Kalkayotl: A cluster distance inference code - Archive ouverte HAL
Article Dans Une Revue Astronomy and Astrophysics - A&A Année : 2020

Kalkayotl: A cluster distance inference code

J. Olivares
  • Fonction : Auteur correspondant
L. M. Sarro
  • Fonction : Auteur
H. Bouy
  • Fonction : Auteur
N. Miret-Roig
  • Fonction : Auteur
L. Casamiquela
P. A. B. Galli
  • Fonction : Auteur
A. Berihuete
  • Fonction : Auteur
Y. Tarricq

Résumé

Context. The high-precision parallax data of the Gaia mission allows for significant improvements in the distance determination to stellar clusters and their stars. In order to obtain accurate and precise distance determinations, systematics such as parallax spatial correlations need to be accounted for, especially with regard to stars in small sky regions.Aims. Our aim is to provide the astrophysical community with a free and open code designed to simultaneously infer cluster parameters (i.e., distance and size) and distances to the cluster stars using Gaia parallax measurements. The code includes cluster-oriented prior families and it is specifically designed to deal with the Gaia parallax spatial correlations.Methods. A Bayesian hierarchical model is created to allow for the inference of both the cluster parameters and distances to its stars.Results. Using synthetic data that mimics Gaia parallax uncertainties and spatial correlations, we observe that our cluster-oriented prior families result in distance estimates with smaller errors than those obtained with an exponentially decreasing space density prior. In addition, the treatment of the parallax spatial correlations minimizes errors in the estimated cluster size and stellar distances, and avoids the underestimation of uncertainties. Although neglecting the parallax spatial correlations has no impact on the accuracy of cluster distance determinations, it underestimates the uncertainties and may result in measurements that are incompatible with the true value (i.e., falling beyond the 2σ uncertainties).Conclusions. The combination of prior knowledge with the treatment of Gaia parallax spatial correlations produces accurate (error < 10%) and trustworthy estimates (i.e., true values contained within the 2σ uncertainties) of cluster distances for clusters up to ∼5 kpc, along with cluster sizes for clusters up to ∼1 kpc.
Fichier principal
Vignette du fichier
aa37846-20.pdf (662.22 Ko) Télécharger le fichier
Origine Publication financée par une institution

Dates et versions

hal-03022874 , version 1 (25-11-2020)

Identifiants

Citer

J. Olivares, L. M. Sarro, H. Bouy, N. Miret-Roig, L. Casamiquela, et al.. Kalkayotl: A cluster distance inference code. Astronomy and Astrophysics - A&A, 2020, 644, pp.A7. ⟨10.1051/0004-6361/202037846⟩. ⟨hal-03022874⟩

Collections

INSU CNRS L3AB ANR
32 Consultations
74 Téléchargements

Altmetric

Partager

More