Approximation of the invariant distribution for a class of ergodic jump diffusions - Archive ouverte HAL
Article Dans Une Revue ESAIM: Probability and Statistics Année : 2020

Approximation of the invariant distribution for a class of ergodic jump diffusions

Résumé

In this article, we approximate the invariant distribution ν of an ergodic Jump Diffusion driven by the sum of a Brownian motion and a Compound Poisson process with sub-Gaussian jumps. We first construct an Euler discretization scheme with decreasing time steps. This scheme is similar to those introduced in Lamberton and Pagès Bernoulli 8 (2002) 367-405. for a Brownian diffusion and extended in F. Panloup, Ann. Appl. Probab. 18 (2008) 379-426. to a diffusion with Lévy jumps. We obtain a non-asymptotic quasi Gaussian (asymptotically Gaussian) concentration bound for the difference between the invariant distribution and the empirical distribution computed with the scheme of decreasing time step along appropriate test functions f such that f − ν(f) is a coboundary of the infinitesimal generator.
Fichier principal
Vignette du fichier
ps190042.pdf (656.8 Ko) Télécharger le fichier
Origine Publication financée par une institution

Dates et versions

hal-03022875 , version 1 (25-11-2020)

Licence

Identifiants

Citer

A. Gloter, Igor Honoré, D. Loukianova. Approximation of the invariant distribution for a class of ergodic jump diffusions. ESAIM: Probability and Statistics, 2020, 24, pp.883-913. ⟨10.1051/ps/2020023⟩. ⟨hal-03022875⟩
61 Consultations
43 Téléchargements

Altmetric

Partager

More