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SEMI-PARAMETRIC ESTIMATION OF THE VARIOGRAM SCALE

PARAMETER OF A GAUSSIAN PROCESS WITH STATIONARY

INCREMENTS

Jean-Marc Azäıs1, François Bachoc1, Agnès Lagnoux2,*

and Thi Mong Ngoc Nguyen3

Abstract. We consider the semi-parametric estimation of the scale parameter of the variogram of
a one-dimensional Gaussian process with known smoothness. We suggest an estimator based both on
quadratic variations and the moment method. We provide asymptotic approximations of the mean and
variance of this estimator, together with asymptotic normality results, for a large class of Gaussian
processes. We allow for general mean functions, provide minimax upper bounds and study the aggre-
gation of several estimators based on various variation sequences. In extensive simulation studies, we
show that the asymptotic results accurately depict the finite-sample situations already for small to
moderate sample sizes. We also compare various variation sequences and highlight the efficiency of the
aggregation procedure.
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1. Introduction

1.1. General context and state of the art

Gaussian process models are widely used in statistics. For instance, they enable to interpolate observations
by Kriging, notably in computer experiment designs to build a metamodel [44, 54]. A second type of application
of Gaussian processes is the analysis of local characteristics of images [45] and one dimensional signals (e.g. in
finance, see [26, 61] and the references therein). A central problem with Gaussian processes is the estimation of
the covariance function or the variogram. In this paper, we consider a real-valued Gaussian process (X(t))t∈R
with stationary increments. Its semi-variogram is well-defined and given by

V (h) :=
1

2
E
[
(X(t+ h)−X(t))

2
]
. (1.1)
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Ideally, one aims at knowing perfectly the function V or at least estimate it precisely, either in a parametric
setting or in a nonparametric setting. The parametric approach consists in assuming that the mean function
of the Gaussian process (the drift) is a linear combination of known functions (often polynomials) and that
the semi-variogram V belongs to a parametric family of semi-variograms {Vθ, θ ∈ Θ ⊂ Rp} for a given p in
N∗. Furthermore, in most practical cases, the semi-variogram is assumed to stem from a stationary autocovari-
ance function k defined by k(h) = Cov(X(t), X(t+ h)). In that case, the process is supposed to be stationary
(assuming also the mean to be constant), and V can be rewritten in terms of the process autocovariance func-
tion k: V (h) = k(0)− k(h). Moreover, a parametric set of stationary covariance functions is considered of the
form {kθ, θ ∈ Θ} with Θ ⊂ Rp. In such a setting, several estimation procedures for θ have been introduced and
studied in the literature. Usually in practice, most of the software packages (like, e.g. DiceKriging [48]) use
the maximum likelihood estimation method (MLE) to estimate θ (see [44, 52, 54] for more details on MLE).
Unfortunately, MLE necessitates to solve linear systems and compute determinants and is very often obtained
via an iterative procedure for likelihood optimization. So, it is known to be computationally expensive and
intractable for large data sets, and in addition, the iterative procedure may diverge (that is to say, in practice,
the sequence of covariance parameters obtained during the iterative procedure for likelihood optimization may
diverge or converge to parameters that are at the boundaries of the definition domain Θ) in some complicated
situations (see Sect. 5.4). This has motivated the search for alternative estimation methods with a good balance
between computational complexity and statistical efficiency. Among these methods, we can mention low rank
approximation [55], sparse approximation [27], covariance tapering [20, 32], Gaussian Markov random fields
approximation [16, 49], submodel aggregation [9, 19, 28, 50, 57, 58] and composite likelihood [6].

1.2. Framework and motivation

The approaches discussed above are parametric. In this paper, we consider a more general semi-parametric
context. The Gaussian process X is only assumed to have stationary increments and no parametric assumption
is made on the semi-variogram V in (1.1). Assume, to simplify, that the semi-variogram is a C∞ function outside
0. This is the case for most of the models even if the sample paths are not regular, see the examples in Section
2.1. Let D be the order of differentiability in quadratic mean of (X(t))t∈R. This is equivalent to the fact that V
is 2D differentiable and not 2D+ 2 differentiable. Let us assume that the 2Dth derivative of V has the following
expansion at the origin:

V (2D)(h) = V (2D)(0) + C(−1)D |h|s + r(h), (1.2)

where C > 0, 0 < s < 2, and the remainder function r satisfies some hypothesis detailed further (see Sect. 2.1)
and is a o(|h|s) as h → 0. Note that, since s < 2, V is indeed not (2D + 2) differentiable. The quantity s is
the smoothness parameter and we call C the scale parameter. In this paper, we assume D and s to be known
and we focus on the theoretical study of the semi-parametric estimation of C defined in (1.2) in dimension
one. Remark that this makes it possible to test whether the Gaussian process stems from a white noise or not.
Notice that we also perform some additional simulations in higher dimensions. The value of C may lead to
significantly different behaviors of the process X as one can see in Figure 1 which represents several realizations
of a Gaussian process with exponential covariance function for different values of C, i.e. V (h) = 1− exp(−C|h|)
(which satisfies (1.2) with D = 0).

In many cases, a large C is associated to a small dependence between the values of X and a small C is
associated to an almost constant process X. For instance, in the above example V (h) = 1 − exp(−C|h|), the
limit of V (h) is 1 = Var(X(0)) when C → +∞ and the limit of V (h) is 0 when C → 0. Hence, in this example,
the case C = +∞ can be interpreted as independence between the values of X and the case C = 0 can be
interpreted as a constant process X.

As a motivating example, consider the following case where the estimation of C is beneficial. Assume that
we observe a signal S depending on a vector of initial parameters x given by a computer code described by the
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Figure 1. Several realizations of Gaussian processes with exponential covariance function with
parameter C = 0.1 (left), 10 (middle), and 100 (right).

application:

S : E → R[0,1] (1.3)

x 7→ (Sx(t), t ∈ [0, 1]),

where E stands for the initial parameter space. In order to interpret the output curve t 7→ Sx(t) for a given
parameter x, it is useful to consider that this curve is the realization of a Gaussian process, with scale parameter
Cx. It is then insightful to study the black-box x 7→ Cx, for instance by means of a sensitivity analysis, or in the
aim of finding which inputs x lead to Cx smaller than a given threshold. As discussed above, this can indicate
output curves with a non-negligible dependence structure. A necessary step to such a study is the estimation
of the value of Cx, given a discretized version of the curve t 7→ Sx(t).

More generally, estimating C can enable to assess if an observed signal is composed of almost independent
components (C large) or not, and to quantify the level of dependence. We refer to the real data sets studied in
Section 5.4 for further discussion.

1.3. State of the art on variogram estimation

Nonparametric estimation of the semi-variogram function is a difficult task since the resulting estimator must
necessarily lead to a “valid” variogram (conditional negative definiteness property) ([13], p. 93). This requirement
usually leads to complicated and computationally involved nonparametric estimators of the variogram [24, 25]
that may need huge data sets to be meaningful. A simpler estimator based on the moment method has been
proposed in [14, 40] but does not always conduce to a valid variogram. A classical approach to tackle this
problem has been proposed in the geostatistics literature [10, 18, 31] and consists in fitting a parametric model
of valid semi-variograms to a pointwise nonparametric semi-variogram estimator by minimizing a given distance
between the nonparametric estimator and the semi-variograms at a finite number of lags. The reader is referred
to [13], Chapter 2 for further details on semi-variogram model fitting and to [34] for least-squares methods.
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1.4. State of the art on quadratic variations

In order to remedy the drawbacks of the MLE previously mentioned, we focus on an alternative estimation
method using quadratic variations based on the observations of the process X at a triangular array of points
(tj)j , where j = 1, . . . , n. This method is also an alternative to the existing methods mentioned in the previous
paragraph. Quadratic variations have been first introduced by Levy in [37] to quantify the oscillations of the
Brownian motion. Then a first result on the quadratic variations of a Gaussian non-differentiable process is due
to Baxter (see e.g. [8], [22], Chap. 5 and [21]) that ensures (under some conditions) the almost sure convergence
(as n tends to infinity) of

n∑
j=1

(X(tj)−X(tj−1)
2
, (1.4)

where tj = j/n, for j = 1, . . . , n (by convention t0 = 0 and X0 = 0). A generalization of the previous quadratic
variations has been introduced in Guyon and Léon [23]: for a given real function H, the H-variation is given by

VH,n :=

n∑
j=1

H

(
X(tj)−X(tj−1)

(Var(X(tj)−X(tj−1))1/2

)
. (1.5)

In [23], technical conditions are assumed and a smoothness parameter 0 < s < 2, similar to the one in (1.2)
when D = 0, is considered. Then the most unexpected result of [23] is that (VH,n/n)n has a limiting normal
distribution with convergence rate n1/2 when 0 < s < 3/2 whereas the limiting distribution is non normal
and the convergence rate is reduced to n2−s when 3/2 < s < 2. Moreover, for statistical purposes, it has been
proved by Coeurjolly that quadratic variations are optimal (details and precisions can be found in [11]). In
[30], Istas and Lang generalized the results on quadratic variations. They allowed for observation points of the
form tj = jδn for j = 1, . . . , n, with δn depending on n and tending to 0 as n goes to infinity. They studied the
generalized quadratic variations defined by:

Va,n :=

n−1∑
i=1

∑
j∈Z

ajX(i+ jδn)

2

, (1.6)

where the sequence a = (aj)j has a finite support and some vanishing moments. Then they built estimators
of the smoothness parameter and the scale parameter C and showed that these estimators are almost surely
consistent and asymptotically normal. In the more recent work of Lang and Roueff [35], the authors generalized
the results of Istas and Lang [30] and Kent and Wood [33] on an increment-based estimator in a semi-parametric
framework with different sets of hypothesis. Another generalization for non-stationary Gaussian processes and
quadratic variations along curves is done in [1]. See also the studies of [42] and [11].

1.5. Contributions of the paper

Now let us present more precisely the framework considered in our paper. We assume that the Gaussian
process X has stationary increments and is observed at times tj = jδn for j = 1, . . . , n with δn tending to
zero. Note that tj also depends on n but we omit this dependence in the notation for simplicity. We will only
consider δn = n−α with 0 < α 6 1 throughout the article. Two cases are then considered: α = 1 (δn = 1/n, infill
asymptotic setting [13], that we call the infill situation throughout) and 0 < α < 1 (δn → 0 and nδn →∞, mixed
asymptotic setting [13], that we call the mixed situation throughout). The paper is devoted to the estimation of
the scale parameter C from one or several generalized quadratic a-variations Va,n defined in (1.6). Calculations
show that the expectation of Va,n is a function of C so that C can be estimated by the moment method.
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Our study is related to the study of Istas and Lang [30] in which they estimate both the scale parameter C
and the local Hölder index H = s+D/2. Our main motivation for focusing on the case where the local Hölder
index is known is, on the one hand, to provide a simpler method to implement and analyze the estimator, and
on the other hand to address more advanced statistical issues, such as efficiency, minimax upper bounds and
aggregation of several estimators of C. In addition, our results hold under milder technical conditions than in
[30], and in particular apply to most semi-variogram models commonly used in practice. We also show that a
necessary condition in [30], namely the fact that the quantity in (2.3) is non-zero when the variation used has
a large enough order, in fact always holds.

We establish asymptotic approximations of the expectation and the variance and a central limit theorem for
the quadratic variations under consideration and for the estimators deduced from them. In particular, given a
finite number of sequences a, we prove a joint central limit theorem (see Cor. 3.8). In addition, our method does
not require a parametric specification of the drift (see Sect. 3.4); therefore it is more robust than MLE. Also,
we obtain minimax upper bounds on the quadratic error of our method.

For a finite discrete sequence a with zero sum, we define its order as the largest integer M such that

∑
j

ajj
` = 0 for ` = 1, . . . ,M − 1.

Roughly speaking
∑
j ajf(jδn) is an estimation of the Mth derivative of the function f at zero. The order

of the simplest sequence: (−1, 1) is M = 1. Natural questions then arise. What is the optimal sequence a? In
particular, what is the optimal order? Is it better to use the elementary sequence of order 1: (−1, 1) or the one
of order 2: (−1, 2,−1)? For a given order, for example M = 1, is it better to use the elementary sequence of
order 1: (−1, 1) or a more general one, for example (−1,−2, 3) or even a sequence based on discrete wavelets?
Can we efficiently combine the information of several quadratic a-variations associated to several sequences? As
far as we know, these questions are not addressed yet in the literature. Unfortunately, the asymptotic variances
we give in Proposition 3.1 or Theorem 3.7 do not allow either to address theoretically this issue. However, by
Corollary 3.8, one may gather the information of different quadratic a-variations with different orders. In order
to validate such a procedure, an important numerical study is performed. The main conclusion is that gathering
the information of different quadratic a-variations with different orders M yields an aggregated estimator with
asymptotic variance closer to the optimal Cramér–Rao bound computed in Section 4.2. This is illustrated
in Figure 4. The benefit of combining different a-variations is also demonstrated in a Monte Carlo study in
Section 5.3. We also illustrate (still in a Monte Carlo study) the convergence to the asymptotic distribution
considering different models (namely, exponential and Matérn models).

Finally, we show that our suggested quadratic variation estimator can be easily extended to the two-
dimensional case and we consider two real data sets in dimension two. When comparing our suggested estimator
with MLE, we observe a very significant computational benefit for our estimator.

1.6. Organization of the paper

The paper is organized as follows. In Section 2, we detail the framework and present the assumptions on
the process. In Section 3, we introduce our quadratic variation estimator and provide its asymptotic properties,
together with a wide discussion. In this section, we consider also the addition of a drift and we give minimax
upper bounds for the quadratic error of our method. Section 4 is devoted to the analysis of the statistical
efficiency of our estimator. In Section 5, we provide the results of the numerical simulation and on the real data
sets. A conclusion is provided in Section 6. In Appendix A, we discuss the assumptions made on the process.
All the proofs have been postponed to Appendix B.
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2. General setting and assumptions

2.1. Assumptions on the process

In this paper, we consider a Gaussian process (X(t))t∈R which is not necessarily stationary but only has
stationary increments. The process is observed at times jδn for j = 1, . . . , n with δn going to 0 as n goes to
infinity. As mentioned in the introduction, we will only consider δn = n−α with 0 < α 6 1 throughout the
article. Two cases are then considered: α = 1 (δn = 1/n, infill situation) and 0 < α < 1 (δn → 0 and nδn →∞,
mixed situation). The semi-variogram of X is defined by

V (h) :=
1

2
E
[
(X(t+ h)−X(t))

2
]
.

In the sequel, we denote by (Const) a positive constant which value may change from one occurrence to
another. For the moment, we assume that X is centered, the case of non-zero expectation will be considered in
Section 3.4. Now, we introduce the following assumptions. The form of (H1) and (H2) change following whether
we are in the infill situation or in the particular mixed situation (δn = n−α with 0 < α < 1).

(H0) V is a C∞ function on R\{0}.

Infill situation: δn = 1/n.
(H1) The semi-variogram is 2D-times differentiable with D > 0 and there exists C > 0 and 0 < s < 2 such that
for any h ∈ R, we have

V (2D)(h) = V (2D)(0) + C(−1)D |h|s + r(h), with r(h) = o(|h|s) as |h| → 0. (2.1)

In (H1), the integer D is the greatest integer such that V is 2D-times differentiable everywhere. We recall
that, when X is assumed to be a stationary process, we have V (h) = k(0) − k(h). If the covariance function
k belongs to a parametric set of the form {kθ; θ ∈ Θ} with Θ ⊂ Rp, then C is a deterministic function of the
parameter θ.

(H2)

• when s < 3/2,

for some β > s− 2, for |h| 6 1:
∣∣r(2)(h)

∣∣ 6 (Const) |h|β ;

• when s > 3/2,

for some β > s− 3, for |h| 6 1:
∣∣r(3)(h)

∣∣ 6 (Const) |h|β .

(H3) As h→ 0,

|r(h)| = o
(
|h|s+1/2)

.

Mixed situation: δn = n−α with 0 < α < 1.
We must add to (H1):

|r(h)| 6 (Const) |h|s |h| > 1.

The new expression of (H2) is
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• when s < 3/2, there exists β with s− 2 < β < −1/2 such that, for all h ∈ R,∣∣r(2)(h)
∣∣ 6 (Const) |h|β ;

• when s > 3/2, there exists β with s− 3 < β < −1/2 such that, for all h ∈ R,∣∣r(3)(h)
∣∣ 6 (Const) |h|β .

Here (H3) writes

|r(h)| = o
(
|h|s+(1/2α))

,

as h→ 0.

Remark 2.1.

• When D > 0, the Dth derivative X(D) in quadratic mean of X is a Gaussian stationary process with
autocovariance function k given by k(h) = (−1)D+1V (2D)(h). This implies that the Hölder exponent of
the paths of X(D) is s/2. Because s < 2, D is exactly the order of differentiation of the paths of X.

• If we denote H = D + s/2, H represents the local Hölder index of the process [29].

A discussion of the assumptions (H2) and (H3) is provided in Appendix A.

2.2. Examples of processes that satisfy our assumptions

We present a non exhaustive list of examples in dimension one that satisfy our hypotheses. In these examples,
we provide their stationary covariance function k. Recall that this defines V , with V (h) = k(0)− k(h).

• The exponential model: k(h) = exp(−C|h|) (D = 0, s = 1). For this model, (H0) to (H2) always hold and
(H3) holds when α > 1/2, that is when the observation domain does not increase too fast.

• The generalized exponential model: k(h) = exp(−C|h|s), s ∈ (0, 2) (D = 0). For this model, (H0) to (H2)
always hold and (H3) holds when 1/(2α) < s. Hence, in the infill situation, we need s > 1/2 and, in the
mixed situation, the observation domain needs to increase slowly enough.

• The generalized Slepian model [53]: k(h) = (1−C|h|s)+, s ∈ (0, 1] (D = 0). For this model, the condition
s ∈ (0, 1] is needed for k to be a continuous non-negative definite function. In this case, (H0) to (H3) hold
in the infill situation and when C < 1. For (H0), we remark that, in this case, V is smooth on (0, 1] and
not on (0,∞), but this is sufficient for all the results to hold.

• The Matérn model:

k(h) =
21−ν

Γ(ν)

(√
2νθh

)ν
Kν(
√

2νθh),

where ν > 0 is the regularity parameter of the process. The function Kν is the modified Bessel function
of the second kind of order ν. See, e.g., [54] for more details on the model. In that case, D = bνc and
s = 2ν − 2D. Here, it requires tedious computations to express the scale parameter C as a function of ν
and θ. However, in Section 5.1, we derive the value of C in two settings (ν = 3/2 and ν = 5/2). For this
model, (H0) to (H2) always hold and (H3) holds when s < 2 − 1/(2α). Hence, in the infill situation we
need s < 3/2, and in the mixed situation the observation domain needs to increase slowly enough.

All the previous examples are stationary (and thus have stationary increments). The following one is not
stationary.
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• The fractional Brownian motion (FBM) process denoted by (Bs(t))t∈R and defined by

Cov(Bs(u), Bs(t)) = C
(
|u|s + |t|s − |u− t|s

)
.

A reference on this subject is [12]. This process is classically indexed by its Hurst parameter H = s/2.
Here, D = 0 and s ∈ (0, 2) and C are left arbitrary. We call the FBM defined by C = 1 the standard FBM.

From the previous list of examples, the conditions (H0), (H1) and (H2) do not seem restrictive, since they
hold for all the examples and for any 0 < s < 2 (0 < s 6 1 for the generalized Slepian model). The condition
(H3) is more restrictive, since for some of the examples, it holds only for a restrictive range of s. For these
examples and for the values of s such that (H3) does not hold, we can still show a rate of convergence that is
slower than n−1/2 for the estimator of C, see Section 3.5 and Appendix A.

We remark that the Gaussian model, or square-exponential, defined by k(h) = σ2e−h
2θ2 , with (σ2, θ) ∈ (0,∞),

does not satisfy our assumptions, because it is too regular (i.e. it is C∞ everywhere and in particular at zero).
Indeed, we have V (h) = σ2θ2h2 + o(h2) as h → 0, and hence this model can be interpreted similarly as in
(2.1), with σ2θ2 playing the role of the scale parameter C and with s in (2.1) taking the value 2. It is then a
relevant statistical problem to estimate σ2θ2. However, the variation estimator developed here is not suitable
for estimating σ2θ2 in the Gaussian model. The main reason for this is that the variation estimator is designed
for variograms that have only a finite order of differentiability at zero.

2.2.1. Detailed verification of the assumptions with the generalized exponential model

We consider the generalized exponential model, where k(h) = exp(−C|h|s) for some fixed s ∈ (0, 2). Since
we have V (h) = 1− exp(−C|h|s) for h ∈ R, (H0) is trivially satisfied. Now we show that (H1) holds for D = 0.
Indeed, V is a continuous function and we have

V (h) = 0 + C|h|s + 1− C|h|s − exp(−C|h|s)
:= V (0) + C(−1)0|h|s + r(h),

with

r(h) = 1− C|h|s − exp(−C|h|s).

As h → 0, r(h) = O(|h|2s) = o(|h|s) and thus (H1) holds in the infill situation. Furthermore, as |h| → ∞,
r(h) = −C|h|s + o(1) = O(|h|s) and so (H1) holds also in the mixed situation. Let us now show that (H2) is
also satisfied. First consider the case where s < 3/2 and let

β =

{
1
2 ((s− 2) + (−1/2)) if 2s− 2 > −1/2 (s > 3/4),
1
2 ((s− 2) + (2s− 2)) if 2s− 2 6 −1/2 (s 6 3/4).

One can check that s− 2 < β and that β < −1/2 since s− 2 < −1/2. Consider the case where |h| 6 1. Since

r(h) =

∞∑
k=2

(−1)k+1C
k

k!
|h|sk,

one has

r(2)(h) = |h|2s−2
∞∑
k=2

(−1)k+1C
k

k!
sk(sk − 1)|h|s(k−2) = |h|2s−2g(h)
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where g is a bounded function on [−1, 1]. Hence, |r(2)(h)| 6 (Const)|h|β since 2s− 2 > β. Then the case s < 3/2
is complete in the infill situation. Consider now the case where |h| > 1. Simply, one can show that

r(2)(h) = −Cs(s− 1)|h|s−2 +
(
−Cs(s− 1)|h|s−2 + C2s2|h|2s−2

)
exp(−C|h|s).

Hence

|r(2)(h)| 6 (Const)|h|s−2 6 (Const)|h|β since β > s− 2.

The case where s > 3/2 can be treated analogously. Finally, it is simple to show that (H3) holds when
1/(2α) < s.

In the rest of the paper, we assume that 0 < s < 2, unless specified otherwise.

2.3. Discrete a-differences

Now, we consider a non-zero finite support sequence a of real numbers with zero sum. Let L(a) be its length.
Since the starting point of the sequence plays no particular role, we will assume when possible that the first
non-zero element is a0. Hence, the last non-zero element is aL(a)−1. We define the order M(a) of the sequence
as the first non-zero moment of the sequence a:

L(a)−1∑
j=0

ajj
k = 0, for 0 6 k < M(a) and

L(a)−1∑
j=0

ajj
M(a) 6= 0.

To any sequence a, with length L(a) and any function f , we associate the discrete a-difference of f defined
by

∆a,i(f) =

L(a)−1∑
j=0

ajf((i+ j)δn), i = 1, . . . n′, (2.2)

where n′ stands for n − L(a) + 1. As a matter of fact, in the case of the simple quadratic a-variation given
by a0 = 0 and a1 = −1, the operator ∆a is a discrete differentiation operator of order one. More generally,∑L(a)−1
j=0 ajf(jδn) is an approximation (up to some multiplicative coefficient) of the M(a)th derivative (when it

exists) of the function f at zero.

We also define ∆a(X) as the Gaussian vector of size n′ with entries ∆a,i(X) and Σa its variance-covariance
matrix.

Examples – elementary sequences. The simplest case is the order one elementary sequence a(1) defined by

a
(1)
0 = −1 and a

(1)
1 = 1 We have L(a(1)) = 2, M(a(1)) = 1. More generally, we define the kth order elementary

sequence a(k) as the sequence with coefficients a
(k)
j = (−1)k−j

(
k
j

)
, j = 0, . . . , k. Its length is given by L(a(k)) =

k + 1.

For two sequences a and a′, we define their convolution b = a ∗ a′ as the sequence given by bj =
∑
k−l=j aka

′
l.

In particular, we denote by a2∗ the convolution a ∗a. Notice that the first non-zero element of b is not necessarily
b0 but b−(L(a′)−1) as mentioned in the following properties.

Properties 2.2. The following properties of convolution of sequences are direct.

(i) The support of a∗a′ (the indices of the non-zero elements) is included in the interval [−(L(a′)−1), (L(a)−
1)] while its order isM(a)+M(a′). In particular, a2∗ has length 2L(a)−1, order 2M(a) and is symmetrical.
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(ii) The composition of two elementary sequences gives another elementary sequence.

The main result of this section is Proposition 2.6 that is required to quantify the asymptotic behavior of
the two first moments of the quadratic a-variations defined in (3.1) (see Prop. 3.1). In order to prove (2.3),
we establish two preliminary tools (Prop. 2.4 and Lemma 2.5). In that view, we need to define the integrated
fractional Brownian motion (IFBM). We start from the FBM defined in Section 2.2 which has the following non
anticipative representation:

Bs(u) =

∫ u

−∞
fs(t, u)dW (t),

where d (t) is a white noise defined on the whole real line and

fs(t, u) = (Const)
(
((u− t)+)(s−1)/2 − ((−t)+)(s−1)/2

)
.

For m > 0 and t > 0, we define inductively the IFBM by

B(−0)
s (u) = Bs(u)

B(−m)
s (u) =

∫ u

0

B(−(m−1))
s (t)dt.

Definition 2.3 (Non degenerated property). A process Z has the ND property if for every k > 0 and every t1 <
t2 < · · · < tk belonging to the domain of definition of Z, the distribution of Z(t1), . . . , Z(tk) is non degenerated.

We have the following results.

Proposition 2.4. The IFBM has the ND property.

Lemma 2.5. The variance function of the IFBM satisfies, for all m ∈ N,

Var
(
B(−m)
s (u)−B(−m)

s (v)
)

=

Nm∑
i=1

(
Pm,i(v)hm,i(u) + Pm,i(u)hm,i(v)

)
+ (−1)m

2|u− v|s+2m

(s+ 1) · · · (s+ 2m)
,

where Nm ∈ N, for i = 1, . . . , Nm, Pm,i is a polynomial of degree less than or equal to m and hm,i is some
function.

Proposition 2.6. If the sequence a has order M(a) > D, then

∑
j

a2∗j |j|
2D+s 6= 0

(
i .e. (−1 )D

∑
j

a2∗
j |j |

2D+s
< 0

)
. (2.3)

The case D = 0 follows from [51], Lemma 2.10.8. The whole proof of Proposition 2.6 is postponed to
Appendix B.1. Note that (2.3) is stated as an hypothesis in [30].
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3. Quadratic a-variations

3.1. Definition

Here, we consider the discrete a-difference applied to the process X and we define the quadratic a-variations
by

Va,n = ‖∆a(X)‖2 =

n′∑
i=1

(∆a,i(X))2, (3.1)

recalling that n′ = n− L(a) + 1. When no confusion is possible, we will use the shorthand notation L and M
for L(a) and M(a).

3.2. Main results on quadratic a-variations

The basis of our computations of variances is the identity

E[∆a,i(X)∆a′,i′(X)] = −∆a∗a′,i−i′(V ), (3.2)

for any sequences a and a′. A second main tool is the Taylor expansion with integral remainder (see, for example,
(B.5)). So, we introduce another notation. For a sequence a, a scale δ, an order q and a function f , we define

R(i, δ, q, f, a) = −
∑
j

ajj
q

∫ 1

0

(1− η)q−1

(q − 1)!
f((i+ jη)δ)dη. (3.3)

By convention, we let R(i, δ, 0, f, a) = −∆a,i(f), where in the expression of ∆a,i(f) in (2.2), δn is replaced by
δ. Note that R(−i, δ, 2q, |·|s , a ∗ a′) = R(i, δ, 2q, |·|s , a′ ∗ a). One of our main results is the following.

Proposition 3.1 (Moments of Va,n). Assume that V satisfies (H0) and (H1).
1) If we choose a sequence a such that M > D, then

E[Va,n] = nC(−1)Dδ2D+s
n

[
R(0, 1, 2D, |·|s , a2∗)

]
(1 + o(1)), (3.4)

as n tends to infinity. Furthermore, (−1)DR(0, 1, 2D, |·|s , a2∗) is positive.

2) If V satisfies additionally (H2) and if we choose a sequence a such that M > D + s/2 + 1/4, then as n
tends to infinity:

Var(Va,n) = 2nC2δ4D+2s
n

∑
i∈Z

R2
(
i, 1, 2D, |·|s , a2∗

)
(1 + o(1)) (3.5)

and the series above is positive and finite.

Remark 3.2. (i) Notice that (3.4) and (3.5) imply concentration in the sense that

Va,n
E[Va,n]

L2

−→
n→+∞

1.

(ii) In practice, since the parameters D and s are known, it suffices to choose M such that M > D+ 1 when
s < 3/2 and M > D + 2 when 3/2 6 s < 2.

(iii) The expression of the asymptotic variance appears to be complicated. Anyway, in practice, it can be
easily approximated. Some explicit examples are given in Section 5.
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Following the same lines as in the proof of Proposition 3.1 and using the identities (a ∗ a′)j = (a′ ∗ a)−j and
R(i, 1, 2D, |·|s , a ∗ a′) = R(−i, 1, 2D, |·|s , a′ ∗ a), one may easily derive the corollary below. The proof is omitted.

Corollary 3.3 (Covariance of Va,n and Va′,n). Assume that V satisfies (H0), (H1), and (H2). Let us consider
two sequences a and a′ so that M(a) ∧M(a′) > D + s/2 + 1/4. Then, as n tends to infinity, one has

Cov(Va,n, Va′,n) = 2nC2δ4D+2s
n

[∑
i∈Z

R2(i, 1, 2D, |·|s , a ∗ a′)

]
(1 + o(1)). (3.6)

Particular case – D = 0:

(i) We choose a as the first order elementary sequence (a0 = −1, a1 = 1 and M = 1). As n tends to infinity,
one has

E[Va,n] = nCδsn(2 + o(1));

Var(Va,n) = 2nC2δ2sn
∑
i∈Z

(|i− 1|s − 2 |i|s + |i+ 1|s)2 (1 + o(1)), s < 3/2.

(ii) General sequences. We choose two sequences a and a′ so that M(a)∧M(a′) > s/2 + 1/4. Then, as n tends
to infinity, one has

E[Va,n] = −nCδsn

∑
j

a2∗j |j|
s

 (1 + o(1));

Var(Va,n) = 2nC2δ2sn
∑
i∈Z

∑
j

a2∗j |i+ j|s
2

(1 + o(1));

Cov(Va,n, Va′,n) = 2nC2δ2sn

∑
|j|6L

a ∗ a′j |j|
s

2

(1 + o(1))

+ nC2δ2sn
∑
i∈Z∗


∑
|j|6L

a ∗ a′j |i+ j|s
2

+

∑
|j|6L

a′ ∗ aj |i+ j|s
2
 (1 + o(1)).

Now we establish the central limit theorem.

Theorem 3.4 (Central limit theorem for Va,n). Assume (H0), (H1) and (H2) and M > D + s/2 + 1/4. Then
Va,n is asymptotically normal in the sense that

Va,n − E[Va,n]√
Var(Va,n)

D−→
n→+∞

N (0, 1). (3.7)

Remark 3.5.

• If M = D + 1, the condition M > D + s/2 + 1/4 in Proposition 3.1 implies s < 3/2. However, when
M = D+ 1 and s > 3/2, it is still possible to compute the variance but the convergence is slower and the
central limit theorem does not hold anymore. More precisely, we have the following.
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◦ If s > 3/2 and M = D + 1 then, as n tends to infinity,

Var(Va,n) = (Const)× δ4D+2s
n × n2s−4(M−D)+2 × (1 + o(1)). (3.8)

◦ If s = 3/2 and M = D + 1 then, as n tends to infinity

Var(Va,n) = (Const)× δ4D+2s
n × n log n× (1 + o(1)). (3.9)

We omit the proof. Analogous formula for the covariance of two variations can be derived similarly.
• Since the work of Guyon and León [23], it is a well-known fact that in the simplest case (D = 0, L =

2,M = 1) and in the infill situation (δn = 1/n, α = 1), the central limit theorem holds true for quadratic
variations if and only if s < 3/2. Hence assumption M > D + s/2 + 1/4 is minimal for D = 0 in the
following sense. When s < 3/2, the assumption becomes M > 1, which is not a restriction as we consider
sequences a with zero sum throughout. When s > 3/2, the assumption becomes M > 2, and we have seen
that the central limit theorem does not always hold for M = 1.

Corollary 3.6 (Joint central limit theorem). Assume that V satisfies (H0), (H1) and (H2). Let a(1), . . . , a(k)

be k sequences with order greater than D+ s/2 + 1/4. Assume also that, as n→∞, the k× k matrix with term
i, j equal to

1

nδ4D+2s
n

Cov
(
Va(i),n, Va(j),n

)
converges to an invertible matrix Λ∞. Then, Va(1),...,a(k),n = (Va(1),n, . . . , Va(k),n)> is asymptotically normal in
the sense that

Va(1),...,a(k),n − E
[
Va(1),...,a(k),n

]
n1/2δ2D+s

n

D−→
n→+∞

N (0,Λ∞).

3.3. Estimators of C based on the quadratic a-variations

Guided by the moment method, we define

Ca,n :=
Va,n

n(−1)Dδ2D+s
n R(0, 1, 2D, |·|s , a2∗)

. (3.10)

Then Ca,n is an estimator of C which is asymptotically unbiased by Proposition 3.1. Now our aim is to establish
its asymptotic behavior.

Theorem 3.7 (Central limit theorem for Ca,n). Assume (H0) to (H3) and that M(a) > D + s/2 + 1/4. Then
Ca,n is asymptotically normal. More precisely, we have

Ca,n − C√
Var(Ca,n)

D−→
n→+∞

N (0, 1), (3.11)

with Var(Ca,n) = (Const)n−1(1 + o(1)).

The following corollary is of particular interest: it will give theoretical results when one aggregates the
information of different quadratic a-variations with different orders. As one can see numerically in Section 5.2,
such a procedure appears to be really promising and circumvents the problem of the determination of the
optimal sequence a.
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Corollary 3.8. Under the assumptions of Theorem 3.7, consider k sequences a(1), . . . , a(k) such that, for
i = 1, . . . , k, M(a(i)) > D + s/2 + 1/4. Assume furthermore that the covariance matrix of
(Ca(i),n/Var(Ca(i),n)1/2)i=1,...,k converges to an invertible matrix Γ∞ as n → ∞. Then, ([Ca(i),n −
C]/Var(Ca(i),n)1/2)i=1,...,k converges in distribution to the N (0,Γ∞) distribution.

3.4. Adding a drift

In this section, we do not assume anymore that the process X is centered and we set for t > 0,

f(t) = E[X(t)].

We write X the corresponding centered process: X(t) = X(t) − f(t). As it is always the case in statistical
applications, we assume that f is a C∞ function. We emphasize on the fact that our purpose is not proposing
an estimation of the mean function.

Corollary 3.9. Assume the same assumptions as in Theorem 3.7, and recall that δn = n−α for α ∈ (0, 1].
Define

Kα
M,n = sup

t∈[0,n1−α]

|f (M)(t)|.

and if we assume in addition that

Kα
M,n = o

(
n−1/4δD−M+s/2

n

)
, (3.12)

then (3.11) still holds for X.

Note that in the infill situation (δn = 1/n, α = 1), K1
M,n does not depend on n. Obviously, (3.12) is met if

f is a polynomial up to an appropriate choice of the sequence a (and M). In the infill situation, a sufficient
condition for (3.12) is M > D + s/2 + 1/4 which is always true. Moreover, it is worth noticing that we only
assume regularity on the Mth derivative of the drift. No parametric assumption on the model is required, unlike
in the MLE procedure.

3.5. Minimax upper bound on the quadratic error

In this section, we provide a minimax upper bound on the quadratic error of the estimator Ca,n, over a class
of possible variograms. Hence, whereas the variogram V is fixed in the other sections of this paper, we allow
here for a varying variogram V , that is restricted to a function set. We consider here only the infill situation,
with δn = 1/n, for simplicity of exposition.

First we define this function set. We say that a function h : [−1, 1]→ R is even if h(t) = h(−t) for t ∈ [−1, 1].
We say that it is conditionally negative definite if for any x1, . . . , xn ∈ [0, 1] and for any α1, . . . , αn ∈ R such
that α1 + · · ·+ αn = 0,

n∑
i,j=1

αiαjh(xi − xj) 6 0.

We observe that any variogram V must be even and conditionally negative definite.
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Consider D ∈ N, 0 < s < 2, 0 < C <∞, 0 < U <∞, 0 < µ <∞, 0 < B <∞. If s < 3/2, consider β > s− 2
and if s > 3/2, consider β > s− 3. The function set to which the variogram V belongs is

CD,s,C,U,µ,B,β

=

{
V : [−1, 1]→ R, V is even conditionally negative definite, V is C∞ on [−1, 1]\{0}, (3.13)

V is 2D-times differentiable at 0 and for h ∈ [−1, 1], (3.14)∣∣∣V (2D)(h)− V (2D)(0)− C(−1)D|h|s
∣∣∣ 6 U |h|s+µ, (3.15)

if s < 3/2,

∣∣∣∣(V (2D)(·)− V (2D)(0)− C(−1)D| · |s
)(2)

(h)

∣∣∣∣ 6 B|h|β for h ∈ [−1, 1]\{0}, (3.16)

if s > 3/2,

∣∣∣∣(V (2D)(·)− V (2D)(0)− C(−1)D| · |s
)(3)

(h)

∣∣∣∣ 6 B|h|β for h ∈ [−1, 1]\{0}

}
. (3.17)

In the definition of CD,s,C,U,µ,B,β , in (3.13), the condition that V is smooth outside of 0 corresponds to
(H0). In (3.15), it is assumed that V has the same approximation at 0 as in (H1), where the remainder
V (2D)(h) − V (2D)(0) − C(−1)D|h|s, that is written r(h) in (H1), is bounded quantitatively by U |h|s+µ. Note
that we only require µ > 0, while in Theorem 3.7 we assume that (H3) holds, which corresponds to µ > 1/2.
The reason for this difference is that in Theorem 3.7, we prove a central limit theorem for the estimation of C
with a convergence rate of order 1/n1/2 and no asymptotic bias and that below, we will show that the minimax
upper bound on the quadratic estimation error of C has order 1/n only when µ > 1/2. For 0 < µ < 1/2, the
minimax upper bound is of order strictly larger than 1/n. Finally, (3.16) and (3.17) correspond to (H2).

We are interested in bounding the quadratic error

EV
[
(Ca,n − C)

2
]
,

uniformly over all the possible variograms V ∈ CD,s,C,U,µ,B,β . A uniform bound achieving this is a minimax
upper bound. In the above expectation, we insist on the fact that Ca,n = Ca,n(X(1/n), . . . , X(1)) and that
X is a centered Gaussian process on [0, 1], with variogram V ∈ CD,s,C,U,µ,B,β . The next theorem provides the
minimax upper bound on the quadratic error.

Theorem 3.10. Consider D ∈ N, 0 < s < 2, 0 < U < ∞, 0 < µ < ∞, 0 < B < ∞ to be fixed. If s < 3/2,
consider β > s − 2 to be fixed and if s > 3/2, consider β > s − 3 to be fixed. Let 0 < Csup < ∞ be fixed.
Let the sequence a be fixed, with M(a) > D + s/2 + 1/4. Then, there exists a constant K, depending only on
D, s, U, µ,B, β, Csup, a such that, for n > L(a),

sup
C∈(0,Csup]

sup
V ∈CD,s,C,U,µ,B,β

EV
[
(Ca,n − C)

2
]
6 Kn−min(2µ,1),

where in the above expectation the Gaussian process X has mean zero and variogram V .

In Theorem 3.10, the rate of decay of the quadratic error is n−min(2µ,1). Let us interpret this. The variance
of the estimator has order 1/n, see Lemma B.4. The square bias has order n−min(2µ,2), see Lemma B.3, and
stems from the order of magnitude of the remainder term r(h) = V (2D)(h)− V (2D)(0)− C(−1)D|h|s, which is
|h|s+µ. Hence, for µ ∈ (0, 1/2), the remainder term is too large and thus the square bias is too large, preventing
the estimator Ca,n from achieving the parametric rate 1/n. For µ > 1/2 the square bias becomes small enough
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and the parametric rate 1/n is achieved. As discussed above, the central limit theorem for Ca,n in Theorem 3.7,
which provides an asymptotic variance of order 1/n with no asymptotic bias, relies on (H3), which corresponds
to µ > 1/2 in the class CD,s,C,U,µ,B,β . Note that our minimax upper bound is also uniform over the value
of C, which is only upper bounded by Csup. The expression of the constant K can be found in the proof of
Theorem 3.10.

Remark 3.11. The minimax upper bound in Theorem 3.10 provides an estimation error of order n−min(µ,1/2).
This order coincides with the one obtained in [35], where s rather than C is estimated and where a remainder
term there, similar as r(h), is also assumed of order |h|s+µ, similarly as in (3.15). We remark that [35] provides
minimax upper and lower bounds, while we only consider upper bounds. In future work, it would be interesting
to see if the lower bound techniques of [35], based in particular on the Van Trees inequality, could be extended
to our setting.

Remark 3.12. It is important to observe here that the estimator Ca,n does not depend on the smoothness
indices µ and β, although the rate (partially) depends on µ in Theorem 3.10. This rate could also possibly
depend on β in other situations. In other semi-parametric statistical settings, the situation could be different,
in that the estimators could depend on smoothness parameters (playing a similar role as µ and β here). For
instance, the optimal bandwidth in kernel smoothing typically depends on the underlying smoothness.

3.6. Elements of comparison with existing procedures

3.6.1. Quadratic variations versus MLE

In this section, we compare our methodology to the very popular MLE method. For details on the MLE
procedure, the reader is referred to, e.g. [44, 52].

3.6.2. Model flexibility

As mentioned in the introduction, the MLE methodology is a parametric method and requires the covariance
function to belong to a parametric family of the form {kθ, θ ∈ Θ}. In the procedure proposed in this paper,
it is only assumed that the semi-variogram satisfies the conditions given in Section 2.1, and that D and s are
known. In this latter case, the suggested variation estimator is feasible, while the MLE is not defined.

3.6.3. Adding a drift

In order to use the MLE estimator, it is necessary to assume that the mean function of the process is a linear
combination of known parametric functions:

f(t) =

q∑
i=1

βifi(t),

with known f1, . . . , fq and where β1, . . . , βq need to be estimated. Our method is less restrictive and more
robust. Indeed, we only assume the regularity of the Mth derivative of the mean function in assumption (3.12).
It does not require parametric assumptions neither on the semi-variogram nor the mean function. Furthermore,
no estimation of the mean function is necessary.

3.6.4. Computational cost

The cost of our method is only O(n) (the method only requires the computation of a sum) while the cost of
the MLE procedure is known to be O(n3).
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3.6.5. Practical issues

In some real data frameworks, it may occur that, for the MLE, the iterative procedure for likelihood
optimization diverges, as can be seen in Section 5.4. Such a dead end cannot be possible with our procedure.

3.6.6. Quadratic variations versus other methods

3.6.7. Least-square estimators

In [34], the authors propose a Least Square Estimator (LSE). More precisely, given a parametric family
of semi-variograms {Vθ, θ ∈ Θ}, the Ordinary Least Square Estimation (OLSE) consists in minimizing in the
parameter θ the quantity ∑

h∈I

(Vn(h)− Vθ(h))2,

where I is a set of lags and Vn is a non-parametric estimator of the semi-variogram. Several variants as the
Weighted Least Square Estimation and the General Least Square Estimation have been then introduced. Then
the authors of [34] provide necessary and sufficient conditions for these estimators to be asymptotically efficient
and they show that when the number of lags used to define the estimators is chosen to be equal to the number
of variogram parameters to be estimated, the ordinary least squares estimator, the weighted least squares and
the generalized least squares estimators are all asymptotically efficient. Similarly as for the MLE, least square
estimators require a parametric family of variograms, while quadratic variation estimators do not.

3.6.8. Cross validation rstimators

Cross validation estimators [3–5, 62] are based on minimizing scores based on the leave one out prediction
errors, with respect to covariance parameters θ, when a parametric family of semi-variograms {Vθ, θ ∈ Θ} is
considered. Hence, as the MLE, they require a parametric family of variograms. Furthermore, as the MLE, the
computation cost is in O(n3), while this cost is O(n) for quadratic variation estimators.

3.6.9. Composite likelihood

Maximum composite likelihood estimators follow the principle of the MLE, with the aim of reducing its
computational cost [39, 41, 56, 59, 60]. In this aim, they consist in optimizing, over θ, the sum, over i =
1, . . . , n of the conditional likelihoods of the observation Xi = X(ti), given a small number of observations which
observation locations are close to ti when a parametric family of semi-variograms {Vθ, θ ∈ Θ} is considered. The
computation cost of an evaluation of this sum of conditional likelihood is O(n), in contrast to O(n3) for the full
likelihood. Nevertheless, the composite likelihood estimation requires to perform a numerical optimization, while
our suggested estimator does not. Furthermore, a parametric family of variograms is required for the composite
likelihood but not for our estimator. Finally, [6] recently showed that the composite likelihood estimator has
rate of convergence only ns when D = 0 and 0 < s < 1/2 in (1.2). Hence, the rate of convergence of quadratic
variation estimators (n1/2) is larger in this case.

3.6.10. Already known results on quadratic a-variations

In [30], Istas and Lang consider a Gaussian process with stationary increments in the infill case and assume
(1.2) as in our paper. Then they establish the asymptotic behavior of Va,n under more restrictive hypothesis
of regularity on V than ours (in particular on r and on δn). Then they propose an estimation of both the
local Hölder index H = D + s/2 and the scale parameter C, based on quadratic a-variations and study their
asymptotic behavior. The expression of the estimation of C is much more complex than simply stems from the
moment method. More precisely, they consider I sequences (aj)j=1,...,I with length pj and the vector U of length
I whose coordinate j is given by Vaj ,n. Noticing that the vector U/n converges to the product AZ where A is
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a I × p matrix derived from the sequences a with p = maxj pj and Z is the vector of (C(−1)D(jδn)2h)j=1,...,p,

they estimate Z by Ẑ = (A>A)−1A>U and derive their estimators of H and C from Ẑ.

As explained in the introduction in Section 1, Lang and Roueff in [35] generalize the results of Istas and
Lang in [30] and [33]. They consider the infill situation and use quadratic a-variations to estimate both the scale
parameter C and smoothness parameter s under a similar hypothesis as in (1.2). Furthermore, they assume
three types of regularity assumptions on V : Hölder regularity of the derivatives at the origin, Besov regularity
and global Hölder regularity. Nevertheless, estimating both C and s leads to a more complex estimator of C
and to proofs significantly different and more complicated.

To summarize, our contributions, additionally to the existing references [30, 33, 35], is to provide an estimation
method for C which definition, implementation and asymptotic analysis are simpler. As a result, we need fewer
technical assumptions. In fact, our assumptions can be easily shown to hold in many classical examples. This
also enables us to study the aggregation of quadratic variation estimators from different sequences, see Section
5.2. Furthermore, our assumptions are easier to check than in [30] and less technical than in [35]. In addition,
our proofs for the asymptotic analysis of quadratic variations are simpler than in the existing references.

4. Efficiency of our estimation procedure

In this section, in order to decrease the asymptotic variance, we propose a procedure to combine several
quadratic a-variations leading to aggregated estimators. Then our goal is to evaluate the quality of these
proposed estimators. In that view, we compare their asymptotic variance with the theoretical Cramér–Rao
bound in some particular cases in which this bound can be explicitly computed.

4.1. Aggregation of estimators

Now in order to improve the estimation procedure, we suggest to aggregate a finite number of estimators:

k∑
j=1

λjCa(j),n

based on k different sequences a(1), . . . , a(k) with weights λ1, . . . , λk. Ideally, one should provide an adaptive
statistical procedure to choose the optimal number k∗ of sequences, the optimal sequences and the optimal
weights λ∗. Such a task is beyond the scope of this paper. Nevertheless, in this section, we consider a given
number k of given sequences a(1), . . . , a(k) leading to the estimators Ca(1),n, . . . , Ca(k),n defined by (3.10). Then
we provide the optimal weights λ∗. Using [36] or [7], one can establish the following lemma.

Lemma 4.1. We assume that for j = 1, . . . , k, the conditions of Corollary 3.8 are met. Let R be the k × k
asymptotic variance-covariance matrix of the vector of length k whose elements are given by (n1/2/C)Ca(j),n,
j = 1, . . . , k. Then for any λ1, . . . , λk with sum one,

(n1/2/C)

 k∑
j=1

λjCa(j),n − C

 D−→
n→+∞

N (0, λTRλ).

Let 1k be the “all one” column vector of size k and define

λ∗ =
R−11k

1TkR
−11k

.
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One has
∑k
j=1 λ

∗
j = 1 and

λ∗TRλ∗ 6 λTRλ.

Let us now explain how the (optimally) aggregated estimator is computed in practice. The weights in
Lemma 4.1 are functions of the matrix R which is the limit as n→∞ of the covariance matrix R(n) defined by,
for i, j = 1, . . . , k,

R
(n)
i,j =

n

C2
Cov

(
Ca(i),n, Ca(j),n

)
.

From Corollary 3.3 and (3.10), we have R(n)− R̃(n) → 0 as n→∞, where R̃(n) is defined by, for i, j = 1, . . . , k,

R̃
(n)
i,j =

2
∑
`∈ZR

2(`, 1, 2D, |·|s , a(i) ∗ a(j))
R(0, 1, 2D, |·|s , (a(i))2∗)R(0, 1, 2D, |·|s , (a(j))2∗)

. (4.1)

Hence, in practice we can compute the weights given by

λ̃(n) =
(R̃(n))−11k

1Tk (R̃(n))−11k
, (4.2)

which only depend on a(1), . . . , a(k), D and s, which are known quantities.
As will be shown with simulations in Section 5, the aggregated estimator considerably improves each of the

original estimators Ca(1),n, . . . , Ca(k),n.

4.2. Cramér–Rao bound

To validate the aggregation procedure, we want to compare the obtained asymptotic variance with the
theoretical Cramér–Rao bound. In that view, we compute in the following section the Cramér–Rao bound in
two particular cases.

We consider a family YC (C ∈ R+) of centered Gaussian processes. Let RC be the (n− 1)× (n− 1) variance–
covariance matrix defined by

(RC)i,j = Cov (YC (iδn)− YC ((i− 1)δn) , YC (jδn)− YC ((j − 1)δn)) .

Assume that C 7→ RC is twice differentiable and RC is invertible for all C ∈ R+. Then, let

IC =
1

2
Tr

(
R−1C

(
∂

∂C
RC

)
R−1C

(
∂

∂C
RC

))
(4.3)

be the Fisher information. The quantity 1/IC is the Cramér–Rao lower bound for estimating C based on{
YC(iδn)− YC((i− 1)δn)

}
i=2,...,n

(see for instance [4, 15]). Now we give two examples of families of processes for which we can compute the
Cramér–Rao lower bound explicitly. The first example is obtained from the IFBM defined in Section 2.2.
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Lemma 4.2. Let 0 < s < 2 and let X be equal to
√
CB

(−D)
s where B

(−D)
s is the IFBM. Then YC = X(D) is a

FBM whose semi-variogram VC is given by

VC(h) =
1

2
E
[
(YC(t+ h)− YC(t))

2
]

= C|h|s. (4.4)

Hence in this case, we have 1/IC = 2C2/(n− 1).

Now we consider a second example given by the generalized Slepian process defined in Section 2.2.
Let s 6 1 and YC with stationary autocovariance function kC defined by

kC(h) = (1− (C/2)|h|s)+, for any h ∈ R. (4.5)

This function is convex on R and it follows from Pólya’s theorem [43] that kC is a valid autocovariance function.
We thus easily obtain the following lemma whose proof is omitted.

Lemma 4.3. Let X be the integration D times of YC defined via (4.5). Then, in the infill situation (δn = 1/n,
α = 1) and for C < 2, the semi-variogram of YC is given by (4.4) and by consequence 1/IC = 2C2/(n− 1).

5. Numerical results

In this section, we first study to which extent the asymptotic results of Proposition 3.1 and Theorem 3.7 are
representative of the finite sample behavior of quadratic a-variations estimators. Then, we study the asymptotic
variances of these estimators provided by Proposition 3.1 and that of the aggregated a-variations estimators of
Section 4.1.

5.1. Simulation study of the convergence to the asymptotic distribution

We carry out a Monte Carlo study of the quadratic a-variations estimators in three different cases. In each
of the three cases, we simulate N = 10, 000 realizations of a Gaussian process on [0, 1] with zero mean function
and stationary autocovariance function k. In the case D = 0, we let k(h) = exp(−C|h|). Hence (H1) holds with
D = 0 and s = 1. In the case D = 1, we use the Matérn 3/2 autocovariance [48] :

k(h) =

(
1 +
√

3
|h|
θ

)
e−
√
3
|h|
θ .

One can show, by developing k into power series, that (H1) holds with D = 1, s = 1 and C = 6
√

3/θ3. Finally,
in the case D = 2, we use the Matérn 5/2 autocovariance function:

k(h) =

(
1 +
√

5
|h|
θ

+
5|h|2

3θ2

)
e−
√
5
|h|
θ .

Also (H1) holds true with D = 2, s = 1 and C = 200
√

5/3θ5.

In each of the three cases, we set C = 3. For n = 50, n = 100 and n = 200, we observe each generated
process at n equispaced observation points on [0, 1] and compute the quadratic a-variations estimator Ca,n of
Section 3.3. When D = i, i = 0, 1, 2, we choose a to be the elementary sequence of order i+ 1.

In Figure 2, we display the histograms of the 10, 000 estimated values of C for the nine configurations of
D and n. We also display the corresponding asymptotic Gaussian probability density functions provided by
Proposition 3.1 and Theorem 3.7. We observe that there are few differences between the histograms and limit
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Figure 2. Comparison of the finite sample distribution of Ca,n (histograms) with the asymp-
totic Gaussian distribution provided by Proposition 3.1 and Theorem 3.7 (probability density
function in blue line). The vertical red line denotes the true value of C = 3. From left to right,
n = 50, 100, 200. From top to bottom, D = 0, 1, 2.

probability density functions between the cases (D = 0, 1, 2). In these three cases, the limiting Gaussian dis-
tribution is already a reasonable approximation when n = 50. This approximation then improves for n = 100
and becomes very accurate when n = 200. Naturally, we can also see the estimators’ variances decrease as n
increases. Finally, the figures suggest that the discrepancies between the finite sample and asymptotic distri-
butions are slightly more pronounced with respect to the difference in mean values than to the difference in
variances. As already pointed out, these discrepancies are mild in all the configurations.
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5.2. Analysis of the asymptotic distributions

Now we consider the normalized asymptotic variance of Ca,n obtained from (3.5) in Proposition 3.1. We
consider the infill situation (δn = 1/n, α = 1) and we let

ṽa,s =
2
∑
i∈ZR

2(i, 1, 2D, |·|s , a2∗)
R2(0, 1, 2D, |·|s , a2∗)

, (5.1)

so that (n1/2/C)(Ca,n − C) converges to a N (0, ṽa,s) distribution as n→∞, where ṽa,s does not depend on C
(nor on n).

First, we consider the case D = 0 and we plot ṽa,s as a function of s for various sequences a in Figure 3. The
considered sequences are the following:

• the elementary sequence of order 1: a(1) given by (−1, 1);
• the elementary sequence of order 2: a(2) given by (1,-2,1);
• the elementary sequence of order 3: a(3) given by (−1, 3,−3, 1);
• the elementary sequence of order 4: a(4) given by (1,−4, 6,−4, 1);
• a sequence of order 1 and with length 3: a(5) given by (−1,−2, 3);
• a Daubechies wavelet sequence [17] with M = 2 as in [30]: a(6) given by (−0.1830127,−0.3169873,

1.1830127,−0.6830127);
• a second Daubechies wavelet sequence with M = 3: a(7) given by (0.0498175, 0.12083221,−0.19093442,
−0.650365, 1.14111692,−0.47046721).

From Figure 3, we can draw several conclusions. First, the results of Section 4.2 suggest that 2 is a plausible
lower bound for ṽa,s. We shall call the value 2 the Cramér–Rao lower bound. Indeed, we observe numerically that
ṽa,s > 2 for all the s and a considered here. Then we observe that, for any value of s, there is one of the ṽa,s which
is close to 2 (below 2.5). This suggests that quadratic variations can be approximately as efficient as maximum
likelihood, for appropriate choices of the sequence a. We observe that, for s = 1, the elementary sequence of
order 1 (a0 = −1, a1 = 1) satisfies ṽa,s = 2. This is natural since for s = 1, this quadratic a-variations estimator
coincides with the maximum likelihood estimator, when the observations stem from the standard Brownian
motion. Except from this case s = 1, we could not find other quadratic a-variations estimators reaching exactly
the Cramér–Rao lower bound 2 for other values of s.

Second, we observe that the normalized asymptotic variance ṽa,s blows up for the two sequences a satisfying
M = 1 when s reaches 1.5. This comes from Remark 3.5: the variance of the quadratic a-variations estimators
with M = 1 is of order larger than 1/n when s > 1.5. Consequently, we plot ṽa,s for 0.1 6 s 6 1.4 for these two
sequences. For the other sequences satisfying M > 2, we plot ṽa,s for 0.1 6 s 6 1.9.

Third, it is difficult to extract clear conclusions about the choice of the sequence: for s smaller than, say, 1.2
the two sequences with order M = 1 have the smallest asymptotic variance. Similarly, the elementary sequence
of order 2 has a smaller normalized variance than that of order 3 for all values of s. Also, the Daubechies sequence
of order 2 has a smaller normalized variance than that of order 3 for all values of s. Hence, a conclusion of
the study in Figure 3 is the following. When there is a sequence of a certain order for which the corresponding
estimator reaches the rate 1/n for the variance, there is usually no benefit in using a sequence of larger order.
Finally, the Daubechies sequences appear to yield smaller asymptotic variances than the elementary sequences
(the orders being equal). The sequence of order 1 given by (a0, a1, a2) = (−1,−2, 3) can yield a smaller or larger
asymptotic variance than the elementary sequence of order 1, depending on the value of s. For two sequences of
the same order M , it seems nevertheless challenging to explain why one of the two provides a smaller asymptotic
variance.
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Figure 3. Case D = 0. Plot of the normalized asymptotic variance ṽa,s of the quadratic
a-variations estimator, as a function of s, for various sequences a. The legend shows the values
a0, . . . , al of these sequences (rounded to two digits). From top to bottom in the legend, the
sequences are the elementary sequence of order 1, the sequence (−1,−2, 3) which has order 1,
the Daubechies sequences of order 2 and 3 and the elementary sequences of orders 2 and 3. The
horizontal line corresponds to the Cramér–Rao lower bound 2.

Now, we consider aggregated estimators, as presented in Section 4.1. A clear motivation for considering
aggregation is that, in Figure 3, the smallest asymptotic variance ṽa,s corresponds to different sequences a,
depending on the values of s.

In Figure 4 left, we consider the case D = 0 and we use four sequences: a(1), a(5) a(2) and a(6). We plot
their corresponding asymptotic variances ṽa(i),s as a function of s, for 0.1 6 s 6 1.4 as well as the variance
of their aggregation. This variance of aggregation is computed from the covariance matrix given by (4.1) and
the weights given by (4.2). Notice that the aggregated estimator, which asymptotic variance is plotted in
Figure 4, only depends on known quantities and thus can be readily computed in practice.

It is then clear that aggregation drastically improves each of the four original estimators. The asymptotic
variance of the aggregated estimator is very close to the Cramér–Rao lower bound 2 for all the values of s. In
Figure 4 right, we perform the same analysis but with sequences of order larger than 1. The four considered
sequences are now a(6), a(2) a(3), and a(4). The value of s varies from 0.1 to 1.9 Again, the aggregation is clearly
the best.

Eventually, Figures 5 and 6 explore the case D = 1. Conclusions are similar.

5.3. Finite sample study of the aggregation of estimators

By definition, the asymptotic variances of aggregated estimators are smaller than the asymptotic variances
obtained from their individual sequences. Numerically, in Section 5.2, we have seen that the benefit of the
aggregation in terms of asymptotic variance can be relatively substantial.

In this section, we address the finite sample situation and quantify the benefit of the aggregation procedure.
We study the infill situation (δn = 1/n) with C = 3 and the sample sizes n = 50, 100, 200, 400. First, we
consider the case D = 0 and the generalized exponential covariance function k(h) = exp(−C|h|s) with s = 1.3
and we make use of the elementary sequence of order 1: (−1, 1) and of order 2: (1,−2, 1). As in Section 5.1, we
simulate 10, 000 observation vectors and compute 10, 000 estimates of C obtained from the two estimators Ca,n
corresponding to the two sequences. We also compute 10, 000 estimates of C obtained from the aggregation of
these two estimators, with the weights given by (4.2), which, we recall, only depend on known quantities. Then
we compute the three empirical mean square errors, for estimating C, of the three estimators, from the two
sequences and the aggregation. Second, we compute the same empirical mean square errors, but this time with
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Figure 4. Case D = 0. Plot of the normalized asymptotic variance ṽa,s of the quadratic a-
variations estimator, as a function of s, for various sequences a and for their aggregation. On
the left, including the order one elementary sequence, on the right without. The horizontal line
corresponds to the Cramér–Rao lower bound 2.

Figure 5. Same setting as in Figure 3 but for D = 1. From top to bottom in the legend, the
sequences are the elementary sequences of order 2, 3 and 4 and the Daubechies sequences of
order 2 and 3.

D = 1, s = 1, the Matérn 3/2 covariance function and the elementary sequence of order 3: (−1, 3,−3, 1) and of
order 4: (1,−4, 6,−4, 1).

The empirical mean square errors are displayed in Table 1. We see that the mean square errors obtained
from the aggregation procedure are smaller than those obtained for the two individual sequences, for D = 0
and D = 1 and for all sample sizes n = 50 to n = 400. Hence, although the aggregation procedure is based on
an asymptotic approximation of the variances and covariances, it is beneficial in finite sample, already for the
sample size n = 50.

5.4. Real data examples

In this section, we consider real data of spatially distributed processes in dimension two. In this setting,
we extend the estimation procedure based on the quadratic a-variations that is then compared to the MLE
procedure.
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Figure 6. Same setting as in Figure 4 but for D = 1. On the left, from top to bottom in the
legend, the sequences are the elementary sequence of order 2, the Daubechies sequence of order
2 and the elementary sequence of order 3. On the right, from top to bottom in the legend,
the sequences are the elementary sequences of orders 3 and 4 and the Daubechies sequence of
order 3.

Table 1. Top: empirical mean square errors (MSE) of estimators of C obtained from the
sequences (−1, 1) and (1,−2, 1) and from their aggregation, for D = 0, s = 1.3, and n =
50, 100, 200, 400. Bottom: same but with the two sequences (−1, 3,−3, 1) and (1,−4, 6,−4, 1)
and with D = 1, s = 1.

D s n MSE (−1, 1) MSE (1,−2, 1) MSE aggregation

0 1.3 50 0.3990 0.4820 0.3600
0 1.3 100 0.2040 0.2430 0.1800
0 1.3 200 0.1050 0.1230 0.0912
0 1.3 400 0.0553 0.0617 0.047

D s n MSE (−1, 3,−3, 1) MSE (1,−4, 6,−4, 1) MSE aggregation

1 1 50 0.4570 0.5880 0.4380
1 1 100 0.2270 0.2930 0.2170
1 1 200 0.1140 0.1470 0.1090
1 1 400 0.0576 0.0733 0.0553

5.4.1. A moderate size data set

We compare two methods of estimation of the autocovariance function of a separable Gaussian model on a
real data set of atomic force spectroscopy1. The data consist of observations taken on a grid of step 1/15 on
[0, 1]2, so they consist of 256 points of the form

X(i/15, j/15) i = 0, . . . , 15, j = 0, . . . , 15.

The first method is maximum likelihood estimation in a Kriging model, obtained from the function km of
the R toolbox DiceKriging [48]. For this method, the mean and autocovariance functions are assumed to be
E(X(i/15, j/15)) = µ and

Cov(X(i/15, j/15), X(i′/15, j′/15)) = σ2e−θ1|i−i
′|/15e−θ2|j−j

′|/15. (5.2)

1Personal communication from C. Gales and J. M. Senard.
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The parameters µ, σ2, θ1, θ2 are estimated by maximum likelihood.
The second method assumes the same autocovariance model (5.2) and consists in the following steps.

(1) Estimate σ2 by the sum of squares

σ̂2 =
1

256

15∑
i,j=0

(X(i/15, j/15)−m)2

with m =
∑15
i,j=0X(i/15, j/15).

(2) For each column j of [X(i/15, j/15)]i,j=0,...,15, the vector of 16 observations obey our model with s = 1 and

C1 = σ2θ1. Hence, we can estimate C1 by Ĉ1,j with the estimator (3.10), with the elementary sequence of

order 1. We thus obtain an estimate Ĉ1 by averaging the Ĉ1,j for j = 0, . . . , 15.

(3) We perform the same analysis row by row to obtain an estimate Ĉ2.

(4) For i = 1, 2, θi is estimated by θ̂i = Ĉi/σ̂
2.

The first method, based on maximum likelihood, provides infinite values for θ1 and θ2, so that it considers
the 256 observed values as completely spatially independent. On the other hand, the second method provides
the values θ̂1 = 14.72 and θ̂2 = 15.73. This corresponds to a correlation of approximately 1/e ≈ 0.36 between
direct neighbors on the grid. Hence, the second method, based on our suggested quadratic variation estimator,
is able to detect a weak correlation, unlike the maximum likelihood estimator. Actually, graphical observations
of the data tend to suggest a small spatial dependence which is in accordance with the biological nature of the
data.

We remark that, in general, the second method, based on the quadratic variation estimator, cannot provide
infinite values of θ̂1 and θ̂2, because the numerator in (3.10) is always finite and the denominator in (3.10) is
always strictly positive. On the other hand, the first method, based on maximum likelihood, may provide infinite
values of θ̂1 and θ̂2, as is the case here. For instance, the likelihood can be maximum in the limit θ1 = +∞,
or, even if this is not the case, the iterative procedure for optimizing the likelihood can provide a sequence of
values of θ1 diverging to infinity.

Remark 5.1. In (5.2), we choose a separable model for its classicality (as done, for instance, in the R toolbox
DiceKriging [48]). This separable model is characterized by having the basis vectors (1, 0) and (0, 1) as the
two important directions. More precisely, in (5.2), the correlation function of i 7→ X(i/15, j/15) is characterized
by θ1 only and the correlation function of j 7→ X(i/15, j/15) is characterized by θ2 only. It is then natural for
the variation estimator to make, separately, first an analysis with the second component of X fixed (column by
column) in order to estimate θ1 and second an analysis with the first component of X fixed (row by row) in
order to estimate θ2.

In addition, consider that (5.2) holds with 15 replaced by N − 1 with N →∞. Then the consistency of the
quadratic variation estimators Ĉ1 and Ĉ2 established in Lemma 5.2 below suggests that our analysis row by
row and column by column is appropriate to the model (5.2).

Remark that the analysis row by row and column by column is also appropriate to other models where
the directions (1, 0) and (0, 1) play a special role; for instance, one could consider the geometric anisotropic
counterpart of (5.2), i.e.

Cov(X(i/15, j/15), X(i′/15, j′/15)) = σ2 exp
{
−
(
θ21|i− i′|2/152 + θ22|j − j′|2/152

)1/2}
.

To conclude, our method of estimation row by row and column by column is perfectly coherent with the
separable model (5.2), which is widely used in Kriging applications. Of course this method does not permit
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Figure 7. For the data set of Section 5.4.2: the two images to be registrated (left and
middle) and the field of deformation amplitude (right). On the right, light colors indicate
large deformation amplitudes and dark colors indicate small deformation amplitudes.

to estimate anisotropy in other directions as in [46] or topothesy in the sense of [45] that correspond to more
complex models including variations of the Hölder exponent.

Using the results of Section 3.5, we can prove straightforwardly the consistency of the quadratic variation
estimators Ĉ1 and Ĉ2, given by the second method with steps (2) and (3).

Lemma 5.2. Assume that a centered Gaussian process X is observed at {(i/(N − 1), j/(N − 1)); i, j =
0, . . . , N − 1} with a two-dimensional autocovariance function k having a separable expression given by

k(x, y) = k1(x)k2(y),

where, for i = 1, 2, the variogram associated to ki lies in CDi,si,Ci,Ui,µi,Bi,βi introduced in Theorem 3.10, with the

same setting and assumptions as in this theorem. Then the quadratic variation estimators Ĉ1 and Ĉ2, described
in the steps (2) and (3) above, are consistent; in other words, Ĉi converges in probability to Ci, for i = 1, 2.

5.4.2. A large size data set

The second data set consists in a two-dimensional field of deformation amplitude, corresponding to the
registration of two real images. The deformation field is obtained from the software presented in [47]. Figure 7
displays the two images to be registered and the deformation field.

After a subsampling of the field of deformation amplitude, the data consist of observations taken on a
rectangular grid of steps 1/56 and 1/59 on [0, 1]2, so they consist of 3420 points of the form

X(i/56, j/59) i = 0, . . . , 56, j = 0, . . . , 59.

With these data, we consider the same autocovariance model as in Section 5.4.1. We estimate the parameters
θ1 and θ2 from the same two methods as in Section 5.4.1. The first method provides θ̂1 = 0.6547 and θ̂2 = 0.8770
and takes about 22 minutes on a personal computer. The second method provides θ̂1 = 0.107 and θ̂2 = 0.607 and
takes about 0.05 seconds on a personal computer. Hence, our suggested quadratic variation estimator provides
a very significant computational benefit.

Both estimators conclude that the spatial correlation is more important along the x-axis than along the
y-axis, which is graphically confirmed in Figure 7. As in Section 5.4.1, the maximum likelihood estimator
provides less correlation than the quadratic variation estimator.
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Finally, if the field of deformation is considered with no preliminary subsampling, its size is 400 × 600. In
this case, the MLE cannot be directly implemented while the quadratic variation estimator can be.

6. Conclusion

We have provided an in-depth analysis of the estimation of the scale parameter of a one-dimensional Gaussian
process by quadratic variations. Indeed, the knowledge of this scale parameter is essential when studying a
Gaussian process, as it enables to quantify its dependence structure, or to test independence.

We have addressed a semi-parametric setting, where no parametric family of variograms needs to be assumed
to contain the unknown variogram. We have suggested an estimator, based on previous references, which numer-
ical implementation is straightforward. Our theoretical analysis follows the principles of previous references, but
is significantly simpler and holds under mild and simple to check technical assumptions. Based on this theoreti-
cal analysis, we have been able to tackle more advanced statistical topics, such as the aggregation of estimators
based on different sequences, in the aim of improving the statistical efficiency.

Appendix A. Discussion of the assumptions (H2) and (H3)

• The assumption (H2) may be difficult to interpret at first sight. This assumption is necessary in the
proof of Proposition 3.1, where it is shown that the variance of the quadratic a-variation Va,n in (3.1) is
asymptotically equivalent to nδ4D+2s

n C2VD,s,a, with an explicit constant VD,s,a not depending on r. In
order to show that r has no impact on the asymptotic approximation of the variance, we need a condition
that makes r negligible (compared to C(−1)D| · |s), in some sense. This is the role of (H2), where we use
the second or third derivative of r, from which we can use Taylor’s theorem to a term involving r and
exploit the order of the sequence a. We refer to (B.8) in the proof of Proposition 3.1 for more details. The
condition β > s− 2 or β > s− 3 is exactly what we need to obtain, eventually, the rate nδ4D+2s

n and the
explicit constant. The condition β < −1/2, that is additionally assumed in the mixed situation, is needed
to guarantee that a series involving r, see also (B.8) in the proof of Proposition 3.1, is finite. If (H2) was
not assumed, then the proof of Proposition 3.1 given here would not hold any longer. In addition, if (H2)
was not assumed, one may ask whether there exist settings, for which the other assumptions hold, and
where the variance of Va,n has a larger order of magnitude than nδ4D+2s

n . We leave the question of an
asymptotic analysis not involving (H2) open to future work. We remark that the condition (H2), although
technical, does not appear to be too restrictive, since it holds for all the common examples listed in Section
2.2, with no restriction on s. We finally remark that in [30], Theorem 1 (i), a bound on a derivative of r
is also assumed, similarly as in (H2).

• We have discussed above that the interpretation of (H2) is that, in the expression V (2D)(h)− V (2D)(0) =
C(−1)D |h|s + r(h), the remainder term r(h) is negligible compared to the main term C(−1)D |h|s. In
the proof of Proposition 3.1, the useful notion of negligibly for us is the order of magnitude of the dth
derivative as h → 0 (where d = 2 or d = 3, depending on s). The dth derivative of the main term is of
order |h|s−d and we assume that the dth derivative of the remainder term is of order |h|β with β > s− d.
Hence, we indeed assume that the dth derivative of the remainder term is negligible compared to that of
the main term, as h → 0. Furthermore, in the infill case, where we only assume β > s − d, we make a
minimal assumption to guarantee this.

• Similarly as for (H2), the interpretation of (H3) is that r is negligible. While (H2) is used to study
the variance of the quadratic a-variation Va,n, (H3) is used to study its expectation. More precisely, an
estimator Ca,n of C is constructed, by applying the moment method to Va,n, see (3.10). The assumption
(H3) then enables to show that E(Ca,n) − C = o(n−1/2), which allows for a central limit theorem with
rate n−1/2 and no asymptotic bias, see Theorem 3.7. To prove the o(n−1/2), we precisely need |r(h)| =
o
(
|h|s+(1/2α))

as h→ 0, see (B.11) in the proof of Theorem 3.7. We remark that when (H3) is not assumed

and that only |r(h)| = o
(
|h|s
)

is assumed, then we only have E(Ca,n) − C = o(1), from Proposition 3.1.

In the infill situation, if we assume |r(h)| = o
(
|h|s+µ

)
as h→ 0, with 0 < µ < 1/2, which is weaker than
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(H3), then we obtain E(Ca,n)− C = o(n−µ), see Section 3.5, that is a smaller rate of convergence of the
expectation compared to (H3).

Appendix B. Proofs

B.1 Proof of the results of Section 2.3

Proof of Proposition 2.4. By the stochastic Fubini theorem,

B(−m)
s (u1) =

∫ u1

0

du2· · ·
∫ um

0

dum+1

∫ um+1

−∞
d(t)fs(t, um+1)

=

∫ u1

−∞
d(t)

∫ u1

t

du2· · ·
∫ um

t

dum+1fs(t, um+1)

=:

∫ u1

0

gm,s(u1, t)d(t).

The positiveness of fs(t, u) for u > 0 implies that of gm,s(t, u). As a consequence, for 0 < t1 < . . . tk, B
(−m)
s (tk)

includes a non-zero component:

∫ tk

tk−1

gm,s(u, t)d(t),

which is independent of (B
(−m)
s (t1), . . . , B

(−m)
s (tk−1)) implying that B

(−m)
s (tk) is not collinear to this set of

variables. By induction, this implies in turn that B
(−m)
s (t1), . . . , B

(−m)
s (tk) are not collinear.

Proof of Lemma 2.5. For m = 0, we have

Var
(
B(−0)
s (u)−B(−0)

s (v)
)

= 2|u− v|s

so that the lemma holds with the convention (s + 1) . . . (s + 0) = 1. Thus we prove it by induction on m and

assume that it holds for m ∈ N. We have, with K(−r)(u, v) = E
[
B

(−r)
s (u)B

(−r)
s (v)

]
, for r ∈ N,

K(−m)(u, v) =
1

2

(
Var
(
B(−m)
s (u)−B(−m)

s (0)
)

+ Var
(
B(−m)
s (v)−B(−m)

s (0)
)
−Var

(
B(−m)
s (u)−B(−m)

s (v)
))

=ψ(u) + ψ(v)− 1

2

Nm∑
i=1

Pm,i(v)hm,i(u)− 1

2

Nm∑
i=1

Pm,i(u)hm,i(v)− 1

2
(−1)m

2|u− v|s+2m

(s+ 1) . . . (s+ 2m)
,

where ψ is some function. Since we have K(−(m+1))(u, v) =
∫ u
0

∫ v
0
K(−m)(x, y)dxdy,

K(−(m+1))(u, v) =

Ñm+1∑
i=1

P̃m+1,i(v)h̃m+1,i(u) +

Ñm+1∑
i=1

P̃m+1,i(u)h̃m+1,i(v)

+ (−1)m+1 1

(s+ 1) . . . (s+ 2m)

∫ v

0

(∫ u

0

|x− y|s+2mdx

)
dy, (B.1)
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where Ñm+1 ∈ N, where for i = 1, . . . , Ñm+1, P̃m+1,i is a polynomial of degree less than or equal to m+ 1 and

h̃m+1,i is some function. For v 6 u, we have∫ v

0

(∫ u

0

|y − x|s+2mdx

)
dy =

∫ v

0

(∫ y

0

(y − x)s+2mdx+

∫ u

y

(x− y)s+2mdx

)
dy

=

∫ v

0

(
ys+2m+1

2m+ 1
+

(u− y)s+2m+1

2m+ 1

)
dy

=
vs+2m+2

(2m+ 1)(2m+ 2)
− (u− v)s+2m+2

(2m+ 1)(2m+ 2)
+

us+2m+2

(2m+ 1)(2m+ 2)
.

By symmetry, we obtain, for u, v ∈ N,∫ u

0

(∫ v

0

|x− y|s+2mdx

)
dy =

us+2m+2

(2m+ 1)(2m+ 2)
+

vs+2m+2

(2m+ 1)(2m+ 2)
− |u− v|s+2m+2

(2m+ 1)(2m+ 2)
. (B.2)

Hence, from the relation

Var
(
B(−(m+1))
s (u)−B(−(m+1))

s (v)
)

= K(−(m+1))(v, v) +K(−(m+1))(u, u)− 2K(−(m+1))(v, u),

(B.1), and (B.2), we conclude the proof of the lemma.

Proof of Proposition 2.6. Using Lemma 2.5 (with m = D) and the vanishing moments of a of order less than
or equal to D, we have∑

k,l

akal |k − l|2D+s
= (Const)(−1)D

∑
k,l

akalVar(B(−D)
s (k)−B(−D)

s (l))

= (Const)(−1)D+1Var

(∑
k

akB
(−D)
s (k)

)
.

We conclude using the ND property of the IFBM stated in Proposition 2.4.

B.2 Preliminary results

Lemma B.1. Let Z = (X,Y ) be a centered Gaussian vector of dimension 2 then

Cov
(
X2, Y 2

)
= 2Cov2 (X,Y ) .

Proof of Lemma B.1. This Lemma is a consequence of the so called Mehler formula [2]. Its proof is immediate
using the cumulant method.

Lemma B.2. Assume that V satisfies (H0), (H1) and (H2). One has, when M > D + s+ 1/4,

max
i=1,...,n′

 ∑
i′=1,...,n′

|Σa(i, i′)|

 = o
(

Var(Va,n)1/2
)
.

Proof of Lemma B.2. Using the stationary increments of the process, one has

max
i=1,...,n′

 ∑
i′=1,...,n′

|Σa(i, i′)|

 6 2

n′−1∑
i=0

|Σa(1, 1 + i)| . (B.3)



872 J.-M. AZAÏS ET AL.

Recall that

Σa(1, 1 + i) = Cov (∆a,1(X),∆a,1+i(X)) = −∆a2∗,i(V ) = δ2Dn R(i, δn, 2D,V
(2D), a2∗).

We have seen in the proof of Proposition 3.1 ((B.7) and (B.9)) that for i sufficiently large

R(i, δn, 2D,V
(2D), a2∗) 6 (Const)

(
δsni

s−2(M−D) + δd+βn iβ
)
.

Thus, the sum in (B.3) is bounded by

(Const)δ2D+s
n (ns−2(M−D)+1 + 1) + (Const)δ2D+d+β

n (n1+β + 1).

On the other hand, we have proved also in the proof of Proposition 3.1 that

Var(Va,n)1/2 = (Const)n1/2δ2D+s
n (1 + o(1))

giving the result. Thus, one has to check that

δ2D+s
n ns−2(M−D)+1, δ2D+s

n , δ2D+d+β
n n1+β , and δ2D+d+β

n

are o(n1/2δ2D+s
n ) which is true by the assumptions made. We skip the details.

B.3 Proof of the main results

Proof of Proposition 3.1. 1) By definition of Va,n in (3.1) and identity (3.2), we get

E[Va,n] =n′E[∆a,i(X)2] = −n′∆a2∗,0(V ) = −n′
∑
j

a2∗j V (jδn). (B.4)

Recall that n′ = n− L+ 1 is the size of the vector ∆a(X). In all the proof, j is assumed to vary from −L+ 1
to L− 1. We use a Taylor expansion of V ((i+ j)δn) at (iδn) and of order q 6 2D:

V ((i+ j)δn) =V (iδn) + · · ·+ (jδn)q−1

(q − 1)!
V (q−1)(iδn) + (jδn)q

∫ 1

0

(1− η)q−1

(q − 1)!
V (q)((i+ jη)δn)dη. (B.5)

Note that this expression is “telescopic” in the sense that if q < q′ 6 2D,

(jδn)q
∫ 1

0

(1− η)q−1

(q − 1)!
V (q)((i+ jη)δn)dη

=
(jδn)q

(q)!
V (q)(iδn) + · · ·+ (jδn)q

′−1

(q′ − 1)!
V (q′−1)(iδn) + (jδn)q

′
∫ 1

0

(1− η)q
′−1

(q′ − 1)!
V (q′)((i+ jη)δn)dη. (B.6)

Combining (B.5) (with i = 0 and q = 2D), the vanishing moments of the sequence a2∗ and (H1) yields:

E[Va,n] =n′δ2Dn R(0, δn, 2D,V
(2D), a2∗)

=n′C(−1)Dδ2D+s
n R(0, 1, 2D, |·|s , a2∗) + n′δ2Dn R(0, δn, 2D, r, a

2∗).

The first term is non-zero by (2.3) in Proposition 2.6 and a dominated convergence argument together with
(H1) shows that the last term is o(δ2D+s

n ) giving (3.4).
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2) Using Lemma B.1, (B.5) with q = 2D, the fact that D 6M , and the vanishing moments of the sequence
a2∗, we obtain

Var(Va,n) =2

n′∑
i,i′=1

Cov2 (∆a,i(X),∆a,i′(X)) = 2

n′∑
i,i′=1

(
−∆a2∗,i−i′(V )

)2
= 2

n′−1∑
i=−n′+1

(n′ − |i|)∆a2∗,i(V )2

=2δ4Dn

n′−1∑
i=−n′+1

(n′ − |i|)R2(i, δn, 2D,V
(2D), a2∗)

=2δ4Dn

n′−1∑
i=−n′+1

(n′ − |i|)
(
C(−1)DδsnR(i, 1, 2D, |·|s , a2∗) +R(i, δn, 2D, r, a

2∗)
)2
.

=:An +Bn + Cn,

where Bn comes from the double product.

(i) We show that An converges. Indeed,

An = 2C2δ4Dn

n′−1∑
i=−n′+1

(n′ − |i|)δ2sn R2(i, 1, 2D, |·|s , a2∗) = 2C2n′δ4D+2s
n

∑
i∈Z

fn(i),

with

fn(i) :=
n′ − |i|
n′

R2(i, 1, 2D, |·|s , a2∗)1|i|6n′−1.

Since fn(i) ↑ R2(i, 1, 2D, |·|s , a2∗) for fixed i and n′ going to infinity, it suffices to study the series

∑
i∈Z

R2(i, 1, 2D, |·|s , a2∗).

Using (B.6), with q′ = 2M , |·|s instead of V (2D) and δn = 1, and using the vanishing moments of the sequence
a2∗, we get, for i large enough so that i and i+ j always have the same sign in the sum below,

R(i, 1, 2D, |·|s , a2∗) = R(i, 1, 2M, g, a2∗) = −
∑
j

a2∗j j
2M

∫ 1

0

(1− η)2M−1

(2M − 1)!
g((i+ jη))dη,

where g is the 2(M −D)th derivative of |·|s (defined on R \ {0}). For i sufficiently large, g(i+ jη) is bounded
by (Const)|i|s−2(M−D) so that

R2(i, 1, 2D, |·|s , a2∗) is bounded by (Const)i2(s−2(M−D)), (B.7)

which is the general term of a convergent series.

(ii) Now we show that the term Cn is negligible compared to An. This will imply in turn that Bn is negligible
compared to An, from the Cauchy-Schwarz inequality. We have to give bounds to the series with general term
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R2(i, δn, 2D, r, a
2∗) with

R(i, δn, 2D, r, a
2∗) = −

∑
j

a2∗j j
2D

∫ 1

0

(1− η)2D−1

(2D − 1)!
r ((i+ jη)δn) dη.

For fixed i, the assumptions (2.1) on r in (H1) are sufficient to build a dominated convergence argument to
prove that R2(i, δn, 2D, r, a

2∗) = o(δ2sn ) which leads to the required result. So we concentrate our attention on
indices i such that |i| > 2L. Now we use (H2) and the notation d = 2 if s < 3/2 and d = 3 if s > 3/2. Consider
β as in (H2) and remark that, in the mixed situation, we have s − d < β < −1/2. In the infill situation, it is
assumed that for |h| < 1, |r(d)|(h) 6 (Const)|h|β with β > s− d. Since h is restricted to [−1, 1], we may also
consider without loss of generality that β has been chosen such that s − d < β < −1/2. Using B.6 as in the
proof of item 1), if 2D + d 6 2M , one gets

R(i, δn, 2D, r, a
2∗) = −

∑
j

a2∗j j
2D+dδdn

∫ 1

0

(1− η)2D+d−1

(2D + d− 1)!
r(d) ((i+ jη)δn) dη. (B.8)

The condition |i| > 2L ensures that the integral is always convergent. Then we have

R2(i, δn, 2D, r, a
2∗) 6 (Const)δ2d+2β

n i2β . (B.9)

Since β < −1/2 , the series in i converges and the contribution to C of the indices i such that |i| > 2L is
bounded by (Const)δ4D+2d+2β

n which is negligible compared to δ4D+2s
n since d+ β > s.

Proof of Theorem 3.4. By a diagonalization argument, Va,n can be written as

Va,n =

n′′∑
i=1

λiZ
2
i ,

where λ1, . . . , λn′′ are the non-zero eigenvalues of variance-covariance matrix Σa of ∆a(X) and the Zi are
independent and identically distributed standard Gaussian variables. Hence,

Va,n − E(Va,n)√
Var(Va,n)

=

n′′∑
i=1

λi√∑n′′

r=1 λ
2
r

(Z2
i − 1). (B.10)

In such a situation, Lemma 2 in [30] implies that the Lindeberg condition is a sufficient condition required to
prove the central limit theorem and is equivalent to

max
i=1,...,n′′

|λi| = o

(√
Var(Va,n)

)
.

From Lemma B.2, one has

max
i=1,...,n′′

 n′′∑
j=1

|Σa(i, j)|

 = o


√√√√ n′′∑

r=1

λ2r
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and the result follows using the following classical linear algebra result (see for instance [38, Ch. 6.2, p194])

max
i=1,...,n′′

|λi| 6 max
i=1,...,n′

 n′∑
j=1

|Σa(i, j)|

 .

Proof of Corollary 3.6. To prove the asymptotic joint normality it is sufficient to prove the asymptotic normality
of any non-zero linear combination

LC(γ) =

k∑
j=1

γjVa(j),n,

where γj ∈ R for j = 1, . . . , k. We have again the representation

LC(γ) =

n′′∑
i=1

λiZ
2
i ,

where the λi’s are now the non-zero eigenvalues of the variance-covariance matrix

σ′ =

k∑
j=1

γjΣa(j),n,

and the Zi’s are as before. The Lindeberg condition has the same expression. On one hand, as n goes to infinity,

1

nδ4D+2s
n

n′′∑
i=1

λi → γ>Λ∞γ

where > stands for the transpose. On the other hand, by the triangular inequality for the operator norm (which
is the maximum of the |λi|’s), one gets

max
i=1,...,n′′

|λi| = ‖σ′‖op 6
k∑
j=1

γj‖Σa(j),n‖op.

In the proof of Theorem 3.4, we have established that ‖Σa(j),n‖op = o(n1/2δ2D+s
n ) leading to the result.

B.4 Proof of the remaining results

Proof of Theorem 3.7. We use the definition of Ca,n and the following decomposition:

Ca,n − C√
Var(Ca,n)

=
Ca,n − E[Ca,n]√

Var(Ca,n)
+

E[Ca,n]− C√
Var(Ca,n)

=
Va,n − E[Va,n]√

Var(Va,n)
+

E[Ca,n]− C√
Var(Ca,n)

.

Following the proof of Proposition 3.1, the second term is proportional to

√
nδ−sn R(0, δn, 2D, r, a

2∗) = −
√
nδ−sn

∑
i

a2∗i i
2D

∫ 1

0

(1− η)2D−1

(2D − 1)!
r(iηδn)dη (B.11)
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which is negligible compared to (Const)n1/2+αs−α(s+1/2α) by (H3) and thus goes to 0 as n goes to infinity. Then
Slutsky’s lemma and Theorem 3.4 lead straightforwardly to the required result.

Proof of Corollary 3.9. Obviously, one has

V Xa,n = ‖∆a(X)‖2 = ‖∆a(f) + ∆a(X)‖2.

Using the triangular inequality ‖A + B‖2 − ‖A‖2 6 ‖B‖2 + 2‖A‖‖B‖, it suffices to have ‖∆a(f)‖2 =
o(Var(Va,n(X)1/2) = o(n1/2δ2D+s

n ) to deduce the central limit theorem for X from that for X. By application
of the Taylor-Lagrange formula, one gets

∆a,i(f) = (Const)× δMn × f (M)(ξ),

with ξ ∈ [0, n1−α]. Then ‖∆a(f)‖2 6 n(Kα
M,n)2δ2Mn and a sufficient condition is (3.12).

In order to prove Theorem 3.10, we state and prove the two following lemmas.

Lemma B.3. In the context of Theorem 3.10, there exists a constant K′, depending only on
D, s, U, µ,B, β, Csup, a such that, for n > L(a),

sup
C∈(0,Csup]

sup
V ∈CD,s,C,U,µ,B,β

(EV [Ca,n]− C)
2 6 K′n−min(2µ,2).

Proof of Lemma B.3. As in Section 2.1, we write for h ∈ [−1, 1],

r(h) = V (2D)(h)− V (2D)(0)− C(−1)D|h|s (B.12)

and we remark that for V ∈ CD,s,C,U,µ,B,β , we have |r(h)| 6 U |h|s+µ for h ∈ [−1, 1]. We observe that, since
δn = 1/n,

Ca,n =
Va,n

n(−1)Dn−2D−sR(0, 1, 2D, |·|s , a2∗)
(B.13)

and that (−1)DR(0, 1, 2D, |·|s , a2∗) is a strictly positive constant, depending only on a, D and s. In the proof
of Proposition 3.1, it is shown that, with L = L(a) and n′ = n− L+ 1,

EV [Va,n] =n′C(−1)Dn−2D−sR(0, 1, 2D, |·|s , a2∗) + n′n−2DR(0, 1/n, 2D, r, a2∗).

Hence we have

|EV [Ca,n]− C| =
∣∣∣∣EV [Ca,n]− n′

n
C +

(
n′

n
− 1

)
C

∣∣∣∣
6

∣∣∣∣ n′n−2DR(0, 1/n, 2D, r, a2∗)

n(−1)Dn−2D−sR(0, 1, 2D, |·|s , a2∗)

∣∣∣∣+

(
1− n′

n

)
C

6 ns
∣∣∣∣ R(0, 1/n, 2D, r, a2∗)

(−1)DR(0, 1, 2D, |·|s , a2∗)

∣∣∣∣+
L− 1

n
C. (B.14)



SEMI-PARAMETRIC ESTIMATION OF THE VARIOGRAM SCALE PARAMETER 877

Let us bound the numerator in the above faction. We have, for D = 0,

∣∣R(0, 1/n, 2D, r, a2∗)
∣∣ 6 ∣∣∣∣∣∑

i

a2?i r(i/n)

∣∣∣∣∣
6

(∑
i

∣∣a2?i ∣∣
)
U

∣∣∣∣L− 1

n

∣∣∣∣s+µ ,
from the bound on r pointed out above, and observing that a2?i = 0 for |i| > L.

When D > 1, we have

∣∣R(0, 1/n, 2D, r, a2∗)
∣∣ =

∣∣∣∣∣−∑
i

a2?i i
2D

∫ 1

0

(1− η)2D−1

(2D − 1)!
r

(
iη

n

)
dη

∣∣∣∣∣
6

(∑
i

∣∣a2?i ∣∣
)

(L− 1)2D
1

(2D − 1)!
U

∣∣∣∣L− 1

n

∣∣∣∣s+µ .
Going back to (B.14), with

Ñ = max

((∑
i

∣∣a2?i ∣∣
)
,

(∑
i

∣∣a2?i ∣∣
)

(L− 1)2D
1

(2D − 1)!

)
,

we have that

|EV [Ca,n]− C| 6 n−µ
ÑU (L− 1)

s+µ

(−1)DR(0, 1, 2D, |·|s , a2∗)
+
L− 1

n
C.

This concludes the proof, for instance by taking

K′ =

(
ÑU (L− 1)

s+µ

(−1)DR(0, 1, 2D, |·|s , a2∗)
+ (L− 1)Csup

)2

.

Lemma B.4. In the context of Theorem 3.10, there exists a constant K′′, depending only on
D, s, U, µ,B, β, Csup, a such that

sup
C∈(0,Csup]

sup
V ∈CD,s,C,U,µ,B,β

VarV (Ca,n) 6
K′′

n
.

Proof of Lemma B.4. From (B.13), we have

VarV (Ca,n) =
VarV (Va,n)

n2−4D−2sR(0, 1, 2D, |·|s , a2∗)2
.
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With the notation of the proof of Proposition 3.1, and from the inequality (x+ y)2 6 2x2 + 2y2, we obtain

VarV (Va,n) 6 2An + 2Cn.

From the proof of Proposition 3.1, recalling the notation n′ = n− L+ 1,

An = 2C2n′n−4D−2s
∑
i∈Z

n′ − |i|
n′

R2(i, 1, 2D, |·|s , a2∗)1|i|6n′−1

6 2C2n1−4D−2s
∑
i∈Z

R2(i, 1, 2D, |·|s , a2∗).

The above sum is a finite constant, depending only on D, a, s, from (B.7). Thus with

K̃1 = 2C2
sup

∑
i∈Z

R2(i, 1, 2D, |·|s , a2∗),

we have

An 6 K̃1n
1−4D−2s.

Next, from the proof of Proposition 3.1,

Cn = 2n−4D
n′−1∑

i=−n′+1

(n′ − |i|)R(i, 1/n, 2D, r, a2∗)2. (B.15)

For |i| 6 2L, when D = 0,

∣∣R(i, 1/n, 2D, r, a2∗)
∣∣ =

∣∣∣∣∣∣−
∑
j

a2∗j r

(
i+ j

n

)∣∣∣∣∣∣ 6
∑

j

|a2∗j |

U(3L− 1)s+µn−s−µ.

For |i| 6 2L, when D > 0,

∣∣R(i, 1/n, 2D, r, a2∗)
∣∣ =

∣∣∣∣∣∣−
∑
j

ajj
2D

∫ 1

0

(1− η)2D−1

(2D − 1)!
r

(
i+ jη

n

)
dη

∣∣∣∣∣∣
6

∑
j

|a2∗j |

 (L− 1)2D
1

(2D − 1)!
U(3L− 1)s+µn−s−µ.

Hence, letting

K̃2 = max

∑
j

|a2∗j |

U(3L− 1)s+µ,

∑
j

|a2∗j |

 (L− 1)2D
1

(2D − 1)!
U(3L− 1)s+µ

 ,
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we obtain for |i| 6 2L,

|R(i, 1/n, 2D, r, a2∗)| 6 K̃2n
−s−µ.

As in the proof of Proposition 3.1, we now write d = 2 if s < 3/2 and d = 3 if s > 3/2. By definition we have
β > s− d. As in the proof of Lemma B.3 we define r with (B.12). We recall that for |h| 6 1, |r(d)(h)| 6 B|h|β .
Since |h| 6 1, we can take β̃, only depending on β, such that β̃ 6 β and s − d < β̃ < −1/2. Then we have

B|h|β 6 B|h|β̃ for |h| 6 1 and thus |r(d)(h)| 6 B|h|β̃ for |h| 6 1.
Then, for |i| > 2L, from (B.8) in the proof of Proposition 3.1,

∣∣R(i, 1/n, 2D, r, a2∗)
∣∣ =

∣∣∣∣∣∣−
∑
j

a2∗j j
2D+dn−d

∫ 1

0

(1− η)2D+d−1

(2D + d− 1)!
r(d)

(
i+ jη

n

)
dη

∣∣∣∣∣∣ (B.16)

6

∑
j

|a2∗j |

 (L− 1)2D+dn−d
1

(2D + d− 1)!
B

(
|i| − (L− 1)

n

)β̃
,

since the summand in the sum (B.16) is non-zero only for |j| 6 L − 1 and thus when |(i + jη)/n| 6 1 for
0 6 η 6 1. Defining

K̃3 =

∑
j

|a2∗j |

 (L− 1)2D+d 1

(2D + d− 1)!
B,

and observing that −d− β̃ < −s, we obtain, for |i| > 2L,∣∣R(i, 1/n, 2D, r, a2∗)
∣∣ 6 K̃3n

−s(|i| − L+ 1)β̃ .

Hence we obtain from (B.15)

Cn 6 2n1−4D

(2L+ 1)K̃2
2n
−2s−2µ +

∑
|i|>2L

K̃2
3n
−2s(|i| − L+ 1)2β̃


6 2

(2L+ 1)K̃2
2 +

∑
|i|>2L

K̃2
3(|i| − L+ 1)2β̃

n1−4D−2s.

We let

K̃4 = 2

(2L+ 1)K̃2
2 +

∑
|i|>2L

K̃2
3(|i| − L+ 1)2β̃


and observe that K̃4 is finite because β̃ < −1/2. Hence we have

Cn 6 K̃4n
1−4D−2s
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and thus

VarV (Ca,n) 6
2(K̃1 + K̃4)n1−4D−2s

n2−4D−2sR(0, 1, 2D, |·|s , a2∗)2

and thus the proof is concluded with

K′′ =
2(K̃1 + K̃4)

R(0, 1, 2D, |·|s , a2∗)2
.

Proof of Theorem 3.10. The theorem follows directly from Lemmas B.3 and B.4, by taking K = K′ +K′′.

Proof of Lemma 4.2. (4.4) implies that ∂RC/∂C = R1 then (4.3) gives the result.

Proof of Lemma 5.2. The estimator Ĉ1,j of step (2) obtained from any column j converges in the L1-sense to
C1, with the L1-difference going to zero uniformly over j = 1, . . . , N , from Theorem 3.10. Hence, after averaging,
Ĉ1 converges to C1 in the L1 sense. The result for Ĉ2 is obtained similarly.
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