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ONE-STEP ESTIMATION FOR THE FRACTIONAL GAUSSIAN

NOISE AT HIGH-FREQUENCY

Alexandre Brouste*, Marius Soltane and Irene Votsi

Abstract. The present paper concerns the parametric estimation for the fractional Gaussian noise
in a high-frequency observation scheme. The sequence of Le Cam’s one-step maximum likelihood esti-
mators (OSMLE) is studied. This sequence is defined by an initial sequence of quadratic generalized
variations-based estimators (QGV) and a single Fisher scoring step. The sequence of OSMLE is proved
to be asymptotically efficient as the sequence of maximum likelihood estimators but is much less
computationally demanding. It is also advantageous with respect to the QGV which is not variance
efficient. Performances of the estimators on finite size observation samples are illustrated by means of
Monte-Carlo simulations.
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1. Introduction

Beyond the classical model of independent and identically distributed Gaussian random variables for the
returns of an asset price, several extensions have been proposed to describe the observed stylized facts by
means of heteroscedasticity, non-Gaussianity and/or dependence. Here we focus on the fractional Gaussian
noise (fGn) which is characterized by a standard deviation parameter (volatility) and a dependence parameter
(Hurst exponent).

In the large sample statistical experiment where the mesh size is constant and the observation time horizon
tends to infinity (as the sample size increases), the joint estimation for the volatility and the Hurst exponent
has been well studied. The Local Asymptotic Normal (LAN) property of the likelihoods has been obtained in [6]
for the fGn. The LAN theory allows to define the asymptotic efficiency of the sequences of estimators (for more
information, see [13, 14, 18]). It is worth noting that the sequence of maximum likelihood estimators (MLE) is
asymptotically efficient (see [7, 8]) and consequently presents the smallest possible variance in a minimax sense
on local alternatives. The sequence of Whittle estimators, which is an approximation of the MLE, has been
studied and shown to be efficient as well [10].

Contrary to the large sample setting, the LAN property of the likelihoods cannot be deduced from the
previous results in the high-frequency scheme (infill asymptotics), where the time horizon is fixed and the mesh
size tends to zero. In this setting, the joint estimation of the volatility and the self-similarity index is singular
and therefore no confidence interval of the pair could be obtained [2, 16]. Recently, this singularity has been
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untied in [3] using non-diagonal norming rates and the asymptotic efficiency of the sequence of MLE has been
proved in the high-frequency scheme. This singularity has been also observed in the symmetric stable model [1]
when the scale parameter and the stability index are estimated jointly and has been untied in a similar way [4].

The sequence of Whittle type estimators is also efficient in the high-frequency fGn setting [11]. Other
sequences of fast computable estimators have been studied including estimators based on quadratic generalized
variations [15] and estimators based on wavelet coefficients [9]. Unfortunately, these sequences of estimators are
generally not asymptotically efficient.

Although the sequence of MLE is asymptotically efficient in the high-frequency scheme, it is not expressed
in a closed form and its computation is time consuming. The goal of the paper is the construction of a fast-
computable sequence of estimators which is asymptotically equivalent to the MLE, the so-called sequence of
one-step MLE (see [17, 19]). The latter sequence is based on an initial (rate efficient but not variance efficient)
sequence of quadratic generalized variations-based estimators (QGV) and a single Fisher scoring step. QGV
based estimators have been defined in [15] and a recent use in the context of the linear fractional stable motion
is done in [20].

The one-step MLE presents certain advantages over the MLE and the QGV in terms of computational cost
and asymptotic variance. It is much less computationally expensive than the MLE while it has the same rate and
the same asymptotic variance. On the other hand, it is optimal in terms of asymptotic variance which is not the
case for the QGV. Here we provide theoretical results to establish the asymptotic equivalence between the MLE
and the one-step MLE and Monte-Carlo simulations are employed to illustrate finite size sample performances.

The remainder of the paper is organized as follows: Section 2 describes the fractional Gaussian noise model
observed in the high-frequency scheme and the asymptotic properties of the sequence of MLE. In Section 3 the
fast-computable sequence of one-step MLE is described and shown to be asymptotically efficient. Performances
of the estimators for samples of medium size are illustrated by means of Monte-Carlo simulations.

2. Fractional Gaussian noise model at high-frequency

The model considered in this paper is the scaled fractional Gaussian noise that is,

Xi = σ
(
BH

(
t
(n)
i

)
−BH

(
t
(n)
i−1

))
, i = 1, . . . , n, (2.1)

where (BH(t), t ≥ 0) is a standard fractional Brownian motion of Hurst parameter H ∈ (0, 1), σ > 0 and

0 = t
(n)
0 < t

(n)
1 < . . . < t

(n)
n = T is a regular time grid, where t

(n)
i = iT

n = i∆n for 0 ≤ i ≤ n and ∆n = T
n . In the

high-frequency setting (infill asymptotics), the time horizon T is fixed and the mesh size ∆n = t
(n)
1 − t(n)

0 −→ 0
as the sample size n −→ ∞. The joint estimation of the Hurst parameter H and the volatility parameter σ is
considered.

The optimal rates for the estimation of the parameter ϑ = (H,σ)∗ ∈ Θ ⊂ (0, 1)×R+
∗ , where ∗ denotes the

transposition, have been recently obtained in [3]. For instance, the lower bounds for the risk of estimators are
given for any C > 0 by

lim inf
n→∞

sup
|ϕn(ϑ0)−1(ϑ−ϑ0)|≤C

Enϑ
[
c
(
ϕn(ϑ0)−1(ϑn − ϑ)

)]
≥
∫
R2

c
(
Iϕ(ϑ0)−1/2z

)
φ(z)dz,

for any sequence of estimators (ϑn, n ≥ 1), some cost function c, some proper rate matrix ϕn and an asymptotic
Fisher information matrix Iϕ(ϑ0) described in the sequel. Here φ is the density of the 2-dimensional standard
normal distribution.
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2.1. Preliminaries on the fGn

For a fixed n ∈ N∗, the distribution of the fractional Gaussian noise (Xi, 1 ≤ i ≤ n) defined in (2.1) is a
centered Gaussian distribution with autocovariance

r(k) = EXiXi+k =
1

2π

∫ π

−π
eikxf∆n

(x) dx,

for any i ∈ {1, . . . , n} and k ∈ {0, . . . , n− i}, with

f∆n(x) = σ2CH∆2H
n 2(1− cos(x))

∑
k∈Z

|x+ 2kπ|−2H−1, x ∈ (−π, π],

where CH = Γ(2H+1) sin(πH)
2π . The spectral density f∆n

(x) can be rewritten as f∆n
(x) = σ2∆2H

n fH(x) where

fH(x) = CH2(1− cos(x))
∑
k∈Z

|x+ 2kπ|−2H−1, x ∈ (−π, π].

The autocovariance function is explicitly given (see [22, Sect. 7.2.3]) by

r(k) =
σ2

2
∆2H
n

(
|k + 1|2H − 2|k|2H + |k − 1|2H

)
.

Consequently, for the observation sample X(n) = (X1, . . . , Xn), the likelihood function in ϑ = (H,σ)∗ admits a
closed form given by

L(ϑ,X(n)) = (2π)
−n

2 (det Σn)
− 1

2 exp

(
−1

2
〈X(n),Σ−1

n X(n)〉
)

where Σn = (r(i− j))i,j . Let us denote

An =
√
n

{
1

nσ2∆2H
n

〈X(n), Tn(H)−1X(n)〉 − 1

}
and

Bn =
1√
n

{
1

2
∂H log (detTn(H)) +

1

2 σ2∆2H
n

〈X(n), ∂H{Tn(H)−1}X(n)〉
}
,

where Tn(H) = σ−2∆−2H
n Σn. Then let us notice that, as shown in [6], the pair (An, Bn) converges in law under

Pn(H,σ) for a nondegenerate centered Gaussian random variable (A,B) whose covariance matrix is given by

J(H) =

(
2 − 1

2π

∫ π
−π ∂H log fH(λ)dλ

− 1
2π

∫ π
−π ∂H log fH(λ)dλ 1

4π

∫ π
−π |∂H log fH(λ)|2dλ

)
.

Here Pn(H,σ) stands for the probability measure associated to the fractional Gaussian noise with parameter

(H,σ).
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The log-likelihood function is further denoted by `n(ϑ) = logL(ϑ,X(n)) and the score function is given by

∇`n(ϑ) =

(
∂H`n(ϑ)
∂σ`n(ϑ)

)
=

(
An
√
n log ∆n −Bn

√
n

An
√
nσ−1

)
. (2.2)

From the last expression, we clearly see that the leading terms of ∂H`n(ϑ) and ∂σ`n(ϑ) are linearly dependent,
which is the reason why we obtain a singular Fisher information matrix when considering diagonal rate matrices
as in [16]. This singularity could be untied using non-diagonal rate matrices as in [3].

2.2. Properties of the sequence of MLE

The sequence of maximum likelihood estimators (ϑ̂n, n ≥ 1) is defined by

L
(
ϑ̂n, X

(n)
)

= sup
ϑ∈Θ
L
(
ϑ,X(n)

)
, n ≥ 1.

This sequence has been shown to be asymptotically normal and asymptotically efficient for different rate matrices
in [3]. To be more precise, as n −→∞,

ϕn(ϑ)−1
(
ϑ̂n − ϑ

)
−→ N

(
0, I−1

ϕ (ϑ)
)

(2.3)

in law under Pn(H,σ) where

ϕn(ϑ) =
1√
n

(
αn ᾱn
βn β̄n

)
(2.4)

satisfies the following properties:

1. The quantity ω defined by ω = ndet(ϕn(ϑ)) = αnβ̄n − ᾱnβn verifies ω 6= 0 and does not depend on n;
2. αn → α for some α ∈ R;
3. ᾱn → ᾱ for some ᾱ ∈ R;
4. γn := αn log ∆n + βnσ

−1 → γ for some γ ∈ R;
5. γ̄n := ᾱn log ∆n + β̄nσ

−1 → γ̄ for some γ̄ ∈ R;
6. αγ̄ − ᾱγ 6= 0,

and where the Fisher information matrix can be computed as

Iϕ(ϑ) =

(
γ −α
γ̄ −ᾱ

)
J(H)

(
γ γ̄
−α −ᾱ

)
. (2.5)

Following [3], several examples of rate matrices can be elicited. Let us briefly describe three examples.

1. A positive definite symmetric matrix for rate ϕn is

ϕn(ϑ) =
1√
n

(
− 2

log ∆n
σ

σ −σ2 log ∆n

)
,

for which α = 0, ᾱ = σ, γ = −1, γ̄ = 0 and ω = σ2.
2. Two other examples of rate matrices will be used in the following. The first example is

ϕn(ϑ) =
1√
n

(
1 0

−σ log ∆n 1

)
with ϕ−1

n (ϑ) =
√
n

(
1 0

σ log ∆n 1

)
, (2.6)
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which implies α = 1, ᾱ = 0, γ = 0, γ̄ = σ−1 and ω = 1. The second example is

ϕn(ϑ) =
1√
n

( 1
log ∆n

1

0 −σ log ∆n

)
with ϕ−1

n (ϑ) = −
√
n

σ

(
−σ log ∆n −1

0 1
log ∆n

)
, (2.7)

implying α = 0, ᾱ = 1, γ = 1, γ̄ = 0 and ω = −σ.

It is worth noting that in all the previous examples the rate matrices are non-diagonal and depend on the
parameter σ. Other examples could be found in [3].

3. Asymptotic efficiency of the one-step MLE

The numerical procedure for the evaluation of the MLE requires the computation of the inverse matrix
Tn(H)−1 and the use of an iterative numerical optimization algorithm. As a result, the maximum likelihood
estimation is a computationally demanding and time-consuming task; therefore it is very important to propose
less expensive estimation counterparts enjoying the same appealing asymptotic properties as the MLE. For this
purpose we present the sequence of one-step MLE (OSMLE) which is asymptotically efficient and has a smaller
computational cost than the MLE [3] and the Whittle estimator [11]. The OSMLE requires a single Fisher
scoring iteration and a well-chosen initial sequence of guess estimators.

Let us first consider the matrix ϕn(ϑ) defined in (2.4). The corresponding non-degenerate Fisher information
matrix is given by Iϕ(ϑ) defined in (2.5). We suppose that there exists an efficient rate sequence of estimators

(“initial guess estimators”) ϑ̃n = (H̃n, σ̃n)∗ satisfying, as n −→∞,

ϕn(ϑ)−1
(
ϑ̃n − ϑ

)
−→ N (0,Γϕ(ϑ))

in law under Pn(H,σ) for some (non-efficient) positive definite matrix Γϕ(ϑ). Then, we consider the sequence of

estimators ϑn = (Hn, σn)∗ defined by the one-step scoring procedure

ϑn = ϑ̃n +
(
ϕ−∗n (ϑ̃n)Iϕ(ϑ̃n)ϕn(ϑ̃n)−1

)−1

∇`n(ϑ̃n). (3.1)

Here A−∗ denotes the transpose of the inverse matrix of A, namely A−∗ = (A−1)∗.

In the next section, we present an initial guess estimator (ϑ̃n, n ≥ 1) that could be used in the one-step
procedure.

3.1. Initial guess estimator via quadratic generalized variations

First, let us denote the quadratic generalized variations

Vn,1 =
1

n− 1

n−1∑
i=1

(Xi+1 −Xi)
2

and Vn,2 =
1

n− 3

n−3∑
i=1

(Xi+3 +Xi+2 −Xi+1 −Xi)
2
.

Straightforward calculations lead to

EVn,1 =
1

n− 1

n−1∑
i=1

E
(

(Xi+1 −Xi)
2
)

= E
(

(X2 −X1)
2
)

= 2 (r(0)− r(1)) = σ2∆2H
n (4− 22H).
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and

EVn,2 =
1

n− 3

n−3∑
i=1

E
(

(Xi+3 +Xi+2 −Xi+1 −Xi)
2
)

= σ2∆2H
n 22H(4− 22H).

Then, we define the sequence of initial guess estimators (ϑ̃n, n ≥ 1) through quadratic generalized variations,

where ϑ̃n = (H̃n, σ̃n)∗, it is defined by

H̃n =
1

2
log2

Vn,2
Vn,1

and

σ̃n =

√
Vn,1

∆2H̃n
n

· 1

4− 22H̃n

.

The next result states that the sequence of initial guess estimators (ϑ̃n, n ≥ 1) is rate-efficient.

Theorem 3.1. The sequence of quadratic generalized variations-based estimators (ϑ̃n, n ≥ 1) is asymptotically
normal, i.e. as n −→ +∞,

ϕn(ϑ)−1
(
ϑ̃n − ϑ

)
−→ N (0,Γϕ(ϑ)),

in law under Pn(H,σ) where Γϕ(ϑ) is a symmetric positive definite matrix defined in (3.5), which depends on σ
and H.

Proof. First, let us denote

f(u, v) =

(
h(u, v)
s(u, v)

)
,

where h(u, v) = 1
2 log2

(
v
u

)
and s(u, v) =

√
u

w(u,v) with w(u, v) = ∆
2h(u,v)
n (4 − 22h(u,v)). Direct computations

lead to

∂

∂u
f(u, v) =

(
∂
∂uh(u, v)

−s(u, v) log ∆n
∂
∂uh(u, v) + s(u,v)22h(u,v) log 2

(4−22h(u,v))
∂
∂uh(u, v) + 1

2s(u,v)∆
2h(u,v)
n (4−22h(u,v))

)

and

∂

∂v
f(u, v) =

(
∂
∂vh(u, v)

−s(u, v) log ∆n
∂
∂vh(u, v) + s(u,v)22h(u,v) log 2

(4−22h(u,v))
∂
∂vh(u, v)

)
.

Second, we fix u? = σ2∆2H
n (4− 22H) and v? = σ2∆2H

n 22H(4− 22H) such that

f(u?, v?) =

(
H
σ

)
. (3.2)
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Taylor’s expansion of f around (u?, v?) gives

f(u, v)− f(u?, v?) =
∂

∂u
f(u?, v?)(u− u?) +

∂

∂v
f(u?, v?)(v − v?) + o

(∥∥∥∥(u− u?v − v?
)∥∥∥∥) .

Then, for ϕn(ϑ) given by (2.6), we have

ϕn(ϑ)−1 (f(u, v)− f(u?, v?)) =

√
n

ω

(
βn −αn
−βn αn

)
(f(u, v)− f(u?, v?))

=

(
an,ϑ

√
n

∆2H
n

(u− u?) + bn,ϑ
√
n

∆2H
n

(v − v?)
cn,ϑ

√
n

∆2H
n

(u− u?) + dn,ϑ
√
n

∆2H
n

(v − v?)

)

+o

(
ϕn(ϑ)−1

∥∥∥∥(u− u?v − v?
)∥∥∥∥) (3.3)

where

an,ϑ =
1

ω

[(
βn + αnσ log ∆n − αn

σ22H log 2

4− 22H

)
·
(
− 1

2 log 2σ2(4− 22H)

)
− αn

1

2σ(4− 22H)

]
,

bn,ϑ =
1

ω

(
βn + αnσ log ∆n − αn

σ22H log 2

4− 22H

)
·
(

1

2 log 2σ222H(4− 22H)

)
,

cn,ϑ =
1

ω

[(
−βn − αnσ log ∆n + αn

σ22H log 2

4− 22H

)
·
(
− 1

2 log 2σ2(4− 22H)

)
+ αn

1

2σ(4− 22H)

]
,

and

dn,ϑ =
1

ω

(
−βn − αnσ log ∆n + αn

σ22H log 2

4− 22H

)
·
(

1

2 log 2σ222H(4− 22H)

)
.

Due to the properties of the rate matrix ϕn(ϑ), we note that an,ϑ, bn,ϑ, cn,ϑ and dn,ϑ converge, as n −→∞, to

aϑ =
1

ω

[(
γσ − ασ22H log 2

4− 22H

)
·
(
− 1

2 log 2σ2(4− 22H)

)
− α 1

2σ(4− 22H)

]
,

bϑ =
1

ω

(
γσ − ασ22H log 2

4− 22H

)
·
(

1

2 log 2σ222H(4− 22H)

)
,

cϑ =
1

ω

[(
−γσ + α

σ22H log 2

4− 22H

)
·
(
− 1

2 log 2σ2(4− 22H)

)
+ α

1

2σ(4− 22H)

]
,

and

dϑ =
1

ω

(
−γσ + α

σ22H log 2

4− 22H

)
·
(

1

2 log 2σ222H(4− 22H)

)
,
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respectively.
For any H ∈ (0, 1), the quadratic generalized variations were proved to be asymptotically normal (see [15,

Thm. 2 (ii)]), that is, as n −→∞

√
n

∆2H
n

(
Vn,1 −EϑVn,1
Vn,2 −EϑVn,2

)
−→ N (0, E(ϑ)Γ1(H)E(ϑ)) (3.4)

in law under Pn(H,σ) with

E(ϑ) = σ2(4− 22H)

(
1 0
0 22H

)
and

Γ1(H) =

(
γ(µ, µ) γ(µ, ν)
γ(ν, µ) γ(ν, ν)

)
,

where µ = (1,−2, 1), ν = (1, 0,−2, 0, 1) and

γ(µ, ν) =
2
∑
j∈Z

(∑
k,` µkν` |j + k − `|2H

)2

(∑
k,` µkµ` |k − `|

2H
)(∑

k,` νkν` |k − `|
2H
) .

Consequently, by replacing u = Vn,1 and v = Vn,2 in (3.3), we obtain firstly

f(Vn,1, Vn,2) =

(
h(Vn,1, Vn,2)
s(Vn,1, Vn,2)

)
=

(
H̃n

σ̃n

)
= ϑ̃n.

Together with (3.2) and (3.4), we get

ϕn(ϑ)−1
(
ϑ̃n − ϑ

)
=

(
aϑ bϑ
cϑ dϑ

) √
n

∆2H
n

(
Vn,1 −EϑVn,1
Vn,2 −EϑVn,2

)
+ oPn

ϑ
(1) .

Then the application of the delta method (see for instance [24, Thm. 3.1]) leads directly to the desired result
with asymptotic variance defined by

Γϕ(ϑ) =

(
aϑ bϑ
cϑ dϑ

)
E(ϑ)Γ1(H)E(ϑ)

(
aϑ bϑ
cϑ dϑ

)∗
. (3.5)

Let us mention that in the previous proof the quadratic generalized variations satisfy the central limit theorem
for any value H ∈ (0, 1). The more classical quadratic variations statistic Ṽn,1 = 1

n

∑n
i=1X

2
i satisfies the central

limit theorem only for H < 3
4 (see [15]) and the corresponding estimators would present a different behavior.

It is worth emphasizing that this result could be extended to other rate optimal initial guess sequences of
estimators (quadratic generalized variations of sufficiently high order [15], power variations estimators [12] or
wavelets-based estimators [9]). For a comparison of such initial sequences, the reader can refer for instance to
[5].
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3.2. Properties of the one-step MLE sequence

We present now one of the main results of the paper concerning the sequence of one-step MLE, ϑn =
(Hn, σn)∗, defined in (3.1).

Theorem 3.2. The sequence of one-step MLE (ϑn, n ≥ 1) is asymptotically normal, i.e., as n −→∞,

ϕn(ϑ)−1
(
ϑn − ϑ

)
−→ N

(
0, I−1

ϕ (ϑ)
)
.

in law under Pn(H,σ) and asymptotically efficient (in Fisher’s sense, i.e. with the same rate and the same

asymptotic variance as the MLE sequence).

Proof. First, from (3.1), we have directly

ϕn(ϑ)−1
(
ϑ̄n − ϑ

)
= ϕn(ϑ)−1

(
ϑ̃n − ϑ

)
+ ϕn(ϑ)−1

(
ϕn(ϑ̃n)−∗Iϕ(ϑ̃n)ϕn(ϑ̃n)−1

)−1

∇`n(ϑ̃n).

Let us denote I2 the 2× 2 identity matrix. We consider a ϑ∗ ∈ B(ϑ, |ϑ̃n − ϑ|), where B(ϑ, r) is a ball of radius

r centered in ϑ. Then Taylor’s expansion of ∇`n(ϑ̃n) around ϑ gives

ϕn(ϑ)−1
(
ϑ̄n − ϑ

)
= ϕn(ϑ)−1

(
ϑ̃n − ϑ

)
+ϕn(ϑ)−1

(
ϕn(ϑ̃n)−∗Iϕ(ϑ̃n)ϕn(ϑ̃n)−1

)−1 (
∇`n(ϑ) +∇2`n(ϑ∗)

(
ϑ̃n − ϑ

))
= ϕn(ϑ)−1

(
I2 +

(
ϕn(ϑ̃n)−∗Iϕ(ϑ̃n)ϕn(ϑ̃n)−1

)−1

∇2`n(ϑ∗)

)(
ϑ̃n − ϑ

)
+ϕn(ϑ)−1

(
ϕn(ϑ̃n)−∗Iϕ(ϑ̃n)ϕn(ϑ̃n)−1

)−1

∇`n(ϑ)

= ϕn(ϑ)−1

(
I2 +

(
ϕn(ϑ̃n)−∗Iϕ(ϑ̃n)ϕn(ϑ̃n)−1

)−1

ϕn(ϑ)−∗ϕn(ϑ)∗∇2`n(ϑ∗)ϕn(ϑ)

× ϕn(ϑ)−1
)(

ϑ̃n − ϑ
)

+ ϕn(ϑ)−1
(
ϕn(ϑ̃n)−∗Iϕ(ϑ̃n)ϕn(ϑ̃n)−1

)−1

∇`n(ϑ)

= ϕn(ϑ)−1

(
I2 −

(
ϕn(ϑ̃n)−∗Iϕ(ϑ̃n)ϕn(ϑ̃n)−1

)−1

ϕn(ϑ)−∗In(ϑ∗)ϕn(ϑ)−1

)
×
(
ϑ̃n − ϑ

)
+ ϕn(ϑ)−1

(
ϕn(ϑ̃n)−∗Iϕ(ϑ̃n)ϕn(ϑ̃n)−1

)−1

∇`n(ϑ) (3.6)

where In(ϑ) = −ϕn(ϑ)∇2`n(ϑ)ϕn(ϑ).
If the following Sweeting’s conditions (see for instance [23] or [4]) hold true, then the first term on the right-

hand side of equation (3.6) tends in probability to 0 and the second term tends in law to a centered normal
random variable with variance I−1

ϕ (ϑ). Sweeting’s conditions are:

C1. The uniform convergence

In(ϑ) = −ϕn(ϑ)∇2`n(ϑ)ϕn(ϑ) −→u Iϕ(ϑ).

Here, we denote by→u the ordinary uniform convergence with respect to ϑ over any compact set contained
in (0, 1)× (0,∞).

C2. Control on the norming matrix ϕn in the following sense: for any c > 0

sup
ϑ′∈Nn(c;θ)

|ϕn(ϑ′)−1ϕn(ϑ)− I2| →u 0,
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where

Nn(c;ϑ) :=
{
ϑ′ ∈ (0, 1)× (0,∞); |ϕn(ϑ)−1(ϑ′ − ϑ)| ≤ c

}
is a shrinking neighborhood of ϑ, and Ik denotes the k × k-identity matrix.

C3. Another kind of uniform convergence of In(θ), that is,

sup
θ1,θ2∈Nn(c;θ)

∣∣ϕn(θ)>{∇2`n(θ1, θ2)−∇2`n(θ)}ϕn(θ)
∣∣→u 0

for each c > 0, where

∇2`n(θ1, θ2) :=

(
∂2
H`n(θ1) ∂H∂σ`n(θ1)

∂H∂σ`n(θ2) ∂2
σ`n(θ2)

)
.

We go one step further and prove the aforementioned Sweeting’s conditions.

C1. For the proof, see ([3], Thm. 3.1).
C2. Proof. For any positive functions an(ϑ) and bn(ϑ), we write an(ϑ) .u bn(ϑ) if there exists a uni-

versal constant C such that supϑ∈K |an(ϑ)/bn(ϑ)| ≤ C for any compact set K contained in (0, 1) ×
(0,∞) and every n large enough. Moreover, for notational simplicity, we write an(ϑ, ϑ′) = ou,c(1) if
supϑ′∈Nn(c;ϑ) |an(ϑ, ϑ′)| →u 0.

First, we set ω(ϑ) = αn,ϑβ̄n,ϑ − βn,ϑᾱn,ϑ, δn,ϑ = αn,ϑγ̄n,ϑ − ᾱn,ϑγ̄n,ϑ and δ(ϑ) = αϑγ̄ϑ − ᾱϑγ̄ϑ. Second,
since

ϕn(ϑ)−1 =

√
n

ω(ϑ)

(
β̄n,ϑ −ᾱn,ϑ
−β̄n,ϑ ᾱn,ϑ

)
,

we have directly

ϕn(ϑ′)−1ϕn(ϑ) =
1

ω(ϑ′)

(
β̄n,ϑ′αn,ϑ − ᾱn,ϑ′βn,ϑ β̄n,ϑ′ ᾱn,ϑ − ᾱn,ϑ′βn,ϑ
αn,ϑ′βn,ϑ − βn,ϑ′αn,ϑ αn,ϑ′ β̄n,ϑ − βn,ϑ′ ᾱn,ϑ

)
.

Then since βn,ϑ = σγn,ϑ − αn,ϑσ log(∆n) and β̄n,ϑ = σγ̄n,ϑ − ᾱn,ϑσ log(∆n), straightforward calculations
lead to the following expression of the (1, 2) element of the aforementioned matrix:

ᾱn,ϑᾱn,ϑ′ log(∆n)(σ − σ′)
σ′δ(ϑ′)

+ ou,c(1).

We further notice that

ϕn(ϑ′)−1(ϑ′ − ϑ) = An(ϑ)bn(ϑ, ϑ′),

where

An(ϑ) =
1

σδn,ϑ

(
γ̄n,ϑ −ᾱn,ϑ
−γn,ϑ αn,ϑ

)
and

bn(ϑ, ϑ′) =

( √
nσ(H −H ′)√

nσ log(∆n)(H ′ −H) +
√
n(σ′ − σ)

)
.
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By the continuity in ϑ, we have

An(ϑ)∗An(ϑ) =
1

σ2δ2(ϑ)

(
γ̄2
ϑ + γ2

ϑ −(αϑγϑ + ᾱϑγ̄ϑ)
sym. α2

ϑ + ᾱ2
ϑ

)
+ ou,c(1).

The smallest eigenvalue of the first term in the right-hand side matrix is

λminϑ =
1

2σ2δ2(ϑ)

(
f(ϑ)−

√
f(ϑ)2 − 4g(ϑ)

)
,

where f(ϑ) = γ̄2
ϑ + γ2

ϑ + ᾱ2
ϑ + α2

ϑ and g(ϑ) = (αϑγϑ + ᾱϑγ̄ϑ)2. We further assume that infϑ∈K |δ(ϑ)| > 0,
for any compact set K ⊂ (0, 1)× (0,∞). Then since |λminϑ |−1 .u 1, we have that

sup
ϑ′∈Nn(c;ϑ)

|bn(ϑ, ϑ′)| .u 1,

which implies

sup
ϑ′∈Nn(c;ϑ)

∣∣∣∣ √
n

log(∆n)
(σ′ − σ)

∣∣∣∣ .u 1,

and

sup
ϑ′∈Nn(c;ϑ)

| log(∆n)(σ′ − σ)| →u 0.

Treating the remaining elements of the matrix ϕn(ϑ′)−1ϕn(ϑ) in a similar way, we have that

sup
ϑ′∈Nn(c;ϑ)

|ϕn(ϑ′)−1ϕn(ϑ)− I2| →u 0.

C3. Proof. We first notice that

sup
ϑ1,ϑ2∈Nn(c;θ)

∣∣ϕn(ϑ)∗{∇2`n(ϑ1, ϑ2)−∇2`n(ϑ)}ϕn(ϑ)
∣∣

.u sup
ϑ1,ϑ2,ϑ′∈Nn(c;θ)

∣∣ϕn(ϑ)∗{∂3
ϑ`n(ϑ1, ϑ2)[ϑ′ − ϑ]}ϕn(ϑ)

∣∣ .
We further use the decomposition of the tensor −ϕ∗n∂3`nϕn described in [3, Thm. 3.1] and obtain the
desired result.

Then Sweeting’s conditions in (3.6) lead directly to

ϕn(ϑ)−1
(
ϑ̄n − ϑ

)
−→ N (0, I−1

ϕ (ϑ)).

as n −→∞ in law under Pn(H,σ).
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3.3. Simulation study

The objective of this section is to compare the performance of the three estimators of interest (QGV, MLE,
OSMLE) for samples of medium size by means of Monte-Carlo simulations. The one-step MLE presents certain
advantages over the MLE and the QGV in terms of computational burden and asymptotic variance, respectively.
First, it is much less computationally expensive than the MLE while it has the same rate and the same asymptotic
variance. Indeed, the computation of MLE necessitates iterative optimization procedures (as the Fisher scoring
described in (3.1)) and a convergence criterion. On the contrary, with a proper initial condition, the OSMLE
has the same appealing asymptotic properties as the MLE and, since it requires a single Fisher scoring step, it
reduces significantly the computational cost. Second, the OSMLE is asymptotically efficient and outperforms
the QGV in terms of asymptotic variance.

In this context, the score function (2.2) cannot be defined explicitly since it relies on the quantities
∂H log det(Tn(H)) and ∂H{Tn(H)−1}. In the numerical procedure, the following equalities are used

∂H{Tn(H)−1} = −Tn(H)−1∂H{Tn(H)}Tn(H)−1,

and

∂H log det(Tn(H)) = trace (∂H{Tn(H)−1}Tn(H)).

The non-singular Fisher information matrix is evaluated numerically through the method described in [11].

3.3.1. Statistical error for H

In order to compute the renormalized statistical errors
√
n(H̃n − H) (QGV),

√
n(Ĥn − H) (MLE) and√

n(Hn − H) (OSMLE), we consider the matrix ϕn(ϑ) defined in (2.6). The corresponding non-degenerate
Fisher information matrix is given by (2.3), that is,

Iϕ(ϑ) =

( 1
4π

∫ π
−π |∂H log fH(λ)|2dλ 1

2πσ

∫ π
−π ∂H log fH(λ)dλ

1
2πσ

∫ π
−π ∂H log fH(λ)dλ 2

σ2

)
. (3.7)

The asymptotic variance of the QGV given by (3.5) is computed by means of the terms

aϑ = − 1

2 log 2σ2(4− 22H)
, bϑ =

1

2 log 2σ222H(4− 22H)
,

cϑ =
4− 2 · 22H

2σ(4− 22H)2
and dϑ =

1

2σ(4− 22H)2
.

A Monte-Carlo procedure (with 10000 iterations) was followed to explore the behavior of the different esti-
mators (QGV, MLE and OSMLE) of the parameter H at the medium sample size n = 28. The results are
depicted in Figure 1 for σ = 0.5 and for two different values of H : H = 0.2 (short-memory) and H = 0.8 > 3

4
(long-memory). In particular, the computations were implemented in R [21].

The QGV estimator is clearly not optimal with respect to the asymptotic variance for both values of H.
The theoretical asymptotic variance given in (3.5) and the asymptotic efficient variance given in (3.7) are
superimposed. On the other side, the (asymptotically efficient) MLE of H has an appealing asymptotic behavior
for the medium sample size n = 28 and small values of H. However, when greater values of H generate the
data, the MLE presents a rather small bias which naturally disappears with the increase of the sample size.
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The bias that characterizes the OSMLE for medium sample sizes, comes from the bias of the initial QGV
estimate of σ (see Sect. 3.3.2) and disappears naturally as the sample size augments. To be more precise, the
bias is transferred to both components of the OSMLE due to the mixing property of the non-diagonal rate
matrix.

3.3.2. Statistical error for σ

Let us now consider the matrix ϕn(ϑ) defined in (2.7) with corresponding non-degenerate Fisher information
matrix

Iϕ(ϑ) =

(
2 1

2π

∫ π
−π ∂H log fH(λ)dλ

1
2π

∫ π
−π ∂H log fH(λ)dλ 1

4π

∫ π
−π |∂H log fH(λ)|2dλ

)
.

The asymptotic variance of the QGV could be computed by means of the terms

aϑ =
4− 2 · 22H

2σ2(4− 22H)2
, bϑ =

1

2σ2(4− 22H)2
,

cϑ = − 1

2 log 2σ2(4− 22H)
and dϑ =

1

2 log 2σ222H(4− 22H)
.

Then by means of Monte-Carlo simulations, we generate 10 000 trajectories of the fGn model for n = 28,
σ = 0.5 and two values of the Hurst parameter H: H = 0.2 and H = 0.8. Figure 1 displays the distribution of
the three estimators of σ, for the simulated trajectories generated with H = 0.2 and H = 0.8.

We observe that the QGV estimator of σ is not optimal with respect to the asymptotic variance for both
values of H and presents a visible bias at the medium sample size n = 28 (disappearing naturally at a large
sample size n). In the short-memory setting, the MLE has appealing properties for a medium sample size n = 28.
Nevertheless, for greater values of H, the MLE presents a visible bias, as it was also observed in [11]. The bias
of the OSMLE at medium sample sizes n (disappearing naturally at large sample sizes n) derives from the bias
of the initial QGV estimate of σ (see Sect. 3.3.2). Furthermore, it could be noticed that the behavior of the
OSMLE is similar to the MLE (or the Whittle estimator).

3.3.3. Computation time

The calculation times needed for the Monte-Carlo procedure to generate random samples of the estimators
were counted and displayed in Table 1. For H = 0.2 (resp. H = 0.8), the Monte-Carlo procedure for MLE
(Col. 2) requires approximately 5.6 (resp. 3.4) times the calculation time of the OSMLE (Col. 1). This naturally
shows that OSMLE outperforms the MLE in terms of computation time.

Table 1. Calculation time (in seconds) for generating random samples of OSMLE and MLE
of size n = 28 for 10 000 Monte-Carlo simulations.

OSMLE MLE

H = 0.2 6280.627 35466.128
H = 0.8 5311.633 18231.750
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Figure 1. The renormalized statistical errors
√
n(H̃n −H) and

√
n

σ log ∆n
(σ̃n − σ) on the left

(QGV estimator),
√
n(Ĥn−H) and

√
n

σ log ∆n
(σ̂n−σ) in the middle (MLE) and

√
n(Hn−H) and

√
n

σ log ∆n
(σn − σ) on the right (OSMLE) for n = 28. The two first lines present 10000 Monte-

Carlo simulations for short-memory setting H = 0.2 and the two last lines for long-memory
setting H = 0.8. Efficient asymptotic variance is superimposed (plain line). The theoretical
QGV variance has been also added (dashed line).
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