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RANDOM FORESTS FOR TIME-DEPENDENT PROCESSES

Benjamin Goehry*

Abstract. Random forests were introduced by Breiman in 2001. We study theoretical aspects of
both original Breiman’s random forests and a simplified version, the centred random forests. Under the
independent and identically distributed hypothesis, Scornet, Biau and Vert proved the consistency of
Breiman’s random forest, while Biau studied the simplified version and obtained a rate of convergence
in the sparse case. However, the i.i.d hypothesis is generally not satisfied for example when dealing
with time series. We extend the previous results to the case where observations are weakly dependent,
more precisely when the sequences are stationary β−mixing.
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1. Introduction

Random forests were introduced in 2001 by Breiman in [6] and are since then extremely successful as a
regression and classification method. The popularity comes from the wide range of applications in which they
are used and the accuracy they offer in high-dimensional problems. They are also easy to implement, can be easily
parallelizable and require only few tuning parameters. We can cite as successful applications: chemo-informatics
[24], ecology [9, 19], 3D object recognition [23] and time series prediction [12, 14].

Let a stationary random sequence (Xt, Yt)t∈Z ∈ Rp × R be such that

Yt = f(Xt) + εt (1.1)

and the error εt is such that E [εt|Xt] = 0. The purpose of random forests is to estimate the regression function

∀x ∈ Rp, f(x) = E [Yt | Xt = x] .

In the statistical context we only observe a training sample Dn = ((X1, Y1), . . . , (Xn, Yn)) used to build the

random forest estimator denoted by f̂n.
Random forests can be related to two main sources, regression trees [8] and bagging [5]. Regression trees are

constructed by a recursive partitioning of the input space based on some criterion, dependent or independent of
the data (we detail precisely two in the following), to estimate the regression function f. At each step of the tree
construction, a split is selected (a variable and a location on the variable) based on the evaluation of the criterion
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Figure 1. A partitioning of [0, 1]2 and the associated binary tree. c1, c2, c3 are the constants
associated to each cell.

among all the admissible splits based on all the variables. The cell is cut in two on the selected split and the
previous step is reiterated on the new cells. A tree is then a piecewise constant decomposition of the input space.
We can associated to the input space partitioning a binary tree where each node corresponds to a test matching
how the input space was cut. An illustration is given in Figure 1 of a partitioning in the two-dimensional space
and its associated binary tree. The principle of bagging (short form of bootstrap aggregating) is to create M
randomly generated training sets by randomly sampling αn observations with or without replacement from the
set Dn and to construct on each set a predictor. Once the predictors are constructed, the bagging prediction
for a new observation x is an aggregation, generally the empirical mean, of the predictions given by the M
predictors for the point x. This procedure aims to improve stability and accuracy of the base predictor. In the
context of random forests, the predictors are regression trees.

We study two variants of random forests, the random forest-random input and the centred forest. By con-
struction of the bagging, each predictor is computed in the same way. In order to explain the different procedures
we then have to explicit the construction of one predictor. Let us begin with the variant which remains to this
day the most commonly used and referred to as the original Breiman’s random forest, the random forest-random
input (RF-RI). For a given generated training set of αn points, a tree is computed using the CART [8] criterion:
at each node of the tree the best split is selected by minimising the intra-node variance. This criterion is detailed
in Section 2.1. A subtlety of the RF-RI is to restrict at each node the minimisation of the criterion on a random
subset of mtry variables rather than on the p variables and thereby increase the diversity of the predictors
by adding randomness in the construction. This is then recursively repeated until a stopping criterion is met,
typically when the number of nodes reached a given number or when the number of observations in each node
is below a given threshold.

The RF-RI have received increasing attention in recent years regarding theoretical analysis and we can
cite for example the works described in [18, 21, 22, 25]. Since notations are only set later on for ease of
readability, we decide to develop Section 2.1 with the exception of the result in [22] on which the present
work relies on and doesn’t require additional notations. Assuming that the observations (Xi, Yi)1≤i≤n are
independent and identically distributed as (X,Y ) , they establish the consistency of the pruned version (that

is, the depth of the trees is controlled by a parameter) of the RF-RI, i.e. that E
[
f̂n(X)− f(X)

]2
→ 0 as

n → +∞, for trees where points are selected without replacement and the regression function is an additive
model. Under an additional assumption, yet hard to verify in general, they also established consistency of the
unprunned version (that is, the depth of a tree is not controlled) which is almost the algorithm commonly used
in practice.

The second variant of random forests we study belongs to the so-called purely random forests’s family. The
RF-RI is based on the CART criterion which is heavily data-dependent, the criterion depends on both the
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position of the Xi and the value of the Yi to choose the best split, while the purely random forests are based on
criteria which are independent of the data. The variant we consider is called centred forest which was introduced
in [7]. The first difference with the RF-RI is that there is no re-sampling step, meaning that the set used to
compute the trees is Dn. A tree is then recursively constructed as follows. At each node, a coordinate is chosen
uniformly or according to some probability independent of the data and the split is performed in the middle
of the cell along the selected coordinate. This kind of variants has been preferred for statistical analysis since
they are easier to define, provide non-asymptotic risk bound giving insight in the choice of the parameters of
the forest but also capture some attractive features of the original random forest as the variance reduction by
randomisation and adaptive variable selection. Under the hypothesis that (Xi, Yi)1≤i≤n are i.i.d, [2] established
that if the splits concentrate on the relevant variables then the procedure adapts to sparsity by giving a rate of
convergence which depends on the number of strong features. We refer to [3] for a complete theoretical survey
on random forests.

The aforementioned theoretical results are established under the condition that the observations are indepen-
dent and identically distributed. However, in applications, it is very common to have dependent data instead of
independent one such as in time series and random forests are proven to perform well on these kind of observa-
tions. We may cite as an example of successful applications of random forests in time series [11, 12, 14, 15]. In
this regard, many algorithms were studied in the case of weakly dependent observations, and in particular, when
dealing with β−mixing sequences. The β−mixing provides some kind of measure of how the dependence between
observations decreases as the distance between them increases. It is usually difficult to estimate the mixing rates
in practice. However, β−mixing sequences can be theoretically well-studied and estimated for various classes
of random processes as Gaussian or Markov processes. We refer to [10] and [20] for more details about depen-
dent processes. The general problem of one-step ahead predicting of time series was considered in [17] when
the time series satisfies β−mixing and stationary condition, establishing consistency and rates of convergence
for a certain class of functions which complexity and memory are determined by the data and minimising the
structural risk. Consistency and a rate of convergence are also established for the boosting algorithm in [16]
when the observations are stationary β−mixing. Their rate of convergence has an additional term, we also find
in our analysis, which can be viewed as a penalty when considering β−mixing sequences instead of independent
observations, O

(
n1−a(rβ+1)

)
with a ∈ [0, 1) and where rβ measures the dependence of the mixing sequence we

precise later on.
The paper is organised as follows: we first formalise the models studied and then set the statistical framework

together with the notion of β−mixing sequences. We then state our contribution, including the extension of
the aforementioned results to the case where observations are weakly dependent, namely the consistency of the
RF-RI when trees are not fully grown and the rate of convergence of centred random forests. The proofs are
postponed to the appendices for ease of readability.

2. Models

In this section, we formalise the previous mentioned models, namely the RF-RI and the centred random
forest.

Recall that a random forest (either RF-RI or simpler models) is a collection of M random trees, computed
in the same way, and the trees are constructed from a recursive partitioning of the input space X to which a
binary tree can be associated matching how the input space was cut. We denote for the jth random tree, the
predicted value at the point x, f̂n (x; Θj ;Dn) where (Θ1, . . . ,ΘM ) are independent and identically distributed
as Θ and independent of Dn. The random variable Θ is defined later on depending on the variant. The jth
random tree is defined as follows

f̂n (x; Θj ;Dn) =
∑

i∈Dn(Θj)

1Xi∈An(x;Θj ;Dn)Yi

Nn (x; Θj ;Dn)
1En(X,Θj)
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where Dn (Θj) is the data set which can be dependent on the random variable Θj for example if re-
sampling or sub-sampling is used to construct the jth tree. The cell containing the point x is denoted
An(x,Θj ,Dn),

Nn (x; Θj ;Dn) =

n∑
i=1

1Xi∈An(x,Θj ,Dn) = # {i ∈ {1, . . . , n} , Xi ∈ An(x,Θj ,Dn)}

and En(x,Θj) the event defined by {Nn(x,Θj) 6= 0} . This means that each random tree outputs for a new point
x the average value over all Yi for which the corresponding Xi falls into the cell An (x,Θj ,Dn) of the random
partition.

In the regression case, we aggregate the predictions by taking the average in the following way to get the
random forest estimator

f̂M,n (x; Θ1, . . . ,ΘM ;Dn) =
1

M

M∑
j=1

f̂n (x,Θj ,Dn) . (2.1)

Since M can be chosen as large as possible in practice, we study the properties of the infinite random forest
estimate which is obtained as the limit of equation (2.1) when the number of trees M grows to infinity. The law
of large numbers then justifies using

f̂n(x,Dn) = EΘ

[
f̂n(x,Θ,Dn)

]

instead of f̂M,n (x; Θ1, . . . ,ΘM ;Dn) , where EΘ denotes expectation with respect to Θ conditionally to

Dn. In the following, to ease legibility we omit the dependency on Dn and denote simply f̂n(x) :=

f̂n(x,Dn).

2.1. Random forest - random input

We begin by recalling the variant of random forest which is the most commonly used in practice, the random
forest-random input. We denote:

– αn ∈ {1, . . . , n} the number of sampled data points in each tree;
– mtry ∈ {1, . . . , p} the preselected number of variables for splitting;
– τn ∈ {1, . . . , αn} the number of leaves in each tree.

Here we consider the stopping criterion where the number of leaves must not exceed the given parameter τn.
The random forest is then computed as detailed in Algorithm 1. We shall make a remark regarding the selection
of the nodes. They are not chosen uniformly among all the childless nodes, otherwise, there could exist tree
branches far more developed than other only because of randomness. Usually, all nodes of a given level are split
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(if permitted) then the algorithm considers the nodes of the next level and so on. This remark holds also for
the centred forest in Section 2.2.

Algorithm 1: Random forest - random input
input: Training set ((X1, Y1), . . . , (Xn, Yn))
parameters: number of trees M, number of observations per tree αn, size of preselected variables for
splitting mtry, number of leaves τn

for j ← 1 to M do
Construct the jth tree:

- Draw uniformly αn ≤ n points without replacement.
- Set nnodes = 1.
- while nnodes < τn do

◦ Choose a childless node A, containing more than one observation.
• Select uniformly (without replacement), the set Mtry ⊂ {1, . . . , p} such that |Mtry| = mtry.
• Choose the best split in the cell A maximising the CART criterion, defined in equation (2.2),

on Mtry.
• Cut the cell A according to the best split. Let AR and AL be the cells we obtain.
• nnodes = nnodes + 1.

end

end
output for a new observation x: mean of the M predictions given by the trees for x.

The CART criterion is defined as follows. Let CA be the set of all possible cuts in the cell A. For any
(j, z) ∈ CA, the CART-split criterion takes the form

Ln(j, z) =
1

Nn(A)

n∑
i=1,Xi∈A

(Yi − ȲA)2 − 1

Nn(A)

n∑
i=1,Xi∈A

(Yi − ȲAL1X(j)
i <z

− ȲAR1X(j)
i ≥z

)2, (2.2)

with Xi =
(
X

(1)
i , . . . , X

(p)
i

)
, AL =

{
x ∈ A, x(j) < z

}
, AR =

{
x ∈ A, x(j) ≥ z

}
and ȲA (resp. ȲAL , ȲAR) is the

average of the Yi’s belonging to A (resp. AL, AR).
Let us suppose that the observations (Xi, Yi)1≤i≤n are independent and identically distributed as (X,Y ) . A

link between the error of the finite and infinite forest is established in [21] and shows that the error of the finite
forest can be made arbitrary close to the infinite one provided that the number of trees is large enough,

E

[
f̂M,n(X)− f(X)

]2
−E

[
f̂n(X)− f(X)

]2
≤

8
(
‖f‖∞ + σ2 (1 + 4 log n)

)
M

when ε is a centred Gaussian noise with finite variance σ2 > 0 and independent of X. Another consequence of
this result is that as soon as infinite random forests are consistent then the finite random forests are consistent
provided that logn

M −→
n→∞

0. Asymptotic normality of random forests based on subsampling was proven in [18]

when the subsample size αn grows slower than
√
n, i.e. that αn√

n
−→
n→∞

0 and that the number of trees M varies

with n, i.e. that n
M −→

n→∞
C for some constant C > 0. However, this does not necessarily imply that random

forests are asymptotically unbiased. This gap was filled in [25] and also established that the infinitesimal jackknife
consistently estimates the forest variance under the less restrictive condition that the subsample size grows such
that αn lognp

n −→
n→∞

0.
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2.2. Centred forest

We now recall the construction of the centred random forest introduced in [7], detailed in Algorithm 2.

Algorithm 2: Centred random forest
Data:((X1, Y1), . . . , (Xn, Yn))
Initialisation: τn
Repeat recursively dlog2 τne times:

- At each node, select a coordinate j ∈ {1, . . . , d} with probability pn,j ∈ (0, 1) where
∑d
j=1 pn,j = 1;

- The split is performed at the centre of the cell along the selected variable.

We note that τn ≥ 2 is a fixed deterministic parameter which may depend on n but not on Dn and that
each tree has exactly 2dlog2 τne ≈ τn nodes. However, there is no re-sampling step in the centred random forest
algorithm and so Dn (Θ) = ((X1, Y1), . . . , (Xn, Yn)) .

3. Statistical framework

Let us denote (Wt)t∈Z := (Xt, Yt)t∈Z where (Xt, Yt) are defined in equation (1.1). The first assumption
throughout this paper is that the random sequence (Wt)t∈Z is stationary. More precisely, we assume that
(Wt)t∈Z is a strongly stationary process as defined in Definition 3.1.

Definition 3.1. The process (Wt)t∈Z is said to be (strongly) stationary if ∀k ∈ N,∀ (t1, . . . , tk) ∈ Zk and for
all τ ∈ Z,

(Wt1+τ , . . .Wtk+τ ) = (Wt1 , . . .Wtk)

in distribution.

In order to prove the consistency of the RF-RI we also need to assume that (Wt)t∈Z is an ergodic process as
defined in Definition 3.2.

Definition 3.2. The process (Wt)t∈Z is said to be (mean-)ergodic if

1

2K

K∑
t=−K

Wt
L2

−→
K→∞

E (Wt) .

Let (Cn)n be a positive sequence and define the truncation operator TCn by

TCnu =

{
u when |u| ≤ Cn
Cn when |u| > Cn.

and the set

TCnGn = {TCng, g ∈ Gn}

where Gn = G(Dn) denotes a class of functions g : X → Y. Following the definition of the truncation operator
T we denote

WL = TLW
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and

Wi,L = TLWi

for W = X or Y.
The consistency proof in [22] relies on the general consistency theorem found in [13]. In order to extend

the consistency result to the dependent case, we use the extension of the general consistency theorem to the
stationary ergodic setting as stated in Proposition 3.3. We postpone the proof in Appendix B for ease of
readability.

Proposition 3.3. Let (Wt)t∈Z be a stationary ergodic process and Dn a data set. Let Gn = G(Dn) be a class of

functions g : X → Y, (Cn)n a positive sequence, f the regression function in equation (1.1) and f̂n an estimator
which minimises the empirical L2 risk on Gn. If

lim
n→∞

Cn =∞, (3.1a)

lim
n→∞

E

{
inf

g∈Gn,‖g‖∞≤Cn

∫
|g(x)− f(x)|2 µ( dx)

}
= 0, (3.1b)

lim
n→∞

E

{
sup

g∈TCnGn

∣∣∣∣∣ 1n
n∑
i=1

|g(Xi)− Yi,L|2 −E [g(X)− YL]
2

∣∣∣∣∣
}

= 0 ∀L > 0 (3.1c)

then

lim
n→∞

E

{∫
|f̂n(x)− f(x)|2µ( dx)

}
= 0.

We recall the notion of weak dependence, more precisely the β−mixing case in which we establish the results.

Definition 3.4 (β-mixing process). Let σl = σ(W l
1) and σ′l+m = σ(W∞l+m) be the sigma-algebras of events gen-

erated by the random variables W l
1 = (W1, . . .Wl) and W∞l+m = (Wl+m,Wl+m+1, . . .). The β-mixing coefficients

is given by

βm = sup
l≥1

E

[
sup

B∈σ′l+m
|P(B|σl)− P(B)|

]

where the expectation is taken with respect to σl.
A stochastic process is said to be absolutely regular, or β-mixed, if

lim
m→∞

βm = 0.

The most common β−mixing coefficients are known as the algebraic and exponential mixing defined as
follows,

1. Algebraic mixing: βm = O(m−rβ ) for rβ > 0.
2. Exponential mixing: βm = O(exp(−bmkβ )) for b, kβ > 0.

The exponential mixing hypothesis is stronger than algebraic mixing. The values rβ and kβ are called the
mixing exponents and the i.i.d process can be recovered by taking either the limit rβ → +∞ for the algebraic
mixing or kβ → +∞ for the exponential mixing.
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The β−mixing property is appealing in the theoretical setting since many statistical properties are preserved
under this condition and are easy to manipulate. One method to manipulate β−mixing sequences is by using
a lemma established in [26], recalled in Lemma A.1. Using this lemma, the dependent process is approximated
with independent blocks of observations plus some linear function in β.

4. Result for the RF-RI

We recalled the studied models and the notion of weak dependence. We need the following hypotheses to
establish the consistency of the RF-RI when the observations are weakly dependent:

- H1a: the data set Dn = ((X1, Y1) , . . . , (Xn, Yn)) is composed of stationary ergodic β−mixing (Xi, Yi) ∈
[0, 1]

p × R;
- H2a: the errors (εi)1≤i≤n are independent;
- H3a: the response Y follows the additive model

Y =

p∑
j=1

fj(X
(j))︸ ︷︷ ︸

f(X)

+ε

where X =
(
X(1), . . . , X(p)

)
is uniformly distributed over [0, 1]p, ε is an independent centred Gaussian

noise with finite variance σ2 > 0 and each component fj is continuous.

We can now state the result of consistency of random forests when the observations are weakly dependent
under the regime τn < αn (i.e. the trees are not fully grown).

Theorem 4.1. Assume the hypothesis of stationary ergodic β−mixing data H1a, the independent errors hypoth-
esis H2a and that the additive model hypothesis H3a. If there exists a sequence an verifying 1 ≤ an ≤ n such

that τn log(αn)9an
αn

−→
n→∞

0 and
log(αn)4βanαn

an
−→
n→∞

0, then RF-RI are consistent, i.e.

E

[
f̂n(X)− f(X)

]2
−→
n→∞

0.

Let us first verify if we recover the result in the independent case. If the observations (Xi, Yi)1≤i≤n are
independent, βm = 0 for all m ≥ 0. We then get exactly the same hypotheses and result as in [22] by setting an
equal to 1.

The hypotheses H2a and H3a are the same as in [22]. Note however that in the context of β− mixing
processes, the independent errors hypothesis H2a is not necessarily true but is assumed in some theoretical
models as in the autoregressive model. We refer to [4] for a complete survey of processes verifying the β−mixing
condition. An interesting perspective would be to extend the result to the case where the errors are not assumed
to be i.i.d.

The condition τn log(αn)9an
αn

−→ 0 as n tends to infinity is also highly similar to the last hypothesis in their
theorem and recover it by setting an equal to 1. The last one is simply saying that the dependence between the
data must not be too long in order to have consistency of the forest. Let us see how the dependence influences
the number of leaves parameter τn. Let us suppose, in the following analysis, that rβ (or kβ in the exponential
mixing case) is known. Let us consider the algebraic mixing case and suppose that an = αan with 1

1+rβ
< a < 1.

The last condition is then verified and the greatest value of τn must verify the following in order to obtain
consistency:

τn log (αn)
9

α

rβ
1+rβ
n

−→
n→∞

0.
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In the exponential mixing case, suppose that an = c
b log (αn)

1
kβ with c > 1. The last condition is then equal to

log(αn)
4− 1

kβ

αc−1
n

which tends to 0 as n tends to infinity. The penultimate condition can then be rewritten, implying

that τn cannot be greater than the following condition is true,

τn log (αn)
9+ 1

kβ

αn
−→
n→∞

0.

This analysis leads to the following conclusion. The nature of the hypothesis appears in the choice of the
parameter τn, influenced by rβ (or kβ) : the stronger the dependence between the observations, meaning that rβ
(or kβ) is small, the shallower the trees need to be compared to the trees constructed based on i.i.d observations,
in order to guarantee convergence.

5. Results on centred random forest

We analyse now the convergence rates of the centred random forest model when the observations are sta-
tionary β-mixing. The space [0, 1]

p
is equipped with the standard Euclidean metric. We analyse the centred

random forest in a sparse framework; this arises from the fact that in many applications the true dimension is
always smaller than p. We assume that the regression function only depends on a nonempty subset S of the p
features. We use the letter S to denote the cardinal of S. Based on this assumption we have

f(X) = E [Y |XS ]

where XS =
{
X(i), i ∈ S

}
. Let us introduce f∗ : [0, 1]

S → R that is the section of f corresponding to S. We
then have

f(X) = f∗ (XS) .

We also need the following hypotheses to establish the results:

- H1b: the data setDn = ((X1, Y1) , . . . , (Xn, Yn)) is composed of stationary β−mixing (Xi, Yi) ∈ [0, 1]
p×R;

- H2b: the errors εi := Yi − f(Xi) are independent of finite variance σ2 > 0.

5.1. Convergence rates

We first decompose E
[
f̂n(X)− f(X)

]2
with the variance/bias decomposition:

E

[
f̂n(X)− f(X)

]2
= E

[
f̂n(X)− f̃n(X)

]2
︸ ︷︷ ︸

Variance

+E

[
f̃n(X)− f(X)

]2
︸ ︷︷ ︸

Bias

where

f̃n(X) =

n∑
i=1

EΘ [Wn,i(X,Θ)] f(Xi). (5.1)

with

Wn,i(X,Θ) =
1Xi∈An(X,Θ)∑n
k=1 1Xk∈An(X,Θ)

1En(X,Θ) ∀i ∈ {1, . . . n} .
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We assume throughout that the coordinate-sampling probabilities are such that pn,j = 1
S (1 + νn,j) for j ∈ S

and pn,j = νn,j otherwise where each νn,j tends to 0 as n tends to infinity.
The first result concerns the variance term and the second the bias term.

Proposition 5.1. Assume the hypotheses of stationary β−mixing data H1b, independent errors H2b and
that X is uniformly distributed on [0, 1]

p
.Assuming that the coordinate-sampling probabilities are such that

pn,j = 1
S (1 + νn,j) for j ∈ S and if there exists a sequence an verifying 1 ≤ an ≤ n then

E

[
f̂n(X)− f̃n(X)

]2
≤ Cσ2

(
S2

S − 1

)S/2p
(1 + νn)

τna
2
n

n(log τn)S/2p
+ σ2 βann

an

where

C =
576

π

(
π log 2

16

)S/2p
and

1 + νn =
∏
j∈S

[
(1 + νn,j)

−1

(
1− νn,j

S − 1

)−1
]1/2p

.

As noted in [2], if plower < pn,j < pupper for some constants plower, pupper ∈ (0, 1) we have

1 + νn ≤
(

S − 1

S2plower (1− pupper)

) S
2p

.

Proposition 5.2. Assume the hypotheses of stationary β−mixing data H1b, X is uniformly distributed on
[0, 1]

p
and f∗ is L-Lipschitz on [0, 1]

S
. Assuming that the coordinate-sampling probabilities are such that pn,j =

1
S (1 + νn,j) for j ∈ S and if there exists a sequence an verifying 1 ≤ an ≤ n then

E

[
f̃n(X)− f(X)

]2
≤ 2SL2an

τ
0,75
S log 2 (1+γn)
n

+ exp

(
− µn

2τn

)
sup

x∈[0,1]p
f2(x)

+
βann

an

[
SL2 + sup

x∈[0,1]p
f2(x)

]

where γn = minj νn,j .

The bias in the weakly dependent case only depends on the true dimension and not p which confirms the
intuition and the result in the independent case as noted in [2]. However, we should keep in mind, whether in
the dependent or independent setting, that the result relies on the assumption that the splits concentrate on
the relevant variables.

Using the inequality z exp (−nz) ≤ 1
en for z ∈ (0, 1] and combining both previous convergence rates we get

the following result.

Theorem 5.3. Assume the hypotheses of stationary β−mixing data H1b, independent errors H2b, X is uni-
formly distributed on [0, 1]

p
and f∗ is L-Lipschitz on [0, 1]

S
. Assuming that the coordinate-sampling probabilities
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are such that pn,j = 1
S (1 + νn,j) for j ∈ S and if there exists a sequence an verifying 1 ≤ an ≤ n then

E

[
f̂n(X)− f(X)

]2
≤ 2SL2an

τ
0,75
S log 2 (1+γn)
n

+ C1,n
τna

2
n

n
+ C2

βann

an

with

C1,n = 4e−1 sup
x∈[0,1]p

f2(x) + Cσ2

(
S2

S − 1

)S/2p
(1 + νn) ,

C2 = SL2 + σ2 + sup
x∈[0,1]p

f2(x).

The remark done previously on the independent error hypothesis H2a holds obviously for H2b as well.
The hypothesis X ∼ U(0, 1)p is only a convenience and can be easily extended to the case where X admits a
Lebesgue density which is lower and upper bounded.

We also recover the convergence rate in the independent setting given in [2] up to a constant factor. Let us
suppose that we are in the independent case hence βm = 0 for all m ≥ 1. Setting an equal to 1 and plugging
into Propositions 5.1 and 5.2, we get exactly the same upper bound for the variance as in [2] back. However,

regarding the bias term, we get a term with exp
(
− n

4τn

)
instead of exp

(
− n

2τn

)
which is due to a necessary

pre-processing needed in order to work with β−mixing sequences.
Under the hypothesis of algebraic mixing and thus exponential mixing, the term depending on β is converg-

ing to 0 when n tends to infinity. The last term shows the price we must pay when dealing with β−mixing
sequences instead of independent observations. More precisely, under algebraic mixing the penalty is of the form
O
(
n1−a(rβ+1)

)
with a ∈ [0, 1) which is the same penalty as in the convergence rate of boosting established in

[16]. The following corollary precises, under algebraic and exponential mixing conditions, the choices of τn with
the associated upper bound on the rate of consistency.

Corollary 5.4. Suppose that rβ and kβ are known.

1. Under algebraic mixing condition; choosing

an ∝ n
1.5+S log 2

2.25+2S log 2+rβ(0.75+S log 2) .

This implies that the parameter τn is of the form

τn ∝ n
(1+rβ)S log 2

2.25+2S log 2+rβ(0.75+S log 2)

and achieves the following convergence rate:

E

[
f̂n(X)− f(X)

]2
= O

(
n

−0.75rβ+0.75+S log 2

rβ(0.75+S log 2)+2.25+2S log 2

)
.

2. Under exponential mixing; taking

an ∝ log n
1
kβ
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gives

τn ∝

(
n

log n
1
kβ

) S log 2
0.75+S log 2

.

Plugging into equation (??) we get

E

[
f̂n(X)− f(X)

]2
= O


 log n

1.5+S log 2
kβ

n0.75

 1
0.75+S log 2

 .

The form of the convergence rate under algebraic mixing condition implies that in order to have consistency,
we need the couple (rβ , S) to satisfy the inequality 0.75 + S log 2 < 0.75rβ . It also implies that this result only
treats the case where rβ ≥ 1.41. We note that we recover the same optimal parameter and convergence rate
as in [2] by letting rβ go to infinity. Under exponential mixing condition, the chosen τn is, up to a logarithmic
factor in the denominator, the optimal parameter in the i.i.d case and gives the same convergence rate up to a
logarithmic term depending on the inverse of kβ .

The previous analysis leads to the following conclusion. The choice of the parameter τn is determined by the
nature of the hypothesis; the stronger the dependence between the observations, meaning that rβ (or kβ) is
small, the shallower the trees need to be compared to the trees constructed based on i.i.d observations, in order
to guarantee convergence.

6. Conclusion

The results for either the random forest-random input or the centred forest lead to the same conclusion: the
more the dependence between the observations is long, the shallower the trees need to be compared to the trees
constructed based on independent and identically distributed observations.

Theses results may also lead to new variants of random forests. The proofs of the results are based on a
decomposition in blocks of the random process and the blocks are close to being independent. An analogy can
be drawn between this decomposition and the so-called block bootstraps commonly used in time series estimation.
Instead of considering the observations one by one, the algorithm is fed with blocks of observations and lead
to better estimations. It could be interesting to modify the random forest algorithm in the same way to get a
random forest adapted to time series.

Appendix A. Proofs

The proofs are based on the construction and lemma given in [26], also recalled below, but we note that a
similar coupling lemma is proved in [1].

We divide the sequence (Wi)1≤i≤n into 2µn blocks each of size an. We assume that n = 2µnan and so consider
that there is no remaining terms. We then define for 1 ≤ i ≤ µn,

Hj = {i : 2(j − 1)an + 1 ≤ i ≤ (2j − 1)an}
Tj = {i : (2j − 1)an + 1 ≤ i ≤ 2jan} .

and we denote

W (j) = {Wi, i ∈ Hj}
W ′(j) = {Wi, i ∈ Tj} .
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Figure A.1. Construction of the new independent sequence Ξ.

We then denote the sequence of H-blocks Wan =
(
W (j)

)
1≤j≤µn

. We construct a sequence of independently

distributed blocks Ξan =
(
Ξ(j)

)
1≤j≤µn

where Ξ(j) = {ξi, i ∈ Hj} and such that for all j ∈ {1, . . . , n} ,

W (j) (d)
= Ξ(j).

We construct in the same way a sequence of T -blocks. An illustration of this construction is given in
Figure A.1.

Lemma A.1 ([26]). Let the distributions of Wan and Ξan be Q and Q̃ respectively. Then for any measurable
function u on Ranµn with bound m,

|EQu(Wan)−EQ̃u(Ξan)| ≤ mµnβan .

A.1 Proof of theorem 4.1

The proof consists in applying Proposition 3.3. The computation of the approximation error is the same as
in [22] since it does not require the independence of (Xi, Yi)1≤i≤n but only stationarity and that the errors
(εi)1≤i≤n are independent. This verifies equation (3.1b).

The partition obtained with the random variable Θ and the data set Dn is denoted by Pn(Dn,Θ). We let

Πn(Θ) = {P ((x1, y1) , . . . , (xn, yn) ,Θ) , (xi, yi) ∈ [0, 1]
p × [0, 1]}

be the family of all achievable partitions with random parameter Θ. We let

M (Πn(Θ)) = max {Card(P,P ∈ Πn(Θ)}

be the maximal number of terminal nodes among all partitions in Πn(Θ).
Given a set zn1 = {z1, . . . , zn} ⊂ [0, 1]

p
,Γn (zn1 ,Πn(Θ)) denotes the number of distinct partitions of zn1 induced

by elements of Πn(Θ), that is, the number of different partitions {zn1 ∩A,A ∈ P} of zn1 , for P ∈ Πn(Θ).
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Consequently, the partitioning number Γn (Πn(Θ)) is defined by

Γn (Πn(Θ)) = max {Γ (zn1 ,Πn(Θ)) , z1, . . . , zn ∈ [0, 1]
p} .

Let Gn(Θ) be the set of all functions g : [0, 1]
p → R piecewise constant on each cell of the partition Pn(Θ).

We define as in [22], Cn = ‖f‖∞ + σ
√

2 log (αn)
2
, hence equation (3.1a) is verified.

Regarding the estimation error, it is very similar to the computation done in [22] but we need to use a result
established in [17] to introduce the β−mixing coefficient. This will prove equation (3.1c).

Theorem A.2. Let (Wt)t∈Z be a β-mixing stationary stochastic process, with |Yi| ≤ An and let Gn be a class
of functions g : Rp → R. Then, for any d ≥ 2,

P

 sup
g ∈ Gn(Θ)
‖g‖ ≤ An

∣∣∣∣∣∣ 1n
n∑
j=1

|Yj − g(Xj)|d −E [Y − g(X)]
d

∣∣∣∣∣∣ > δ


≤ 8EN

(
δ

32d(2An)d−1
,Gn(Θ), l1,n

)
exp

(
− µnδ

2

128(2An)2d

)
+ 2µnβan

where N (ν,G(Θ), l1,n) is the ν-covering number of Gn(Θ) w.r.t l1,n := 1
n

∑n
i=1|f(Xi)− g(Xi)|.

Using Theorem A.2 we get,

P

 sup
g ∈ Gn(Θ)
‖g‖ ≤ Cn

∣∣∣∣∣ 1

αn

αn∑
i=1

|g(Xi)− Yi,L|2 − E|g(X)− YL|2
∣∣∣∣∣ > δ


≤ 8EN

(
δ

128Cn
,Gn(Θ), l1,n

)
exp

(
− µnδ

2

128(2Cn)4

)
+ 2µnβan

where αn = 2µαnaαn . For simplicity’s sake, we denote µn = µαn and an = aαn .

Let us compute EN
(

δ
128CN

,Gn(Θ), l1,n

)
(cf. [13]),

N
(

δ

128Cn
,Gn(Θ), l1,n

)
≤ Γn(Πn(Θ))

3

(
3e(2Cn)

δ
128Cn

)2
M(Πn(Θ))

≤ Γn(Πn(Θ))

[
3

(
768eC2

n

δ

)2
]M(Πn(Θ))

≤ Γn(Πn(Θ))

[
1331eC2

n

δ

]2M(Πn(Θ))

.

Hence

EN
(

δ

128Cn
,Gn(Θ), l1,n

)
≤ E

(
Γn(Πn(Θ))

[
1331eC2

n

δ

]2M(Πn(Θ))
)
.
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Going back to the probability computation

P

 sup
g ∈ Gn(Θ)
‖g‖ ≤ Cn

∣∣∣∣∣ 1

αn

αn∑
i=1

|g(Xi)− Yi|2 − E|g(X)− Y |2
∣∣∣∣∣ > δ


≤ 2µnβan + 8 exp

(
− µnδ

2

2048C4
n

)
E

(
exp

(
2M(Πn(Θ)) log

(
1331eC2

n

δ

))
exp (log(Γn(Πn(Θ)))

)
.

Since M(Πn(Θ)) ≤ τn and Γn(Πn(Θ)) ≤ (dαn)τn ,

2µnβan + 8 exp

(
− µNδ

2

2048C4
N

)
E

(
exp

(
2M(ΠN (Θ)) log

(
1331eC2

n

δ

))
exp (log(Γn(Πn(Θ)))

)
≤ 2µnβan + 8 exp

(
− µnδ

2

2048C4
n

+ 2τn log

(
1331eC2

n

δ

)
+ τn log (dαn)

)
≤ 2µnβan + 8 exp

(
−µn
C4
n

[
δ2

2048
− 2τnC

4
n

µn
log

(
1331eC2

n

δ

)
− τnC

4
n

µn
log (dαn)

])
.

For n large enough,

P

 sup
g ∈ Gn(Θ)
‖g‖ ≤ Cn

∣∣∣∣∣ 1

αn

αn∑
i=1

|g(Xi)− Yi|2 − E|g(X)− Y |2
∣∣∣∣∣ > δ

 ≤ 2µnβan + 8 exp

(
−µn
C4
n

ηδ,n

)

with

ηδ,n =
δ2

2048
−

8σ4τn log (αn)
8

log
(

2662eσ2 log(αn)4

δ

)
µn

− 4σ4τn log (αn)
8

log (dαn)

µn

≤ δ2

2048
−

8σ4τn log (αn)
8

log
(

2662eσ2 log(αn)4

δ

)
µn

− 4σ4τn log (dαn)
9

µn
.

We can now show that equation (3.1c) holds:

lim
n→∞

E

{
sup

g∈TCnGn

∣∣∣∣∣ 1n
n∑
i=1

|g(Xi)− Yi,L|2 −E [g(X)− YL]
2

∣∣∣∣∣
}

= 0∀L > 0.

We denote

I = sup
g∈TCnGn

∣∣∣∣∣ 1n
n∑
i=1

|g(Xi)− Yi,L|2 −E [g(X)− YL]
2

∣∣∣∣∣ .
and observe that

I ≤ 2(Cn + L)2.
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Thus for n large enough

E {I} ≤ E {I1I>δ + I1I≤δ}

≤ δ + 2(Cn + L)2

(
2µnβan + 8 exp

(
−µn
C4
n

ηδ,n

))
= δ + 16(Cn + L)2 exp

(
−µn
C4
n

ηδ,n

)
+ 4(Cn + L)2µnβan .

Hence with the β−mixing condition

lim
n→∞

E

{
sup

g∈TCnGn

∣∣∣∣∣ 1n
n∑
i=1

|g(Xi)− Yi,L|2 −E [g(X)− YL]
2

∣∣∣∣∣
}

= 0∀L > 0.

Thus, according to Proposition 3.3,

lim
n→∞

E

(
TCn f̂n(X,Θ)− f(X)

)2

= 0.

We only need to check if the non-truncated random forest estimate is consistent, this step is identical to [22].
�

A.2 Proofs for centred forests

Proof of the variance rate, Proposition 5.1. We follow the proof given in [2]. Since the training sample is not
independent, we cannot get the same lines and results but the main ideas are, associated with Lemma A.1, the
same.

Remember that the random forest estimator is written

f̂n(X,Dn) = EΘ

[
f̂n(X,Θ,Dn)

]
with

f̂n(X,Θ,Dn) =

n∑
i=1

Wn,i(X,Θ)Yi

Thus, omitting the dependence in Dn, the random forest estimator can be written

f̂n(X) =

n∑
i=1

EΘ [Wn,i(X,Θ)]Yi.

We can now begin the computation,

E

[
f̂n(X)− f̃n(X)

]2
= E

[
n∑
i=1

EΘ [Wn,i(X,Θ)] (Yi − f(Xi))

]2

= E

[
n∑
i=1

E
2
Θ [Wn,i(X,Θ)] (Yi − f(Xi))

2

]

+E

 n∑
i=1

n∑
j=1,j 6=i

EΘ [Wn,i(X,Θ)Wn,j(X,Θ)] εiεj

 . (A.1)



RANDOM FORESTS FOR TIME-DEPENDENT PROCESSES 817

The second term of equation (A.1) is equal to zero since the errors (εi)1≤n are independent by hypothesis
H2b.

We next analyse the first term. We can upper-bound

E

[
n∑
i=1

E
2
Θ [Wn,i(X,Θ)] ε2i

]
≤ σ2

E

[
n∑
i=1

E
2
Θ [Wn,i(X,Θ)]

]
(by hypothesis on the variance of the errors H2b).

The next step is to analyse the expectation of Wn,i. Since the data is not independent we cannot do exactly
the same as in [2]. We need to rewrite the sum over n, decompose it in blocks and then use Lemma A.1. We
can then use a similar argument as [2] which is, by introducing another random variable, to reveal a random
binomial variable in the denominator. Let us first decompose the previous term

E

[
n∑
i=1

E
2
Θ [Wn,i(X,Θ)]

]
= E

 µn∑
j=1

∑
i∈Hj

E
2
Θ [Wn,i(X,Θ)]

+E

 µn∑
j=1

∑
i∈Tj

E
2
Θ [Wn,i(X,Θ)]


= E

[
u(XH

an)
]

+E
[
u(XT

an)
]

where

u(XB
an) =

µn∑
j=1

∑
i∈Bj

E
2
Θ [Wn,i(X,Θ)]

for B = H or T. We easily observe that u ≤ 1 by definition of Wn,i.

Let us begin with the first part of the right hand:

E

 µn∑
j=1

∑
i∈Hj

E
2
Θ [Wn,i(X,Θ)]

 ≤ E
 µn∑
j=1

∑
i∈Hj

E
2
Θ

[
W̃n,i(X,Θ)

]+ µnβan

with

W̃n,i(X,Θ) =
1ξ1

i∈An(X,Θ)∑n
k=1 1ξ1

k∈An(X,Θ)

1Ẽn(X,Θ)

where
(
ξ1
i

)
1≤i≤n denotes the first coordinate of the sequence (ξi)1≤i≤n and

Ẽn(X,Θ) =

{
n∑
i=1

1ξ1
i∈An(X,Θ) 6= 0

}
.
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We introduce Θ′ independent of Θ but with same distribution,

E

 µn∑
j=1

∑
i∈Hj

E
2
Θ

[
W̃n,i(X,Θ)

] =

µn∑
j=1

E

∑
i∈Hj

EΘ

[
W̃n,i(X,Θ)

]
EΘ′

[
W̃n,i(X,Θ

′)
]

=

µn∑
j=1

E

∑
i∈Hj

EΘ,Θ′

[
W̃n,i(X,Θ)W̃n,i(X,Θ

′)
]

=

µn∑
j=1

EX,Θ,Θ′

∑
i∈Hj

1ξi∈An(X,Θ)∩An(X,Θ′)(∑n
k=1 1ξ1k∈An(X,Θ)

)(∑n
k=1 1ξ1k∈An(X,Θ′)

)1Ẽn(X,Θ)1Ẽn(X,Θ′)

 .
For a fixed j,

EX,Θ,Θ′

∑
i∈Hj

1ξ1i∈An(X,Θ)∩An(X,Θ′)(∑n
k=1 1ξ1k∈An(X,Θ)

)(∑n
k=1 1ξ1k∈An(X,Θ′)

)1Ẽn(X,Θ)1Ẽn(X,Θ′)


≤ EX,Θ,Θ′

∑
i∈Hj

1ξ1i∈An(X,Θ)∩An(X,Θ′)E

 1(
1 +

∑n
k=1,k 6∈Hj 1ξ1k∈An(X,Θ)

)(
1 +

∑n
k=1,k/∈Hj 1ξ1k∈An(X,Θ′)

)
∣∣∣∣∣∣X, ξ1

i ,Θ,Θ
′

.
By independence of the blocks we can remove the conditioning to ξ1

i ,

E

 1(
1 +

∑n
k=1,k 6∈Hj 1ξ1

k∈An(X,Θ)

)(
1 +

∑n
k=1,k/∈Hj 1ξ1

k∈An(X,Θ′)

)
∣∣∣∣∣∣X, ξ1

i ,Θ,Θ
′


= E

 1(
1 +

∑n
k=1,k 6∈Hj 1ξ1

k∈An(X,Θ)

)(
1 +

∑n
k=1,k/∈Hj 1ξ1

k∈An(X,Θ′)

)
∣∣∣∣∣∣X,Θ,Θ′

 .
Using Cauchy-Schwarz’s inequality, for a fixed j,

E

 1(
1 +

∑n
k=1,k 6∈Hj 1ξ1

k∈An(X,Θ)

)(
1 +

∑n
k=1,k/∈Hj 1ξ1

k∈An(X,Θ′)

)
∣∣∣∣∣∣X,Θ,Θ′


≤ E1/2

 1(
1 +

∑n
k=1,k 6∈Hj 1ξ1

k∈An(X,Θ)

)2

∣∣∣∣∣∣∣X,Θ


×E1/2

 1(
1 +

∑n
k=1,k 6∈Hj 1ξ1

k∈An(X,Θ′)

)2

∣∣∣∣∣∣∣X,Θ′
 .

Using the following fact (cf.[13]) that

E

[
1

1 +Bin(N, p)2

]
≤ 3

(N + 1)(N + 2)p2
.
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and since each blocks are independent

E
1/2

 1(
1 +

∑n
k=1,k 6∈Hj 1ξ1

k∈An(X,Θ)

)2

∣∣∣∣∣∣∣X,Θ
 ≤ E1/2

 1

1 +
(∑2µn−1

j̃=1
1ξ1

j̃
∈An(X,Θ)

)2

∣∣∣∣∣∣∣X,Θ


where j̃ denotes one component of each block (Hj)1≤j≤µn and (Tj)1≤j≤µn. By independence of the blocks we
get

2µn−1∑
j̃=1

1ξj̃∈An(X,Θ)
∼ Bin (2µn − 1,P(X ∈ An(X,Θ)|X,Θ)) .

Since we suppose that the law is uniform on [0, 1]
p

and by the construction of the tree we get

P (X ∈ An(X,Θ)|X,Θ) = 2−dlog2 τne.

The same is done for the conditional expectation with respect to (X,Θ′) . Thus

EX,Θ,Θ′

∑
i∈Hj

1ξ1i∈An(X,Θ)∩An(X,Θ′)E

 1(
1 +

∑n
k=1,k 6∈Hj 1ξ1k∈An(X,Θ)

)(
1 +

∑n
k=1,k/∈Hj 1ξ1k∈An(X,Θ′)

)
∣∣∣∣∣∣X, ξ1

i ,Θ,Θ
′


≤ 3× 22dlog2 τne

4µ2
n

EX,Θ,Θ′

∑
i∈Hj

1ξ1i∈An(X,Θ)∩An(X,Θ′)


≤ 12τ2

n

4µ2
n

EX,Θ,Θ′

∑
i∈Hj

1ξ1i∈An(X,Θ)∩An(X,Θ′)


≤ 3τ2

n

µ2
n

anP
(
ξ1
1 ∈ Ãn (X,Θ) ∩ Ãn

(
X,Θ′)) .

The last inequality using the fact that even though dependent, they have the same distribution.
The rest is the same as in [2]. After the computations over H, we get

E

 µn∑
j=1

∑
i∈Hj

E
2
Θ

[
W̃n,i(X,Θ)

] ≤ C̃ ( S2

S − 1

)S/2p
(1 + νn)

τnanµn
µ2
n(log τn)S/2p

with

C̃ =
144

π

(
π log 2

16

)S/2p
and

1 + νn =
∏
j∈S

[
(1 + νn,j)

−1

(
1− νn,j

S − 1

)−1
]1/2p

.

We do the same over T .
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Combining both analyses we have

E

[
f̂n(X)− f̃n(X)

]2
≤ 2C̃σ2

(
S2

S − 1

)S/2p
(1 + νn)

τnan
µn(log τn)S/2p

+ 2σ2βanµn.

By construction of the blocs µn = n
2an

, plugging in the previous expression we have

E

[
f̂n(X)− f̃n(X)

]2
≤ Cσ2

(
S2

S − 1

)S/2p
(1 + νn)

τna
2
n

n(log τn)S/2p
+
σ2βann

an

with

C =
576

π

(
π log 2

16

)S/2p
and

1 + νn =
∏
j∈S

[
(1 + νn,j)

−1

(
1− νn,j

S − 1

)−1
]1/2p

.

Proof of the bias term, Proposition 5.2. The start of the proof is the same as in [2] since it does not use the
hypothesis of independence between the observations:

E

[
f̃n(X)− f(X)

]2
≤ E

[
n∑
i=1

Wn,i(X,Θ) (f(Xi)− f(X))

]2

+ sup
x∈[0,1]d

f2(x)P (Ecn(X,Θ))

≤ E

[
n∑
i=1

Wn,i(X,Θ) (f∗(Xi,S)− f∗(XS))
2

]
+ sup
x∈[0,1]d

f2(x)P (Ecn(X,Θ)) (cf. [2])

≤ L2
E

[
n∑
i=1

Wn,i(X,Θ)‖Xi −X‖2S

]
+ sup
x∈[0,1]d

f2(x)P (Ecn(X,Θ))

where we get the last inequality using the hypothesis that f∗ is L−Lipschitz. To go further in the analysis we
have to use Lemma A.1 to get independent variables. We proceed similarly to the first proof,

E

[
n∑
i=1

Wn,i(X,Θ)‖Xi −X‖2S

]
= E

[
v
(
XH
an

)]
+E

[
v
(
XT
an

)]
with

v
(
XB
an

)
=

µn∑
j=1

∑
i∈Hj

Wn,i(X,Θ)‖Xi −X‖2S

for B = H or T . We observe that

v ≤ sup
(x,y)∈[0,1]S×[0,1]S

‖x− y‖2S ≤ S.
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Thus, using Lemma A.1,

E
[
v
(
XH
an

)]
≤ E

 µn∑
j=1

∑
i∈Hj

W̃n,i(X,Θ)‖ξ1
i −X‖2S

+ Sµnβan .

We do the same over T.
We need to do a similar operation to compute the probability P (Ecn(X,Θ)) . We recall that En :={∑n
i=1 1Xi∈An(X,Θ) 6= 0

}
:

P (Ecn(X,Θ)) = E

[
1
∑n
i=1 1Xi∈An(X,Θ)=0

]
= E

[
1X1 6∈An(X,Θ) . . .1Xn 6∈An(X,Θ)

]
≤ E

[
w(XH

an)
]

where

w(XH
an) =

µn∏
j=1

∏
i∈Hj

1Xi 6∈An(X,Θ) ⇒ w ≤ 1.

Using Lemma A.1,

E
[
w(XH

an)
]
≤ P

[
∀ 1 ≤ j ≤ µn,∀i ∈ Hj , ξ

1
i 6∈ An(X,Θ)

]
+ µnβan .

We get

E

[
f̃n(X)− f(X)

]2
≤ L2

E

[
n∑
i=1

W̃n,i(X,Θ)‖ξ1
i −X‖2S

]
+ sup
x∈[0,1]p

f2(x)P
[
∀ 1 ≤ j ≤ µn,∀i ∈ Hj , ξ

1
i 6∈ An(X,Θ)

]
+ µnβan

[
2SL2 + sup

x∈[0,1]p
f2(x)

]
. (A.2)

We first analyse the term P
[
∀ 1 ≤ j ≤ µn,∀i ∈ Hj , ξ

1
i 6∈ An(X,Θ)

]
,

P
[
∀ 1 ≤ j ≤ µn,∀i ∈ Hj , ξ

1
i 6∈ An(X,Θ)

]
≤ P

[
∀ 1 ≤ j ≤ µn, pick ĩ ∈ Hj , ξĩ 6∈ An(X,Θ)

]
where ĩ is an arbitrary index chosen in {1, . . . , an}. Since the blocks are independent, the terms in the probability
are independent. Furthermore, they have the same distribution. Thus

P
[
∀1 ≤ j ≤ µn,∀i ∈ Hj , ξ

1
i 6∈ An(X,Θ)

]
≤ Pµn [ξ1 6∈ An(X,Θ)]

=
(

1− 2−dlog2 τne
)µn

(by construction of the tree)

≤ exp

(
− µn

2τn

)
.

Plugging in equation (A.2) we have

E

[
f̃n(X)− f(X)

]2
≤ L2

E

[
n∑
i=1

W̃n,i(X,Θ)‖ξ1
i −X‖2S

]
+ exp

(
− µn

2τn

)
sup

x∈[0,1]d
f2(x) + µnβan

[
2SL2 + sup

x∈[0,1]d
f2(x)

]
.
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Let us analyse the first term:

E

[
n∑
i=1

W̃n,i(X,Θ)‖ξ1
i −X‖2S

]
=

µn∑
j=1

E

∑
i∈Hj

1ξ1i∈An(X,Θ)

Ñn(X,Θ)
1Ẽn(X,Θ)‖ξ

1
i −X‖2S


+

µn∑
j=1

E

∑
i∈Tj

1ξ1i∈An(X,Θ)

Ñn(X,Θ)
1Ẽn(X,Θ)‖ξ

1
i −X‖2S


≤

µn∑
j=1

E

∑
i∈Hj

1ξ1i∈An(X,Θ)‖ξ
1
i −X‖2S E

 1(
1 +

∑n
k=1,k 6∈Hj 1ξ1k∈An(X,Θ)

)
∣∣∣∣∣∣X, ξ1

i ,Θ


+

µn∑
j=1

E

∑
i∈Tj

1ξ1i∈An(X,Θ)‖ξ
1
i −X‖2S E

 1(
1 +

∑n
k=1,k 6∈Tj 1ξ1k∈An(X,Θ)

)
∣∣∣∣∣∣X, ξ1

i ,Θ

 .
For a fixed j

E

 1(
1 +

∑n
k=1,k 6∈Hj 1ξ1

k∈An(X,Θ)

)
∣∣∣∣∣∣X, ξ1

i ,Θ

 ≤ E
 1(

1 +
∑2µn−1

k̃=1
1ξ1

k̃
∈An(X,Θ)

)
∣∣∣∣∣∣X,Θ


where k̃ denotes one component of each block (Hj)1≤j≤µn and (Tj)1≤j≤µn. By independence of the blocks we
have

2µn−1∑
k̃=1

1ξk̃∈An(X,Θ) ∼ Bin(2µn − 1, 2−dlog2 τne)

using the same argument as in the proof ”convergence rate for the variance”. The following inequality (cf.[13]),

E

[
1

1 +Bin(N, p)

]
≤ 1

(N + 1)p
,

gives

E

[
n∑
i=1

W̃n,i(X,Θ)‖ξ1
i −X‖2S

]
≤

µn∑
j=1

E

∑
i∈Hj

1ξ1
i∈An(X,Θ)‖ξ1

i −X‖2S
2dlog2 τne

2µn


+

µn∑
j=1

E

∑
i∈Tj

1ξ1
i∈An(X,Θ)‖ξ1

i −X‖2S
2dlog2 τne

2µn


≤ τnE

[∑
i∈H1

1ξ1
i∈An(X,Θ)‖ξ1

i −X‖2S

]
+ τnE

[∑
i∈T1

1ξ1
i∈An(X,Θ)‖ξ1

i −X‖2S

]
≤ 2anτnE

[
1ξ1

1∈An(X,Θ) ‖ξ1
1 −X‖2S

]
by stationarity.
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The rest is the same as in [2]. We get

E

[
n∑
i=1

W̃n,i(X,Θ)‖ξ1
i −X‖2S

]
≤ 2anS

τ
0.75
S log 2 (1+γn)
n

with γn = minj νn,j . We conclude

E
[
f̃n(X)− f(X)

]2
≤ 2SL2an

τ
0.75
S log 2 (1+γn)
n

+ exp

(
− µn

2τn

)
sup

x∈[0,1]d
f2(x) + µnβan

[
2SL2 + sup

x∈[0,1]d
f2(x)

]
.

Replacing using that µn = n
2an

we have

E
[
f̃n(X)− f(X)

]2
≤ 2SL2an

τ
0.75
S log 2 (1+γn)
n

+ exp

(
− n

4anτn

)
sup

x∈[0,1]d
f2(x) +

βann
[
SL2 + supx∈[0,1]d f

2(x)
]

an
.

Appendix B. Tool to establish consistency in stationary
ergodic case

We first introduce the general consistency theorem as known from [13] and used in [22]. From now on µ
denotes the distribution of X.

Theorem B.1. Let Dn = {(X1, Y1), . . . (Xn, Yn)} i.i.d. Let Gn = G(Dn) be a class of functions g : X → Y,the
estimator f̂n which minimises the empirical L2 risk on Gn and f the regression function. If

lim
n→∞

Cn =∞,

lim
n→∞

E

{
inf

g∈Gn,‖g‖∞≤Cn

∫
|g(x)− f(x)|2 µ( dx)

}
= 0,

lim
n→∞

E

{
sup

g∈TCnGn

∣∣∣∣∣ 1n
n∑
i=1

|g(Xi)− Yi,L|2 −E [g(X)− YL]
2

∣∣∣∣∣
}

= 0 ∀L > 0

then

lim
n→∞

E

{∫
|f̂n(x)− f(x)|2µ( dx)

}
= 0.

We extend this theorem to dependent process. The only assumption we actually need is that the stochastic
process is stationary and ergodic.

Proposition B.2. Let (Xt, Yt)t∈Z be a stationary ergodic process and a data set Dn = {(X1, Y1) , . . . , (Xn, Yn)}.
Let Gn = G(Dn) be a class of functions g : X → Y, the estimator f̂n which minimises the empirical L2 risk on
Gn and f the regression function. Under equations (3.1a–3.1c),

lim
n→∞

E

{∫
|f̂n(x)− f(x)|2µ( dx)

}
= 0.
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Proof. To prove this result, we follow the same line as in [13]. Instead of using the large of law numbers for i.i.d
variables we use the law of large numbers for stationary ergodic processes.

We write

∫
Rp
|f̂n(x)− f(x)|2µ( dx) = E

[
|f̂n(X)− Y |2

∣∣∣Dn]−E|f(X)− Y |2

=

((
E

[
|f̂n(X)− Y |2

∣∣∣Dn])1/2

−
(
E|f(X)− Y |2

)1/2)
×
((
E

[
|f̂n(X)− Y |2

∣∣∣Dn])1/2

+
(
E|f(X)− Y |2

)1/2)
=

((
E

[
|f̂n(X)− Y |2

∣∣∣Dn])1/2

−
(
E|f(X)− Y |2

)1/2)2

+ 2
(
E|f(X)− Y |2

)1/2((
E

[
|f̂n(X)− Y |2

∣∣∣Dn])1/2

−
(
E|f(X)− Y |2

)1/2)2

.

It suffices to show

E

((
E

[
|f̂n(X)− Y |2

∣∣∣Dn])1/2

−
(
E|f(X)− Y |2

)1/2)2

−→
n→∞

0.

We rewrite this term,

E

((
E

[
|f̂n(X)− Y |2

∣∣∣Dn])1/2

−
(
E|f(X)− Y |2

)1/2)2

≤ 2E

((
E

[
|f̂n(X)− Y |2

∣∣∣Dn])1/2

− inf
g∈Gn,‖g‖≤Cn

(
E|g(X)− Y |2

)1/2)2

+ 2E

(
inf

g∈Gn,‖g‖∞≤Cn

(
E|g(X)− Y |2

)1/2 − (E|f(X)− Y |2
)1/2)2

.

The last term can be bounded using the reverse triangle inequality,

2E

(
inf

g∈Gn,‖g‖∞≤Cn

(
E|g(X)− Y |2

)1/2 − (E|f(X)− Y |2
)1/2)2

≤ 2E

(
inf

g∈Gn,‖g‖∞≤Cn

(
E|g(X)− f(X)|2

)1/2)2

≤ 2E

(
inf

g∈Gn,‖g‖∞≤Cn
E|g(X)− f(X)|2

)
−→
n→∞

0 by equation (3.1b).

It remains to show that

2E

((
E

[
|f̂n(X)− Y |2

∣∣∣Dn])1/2

− inf
g∈Gn,‖g‖∞≤Cn

(
E|g(X)− Y |2

)1/2)2

−→
n→∞

0.
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We can lower bound this term by

−2E

[
inf

g∈Gn,‖g‖∞≤Cn

(∫
Rp
|g(x)− f(x)|2µ( dx)

)1/2
]2

and upper bound it by

E

(
2
(
E|Y − YL|2

)1/2
+ 2

 1

n

n∑
j=1

|Yi − Yi,L|2
1/2

+ 2 sup
g∈TCnGn

∣∣∣∣∣
 1

n

n∑
j=1

|g(Xi)− Yi,L|2
1/2

−
(
E|g(X)− Y |2

)1/2 ∣∣∣∣∣
)2

. (B.2)

Using the inequality: (a+ b+ c)2 ≤ 3a2 + 3b2 + 3c2 ∀(a, b, c) ∈ R3 and (
√
a−
√
b)2 ≤ |a− b| we have

equation (B.2) ≤ 6E

 sup
g∈TCnGn

∣∣∣∣∣ 1n
n∑
j=1

|g(Xi)− Yi,L|2 −E|g(X)− Y |2
∣∣∣∣∣


+ 6E|Y − YL|2 + 6E

 1

n

n∑
j=1

|Yi − Yi,L|2


−→
n→∞

12E|Y − YL|2.

The last line uses equations (3.1a–3.1c) and the strong law for stationary ergodic process.
We get the result letting L→∞.
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