}_{Z_{h}}\right)$ for all $t \in \mathbb{Z}$ and $(s, h) \in T_{2} \times \mathcal{H}$. By the vanishing results of the previous paragraph and using the flattening stratification for \mathcal{B} over $T_{2} \times \mathcal{H}$ and working over each stratum, we get $\mathrm{R}^{p} \pi_{23 *}(\mathcal{B})=0$ for all $p \geq 3$ and $t \in \mathbb{Z}$ so via base-change we obtain, for all $(s, h) \in T_{2} \times \mathcal{H}$, we have

$$
\mathcal{P}_{(s, h)} \simeq \mathrm{R}^{2} \pi_{23 *}(\mathcal{B})_{(s, h)} \simeq \mathrm{H}^{2}\left(\mathcal{E} x t_{X}^{1}\left(\mathcal{F}_{s}(t), \mathcal{O}_{Z_{h}}\right)\right)
$$

for all $t \in \mathbb{Z}$. The conclusion follows from Claim 2 ,

We now finish the proof of the proposition. Indeed, by Claim 1 for the special point $s_{0} \in T_{2}$, the surface $Y=Y_{s_{0}}$ shares no component with any surface Z_{h} for $h \in \mathcal{H}$. Indeed, if Z_{h} contains Y then comparing Hilbert polynomials we get that Z_{h} must contain a line as its further (possibly embedded) component, which is forbidden since Z_{h} would not be Cohen-Macaulay.

Now, by Claim 3 we have $\mathcal{P}_{\left(s_{0}, h\right)}=0$ for all $h \in \mathcal{H}$. In other words, the support of \mathcal{P} is disjoint from $\left\{s_{0}\right\} \times \mathcal{H}$. Since \mathcal{H} is projective, the image of the support of \mathcal{P} in T_{2} is thus a closed subset of T_{2}, disjoint from s_{0}. Therefore there exists an open neighborhood T_{2}° of s_{0} disjoint from this subset. Thus the support of \mathcal{P} does not intersect $T_{2}^{\circ} \times \mathcal{H}$. This implies that, for all $s \in T_{2}^{\circ}$, if \mathcal{Q}_{s} is not zero then its support is a surface Y_{s} having degree at most 3 and containing no surface of \mathcal{H} as a component, in other words Y_{s} must be a linear section of X. This completes the proof of Proposition 3.3 and consequently of the main theorem.

References

[BCS97] P. Bürgisser, M. Clausen, and M. A. Shokrollahi, Algebraic complexity theory, Grundlehren der Mathematischen Wissenschaften, vol. 315, Springer-Verlag, Berlin, 1997, With the collaboration of Thomas Lickteig.
[Bea00] A. Beauville, Determinantal hypersurfaces, Michigan Math. J. 48 (2000), 39-64.
[Bea02] , Vector bundles on the cubic threefold, Symposium in Honor of C. H. Clemens, Contemp. Math., vol. 312, Amer. Math. Soc., Providence, RI, 2002, pp. 71-86.
[BEH87] R.-O. Buchweitz, D. Eisenbud, and J. Herzog, Cohen-Macaulay modules on quadrics, Singularities, representation of algebras, and vector bundles (Lambrecht, 1985), Lecture Notes in Mathematics, vol. 1273, Springer, Berlin, 1987, pp. 58-116.
[BES17] M. Bläser, D. Eisenbud, and F.-O. Schreyer, Ulrich complexity, Differential Geom. Appl. 55 (2017), 128-145.
[BF00] R.-O. Buchweitz and H. Flenner, The Atiyah-Chern character yields the semiregularity map as well as the infinitesimal Abel-Jacobi map, The arithmetic and geometry of algebraic cycles (Banff, AB, 1998), CRM Proc. Lecture Notes, vol. 24, Amer. Math. Soc., Providence, RI, 2000, pp. 33-46.
[BF03] , A semiregularity map for modules and applications to deformations, Compositio Math. 137 (2003), no. 2, 135-210.
[BF11] M. C. Brambilla and D. Faenzi, Moduli spaces of rank-2 ACM bundles on prime Fano threefolds, Michigan Math. J. 60 (2011), 113-148.
[BH89] J. Backelin and J. Herzog, On Ulrich-modules over hypersurface ring, Commutative Algebra (Berkeley, 1987), Math. Sci. Res. Inst. Publ., vol. 15, Springer, New York, 1989, pp. 63-68.
$\left[\mathrm{BLM}^{+}\right]$A. Bayer, M. Lahoz, E. Macrì, H. Nuer, A. Perry, and P. Stellari, Stability conditions in familes, arXiv:1902.08184.
[CH12] M. Casanellas and R. Hartshorne, Stable Ulrich bundles, Internat. J. Math. 23 (2012), 1250083.
[Eis80] D. Eisenbud, Homological algebra on a complete intersection, Trans. Amer. Math. Soc. 260 (1980), 35-64.
[ES03] D. Eisenbud and F.-O. Schreyer, Resultants and Chow forms via exterior syzygies, J. Amer. Math. Soc. 16 (2003), 537-579, with an appendix by J. Weyman.
[ES11] , Boij-Söderberg theory, Combinatorial aspects of commutative algebra and algebraic geometry, Abel Symp., vol. 6, Springer, Berlin, 2011, pp. 35-48.
[Fae19] D. Faenzi, Ulrich bundles on K3 surfaces, Algebra Number Theory 13 (2019), no. 6, 1443-1454.
[Has00] B. Hassett, Special cubic fourfolds, Compositio Math. 120 (2000), 1-23.
[HL10] D. Huybrechts and M. Lehn, The geometry of moduli spaces of sheaves, Cambridge University Press, 2010.
[HT10] Daniel Huybrechts and Richard P. Thomas, Deformation-obstruction theory for complexes via Atiyah and Kodaira-Spencer classes, Math. Ann. 346 (2010), no. 3, 545-569. MR 2578562
[IM14] A. Iliev and L. Manivel, On cubic hypersurfaces of dimensions 7 and 8, Proc. London Math. Soc. 108 (2014), 517-540.
[KM09] A. Kuznetsov and D. Markushevich, Symplectic structures on moduli spaces of sheaves via the Atiyah class, J. Geom. Phys. 59 (2009), 843-860.
[KS20] Y. Kim and F.-O. Schreyer, An explicit matrix factorization of cubic hypersurfaces of small dimensions, J. Pure Appl. Algebra 224 (2020), 106346.
[Kuz04] A. Kuznetsov, Derived category of a cubic threefold and the variety v_{14}, Proc. Steklov Inst. Math. 246 (2004), 171-194.
[LLMS18] M. Lahoz, M. Lehn, E. Macrì, and P. Stellari, Generalized twisted cubics on a cubic fourfold as a moduli space of stable objects, J. Math. Pures Appl. 114 (2018), no. 9, 85-117.
[LLSvS17] C. Lehn, M. Lehn, C. Sorger, and D. van Straten, Twisted cubics on cubic fourfolds, J. Reine Angew. Math 731 (2017), 87-128.
[LMS15] M. Lahoz, E. Macrì, and P. Stellari, Arithmetically cohen-macaulay bundles on cubic threefolds, Algebr. Geom. 2 (2015), no. 2, 231-269.
[Man19] L. Manivel, Ulrich and aCM bundles from invariant theory, Comm. Algebra 47 (2019), 706-718.
[Muk84] Shigeru Mukai, Symplectic structure of the moduli space of sheaves on an abelian or K3 surface, Invent. Math. 77 (1984), no. 1, 101-116. MR 85j:14016
[TY20] H. L. Truong and H. N. Yen, Stable Ulrich bundles on cubic fourfolds, in preparation, 2020.
[Ulr84] B. Ulrich, Gorenstein rings and modules with high numbers of generators, Math. Z. 188 (1984), 23-32.
Daniele Faenzi. Institut de Mathématiques de Bourgogne, UMR 5584 CNRS, Université de Bourgogne et Franche-Comté, 9 Avenue Alain Savary, BP 47870, 21078 Dijon Cedex, France

Email address: daniele.faenzi@u-bourgogne.fr
Yeongrak Kim. Fr. Mathematik und Informatik, Universität des Saarlandes, Campus E2.4, D66123 Saarbrücken, Germany

Email address: kim@math.uni-sb.de

[^0]: D.F. partially supported by ISITE-BFC project contract ANR-IS-IDEX-OOOB and EIPHI Graduate School ANR-17-EURE-0002. Y.K. was supported by Project I. 6 of the SFB-TRR 195 "Symbolic Tools in Mathematics and their Application" of the German Research Foundation (DFG). Both authors partially supported by Fédération de Recherche Bourgogne Franche-Comté Mathématiques (FR CNRS 2011).

