
HAL Id: hal-03022810
https://hal.science/hal-03022810

Submitted on 22 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

– Modern ARtificial Theoretical phYsicist A C++
framework automating theoretical calculations Beyond

the Standard Model
Grégoire Uhlrich, Farvah Mahmoudi, Alexandre Arbey

To cite this version:
Grégoire Uhlrich, Farvah Mahmoudi, Alexandre Arbey. – Modern ARtificial Theoretical phYsi-
cist A C++ framework automating theoretical calculations Beyond the Standard Model. Com-
put.Phys.Commun., 2021, 264, pp.107928. �10.1016/j.cpc.2021.107928�. �hal-03022810�

https://hal.science/hal-03022810
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


- Modern ARtificial Theoretical phYsicist

A C++ framework automating theoretical calculations
Beyond the Standard Model

Grégoire Uhlricha,∗, Farvah Mahmoudia,b,c, Alexandre Arbeya,b,c

aUniversité de Lyon, Université Claude Bernard Lyon 1, CNRS/IN2P3,
Institut de Physique des 2 Infinis de Lyon, UMR 5822, F-69622, Villeurbanne, France

bTheoretical Physics Department, CERN, CH-1211 Geneva 23, Switzerland
cInstitut Universitaire de France, 103 boulevard Saint-Michel, 75005 Paris, France

Abstract

Studies Beyond the Standard Model (BSM) will become more and more im-
portant in the near future with the rapidly increasing amount of data from
different experiments around the world. The full study of BSM models is in
general an extremely time-consuming task involving long and difficult calcu-
lations. It is in practice not possible to do exhaustive predictions in these
models by hand. Here we present MARTY, a new C++ framework that
fully automates calculations from the Lagrangian to physical quantities such
as amplitudes or cross-sections. It can fully simplify, automatically and sym-
bolically, physical quantities in a very large variety of models and compute
Wilson coefficients in effective theories. This will considerably facilitate BSM
studies in flavour physics. Contrary to the existing public codes in this field
MARTY aims at providing a unique, free, open-source, powerful and user-
friendly tool for high-energy physicists studying predictive BSM models, in
effective or full theories up to the one-loop level, which does not rely on any
external package. With a few lines of code one can gather final expressions
that may be evaluated numerically for statistical analysis.

Keywords: BSM, 1-loop calculation, Automated, Wilson coefficient

∗Corresponding author.
E-mail address: g.uhlrich@ipnl.in2p3.fr

Preprint submitted to Computer Physics Communications February 6, 2021

© 2021 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S001046552100062X
Manuscript_6c0ca6b2f03c54be2e943abaad09cf1e

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S001046552100062X
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S001046552100062X


PROGRAM SUMMARY
Program Title: MARTY
Website: https: // marty. in2p3. fr
https://fr.overleaf.com/project/5fb7c30c3175f910d2392059 CPC Library link to pro-
gram files: (to be added by Technical Editor)
Code Ocean capsule: (to be added by Technical Editor)
Licensing provisions: GPLv3
Programming language: C++
Supplementary material: GNU-GSL [1], LoopTools [2]
Nature of problem: From a given Lagrangian, Beyond the Standard Model phe-
nomenology often requires one-loop theoretical calculations. Those calculations
must be done analytically because a numerical evaluation of such quantities is not
possible, the number of terms being too large for any computer to handle. Simpli-
fications must be done analytically, and are very long and error prone justifying to
automate them. This is why we need a computer algebra system dedicated to this
task. Some packages written with Mathematica [3] - a private and closed software
for symbolic manipulations - implement those calculations. There are multiple
packages, the user needs to pay for Mathematica and the calculation of Wilson
coefficients for BSM and at the one-loop level is actually hard to automate.
Solution method: MARTY is a code written for BSM phenomenology that comes
with its own computer algebra system, CSL, and automates the calculation of the-
oretical quantities at the one-loop level, in a very large variety of BSM model.
Physicists now can have a unique C++ code, free and open-source, that can be
used to do model building BSM and calculate any kind of amplitude, squared am-
plitude or Wilson coefficient BSM from the Lagrangian. From the developers point
of view, having such a code, independent of any other framework using only the
C++ standard library (C++17 standard), is a great opportunity to develop it even
further, implementing new simplifications procedures, new calculation procedures
and more.

References

[1] GSL - GNU Scientific Library. https://www.gnu.org/software/gsl/.

[2] T. Hahn, M. Perez-Victoria, Automatized one loop calculations in four-
dimensions and D-dimensions, Comput. Phys. Commun. 118 (1999) 153–165.
arXiv:hep-ph/9807565, doi:10.1016/S0010-4655(98)00173-8.

[3] Wolfram Research Inc., Mathematica. https://www.wolfram.com/mathematic.

2



1. Introduction

Calculations Beyond the Standard Model (BSM) have been a challenge
for a long time, especially at the one-loop level. Transition amplitudes, dif-
ferential cross-sections, and Wilson coefficients need to be evaluated in order
to obtain the values for physical observables. Comparing them to the SM
predictions and experimental results provides means to discriminate BSM
models.

The one-loop order is often needed, as some relevant processes only appear
at this order. This is the case of Flavour Changing Neutral Currents (FCNC)
in flavour physics [1], that require one-loop values for Wilson coefficients. At
the one-loop level, calculations cannot be done numerically as the very large
number of terms together with renormalization processes require symbolic
computations similar to what can be done by hand.

Currently, symbolic calculations at the one-loop level are done mainly
using Mathematica [2], a commercial and closed computer algebra system.
Several packages based on Mathematica implement high-energy physics cal-
culations. FeynRules [3] computes Feynman rules from a BSM Lagrangian,
from which FormCalc [4] can derive tree-level and one-loop quantities such as
transition amplitudes or differential cross-sections. Packages such as Form-
Flavor [5] or FlavorKit [6, 7] calculate Wilson coefficients using the FormCalc
machinery.

Many efforts have been employed to design independent computer alge-
bra systems for high-energy physics. GiNaC [8] is a C++ library for sym-
bolic computations written for that purpose. LanHEP [9], CompHEP [10]
and CalcHEP [11] automate together calculations from the Lagrangian using
their own symbolic computation framework. However, Mathematica-based
packages are still the only ones able to provide one-loop calculations and
Wilson coefficients for BSM.

We introduce MARTY, a modern and user-friendly solution to this issue.
It provides for the first time a unique, free and open-source code fully writ-
ten in modern C++ (2017 standard), implementing all the theoretical BSM
machinery up to the one-loop order. Amplitudes, cross-sections and Wilson
coefficients up to dimension 5 operators can be computed automatically. Sup-
port for dimension 6 operators will come in a future version. MARTY does
not depend on any other framework, as it includes its own C++ Symbolic
computation Library called CSL to manipulate mathematical expressions. It
also comes with GRAFED, a desktop application displaying Feynman dia-

3



grams on screen.
The reader can find the code, manuals, the documentation and more

information on https://marty.in2p3.fr.

2. Code overview

MARTY is organised in several modules. They have been logically sep-
arated to ensure the code to be modular and general. The results are three
modules: the physics core of MARTY, and two other modules which are both
fully independent from each other and can be used as standalone, namely
the computer algebra system of MARTY (CSL) and the application drawing
Feynman diagrams (GRAFED). A schematic view of MARTY ’s design is
presented in figure 1.

Figure 1: Schematic design of MARTY, including the three sub-modules: MARTY
(physics part), CSL (symbolic manipulation) and GRAFED (Feynman diagram gener-
ation).

2.1. MARTY (physics core)
This is the main part of the code, which contains all physics calculations,

conventions, models, simplifications, etc. It uses its own CSL module as a
mathematical backend to perform calculations specific to high-energy physics
and the GRAFED module to draw Feynman diagrams. It also contains all
group theory implementations, and model building features. Amplitudes,
differential partonic cross-sections and Wilson coefficient may be calculated
at tree-level or at the one-loop order. All calculations are automatic, sym-
bolic, and can be performed in a very large variety of models as detailed in
section 5.

4



2.2. CSL (computer algebra system)
This module does not know anything about physics, is logically separated

from the physics part and can be used independently. It is a C++ Symbolic
computation Library allowing us to handle mathematical expressions, ten-
sors and simplifications needed to perform high-energy physics calculations.
It is not as comprehensive as a standard computer algebra system like Math-
ematica because many features were not required for particle physics. It may
however be extended in that direction if needed.

2.3. GRAFED (Feynman diagram generation and edition)
When doing calculations in particle physics, it is often convenient to visu-

alize what the code is doing, and possibly include diagrams in publications.
GRAFED was developed for this purpose and is also fully independent of
the other modules of MARTY. It has three major features:

• An algorithm that finds an optimal way to place nodes in a 2D space
to display Feynman diagrams. This algorithm is fully general (with no
limit in the diagram size or number of loops) and automated. This
allows one to quickly draw all diagrams for a particular process, with-
out asking anything from the user and independently of the diagram
topologies.

• A Graphical User Interface (GUI) that displays the generated diagrams.
When asked, MARTY will run GRAFED with all the diagrams of a
particular process. These diagrams appear then in the GUI, and may
be exported (as png files or LATEX codes for the tikz-feynman package)
directly to be included in a publication for example.

• The possibility to edit or create diagrams from scratch. Diagrams gen-
erated automatically by GRAFED are rather neat, but there is the pos-
sibility to edit, graphically, any aspects of the diagram (nodes, edges,
labels, layout, etc) very easily. One can also create diagrams from
scratch using GRAFED independently of MARTY.

3. MARTY design philosophy

The design of MARTY is guided by strong principles ensuring a final
result corresponding to programming standards. First, the general principles
unrelated to physics are:

5



• Independence. MARTY is written from scratch and is thus fully
independent of any other framework. As such, there is no limit in what
can be implemented in the code. Developers have a full control on any
aspects of MARTY, to modify or extend its capabilities.

• User-friendliness. The code must be easy to use. The fact that it
is written in C++ is a supplementary challenge in that purpose, but
a modern knowledge of this language provides freedom for the user-
interface. We think that this objective is fulfilled, since the normal
usage of MARTY does not require any particular C++ knowledge and
would be similar in many languages, including Mathematica.

• Modularity. MARTY is built as modular as possible. This means
that unnecessary logical connections between different parts of the code
are avoided. This is an important advantage for maintainability, since
replacing or correcting a part of the code will become simpler.

• Readability. It is important for a code to be easily understandable
by everyone, and in particular by a user willing to further develop the
code. Strict coding conventions, clear naming for files / functions /
variables and clever separation of different logical units make MARTY
easy to understand considering its large size.

• Performance. C++ and python were the two main languages possible
for MARTY as they are well-known in the high energy physics com-
munity. The choice of the language, C++, is related to performance
reasons. A C++ code will run much faster in average than python for
this type of code.

Concerning physics aspects, MARTY has been written with the following
aims in mind:

• Generality. MARTY is designed to be as general as possible in the
models it can handle, algebraic simplifications it can do, and calcula-
tions automated with it. A high level of generality has already been
reached, and further developments will continue to focus on this aspect.
In particular there is no hard-coding because MARTY is expected to
be extended even further in its future developments.

• Model independent calculations. In order to have an easy-to-use
code for high energy physics, the computations have to be done in a

6



model-independent way. The same code computing a given quantity
should work for all models. Studying new models would hence imply
only to write the Lagrangian or Feynman rules associated to it, and
then using the same scripts to calculate the same quantities in the
given model.

• One-loop level automated calculations. Calculations in BSM phe-
nomenology often require at least one-loop level quantities. Many pro-
cesses are trivial at tree-level but higher order corrections can be im-
portant from a phenomenological point of view when studying BSM
models, as it is the case for instance for FCNC decays in flavour physics.
The one-loop level being significantly more difficult to calculate by hand
than the tree-level, it is important to automate its calculation.

The efforts made to respect this philosophy will be useful in MARTY ’s
future developments as well. A code as general and independent as MARTY
could benefit from a community effort to be maintained and developed and
we think that the way it is written would allow for such a collaborative work.

4. Installation and usage

MARTY is available for download from its website: https://marty.
in2p3.fr where one can find the manuals, documentation, publications and
more information.

4.1. Installation
MARTY is open-source, GPL3 licenced and written in C++. By default,

the installation script will use gcc-7, g++-7, gfortran-7 to compile MARTY
and its dependencies. In case another version is more suitable, one can write

$ export MARTY_COMPILER_VERSION=n

with n the version number (if 0 is given the default compilers will be used
instead but this is not recommended).

7



On Ubuntu1 / Debian since MARTY-1.0 (other Linux distributions may
also be compatible but have not been tested) and on Mac since MARTY-1.1,
the code can be built and installed using the following instructions:

$ source setup.sh <installation-path>
$ make
$ make install

The installation path is /usr/local/ by default. Paths for header files,
library files and binaries (the GRAFED application) must appear in envi-
ronment variables in order to compile MARTY programs easily. This will
be done by the setup.sh script for the current bash session, if MARTY is
installed with the corresponding make target. This script must be executed
using source to allow one to compile C++ programs using MARTY as pre-
sented in the following. Once the installation is performed, a marty_env.sh
script is created in the root directory that contains the required bash instruc-
tions to set all environment variables. It can be executed at any time, again
using source

$ source marty_env.sh

One can also copy its content in a .bashrc configuration file for example, to
automate its execution for all bash sessions.

A procedure exists to use a MARTY or CSL program without installing
it. A program.cpp file in marty/scripts can be compiled and executed typing
from the main directory:

$ cd marty
$ make program.x
$ bin/program.x

1On Ubuntu 16.04 or prior versions, MARTY can be built properly only since version
1.2.

8



Figure 2: Layout of the MARTY project. The main sub-directories are shown with their
content.

The project layout specific to the marty/ directory together with the other
modules (CSL and GRAFED) is presented in figure 2.

4.2. Usage (scripting)
As a C++ framework, MARTY can be used in a C++ program after

writing a few lines to include it, provided it is installed on the computer2:

#include <marty.h>

using namespace mty;
using namespace csl;
using namespace std;

2For this to work properly, one needs either to install MARTY in the standard location
(by default, /usr) or make sure that the paths to access include files in C++ (CPATH en-
vironment variable on Ubuntu), libraries (LIBRARY_PATH and LD_LIBRARY_PATH
environment variable on Ubuntu) and binaries (PATH) contain the installation path of
MARTY.

9



The three lines of using namespace are not necessary, but will allow us to
omit prefixes mty:: (MARTY ) csl:: (CSL) and std:: (C++ standard library)
in front of objects and functions. The main function containing the program
can now be written:

int main() {
// The MARTY program
return 0;

}

4.3. Usage (compilation and execution)
In C++, source files need to be compiled before being run. MARTY

uses the C++17 standard that appears in compiler options. To compile a
source file main.cpp into an executable main.x the following commands are
necessary3:

$ g++ -std=c++17 -c main.cpp -o main.o
$ g++ -std=c++17 -o main.x main.o -lmarty
$ ./main.x

4.4. Dependencies
MARTY has been written from scratch. Thus it has no dependency be-

fore the numerical evaluation of symbolic results. It contains in particular its
own computer algebra system, CSL (C++ Symbolic computation Library),
as a separate module. Therefore for the physics calculations from the La-
grangian to a final one-loop result simplified as much as possible, MARTY
uses nothing but its own code and the C++ standard library.

For the numerical evaluation of results, there are two dependencies. The
first, LoopTools [4], provides numerical values for scalar integrals arising at
the one-loop level. Momentum integrals have always the same form, like the
following 3-point function integral

I3 ≡
∫
d4q

iπ2

pµ1p
ν
2

(q2 −m2
0)((q + p1)2 −m2

1)((q + p2)2 −m2)2
. (1)

3g++ may be replaced by another C compiler, clang for example.

10



A way to treat this kind of integrals (including regularization) is to decom-
pose the result in different possible Lorentz structures, each having a scalar
factor in front, that is calculable with standard prescriptions [12]. The de-
composition for the 3-point function I3 is the following

I3 ≡ C00g
µν + C11p

µ
1p

ν
1 + C12(p

µ
1p

ν
2 + pµ2p

ν
1) + C22p

µ
2p

ν
2, (2)

with Cij scalar form factors depending on masses and squared momenta in the
loop. The decomposition is done analytically by MARTY, and the evaluation
uses LoopTools functions to determine the values of Cij.

The second dependency for the numerical evaluation is GSL [13], a well-
known numerical library for C and C++. For complicated models with non
trivial mixings (such as supersymmetric models), one has to diagonalize mass
matrices to obtain the mass spectrum and mixings of the theory. For exam-
ple from a non-diagonal squared-mass matrix M2 of Φ, one calculates the
eigenvector Φ′ that diagonalizes the matrix to M2

D

Φ = UΦ′, (3)
M2

D = U †M2U. (4)

The symbolic result of MARTY is fully general (unless specified otherwise
by the user) and uses generic symbols for all masses and mixings (matrices
M2

D and U in the example). For the numerical evaluation, input parameters
must be given by the user. The diagonalization is then performed to get
the spectrum and mixings, and to calculate the final results. The numerical
diagonalization is performed using GSL.

Finally, GRAFED has a Graphical User Interface (GUI) that uses Qt
[14]. Qt is a C++ framework allowing to build desktop applications fairly
easily and is free and open-source with a GPL licence.

5. MARTY ’s capabilities

This section presents in detail the calculations that can be performed
with MARTY, the possible models, and the outputs that the code returns to
the user.

5.1. Model building
First it is important to have a clear view of the BSM models thatMARTY

can handle. A model lies in a 4-dimensional Minkowski space-time and is
defined by:

11



• A gauge group. The gauge group may be any combination of Semi-
simple Lie Groups4 (U(1), SU(N), SO(N), Sp(N), E6, E7, E8, F4,
G2). The unbroken Standard Model gauge SU(3)c × SU(2)L × U(1)Y
is an example of such a combination.

• A particle content. Each particle is an irreducible representation
of the gauge group, i.e. an irreducible representation of each group
composing the gauge. A particle may have a spin 0, 1/2 (Weyl, Dirac
or Majorana), or 1. All gauge couplings are introduced automatically
by MARTY without any help from the user.

• Additional couplings. The user can add any interaction term in
the Lagrangian. MARTY simply checks that combining the unbroken
gauge representations of the interacting particles gives indeed a trivial
representation5.

There are two ways to build a model in MARTY. The first one is the
most straightforward way but also the most complicated one. It consists
in giving explicitly the full Lagrangian to MARTY. Few terms in general
are provided by unbroken gauge couplings, in particular when one studies
a phenomenological model extending the SM. In the SM, there are about
100 terms to write by hand coming from the symmetry breaking. In the
Minimal Supersymmetric extension of the Standard Model (MSSM), several
thousands. It is possible to do it but one has to be very careful on every
convention, sign and factor in front of each term. A small error can lead
to wrong results due to interference between different diagrams for a given
process.

The second option is to define a high energy Lagrangian with all sym-
metries preserved, and give MARTY prescriptions to break it. The initial
Lagrangian has much less interaction terms and is simpler to write. Based
on correct prescriptions (gauge, flavour symmetry breaking, replacements,
renaming, etc) MARTY will basically re-derive the final Lagrangian for the
user. This solution will not necessarily be the easiest one depending on the
model but is certainly a practical option. It is in particular the way chosen
to build the MSSM in MARTY.

4Strictly speaking, groups that have a semi-simple Lie algebra.
5If it does not, this is the sign of an obvious gauge violating term. If it does, the term

may still violate gauge symmetry but it is more difficult to test automatically.

12



In the following we present a sample code building a SU(2)L gauge with
one quark in the doublet representation

QL =
(
uL dL

)
, (5)

broken by MARTY with a single instruction. We also ask the code to rename
the broken fermions Q1 and Q2 to u and d which corresponds to standard
conventions. With 3 lines of breaking prescriptions MARTY derives the 17
interaction terms (including vector-ghost interactions6) between the final 8
particles in the model.

Model model;
model.addGaugedGroup(group::Type::SU, "L", 2); // Adding a SU(2)
model.init();

Particle Q = weylfermion_s("Q", model, Chirality::Left);
Q->setGroupRep("L", {1}); // Doublet rep of SU(2), Dinkin label 1
model.addParticle(Q);

cout << "Before␣symmetry␣breaking␣:␣" << endl;
cout << model << endl;

model.breakGaugeSymmetry("L");
model.renameParticle("Q_1", "u"); // Broken fields are named with
model.renameParticle("Q_2", "d"); // _1, _2 etc. by convention

cout << "After␣symmetry␣breaking␣:␣" << endl;
cout << model << endl;

For a more evolved model one needs more instructions to specify every
conventions, but this method is still very practical and more efficient than
giving the full Lagrangian by hand. For a gauge symmetry breaking, explicit
expressions of gauge generators (TAij , fABC) must be known and MARTY
will not necessarily know them. For SU(2) and SU(3) SM gauge terms, the
whole procedure is automated, but for other groups the user may have to
define expressions for generators.

6Gauge fixing terms for ghosts are not taken into account here.

13



MARTY also contains built-in models that can be used directly for calcu-
lations: Scalar φ3 theory, Scalar QED, QED, QCD, Electroweak model, Stan-
dard Model, 2 Higgs Doublet Models and Minimal Supersymmetric Standard
Models (unconstrained and phenomenological).

5.2. Amplitudes
Transition amplitudes from an initial state to a final state noted iM(i→

f) are the basic quantities that MARTY is able to calculate. It uses the
Lagrangian exponentiation as well as the Wick’s theorem [15] to find all
possible diagrams and derive their corresponding expressions. This step is
fully general and has no limit in the diagram complexity or in the number of
external legs. Amplitudes are then used to calculate differential cross-sections
or to derive Wilson coefficients.

Once an analytical expression for a given diagram has been found, it needs
to be simplified in several ways in order to obtain a numerical evaluation of
the result. Simplification steps done by MARTY are the following:

Dirac algebra simplification. This includes calculation of traces in the Dirac
space and simplifications in γ−matrix products, for particles of spin 1/2 [16].

Group algebra simplification. Similarly to γ−matrices, algebra generators
have to be simplified into amplitudes. Projection operators are used [17] and
traces are calculated in all semi-simple groups [18]. The remaining colour
structures that cannot be simplified are stored and factored from the rest
of the amplitude, in dedicated abbreviations. For standard gauge groups
and in particular for fundamental representations all possible terms will be
simplified automatically7.

Minkowski Index contraction. Minkowski indices are expanded and contracted
as much as possible in D-dimensions to perform Dimensional Regularization
(DREG) at the one-loop order. As in D-dimension gµµ = D, one has to
expand the whole diagram to gather all factors of D.

7Group simplifications are easy to implement in MARTY in case there are missing
ones. The complicated part is to determine theoretically the simplification rules to apply.

14



Reduction of one-loop momentum integrals. A momentum integral at one-
loop can be decomposed on the basis of scalar form factors [12]. These form
factors depend on masses and momenta and can be provided by LoopTools
[4] up to the rank 4 5-point functions, i.e. loops with five external legs and
four momenta in the numerator. This is the actual limit for fully-simplified
one-loop quantities in MARTY.

Dimensional Regularization. The form factors coming from one-loop inte-
grals can have a divergent part that is regularized by taking the dimension
D = 4− 2ε. In this case, integrals take the form

I ≈ a

ε
+ b+O(ε). (6)

Factors of D coming from Minkowski index contractions must then be kept
to determine the local terms they generate when they are multiplied by a
divergent integral [19, 20]. For the scalar one-point function for example, we
get the finite part

Finite(DA0(m
2)) = Finite((4−2ε)A0(m

2)) = −2m2+4·Finite(A0(m
2)). (7)

Equations of motion. For spin 1 particles, the equation of motion is simply

εµ(p)pµ = 0, (8)

where ε(p) is the polarization 4-vector of the boson. For spin 1/2 particles,
the Dirac equation is applied. It reads

/pu(p) = mu(p) for particles, (9)
v̄(p)/p = −mv̄(p) for anti-particles. (10)

Factorization. Results are partially factored to compactify at most the final
expressions. In particular, factorization by masses and momenta are per-
formed.

Abbreviation. Abbreviations are introduced automatically by MARTY to
lighten expressions and gain in execution time. All abbreviations used can
be displayed by typing DisplayAbbreviations().

Using the toy model presented in section 5.1, the calculation of an ampli-
tude inMARTY is very simple. One has to give the order (mty::Order::TreeLevel

15



here), the model, and the field insertions. Let us consider the process
uū→ dd̄ at tree-level, the following instruction is needed to run the compu-
tation:

auto res = ComputeAmplitude(
Order::TreeLevel,
model,
{Incoming("u"), Incoming(AntiPart("u")),
Outgoing("d"), Outgoing(AntiPart("d"))}
);

The code is in C++, therefore variable types must be declared. However
since C++11, the compiler does not need the user to specify the type re-
turned by a function anymore. By typing auto the compiler is told to find
the exact type itself. Then, res.expressions contains the different terms of
the amplitude and res.diagrams the Feynman diagrams. To display expres-
sions in standard output, show the diagrams in GRAFED and display the
abbreviations introduced by MARTY the following three lines are necessary
respectively:

Display(res);
Show(res);
DisplayAbbreviations();

MARTY ’s output is presented in the following, displaying diagrams in
GRAFED as the screenshot in figure 3 shows. Only the index IDs have been
changed to lighten the output:

0 : 1/8*Ab_0001*EXT_{k,\%eps_1,i,\%del_1,l,\%del_2,j,\%eps_2}
*gamma_{+\%sigma,\%del_2,\%eps_1}*gamma_{\%sigma,\%del_1,\%eps_2}

1 : 1/8*Ab_0001*EXT_{k,\%eps_1,i,\%del_1,l,\%del_2,j,\%eps_2}
*gamma_{+\%sigma,\%del_2,\%eps_1}*gamma_{\%sigma,\%del_1,\%eps_2}

2 : -1/8*Ab_0002*EXT_{k,\%eps_1,i,\%del_1,l,\%del_2,5,\%eps_2}
*gamma_{+\%sigma,\%del_1,\%eps_1}*gamma_{\%sigma,\%del_2,\%eps_2}

Total : 3 particle amplitudes.

16



The abbreviations read:

4 abbreviations:
Ab = g_L^2
EXT = d_{k,del}(p_4)*d_{i,gam}(p_3)^(*)

*u_{l,beta}(p_2)^(*)*u_{j,alpha}(p_1)
Ab_0001 = i*g_L^2/s_13
Ab_0002 = i*g_L^2/s_12

The resulting amplitude can be read off form MARTY ’s output, keeping
a separate term for each diagram:

iM =
ig2L
8

(
1

s13
d̄(p4)γ

µu(p1)ū(p2)γµd(p3)

+
1

s13
d̄(p4)γ

µu(p1)ū(p2)γµd(p3)

− 1

s12
ū(p2)γ

µu(p1)d̄(p4)γµd(p3)

)
,

(11)

with sij ≡ pi · pj.

Figure 3: Screenshot of GRAFED displaying the three Feynman diagrams for the process
uū → dd̄ at the tree-level in the toy model defined in section 5.1. The tree diagrams
correspond to the exchange of each broken vector from the SU(2)L initial symmetry,
noted ALi by default in MARTY.

17



5.3. Cross-sections
Cross-sections are the main observables used in collider physics. They

are directly proportional to the number of events observed in the various
detectors. MARTY does not compute directly the cross-sections but calcu-
lates the complicated theoretical part namely the squared amplitudes. For
incoming particles {I} of spins {jI} and outgoing particles {O} of spins {jO}
the squared amplitude is (as a function of the amplitude iM that depends
on the particle spins)

1∏
I dI

∑
{jI},{jO}

|M|2, (12)

with dI the spin dimension of the incoming particle I taking into account
massless effects for spin 1 particles. This quantity is averaged (summed) over
the spin dimensions of incoming (outgoing) particles. Calculating the squared
amplitudes implies the calculation of traces in Dirac and colour spaces (group
algebra) that MARTY computes automatically. The result is a scalar de-
pending on momenta and masses of particles in the process. The differential
cross-section has always the same form for a given process of amplitude iM

dσ ≡ K(pi,mi) ·
1∏
I dI

∑
{jI},{jO}

|M|2dΠLIPS, (13)

with K(pi,mi) a factor coming from kinematics, and dΠLIPS the Lorentz
Invariant Phase Space. Once the amplitude squared has been calculated
and simplified, no more computer algebra system is needed to pursue the
calculation. This is the quantity that MARTY can compute automatically.

Considering the toy model of section 5.1, calculating the squared ampli-
tude is very simple. The user must first calculate the amplitude, and simply
square it with MARTY. The average over incoming spins is done by MARTY,
i.e. the returned quantity corresponds to equation 12. After calculating this
quantity with MARTY, the user has again one single line to write:

Expr squared_ampl = model.computeSquaredAmplitude(res);
cout << "<|M|^2>␣=␣" << squared_ampl << endl;
DisplayAbbreviations();

18



Expr is the main variable type of CSL, internal representation of a sym-
bolic mathematical expression. The output in terminal is presented in the
following.

<|M|^2> = 1/4*s_14*s_23*(
1/2*Ab_0001^(*)*Ab_0002 + Ab_0001*Ab_0001^(*)

+ 1/2*Ab_0001*Ab_0002^(*) + 1/4*Ab_0002*Ab_0002^(*))
Ab_0001 = i*g_L^2/s_13
Ab_0002 = i*g_L^2/s_12

One can see that abbreviations have been introduced by MARTY. They
can be expanded and the result can be further factored by CSL typing

// Evaluate abbreviations
Evaluate(squared_ampl, eval::abbreviation);
// Factor the whole expression
DeepFactor(squared_ampl);
cout << "<|M|^2>␣=␣" << squared_ampl << endl;

In this way, one can obtain a compact result:

<|M|^2> = 1/16*g_L^4*(s_12^(-2) + 4*s_13^(-2) + 4/(s_12*s_13))
*s_14*s_23

As one can see above, MARTY ’s outputs contain scalar products of exter-
nal momenta, namely sij ≡ pi ·pj. MARTY does not perform any kinematics
for now, i.e. stops the simplification as in the output shown. This could be
easily implemented in the future, for example introducing Mandelstam vari-
ables. However as it does not represent an important analytical challenge by
hand and that it has no impact on the following numerical evaluation (see
section 5.5), this part is for now left to the user.

5.4. Wilson coefficients
Wilson coefficients are the coefficients in front of particular operator struc-

tures in an amplitude [1]. For the b → sγ process that will be detailed in

19



section 6, the amplitude may be decomposed on a two operator basis, each
one with a scalar coefficient in front. Naming q the photon momentum and
ε its polarization vector, one obtains

iM(b→ sγ) =
−4GF√

2

e

16π2
VtbV

∗
tsmb

(
C7〈Ô7〉+ C ′7〈Ô′7〉

)
, (14)

with

〈Ô(′)
7 〉 ≡ 〈sγ|Ô

(′)
7 |b〉 = s̄σµνPR(L)bFµν , (15)

σµν =
i

2
[γµ, γν ] , (16)

Fµν = iq[µεν] =
i

2
(qµεν − qνεµ) . (17)

The global factor −4GF√
2

e
16π2VtbV

∗
tsmb is defined by convention. This pro-

cedure to decompose amplitudes in Wilson coefficients and operator matrix
elements is used in particular in flavour physics. As quarks appear only in
bound states, the partonic amplitude is not the full story. One has to take
into account long-distance effects that cannot be calculated pertubatively.
The b → sγ transition may correspond for example to a hadronic process
B̄0 → K̄0γ. These long-distance effects are model-independent and arise
only in the operator matrix element between final and initial states 〈F |Ô|I〉.
The BSM dependence is then contained in the Wilson coefficient that can be
calculated perturbatively by MARTY.

For now, operators of dimension 6 with 4 fermions cannot be directly
given by MARTY at one-loop as some simplifications are needed that are
not yet implemented. The step missing is a double application of Fiertz
identities, to simplify all possible momenta in fermion currents. A Wilson
coefficient for such an operator could still be read off in the results but would
ask the user to do some algebra by hand, to determine which part of the
amplitude contributes to the coefficient.

A concrete example of Wilson coefficient calculation is presented in sec-
tion 6 which is devoted to the calculation of C7 in the MSSM.

5.5. Library generation
Results of MARTY can in general not be used directly. Depending on the

process, it may be a very big and complicated analytical expression. What
the user may need are numbers, i.e. numerical evaluations of the analytical

20



results, for a given set of values of the model parameters. Let us consider
the cross-section of section 5.3. The result is rather simple, but the principle
would be exactly the same for a more complicated expression. The way it
works in MARTY is also rather simple and is contained in a few lines (giving
a library name and a path to create it):

mty::Library myLib("uubar_to_ddbar", ".");
myLib.addFunction("squared_ampl", squared_ampl);
myLib.build();

A mty::Library is an abstract object that takes symbolic expressions as
functions (here the cross-section), creates and compiles a C++ library al-
lowing to evaluate them numerically. The function generated by MARTY
is:

complex_t squared_ampl(
const complex_t g_L,
const complex_t s_12,
const complex_t s_13,
const complex_t s_14,
const complex_t s_23
)

{
return 0.0625*std::pow(g_L, 4)*(std::pow(s_12, -2)

+ 4*std::pow(s_13, -2) + 4/(s_12*s_13))*s_14*s_23;
}

The function takes as arguments all symbols (possibly complex here) that
did not contain any value at the time the library was generated. The library
is compiled automatically and can be used as demonstrated in the following.

#include "uubar_to_ddbar.h"
using namespace std;
using namespace uubar_to_ddbar;

21



int main() {
cout << "XSec␣=␣" << squared_ampl(0.1, 100, 60, 40, 40) << endl;
return 0;

}

A library may contain as many functions as wanted. This procedure is
fully general and is automated. Note that if the library needs additional
include or library paths (in particular if CSL and MARTY are not installed
in standard locations), it is possible to specify them with:

myLib.addIPath("/home/.local/include");
myLib.addLPath("/home/.local/lib");

5.6. Feynman diagrams

Figure 4: Generic h→ γγ diagram creation with GRAFED. Node colour / type / name
/ size, edge colour / type / curve / thickness can be edited easily with the application to
create any kind of diagram. Diagrams may then be exported in a .png file directly.

GRAFED is the part of MARTY generating and rendering Feynman
diagrams. It is used to create automatically diagrams when calculating a
process with the Show(res) command as we discussed in section 5.2. It can
also be used to edit or create diagrams from scratch. Many aspects of the

22



diagrams can be chosen by the user in an intuitive way. A screenshot of
GRAFED is shown in figure 4.

GRAFED will in the future be released as standalone. All diagrams in
this publication are generated automatically or created with GRAFED.

6. Calculation of δLOCχ,t̃
7 (MW ) in the pMSSM

An example of MARTY ’s capabilities is presented in this section, namely
the calculation of the MSSM contribution to the Wilson coefficient C7. This
coefficient describes the b → sγ transition and is non zero only at the one-
loop level.

6.1. The pMSSM
We consider here the phenomenological Minimal Supersymmetric Stan-

dard Model (pMSSM) which is a generic CP conserving MSSM framework
that has 19 parameters more than in the SM as opposed to the full MSSM
which has 105 extra parameters. The pMSSM has been chosen for validation
because of its complexity and generality. Obtaining a correct result in this
model demonstrates MARTY ’s capabilities for model building and symbolic
calculations.

6.2. The Wilson coefficient C7

We calculate the Leading Order (LO) value of the Wilson coefficient C7,
associated with the operator in equation 15. The process is showed in figure 5.
It is a FCNC process with a photon changing the quark flavour b→ s which is
forbidden at tree-level in the SM and the pMSSM, and the LO is thus at the
one-loop level. Strong experimental constraints exist for FCNCs and their
calculations for BSM models represent an important task for phenomenology.

We consider in this example one of the supersymmetric contributions i.e.
diagrams with the top squarks and charginos shown in figure 6. We perform
the calculation on-shell in the Feynman-’t Hooft gauge8. The reversal of the
fermion-flow in the diagram is due to fermion-number violating interactions
between charginos and SM fermions. This is mostly related to the definition
of charginos and may be treated following prescriptions of [21]. At the end of
the calculation, the fermion flow is regular but may get a sign due to charge

8Other gauges can be used such as the unitary or Lorentz gauges.

23



Figure 5: b → sγ process represented in a model-independent way. The transition
amplitude is the sum of all diagrams that can fill correctly the hatched disk. This diagram
has been built using GRAFED.

Figure 6: Two types of contribution for C7 in the pMSSM, with stops t̃ and charginos
χ̃. These diagrams have been built using GRAFED.

conjugation matrix C which appears. This sign is important to determine
exactly because of interferences between the diagrams.

We vary two pMSSM parameters, µ (the Higgsino parameter) and M2

(the Wino mass). More details on MSSM parameters are given in [22]. Con-
tributions to C7 come from chargino and stop loops and depend on µ and
M2 in particular. The chargino mass matrix reads

Mχ =

(
0 XT

X 0

)
, (18)

with

X =

(
M2

√
2 sin βMW√

2 cos βMW µ

)
, (19)

tan β being the angle between the two Higgs doublets’ Vacuum Expectation
Values (VEVs).

24



The stop squared mass matrix reads

M2
t̃ =

(
m2
Q3

+m2
t + ∆ũL v(A∗t sin β − µyt cos β)

v(At sin β − µ∗yt cos β) m2
u3

+m2
t + ∆ũR

)
. (20)

mQ3 , mu3 are soft supersymmetry breaking parameters, At is a trilinear cou-
pling, yt the top Yukawa and finally

∆ũL =

(
1

2
− 2

3
sin2 θW

)
cos(2β)M2

Z , (21)

∆ũR =
2

3
sin2 θW cos(2β)M2

Z . (22)

The exact numerical values of pMSSM parameters used to evaluate C7

are presented in table 1.

Parameter Value
At 500
mQ3 1000 GeV
mu3 1000 GeV
tan β 50
µ [−800, 800] GeV
M2 [−1000, 1000] GeV

Table 1: Numerical values of supersymmetric parameters used to evaluate C7. M2 and µ
are varied in the given ranges. Other pMSSM parameters are irrelevant for the calculation
presented here.

The results are shown in figures 7 and 8. MARTY ’s output is compared
with the analytical formula given in [23] and with SuperIso [24, 25, 26].
Numerical evaluations have been done for two different spectra. This first
one (figure 7) is a tree-level spectrum computed by MARTY using GSL
[13], and the result is compared with the analytical formula. The second
spectrum (figure 8) is calculated by SOFTSUSY [27, 28] with two-loop order
corrections which are known to be important for the charginos [22]. For this
spectrum, we compare MARTY with the output of SuperIso.

As can be seen for all the results there exists an excellent agreement be-
tween the analytical formula, SuperIso, and MARTY. The agreement is up
to 4 digits. In addition, we also tested the results given by FormCalc [4] for
the same process, and there is in this case a perfect agreement with MARTY

25



Figure 7: Results for C7 (chargino and stop contributions) in the pMSSM, from MARTY
one the left and from the analytical formula [23] on the right, for the spectrum generated
by MARTY at tree-level. The results match to four digits in average.

Figure 8: Results for C7 (chargino and stop contributions) in the pMSSM, from MARTY
one the left and from the output of SuperIso [25] on the right, for the spectrum generated
by SOFTSUSY [27, 28] with two-loop corrections. The results match to four digits in
average.

with 10 identical digits in average, for both spectra. One explanation may
be that we used quadruple precision (128 bits) floating point variables for
FormCalc and MARTY ’s outputs, and only double precision (64 bits) for
SuperIso output and the analytical formula. The 4-digits precision is how-
ever completely satisfactory considering the uncertainty coming form higher

26



orders in perturbation theory.
This example completes the presentation of what MARTY can calculate.

MARTY will generate for any process, in any model, libraries evaluating
theoretical quantities and give the user a spectrum generator at the same
time. In the case of supersymmetry, spectrum generators already exist with
higher-order terms but in a general BSM models one needs this generic tree-
level spectrum generator. More information and example can be found on
the website https://marty.in2p3.fr.

7. Performance

We measure the performance of a computer program with two main indi-
cators. The execution speed and the quantity of memory (RAM) the program
needs for running. For BSM symbolic calculations at one-loop, it is not pos-
sible to give a standard execution speed nor the quantity of memory as it
depends on the model and the process to calculate. The amount of memory
taken by MARTY is typically very small. It is very rare to reach 1 GB,
and is often under 100 MB. Indicative values of execution times are shown
in table 2, measured on various processes, always running on a single CPU.

External legs Tree-level One-loop
2 ≤ 10−1 10−2

3 ≤ 10−1 100/101

4 ≤ 10−1 102

Table 2: Typical execution time (order of magnitude) of MARTY in second per 100
Feynman diagrams during the calculation of an amplitude, for different numbers of external
legs.

It can be seen in table 2 that the calculation complexity depends strongly
on the number of legs at one-loop. The more legs there is for the loop, the
more terms appear in the amplitude. This number of terms grows very fast
with the number of legs connected to the loop and explains the results shown
here.

For squared amplitudes there is no simple rule to determine the execution
time but it is in general several orders of magnitude more than the simple
amplitude calculation as squaring the amplitude also squares the number of
terms to simplify. Improving performance for this calculation is an important
development for the next release of MARTY.

27



8. Future developments

MARTY has fulfilled most of the planned requirements, but further de-
velopments are ongoing which are listed in the following.

• Wilson coefficients for 4-fermion operators. For now, MARTY
can compute amplitudes for 4-fermions processes, but cannot give au-
tomatically the corresponding Wilson coefficients because of a missing
simplification step. This step is the double application of Fiertz iden-
tities to simplify all momenta in quark currents. Once this simplifica-
tion will be implemented, 4-quarks operators will become available in
MARTY.

• More group theory simplifications. All simplifications with al-
gebra generators are not implemented in MARTY. Some are missing
because it is very difficult to automate these identities for all semi-
simple groups and all representations. These missing simplifications
concern mostly non-fundamental representations, exceptional algebras
and squared amplitudes for pure gluonic amplitudes. Further develop-
ments will focus on this issue but the user can also define easily the
missing properties.

• Automated NLO corrections. With MARTY one can calculate all
one-loop quantities needed to renormalize a BSM model. However this
procedure is not automated and will surely be a point of attention in
the future.

• Operator mixing for Wilson coefficients. Renormalization comes
with operator mixing for Wilson coefficients. This task is more chal-
lenging but there is currently no code able to fully automate this pro-
cedure for general BSM. Therefore having a code able to do this task
would be very useful for flavour physics.

• Interfaces with other codes. This publication presents the first
version of MARTY, that is at the moment not interfaced with other
codes. This is the most important improvement that is planned for
next developments. Universal Feynman Rules Output (UFO [29]) will
link MARTY directly to event generators, and work is in progress to
have direct interface with SuperIso [24, 25, 26] for flavour physics, and
SuperIso Relic [30, 31, 32] for dark matter phenomenology.

28



9. Conclusion and Outlook

We presented MARTY, a new C++ framework automating theoretical
calculations symbolically for BSM physics. The degree of generality reached
by MARTY has never been achieved before. It has its own computer algebra
system (CSL) and automates all theoretical calculations directly from the
Lagrangian. Feynman rules, Feynman diagrams, amplitudes, cross-sections,
and Wilson coefficients can be obtained in a very large variety of BSM models
up to the one-loop level. A full NLO treatment will also be implemented in
the near future, treating renormalization of fields, masses, couplings, and
Wilson coefficients (including operator mixings).

A proof of its capabilities has been demonstrated through a tree-level
cross-section calculation, and a one-loop Wilson coefficient in the pMSSM.
The results are at first symbolic mathematical expressions, but numerical
C++ libraries are built automatically by MARTY allowing us to explore
in full generality the parameter space of the model for some user-defined
quantities. A spectrum generator specific to the user’s model is also created
automatically by MARTY when needed. Most of popular BSM models can
be built in MARTY. The MSSM, extended gauge models, and vector-like
quarks are examples of possible BSM implementations.

MARTY can already be very useful for BSM phenomenology in this cur-
rent version. The particular advantage of MARTY is to be written as a
unique code, not depending on any framework. Within MARTY, every as-
pect of model building and high-energy physics calculation are under control,
in the same program and in the same language. This is a unique opportunity
for future collaborations to take this code even further, extending it to new
models, other simplification methods, or even different types of calculations.

References

[1] A. J. Buras, Weak Hamiltonian, CP Violation and Rare Decays (1998).
arXiv:hep-ph/9806471.

[2] Wolfram Research Inc., Mathematica.
URL https://www.wolfram.com/mathematica

[3] A. Alloul, N. D. Christensen, C. Degrande, C. Duhr, B. Fuks, FeynRules
2.0 - A complete toolbox for tree-level phenomenology, Comput. Phys.
Commun. 185 (2014) 2250–2300. arXiv:1310.1921.

29



[4] T. Hahn, M. Perez-Victoria, Automatized one loop calculations in four-
dimensions and D-dimensions, Comput. Phys. Commun. 118 (1999) 153–
165. arXiv:hep-ph/9807565.

[5] J. A. Evans, D. Shih, FormFlavor Manual, (2016). arXiv:1606.00003.

[6] F. Staub, Exploring new models in all detail with SARAH, Adv. High
Energy Phys. 2015 (2015) 840780. arXiv:1503.04200.

[7] W. Porod, F. Staub, A. Vicente, A Flavor Kit for BSM models, Eur.
Phys. J. C 74 (8) (2014) 2992. arXiv:1405.1434.

[8] R. B. K. Christian Bauer, Alexander Frink, Ginac (2001).
URL https://www.ginac.de/

[9] A. Semenov, LanHEP: A Package for the automatic generation of Feyn-
man rules in field theory. Version 3.0, Comput. Phys. Commun. 180
(2009) 431–454. arXiv:0805.0555.

[10] E. Boos, V. Bunichev, M. Dubinin, L. Dudko, V. Ilyin, A. Kryukov,
V. Edneral, V. Savrin, A. Semenov, A. Sherstnev, CompHEP 4.4: Au-
tomatic computations from Lagrangians to events, Nucl. Instrum. Meth.
A 534 (2004) 250–259. arXiv:hep-ph/0403113.

[11] A. Pukhov, E. Boos, M. Dubinin, V. Edneral, V. Ilyin, D. Kovalenko,
A. Kryukov, V. Savrin, S. Shichanin, A. Semenov, CompHEP: A Pack-
age for evaluation of Feynman diagrams and integration over multipar-
ticle phase space (1999). arXiv:hep-ph/9908288.

[12] R. K. Ellis, Z. Kunszt, K. Melnikov, G. Zanderighi, One-loop calcula-
tions in quantum field theory: From feynman diagrams to unitarity cuts,
Physics Reports 518 (4-5) (2012) 141–250.

[13] Project GNU, Gnu scientific library (gsl).
URL https://www.gnu.org/software/gsl/

[14] The Qt Company, Qt open source model (2020).
URL https://www.qt.io/

[15] G. C. Wick, The evaluation of the collision matrix, Phys. Rev. 80 (1950)
268–272.

30



[16] M. D. Schwartz, Quantum Field Theory and the Standard Model, Cam-
bridge University Press, 2014.

[17] P. Cvitanovic, Group theory for Feynman diagrams in non-Abelian
gauge theories, Phys. Rev. D 14 (1976) 1536–1553.

[18] T. van Ritbergen, A. Schellekens, J. Vermaseren, Group theory factors
for Feynman diagrams, Int. J. Mod. Phys. A 14 (1999) 41–96. arXiv:
hep-ph/9802376.

[19] A. Denner, Techniques for the calculation of electroweak radiative cor-
rections at the one-loop level and results for W -physics at LEP200
(2007). arXiv:0709.1075.

[20] G. Sulyok, A closed expression for the uv-divergent parts of one-loop
tensor integrals in dimensional regularization, Physics of Particles and
Nuclei Letters 14 (4) (2017) 631–643.

[21] A. Denner, H. Eck, O. Hahn, J. Kublbeck, Compact Feynman rules for
Majorana fermions, Phys. Lett. B 291 (1992) 278–280.

[22] S. P. Martin, A Supersymmetry primer, Adv. Ser. Direct. High Energy
Phys. 21 (2010) 1–153. arXiv:hep-ph/9709356.

[23] M. Ciuchini, G. Degrassi, P. Gambino, G. Giudice, Next-to-leading QCD
corrections to B → Xsγ in supersymmetry, Nuclear Physics B 534 (1-2)
(1998) 3–20.

[24] F. Mahmoudi, SuperIso: A Program for calculating the isospin asym-
metry of B → K∗γ in the MSSM, Comput. Phys. Commun. 178 (2008)
745–754. arXiv:0710.2067.

[25] F. Mahmoudi, SuperIso v2.3: A Program for calculating flavor physics
observables in Supersymmetry, Comput. Phys. Commun. 180 (2009)
1579–1613. arXiv:0808.3144.

[26] F. Mahmoudi, SuperIso v3.0, flavor physics observables calculations:
Extension to NMSSM, Comput. Phys. Commun. 180 (2009) 1718–1719.

[27] B. Allanach, SOFTSUSY: a program for calculating supersymmetric
spectra, Comput. Phys. Commun. 143 (2002) 305–331. arXiv:hep-ph/
0104145.

31



[28] B. Allanach, S. P. Martin, D. G. Robertson, R. Ruiz de Austri, The In-
clusion of Two-Loop SUSYQCD Corrections to Gluino and Squark Pole
Masses in the Minimal and Next-to-Minimal Supersymmetric Standard
Model: SOFTSUSY3.7, Comput. Phys. Commun. 219 (2017) 339–345.
arXiv:1601.06657.

[29] C. Degrande, C. Duhr, B. Fuks, D. Grellscheid, O. Mattelaer, T. Reiter,
UFO - The Universal FeynRules Output, Comput. Phys. Commun. 183
(2012) 1201–1214. arXiv:1108.2040.

[30] A. Arbey, F. Mahmoudi, SuperIso Relic: A Program for calculating
relic density and flavor physics observables in Supersymmetry, Comput.
Phys. Commun. 181 (2010) 1277–1292. arXiv:0906.0369.

[31] A. Arbey, F. Mahmoudi, SuperIso Relic v3.0: A program for calculating
relic density and flavour physics observables: Extension to NMSSM,
Comput. Phys. Commun. 182 (2011) 1582–1583.

[32] A. Arbey, F. Mahmoudi, G. Robbins, SuperIso Relic v4: A program for
calculating dark matter and flavour physics observables in Supersymme-
try, Comput. Phys. Commun. 239 (2019) 238–264. arXiv:1806.11489.

32




