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Abstract: Fluorescent dihomooxacalix[4]arene-based receptors 5a–5c, bearing two
naphthyl(thio)ureido groups at the lower rim via a butyl spacer, were synthesised and
obtained in the cone conformation in solution. The X-ray crystal structures of 1,3- (5a) and
3,4-dinaphthylurea (5b) derivatives are reported. Their binding properties towards several anions
of different geometries were assessed by 1H-NMR, UV-Vis absorption and fluorescence titrations.
Structural and energetic insights of the naphthylurea 5a and 5b complexes were also obtained
using quantum mechanical calculations. The data showed that all receptors follow the same trend,
the association constants increase with the anion basicity, and the strongest complexes were obtained
with F−, followed by the oxoanions AcO− and BzO−. Proximal urea 5b is a better anion receptor
compared to distal urea 5a, and both are more efficient than thiourea 5c. Compounds 5a and 5b
were also investigated as heteroditopic receptors for biologically relevant alkylammonium salts,
such as the neurotransmitter γ-aminobutyric acid (GABA·HCl) and the betaine deoxycarnitine·HCl.
Chiral recognition towards the guest sec-butylamine·HCl was also tested, and a 5:2 selectivity
for (R)-sec-BuNH3

+
·Cl− towards (P) or (M) enantiomers of the inherently chiral receptor 5a was

shown. Based on DFT calculations, the complex [(S)-sec-BuNH3
+
·Cl−/(M)-5a] was indicated as the

more stable.

Keywords: dihomooxacalix[4]arenes; naphthyl(thio)urea anion receptors; alkylammonium
hydrochlorides; ditopic receptors; chiral recognition; NMR studies; UV-Vis absorption studies;
fluorescence studies; X-ray diffraction; DFT calculations

1. Introduction

Calixarenes are among the most versatile macrocyclic compounds studied in supramolecular
chemistry owing to their structural features [1,2]. They can be functionalized at the upper and lower
rims, and they possess a pre-organized cavity available in different sizes and conformations. As a
result, these compounds have been largely exploited as ion receptors.
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Fluorescence spectroscopy, due to its high sensitivity, has been used for ion binding
determination [3,4]. Fluorogenic moieties, such as naphthalene, anthracene and pyrene are among
the most incorporated in the calixarene framework, leading to the development of fluorescent probes
for anion and also ion-pair recognition. Examples of such fluorescent calix[4] arene [5–10], calix[5]
arene [11] and calix[6]arene [12–14] receptors have been reported in the literature.

Anions play important roles in many biological and chemical systems, and also in the
environment [15,16]. Synthetic anion receptors, namely calixarenes containing amide or (thio)urea
groups interact exclusively through H-bonding with the anions. The NH groups provide strong and
directional hydrogen bonds, resulting in well preorganized receptors. Some of these hosts can also
act as ditopic receptors, simultaneously binding both ions of a given salt [17,18]. These receptors
combine different binding sites in the same molecule, such as hydrogen bonds and oxygen donor
atoms, besides an aromatic cavity that can establish π-CH interactions with the counter cation.

As part of our on-going interest on the host-guest properties of substituted dihomooxacalix[4]arenes
(calix[4]arene analogues in which one CH2 bridge is replaced by one CH2OCH2 group) with (thio)urea
units [19–23], we have extended our research into the study of fluorescent receptors for anion [24]
and ion-pair recognition. Thus, dihomooxacalix[4]arene-based fluorescent sensors bearing (thio)urea
groups as a binding site and naphthalene moieties as a fluorophore unit were obtained for the first
time. This paper describes the synthesis of three disubstituted dihomooxacalix[4]arenes containing
naphthylurea (compounds 5a and 5b) or naphthylthiourea (compound 5c) residues at the 1,3- or
3,4-positions of the lower rim, via a butyl spacer. These derivatives were obtained in the cone
conformation in solution, confirmed by NMR. The cone conformation was also observed in the solid
state (for 5a and 5b) by X-ray diffraction. Their binding properties towards several relevant anions
were assessed by proton NMR, UV-Vis absorption and fluorescence spectroscopy. The urea compounds
(5a and 5b) were also tested as heteroditopic receptors for biologically relevant alkylammonium
salts, such as the amino acid γ-aminobutyric acid (GABA·HCl) and the betaine deoxycarnitine·HCl.
GABA is an important neurotransmitter with inhibitory activity in mammal central nervous system.
Deoxycarnitine results from enzymatic methylation of GABA, and as other betaines is used as an
osmotic regulator in plants. Chiral recognition towards the chiral guest sec-butylamine·HCl was also
investigated taking advantage of the intrinsic chirality of urea 5a. Computational studies were also
performed to add further insight to the binding process.

2. Results and Discussion

2.1. Synthesis and Structural Analysis

A few years ago we reported the reaction of parent compound 1 with bromobutyronitrile and
K2CO3 to afford, after chromatographic separation, the asymmetric 1,3-dicyanodihydroxy derivative 2a
and the symmetric 3,4-dicyanodihydroxy derivative 2b [19]. Following this synthetic route (Scheme 1),
we undertook a three-step procedure from both the majority and the minority products 2a and 2b,
respectively, obtaining in the last step naphthylurea 5a and naphthylthiourea 5c from the asymmetric
diamine 4a and naphthylurea 5b from the symmetric 4b. Comparing the ion affinity of receptors
5a and 5b, it is expected to obtain some insights about the role of the substitution pattern (distal vs.
proximal) of the two ureido groups in a cooperative binding process.

The 1H-NMR spectra of inherently chiral receptors 5a and 5c in CDCl3 at room temperature
show four singlets for the tert-butyl groups, five AB quartets for the CH2 bridge protons, four pairs
of doublets for the aromatic protons of the calixarene skeleton, and two triplets and two singlets for
the NHa and NHb protons, respectively. Beside these peaks, the spectra display also two triplets and
several multiplets for the methyl and methylene protons of the n-butyl groups and butyl spacers,
as well as for the aromatic protons of the naphthyl groups. The proton assignments were confirmed by
COSY spectra. Receptors 5a and 5c were obtained in the cone conformation, as indicated by the three
ArCH2Ar resonances in the range 29.5–30.8 ppm of the 13C-NMR spectra [25].
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groups. The 13C-NMR spectrum exhibits two ArCH2Ar resonances at 30.3 ppm (two carbon atoms) 
and at 30.5 ppm (one carbon atom), indicating a cone conformation also for 5b. 

Small single crystals of naphthylureas 5a and 5b were analyzed using synchrotron radiation at 
100 K. The X-ray structures confirm that both 5a and 5b adopt the expected cone conformation, also 
in the solid state. The structural model of 5a clearly show that it is inherently chiral due to the 1,3-
substitution pattern on the lower rim, which is asymmetric with respect to the dihomooxa bridge 
(Figure 1). As the space group is centrosymmetric, a racemic mixture of the two inherently chiral 
enantiomers is present in the crystals. With regard to the cone conformation, the planes of the two 
ureido-substituted phenyl rings A (connected to the dihomooxa bridge) and C make large dihedral 
angles of 124° and 143°, respectively, with respect to the mean plane of the methylene bridging 
groups. Angles greater than 90° indicate that the tert-butyl groups on the upper rims lean outwards 
from the centre of the cone (Figure 1). With respect to the butoxy-substituted phenyl rings, the plane 
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Scheme 1. Synthesis of naphthyl(thio)ureas 5a–5c. Reaction conditions: (i) Br(CH2)3CN, K2CO3, MeCN,
∆; (ii) n-BuI, NaH, THF/DMF, ∆; (iii) NaBH4/CoCl2, MeOH, rt; (iv) Naph-NCX, CHCl3, rt.

In contrast, receptor 5b presents symmetric NMR spectra. The 1H-NMR spectrum displays two
singlets for the tert-butyl groups, three AB quartets (in a 2:2:1 ratio) for the CH2 bridge protons, two
pairs of doublets for the aromatic protons of the calixarene platform and one triplet and one singlet for
the NHa and NHb protons, respectively, besides one triplet and several multiplets for the CH3 and
CH2 protons of the butyl groups and spacers, and also for the aromatic protons of the naphthyl groups.
The 13C-NMR spectrum exhibits two ArCH2Ar resonances at 30.3 ppm (two carbon atoms) and at
30.5 ppm (one carbon atom), indicating a cone conformation also for 5b.

Small single crystals of naphthylureas 5a and 5b were analyzed using synchrotron radiation
at 100 K. The X-ray structures confirm that both 5a and 5b adopt the expected cone conformation,
also in the solid state. The structural model of 5a clearly show that it is inherently chiral due to the
1,3-substitution pattern on the lower rim, which is asymmetric with respect to the dihomooxa bridge
(Figure 1). As the space group is centrosymmetric, a racemic mixture of the two inherently chiral
enantiomers is present in the crystals. With regard to the cone conformation, the planes of the two
ureido-substituted phenyl rings A (connected to the dihomooxa bridge) and C make large dihedral
angles of 124◦ and 143◦, respectively, with respect to the mean plane of the methylene bridging groups.
Angles greater than 90◦ indicate that the tert-butyl groups on the upper rims lean outwards from the
centre of the cone (Figure 1). With respect to the butoxy-substituted phenyl rings, the plane of the
one adjacent to the dihomooxa bridge (B) makes at a dihedral angle of 69◦ with the mean plane of the
methylene bridging groups, with the upper rim inclined inwards. The last phenyl ring (D) is tilted
slightly outwards, with a dihedral angle of 99◦.

Consistently with what we have previously observed for analogous calixarenes containing ureido
or thioureido units on the lower rim, the two ureido groups form a bifurcated intramolecular N–H···O
hydrogen bond with N···O distances of 2.866 Å and 2.895 Å. In the present case, the hydrogen bond is
quite symmetric, indicative of a strong interaction. The mean planes formed by the NCON atoms of the
urea moieties show a dihedral angle of 24◦ (38◦ for the second orientation of the disordered naphthyl
group of ring A), while the terminal naphthyl groups form dihedral angles of about 69◦ (Ring A, 86◦ for
the second orientation) and 42◦ (Ring C) with respect to their corresponding planar NCON groups.
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Figure 1. Solid state structures of (a) 5a and (b) 5b. The structures, with very similar cone 
conformations, show significant differences in conformation of the lower rim substituents. The atomic 
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naphthyl group (Ring A) is oriented head-to-tail (head-to-head in the second orientation) with respect 
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Figure 1. Solid state structures of (a) 5a and (b) 5b. The structures, with very similar cone conformations,
show significant differences in conformation of the lower rim substituents. The atomic species are
represented in CPK colours. Hydrogen atoms are omitted for clarity.

The overall result is that the two naphthyl groups are almost parallel, forming a dihedral angle
of about 4◦ between their mean planes (7◦ for the second orientation) (Figure 1). The disordered
naphthyl group (Ring A) is oriented head-to-tail (head-to-head in the second orientation) with respect
to the other naphthyl group (Ring C). 5b adopts a similar cone conformation (Figure 1). In contrast to
5a, the 3,4-substitution pattern on the lower rim maintains the Cs point symmetry of the macrocycle.
Comparison of the dihedral angles of the four phenyl rings A, B, C and D with the mean plane of the
methylene bridging groups, indicate an analogous cone conformation for 5a and 5b (Table 1). Thus,
only slight differences are evident for the B (14◦) and D (−11◦) rings. For comparison, we have previously
reported two analogous dihomooxacalix[4]arenes with a 1,3-substitution pattern on the lower rim
and which differ from 5a for the presence of two p-CF3-phenylurea moieties [23] or unsubstituted
phenylurea moieties [20] in place of the naphthyl urea groups. All structures with the 1,3-substitution
pattern on the lower rim exhibit conformations which are comparable (Table 1). Thus, the small
difference in the cone conformation observed for 5b can be attributed to the different substitution
pattern. More significant difference between the two structures 5a and 5b are apparent in the relative
orientations of the ureido substituents. The planes of the two naphthyl rings are almost perpendicular,
with a dihedral angle of 88◦, as opposed to the almost parallel situation found for 5a (Table S1).
There are significant differences in the hydrogen bonds formed by the various molecules discussed here
(Table S2). 5a and 5b both form strong bifurcated intramolecular and intermolecular hydrogen bond,
while for the p-CF3-Phurea moieties the intramolecular bonds are quite asymmetric, and in the case of
the Phurea moieties a solvent molecule is involved and breaks the intermolecular H-bond pattern.

Table 1. Comparison of cone conformations: Dihedral angles between corresponding aryl planes of
the calixarene cones (A, B, C and D) and the mean planes of the bridging methylene carbon atoms for
various dihomooxacalix[4]arenes.

A (◦) B (◦) C (◦) D (◦)

5a 124 a 69 143 a 99
5b 125 83 140 a 88 a

p-CF3-Phurea b 125 a 66 131 a 101
Phurea c (I) 123 a 64 133 a 100
Phure ac (II) 121 a 74 137 a 97

a Ureido substituent on lower ring; b data taken from ref. 23; c data taken from ref. 20 for two independent molecules
in the asymmetric unit. See Figure 2 and text for labelling of rings A, B, C and D.
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With regard to the crystal packing, in 5a each molecule acts as both an N-donor (on one ureido
group) and an O-acceptor (on the other ureido group) in the formation of two symmetry equivalent
bifurcated intermolecular N–H···O hydrogen bonds (2.839 Å and 2.974 Å) with two other molecules
generated by the 21 screw axis symmetry operation, thereby forming alternating intramolecular
/intermolecular H-bond chains parallel to the crystallographic b-axis. Two inversion-related anti-
parallel chains are formed (Figure 2a). Each chain is composed of molecules with the same inherent
chirality. Like 5a, the urea group of 5b forms an intramolecular bifurcated H-bond with N···O distances
of 2.891 Å and 2.975 Å, and two intermolecular bifurcated H-bonds with N···O distances of 2.909 Å
and 2.952 Å (Figure 2b). The intermolecular H-bonds are formed with molecules generated by the
diagonal glide plane, forming antiparallel chains of H-bonds, parallel to the a-c cell diagonal.
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2.2.1. Proton NMR Studies 

Complexation abilities of naphthyl(thio)ureas 5a–5c toward relevant anions of different 
geometries (spherical, trigonal planar and tetrahedral) were investigated in CDCl3 by proton NMR 
titrations with tetrabutylammonium (TBA) salts. The association constants (as log Kass) were 
determined following the urea NH chemical shifts through the WinEQNMR2 program [26] and are 
reported in Table 2. 

Table 2. Association constants (log Kass) a of dihomooxa naphthyl(thio)ureas 5a-5c in CDCl3 at 25 °C. 

 Spherical Trigonal Planar Tetrahedral 
 F− Cl− Br− I− NO3− AcO− BzO− HSO4− H2PO4− 

I. Radius/Å b 1.33 1.81 1.96 2.20 1.79 2.32 — 1.90 2.00 
5a 2.80 2.60 2.12 1.78 2.12 2.51 2.76 2.54 2.25 
5b 3.12 2.91 2.46 1.94 2.38 3.17 3.07 2.52 2.67 

Figure 2. Crystal packing in the unit cells of (a) 5a and (b) 5b. In both cases the crystal packing is
characterized by inversion-related antiparallel chains of bifurcated H-bonds. In 5a, each molecule in
the chain is generated by a 21 screw operation and the chains are parallel to the b-axis. Each chain is
composed of molecules with the same chirality and the antiparallel chain is composed of opposite
chirality. In 5b, the molecules in each chain are generated by the glide planes and the chains are parallel
to the a-c cell diagonal. The atomic species are represented in CPK colours. Hydrogen atoms are
omitted for clarity.

2.2. Anion Complexation

2.2.1. Proton NMR Studies

Complexation abilities of naphthyl(thio)ureas 5a–5c toward relevant anions of different geometries
(spherical, trigonal planar and tetrahedral) were investigated in CDCl3 by proton NMR titrations with
tetrabutylammonium (TBA) salts. The association constants (as log Kass) were determined following
the urea NH chemical shifts through the WinEQNMR2 program [26] and are reported in Table 2.

Table 2. Association constants (log Kass) a of dihomooxa naphthyl(thio)ureas 5a-5c in CDCl3 at 25 ◦C.

Spherical Trigonal Planar Tetrahedral

F− Cl− Br− I− NO3
− AcO− BzO− HSO4

− H2PO4
−

I. Radius/Å b 1.33 1.81 1.96 2.20 1.79 2.32 — 1.90 2.00

5a 2.80 2.60 2.12 1.78 2.12 2.51 2.76 2.54 2.25
5b 3.12 2.91 2.46 1.94 2.38 3.17 3.07 2.52 2.67
5c 2.67 1.75 1.06 1.09 1.06 2.17 2.01 1.89 2.02

a Estimated error < 10%; b Data quoted in Marcus, I. Ion Properties; Marcel Dekker: New York, pp. 50–51,1997.
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Significant downfield shifts of the NH protons were observed upon addition of TBA salts to
the receptors, clearly indicating hydrogen bonding interactions between the (thio)urea groups and
the anions, as illustrated in Figure 3 and Figure S1. Only one set of signals was observed during
the titrations, showing fast exchange rate between the free and the complexed receptor on the NMR
time scale at room temperature. The titration curves obtained (Figure S2) evidence the 1:1 complexes,
this stoichiometry being also confirmed by Job plots (Figures S3 and S4).
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Figure 3. 1H-NMR partial spectra (500 MHz, CDCl3, 25 ◦C) of Naph-urea 5a with several equiv of
TBA chloride.

The comparison between naphthylureas 5a and 5b allowed us to make some considerations
about the cooperative action of the two ureido moieties on alternate vs. adjacent positions of the
calixarene framework. The results displayed in Table 1 indicate that proximal naphthylurea 5b is a
more efficient receptor for all the anions (except HSO4

−). The association constants were, in average,
0.32 log units higher than those obtained for distal naphthylurea 5a for the majority of the anions. In the
case of H2PO4

− and AcO− this enhancement was even higher (0.42 and 0.66 log units, respectively).
A similar behaviour was previously observed with distal and proximal calix[4]arene diphenylurea
analogues [27]. Concerning the spherical halides, the data reveal that both ureas 5a and 5b form the
strongest complexes with F− (log Kass = 2.80 and 3.12, respectively), and the association constants
increase with the anion basicity. With regard to the trigonal planar and tetrahedral anions, urea 5b
displays the same behaviour, showing the highest affinity for the carboxylate AcO− and the inorganic
oxoanion H2PO4

−, respectively (log Kass = 3.17 and 2.67). In the case of urea 5a, and as observed
before with other dihomooxa bidentate [19,23] and tetraurea receptors [21], there is a slight inversion
of the basicity order (AcO−/BzO− and H2PO4

−/HSO4
−). π stacking interactions may contribute to the

increased binding of BzO− over that of AcO−.
The anion binding results reported in Table 2 also show that naphthylthiourea 5c is a weaker

receptor than naphthylurea 5a, despite the increased acidity of its NH groups. Thiourea 5c exhibits
however a similar trend to 5a, with the anions bound according to their basicity. The association
constants were, in average, 0.84 log units lower than those obtained for 5a, except for the best
bound anions F−, AcO− and H2PO4

−, whose differences were smaller (∆ log Kass = 0.13, 0.34 and
0.23, respectively). Similar results were reported before for different homooxacalixarene thiourea



Molecules 2020, 25, 4708 7 of 20

receptors [21,28,29], as well as thioureido-calix[4] and [6]arene analogues [30,31]. This fact may be
related to the larger size of sulfur atom, that destabilizes the cis-cis geometry required for anion
binding, causing a lower preorganization and consequently a high energy demand of the thiourea
groups compared to the urea ones [32].

The calixarene skeleton of symmetric urea 5b seems to undergo no conformational changes upon the
addition of 8 equiv of the salts, as the tert-butyl and the aromatic protons show very small downfield or
upfield chemical shift variations (∆δ ≤ 0.06 and 0.03 ppm, respectively). By contrast, asymmetric urea 5a
undergoes deeper conformational changes upon complexation. One of the four t-Bu groups experiences
downfield variations from 0.05 to 0.20 ppm, while the other three display smaller upfield variations (from
0.01 to 0.14 ppm). The maximum chemical shifts were observed for BzO− anion. Concerning the aromatic
protons, some of them are overlapped by other peaks and difficult to follow during all the titration. However,
it is possible to observe that two of them show significant downfield variations, from 0.10 to 0.29 ppm,
the highest chemical shifts being observed for BzO− (0.29 and 0.25 ppm).

2.2.2. UV-Vis Absorption and Fluorescence Studies

The interactions between naphthyl(thio)ureas 5a–5c and the previous anions as TBA salts have also
been studied in dichloromethane by UV-Vis absorption and fluorescence titrations. Naphthylureas 5a
and 5b showed identical behaviours with respect to anion complexation. Both ureas display absorption
bands centred at approximately 283 nm in the absence of anions. These bands decrease in intensity
upon addition of increasing amounts of F−, while a new one gradually appears at longer wavelength,
reaching a maximum at approximately 315 nm (red shift of 32 nm). Isosbestic points can also be
observed, as for example in Figure 4a for receptor 5a. Concerning Cl−, AcO−, BzO− and H2PO4

−

anions similar absorption spectral changes were obtained (Figure S5), leading to red shifts of 20 nm,
but with no isosbestic points. Finally, additions of Br−, NO3

− and HSO4
− anions induced progressive

increases of the absorption, but no shifts in their maxima were recorded (Figure S6). Naphthylthiourea
5c behaved differently for all the anions (Figure S7). In this case, the absorption band centred at 283 nm
decreases as the anion concentration increases, presenting isosbestic points, but no significant shifts of
its maximum.
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With regard to steady-state fluorescence studies, receptors 5a and 5b exhibit emission bands 
centred at approximately 380 nm, characteristic of the naphthylurea groups [33]. Similar absorption 
and fluorescence spectra were reported in the literature for a ureido-calix[5]arene analogue [11]. No 

Figure 4. (a) Changes in the UV (a) and emission (b) spectra of Naph-urea 5a (5.0 × 10−5 M) upon
addition of TBA F (up to 10 equiv.) in CH2Cl2. The arrows indicate the decreasing or increasing
amounts of salt.

With regard to steady-state fluorescence studies, receptors 5a and 5b exhibit emission bands
centred at approximately 380 nm, characteristic of the naphthylurea groups [33]. Similar absorption
and fluorescence spectra were reported in the literature for a ureido-calix[5]arene analogue [11].
No intramolecular excimer is observed in these fluorescence spectra, indicating the absence of π-π*
stacking between the naphthyl moieties [33]. Both 5a and 5b display significant fluorescence lifetimes
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and quantum yields (Table 3). Successive additions of F−, AcO− and H2PO4
− anions caused an increase

of the emission intensity, as shown in Figure 4b. For Br−, NO3
− and HSO4

− anions this increase was less
pronounced (Figure S8), and in the case of Cl− and BzO− (Figure S9) a quenching of the fluorescence
intensity, with a concomitant decrease of the fluorescence quantum yield (Table 3), was observed.
This decrease is stronger for asymmetric urea 5a. In the case of Cl− and 5a, the fluorescence lifetime of
the 1:1 complex shows a moderate decrease (about 2/3) with respect to the pristine receptor (Table 3),
whereas the quantum yield drops by a factor of almost 4. This implies the existence of a marked static
quenching in the complex, with only a few configurations being able to emit. The same applies to
5b, although to a lesser extent. In the case of BzO−, the quenching is similar with respect to both
intensity and lifetimes (Table 3). It is seen that the quenching arises mainly from an increase in the
nonradiative decay constant in the complex, where aromatic moieties of receptor and anion appear
to interact. The fluorescence of thiourea 5c could not be studied in detail as this receptor is unstable
upon irradiation.

Table 3. Photophysical properties of Naphureas 5a and 5b in CH2Cl2 at 25 ◦C.

λmax,abs
(nm)

ε
(M−1 cm−1)

λmax,em
(nm)

Stokes Shift a

(nm)
τf

(ns) ΦF kr (ns−1) knr (ns−1)

5a 283 1.5× 104 382 99 8.93 0.31 b 0.035 0.077
5a + Cl− 303 2.4× 104 382 79 6.26 0.085 b — —
5a + BzO− 303 2.0× 104 382 79 1.98 0.048 b 0.024 0.48
5b 282 1.8× 104 379 97 7.57 0.26 b 0.034 0.098
5b + Cl− 302 2.3× 104 379 77 6.63 0.16 b — —
5b + BzO− 302 1.7× 104 379 77 3.27 0.078 b 0.024 0.28

a Computed as λmax,em − λmax,abs; b Against quinine sulfate ΦF = 0.546 in H2SO4 0.5 M.

Important spectral variations were observed for the three receptors in the presence of all the
anions, allowing the calculation of the corresponding binding constants by absorption and emission
(for the ureas) data (Table 4). The association constants are higher than those obtained by NMR
(different concentration range), but follow the same trend. The more diluted solutions used in the
UV/fluorescence titrations favour the dissociation of the salts, producing a higher concentration of the
anions available for complexation and resulting in higher association constants [11]. Similar results
were obtained by absorption and emission, in the same concentration range, showing that fluorescence
can also be a useful method for the determination of the association constants. Proximal naphthylurea
5b is a slightly better receptor for all the anions (except HSO4

−) than distal urea 5a, and F−, AcO− and
BzO− are the best bound anions. Naphthylthiourea 5c displayed the same trend as its urea analogue,
with the anions bound according to their basicity (Table 4). However, 5c is a weaker receptor, except in
the cases of F−, AcO− and H2PO4

− anions, for which it showed similar log Kass values.

Table 4. Association constants (log Kass) a of dihomooxa naphthyl(thio)ureas 5a–5c in C H2Cl2 at 25 ◦C.

Spherical Trigonal Planar Tetrahedral

F− Cl− Br− NO3
− AcO− BzO− HSO4

− H2PO4
−

5a Abs 4.21 3.59 3.20 3.19 3.79 3.94 3.13 3.06
Emi 4.05 3.48 3.14 3.12 3.66 4.00 3.01 2.90

5b Abs 4.36 3.69 3.37 3.31 4.16 4.08 2.90 3.16
Emi 4.34 3.67 3.23 3.23 4.21 3.84 2.97 3.14

5c Abs 4.18 3.01 2.71 3.07 3.66 3.71 2.87 3.14
a Estimated error < 10%.

2.3. Organic Ion Pair Recognition

Naphthylureas 5a and 5b have also been tested as ditopic receptors for n-propyl and
n-butylammonium chlorides (Figure 5) in an exploratory study to estimate their ion pair
binding efficiency.
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Proton NMR titrations were performed by adding increasing amounts (up to two equiv.) of
the salts to CDCl3 solutions of 5a and 5b at room temperature. The addition of the first salt aliquot
produced doubling of the receptor peaks, and also a new set of signals corresponding to the guest
bound to the host. Alkylammonium cation inclusion inside the dihomoxa cavity is shown by the
appearance of high field resonances for the alkyl groups (from −1.32 to −0.33 ppm for n-PrNH3

+

and from −1.32 to 0.26 ppm for n-BuNH3
+). In the case of receptor 5a, due to its intrinsic chirality,

the pairs of enantiotopic hydrogen atoms of the α- and β-CH2 groups of the included guest display
chemically non-equivalent signals, as shown in Figure 6 for n-BuNH3

+. On the other hand, chloride
binding to the urea groups is demonstrated by the downfield shifts observed for all the NH protons
(∆δ ≥ 1 ppm), indicating anion complexation through hydrogen-bond interactions. These observations
are compatible with a slow binding process on the NMR time scale. The percentages of complex
formation and the corresponding association constants could thus be determined by direct integration
of the peaks. The temperature was lowered to 263 K/253 K to get a more sound integration of the
signals, as they were slightly broad at room temperature. All host-guest pairs studied displayed
percentages of complexation higher than 95% (corresponding to Kass > 109 M−2), preventing a more
accurate calculation of the association constants in chloroform.Molecules 2020, 25, x 10 of 21 
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Figure 6. 1H-NMR spectra (500 MHz) of: (a) [5a] = 1.0 mM at 253 K in CDCl3; (b) [5a] = [n-BuNH2·HCl]
= 1 mM at 253 K in CDCl3; (c) [5a] = [n-BuNH2·HCl] = 1 mM at 243 K in CDCl3/DMSO-d6, 5:1, v/v.
* Denotes residual solvent signals.
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These titration experiments were repeated in a more competitive solvent (CDCl3/DMSO-d6, 5:1)
for the anion binding site and also that increases the ammonium solvation. It was necessary to lower
the temperature until 273 K to observe the appearance of the peaks at the negative region of the 1H
NMR spectra, and to lower until 243 K to a better integration of the signals. Thus, the results obtained
(Kass = 18,000 and 29,000 M−2, corresponding to 79% and 83% of complex formation for n-PrNH3

+
·Cl−

with 5a and 5b, respectively, and Kass = 10,000 and 18,000 M−2, corresponding to 73% and 79% of
complex formation for n-BuNH3

+
·Cl− with 5a and 5b, respectively) show that receptor 5b is more

efficient than 5a for both ion pairs, and the former guest is better bound than the latter by both receptors.
This trend was also observed by the theoretical calculations (see below, Section 2.4). It is worth noting
that in this solvent mixture the guests are less fixed within the aromatic cavity of the host, as indicated
by the chemically equivalent signals for the α- and β-CH2 groups of the included guests (Figure 6c).

The binding affinities of ureas 5a and 5b were also extended to the aminoacid GABA·HCl and to
the betaine deoxycarnitine·HCl (Figure 5) in a CDCl3/CD3OD (5:1, v/v) solvent mixture. The former
guest was first tested in its zwitterionic form at room temperature and at 233 K. The NMR spectra
remained almost unchanged after the addition of two equiv. of the guest, indicating no host-guest
interaction. However, resonances at the negative region of the spectrum appeared when GABA·HCl
was used, revealing the ammonium cation inclusion inside the aromatic cavity of the host (Figure 7).

For the inherently chiral receptor 5a, four high field signals for the β- and γ-CH2 protons of the
guest were observed (Figure S10), in analogy with the alkylammonium chloride cases seen previously.
To obtain a more reliable integration of the signals, the NMR spectra were registered at 233 K. The data
(81 and 88% of complex formation, corresponding to Kass = 22,000 and 60,000 M−2 for 5a and 5b,
respectively) indicate that receptor 5b is more efficient than 5a, being in line with the previous anion
and alkylammonium chloride binding results. Concerning the latter guest, no interaction at all was
detected with both receptors, suggesting that the more bulky groups (CH3 vs. H) of the betaine guest
prevent the inclusion inside the macrocycle cavity.
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Figure 7. 1H-NMR spectra (500 MHz, 233 K, CDCl3/CD3OD, 5:1, v/v) of: (a) [5a] = 1.0 mM;
(b) [5a] = [GABA·HCl] = 1 mM. * Denotes residual solvent signals.
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Chiral recognition towards racemic sec-butylamine·HCl guest (Figure 5) was also investigated
with both urea receptors. The NMR binding studies (CDCl3/CD3OD, 5:1, v/v) performed at room
temperature showed only a slight broadening of the host peaks. However, by lowering the temperature
(until 223 K) it was possible to see the appearance of upfield resonances belonging to the guest inside
the aromatic cavity of the hosts. In the case of the achiral urea 5b, the addition of one equiv. of the guest
gives rise to the appearance of an asymmetric structure. For example, six singlets for the t-Bu groups,
corresponding to the free (two peaks) and to the complexed receptor (four peaks) can be observed.
Five high field resonances for the sec-BuNH3

+ guest, including two multiplets for the diastereotopic β
methylene protons are also shown in the proton spectrum (Figure S11). The splitting of the t-Bu signals
is not complete, preventing a very precise integration. However, a complex formation of approximately
70% could be determined. As reported before for the binding of sec-butylammonium ion with another
achiral dihomooxacalixarene [34], the inclusion of the branched sec-BuNH3

+ ion into the dihomooxa
cavity should restrict its free motion, producing this chiral complex. Concerning racemic urea 5a and in
the same conditions as before, the proton NMR spectrum displays at least ten singlets for the t-Bu groups,
four corresponding to the free host and the remaining ones corresponding to the two diastereotopic
complexes formed [host(P)/guest(R) ≡ host(M)/guest(S) + host(P)/guest(S) ≡ host(M)/guest(R)] [35]
(Figure 8). The percentage of complex formation is approximately of 65%. The same situation
[host(P)/guest(R) + host(M)/guest(R)] was obtained when we used an enantiomerically pure guest
[(R)-(−)-sec-butylamine·HCl]. Two sets of shielded resonances (8 signals instead of the expected 10 due
to overlapping) for the sec-Bu group of the guest included into the cavity for the two diastereotopic
complexes were seen in the high field region of the spectrum. A complete assignment of these peaks
was obtained by a COSY spectrum (Figure S12). Their integration indicated a diastereomeric ratio of
about 5:2.

Molecules 2020, 25, x 12 of 21 

 

obtained when we used an enantiomerically pure guest [(R)-(−)-sec-butylamine·HCl]. Two sets of 
shielded resonances (8 signals instead of the expected 10 due to overlapping) for the sec-Bu group of 
the guest included into the cavity for the two diastereotopic complexes were seen in the high field 
region of the spectrum. A complete assignment of these peaks was obtained by a COSY spectrum 
(Figure S12). Their integration indicated a diastereomeric ratio of about 5:2. 

 
Figure 8. 1H-NMR spectra (500 MHz, 223 K, CDCl3/CD3OD, 5:1, v/v) of: (a) [5a] = 1.0 mM; (b) [5a] = 
[sec-BuNH2·HCl] = 1 mM. Inset: 1 and 2 mean the two sets of signals for the s-Bu group of the guest 
inside the cavity for the two diastereotopic complexes formed. * Denotes residual solvent signals.   

By NMR is not possible to determine which complex [host(P)/guest(R) or host(M)/guest(R)] is 
more stable. Thus, DFT calculations were performed (see below) and showed an higher energy for 
the [host(M)/guest(S)] complex. On this basis, the more intense NMR signals were assigned to the 
more stable complex [(S)-sec-BuNH3+·Cl−/(M)-5a], that can be directly transferred to its enantiomeric 
pair [host(P)/guest(R)], and a selectivity of about 5:2 could be deduced. 

2.4. Theoretical Studies 

In order to get further insights into the anion binding ability of 5a and 5b, we performed 
quantum mechanical calculations on the complexed receptors with an extensive range of anions, 
including spherical halides (F− vs. Cl−), trigonal (AcO− vs. BzO−) and tetrahedral (HSO4− vs. H2PO4−). 
Heteroditopic complexation properties of 5a and 5b were also studied with alkylammonium salts, 
comparing n-PrNH3+·Cl− and n-BuNH3+·Cl−, and the affinity of the asymmetric host 5a for the chiral 
guest sec-BuNH3+·Cl− was also investigated. 

Each anion, whatever is its geometry, is bonded to the urea groups of 5a and 5b via four 
hydrogen bonds, as illustrated by snapshots of the optimized structures for fluoride, acetate and 
hydrogenophosphate anions in Figure 9. Similar structures were found for the other anions, as shown 
in Figure S13. The urea moieties always interact with the coordinated anions that sit in a hole formed 
by the four hydrogens of the NH groups. AcO− and BzO− are recognized via their carboxylate groups, 

α2 

β’1 γ1 
γ2 
α1 

β1 
β’2 

β2 

b) 

a) 

sec-BuNH3+ ⊂ 5a ⊃ Cl– 

* * 

* * 
* 

Figure 8. 1H-NMR spectra (500 MHz, 223 K, CDCl3/CD3OD, 5:1, v/v) of: (a) [5a] = 1.0 mM;
(b) [5a] = [sec-BuNH2·HCl] = 1 mM. Inset: 1 and 2 mean the two sets of signals for the s-Bu group of the
guest inside the cavity for the two diastereotopic complexes formed. * Denotes residual solvent signals.



Molecules 2020, 25, 4708 12 of 20

By NMR is not possible to determine which complex [host(P)/guest(R) or host(M)/guest(R)] is
more stable. Thus, DFT calculations were performed (see below) and showed an higher energy for the
[host(M)/guest(S)] complex. On this basis, the more intense NMR signals were assigned to the more
stable complex [(S)-sec-BuNH3

+
·Cl−/(M)-5a], that can be directly transferred to its enantiomeric pair

[host(P)/guest(R)], and a selectivity of about 5:2 could be deduced.

2.4. Theoretical Studies

In order to get further insights into the anion binding ability of 5a and 5b, we performed quantum
mechanical calculations on the complexed receptors with an extensive range of anions, including
spherical halides (F− vs. Cl−), trigonal (AcO− vs. BzO−) and tetrahedral (HSO4

− vs. H2PO4
−).

Heteroditopic complexation properties of 5a and 5b were also studied with alkylammonium salts,
comparing n-PrNH3

+
·Cl− and n-BuNH3

+
·Cl−, and the affinity of the asymmetric host 5a for the chiral

guest sec-BuNH3
+
·Cl− was also investigated.

Each anion, whatever is its geometry, is bonded to the urea groups of 5a and 5b via four
hydrogen bonds, as illustrated by snapshots of the optimized structures for fluoride, acetate and
hydrogenophosphate anions in Figure 9. Similar structures were found for the other anions, as shown
in Figure S13. The urea moieties always interact with the coordinated anions that sit in a hole formed
by the four hydrogens of the NH groups. AcO− and BzO− are recognized via their carboxylate groups,
while the methyl and benzyl groups point away from the binding cavity. The tetrahedral anions
interact via their non protonated oxygens.
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The ∆E calculated complexation energies (∆E = E(complex) − E(free ligand) − E(ions), Table 5
and Table S3) nicely follow the association constants from Table 2. Naph-urea 5b is always a better
receptor than Naph-urea 5a, but the ∆E differences depend on the nature of the anions and go from
less than 15 kJ.mol−1 for HSO4

− to almost 60 kJ.mol−1 for the F− ion. For the latter anion and for the
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trigonal planar the energy discrimination between 5a and 5b is quite high (more than 50 kJ.mol−1 for
F− and BzO− and 30 kJ.mol−1 for AcO−), while it is smaller (less than 17 kJ.mol−1) for Cl− and the
tetrahedral anions. To analyse these differences the H-bond distances between the receptor and the
anions were measured (Table S4). As expected, comparing the anions within the same geometry group,
the averaged H-bond distances are correlated to the interaction energies: for the spherical F− vs. Cl−

anions the mean values are 1.747 Å vs. 2.300 Å and 1.746 Å vs. 2.338 Å for 5a and 5b, respectively.
This trend is also observed for the trigonal planar and tetrahedral ions. What is more surprising is the
fact that the H-bond distances are equal or shorter for 5a, although 5a is always a weaker receptor
than 5b, for the same anion. Regarding the deformation energies of the calixarenes (i.e., the energy
loss of the ligand) upon complexation (Table S5), it can be seen that the deformation is higher for 5a
than for 5b with the spherical and trigonal planar anions (∆defE = 49 and 18 kJ.mol−1 for F− and Cl−,
respectively, and around 40 kJ.mol−1 for AcO− and BzO−). These differences in the destabilisation of 5a
may explain its lower complexation energies for these anions, although its H-bond network is stronger.
This tendency is inverted for the tetrahedral anions, the deformation being higher for 5b than for 5a,
although this difference is smaller (∆defE ≤ 13 kJ.mol−1). In this case, 5b is much more destabilized
(Table S5) than for the other groups of anions, presumably because the tetrahedral geometry of the
anions is less adapted to the complexation by the two urea moieties.

Table 5. B3LYP/6-31G(d.p) + BG3BJ complexation energies ∆E (in kJ.mol−1) for the guest-host complexes.

∆E (kJ.mol−1)

Host 5a 5b

F− −498.9 −557.1
Cl− −202.5 −219.0

AcO− −261.5 −291.4
BzO− −232.1 −283.3

HSO4
−

−192.3 −206.2
H2PO4

−
−220.6 −236.6

n-PrNH3
+
·Cl− −736.3 −811.6

n-BuNH3
+
·Cl− −656.5 −709.5

(R)-sec-BuNH3
+
·Cl−/(M)-5a −704.1 —

(S)-sec-BuNH3
+
·Cl−/(M)-5a −712.4 —

(R)-sec-BuNH3
+
·Cl−/(P)-5a −691.1 —

(S)-sec-BuNH3
+
·Cl−/(P)-5a −695.4 —

Concerning the heteroditopic complexation with the alkylammonium salts, the position of the
chloride anion is the same than for the single anion complexes (see Figure 10). The H-bonding network
is similar: Cl− interacts with the four hydrogen atoms of the urea groups with bond distances of about
2.3 Å each. The alkylammonium cations are positioned in the centre of the upper rim of the calixarenes.
The ammonium group is asymmetrically H-bonded to the phenoxy oxygen atoms, as illustrated
by the H-bond length given in Table S4. As NH3

+ does not perfectly suit with the topology of the
macrocycle cavity, it always displays two short H-bonds (less than 1.9 Å) and a longer one (up to
2.8 Å). The bridging ether oxygen atom is never involved in these interactions. The interaction energies
obtained also indicate that 5b is a better host than 5a, and the n-PrNH3

+
·Cl− salt is better bound

than the n-BuNH3
+
·Cl− one. Calculations with both enantiomers (R) and (S) of the chiral guest

sec-BuNH3
+
·Cl− show no clear differences in the coordination mode of receptor 5a, displaying however

higher energy for the latter enantiomer (∆E = 8.3 and 4.3 kJ.mol−1 for (M) and (P) enantiomers of 5a,
respectively). The (M)-5a enantiomer leads to higher coordination energy than the (P)-5a one (∆E = 17
and 13 kJ·mol−1 for (S) and (R) guests, respectively), indicating the [(S)-sec-BuNH3

+
·Cl−/(M)-5a]

complex as the most stable.
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3. Materials and Methods

3.1. Synthesis

3.1.1. Procedure for the Synthesis of (thio)ureas 5a and 5c

To a solution of 4a [19] (0.77 g, 0.83 mmol) in CHCl3 (30 mL) was added 1.65 mmol of naphthyl
isocyanate or naphthyl isothiocyanate, respectively. The mixture was stirred at room temperature
under N2 for 4 h. Evaporation of the solvent yielded the crude products which were purified as
described below.

7,13,19,25-Tetra-tert-butyl-27,29-bis[[(N’-1-naphthylureido)butyl]oxy]-28,30-dibutoxy-2,3-dihomo-3-oxa-
calix[4]arene (5a). Flash chromatography (SiO2, eluent CH2Cl2/MeOH, from 99.5:0.5 to 95:5) followed
by recrystallization from CH2Cl2/n-hexane: it was obtained in 30% yield (0.31 g); m.p. 258–259 ◦C; IR
(KBr) 3314 cm−1 (NH), 1638 cm−1 (CO); 1H-NMR (CDCl3, 500 MHz) δ 0.58, 1.04, 1.28,1.36 [4s, 36H,
C(CH3)3], 0.89, 0.94 (2t, 6H, J = 7.45 Hz, CH3), 1.45 (m, 4H, OCH2CH2CH2CH3), 1.64, 1.71, 1.82, 1.95,
2.13 (5m, 12H, OCH2CH2CH2CH2NHa and OCH2CH2CH2CH3), 3.18, 4.33 (ABq, 2H, J = 13.9 Hz,
ArCH2Ar), 3.20, 4.38 (ABq, 2H, J = 12.7 Hz, ArCH2Ar), 3.21, 4.35 (ABq, 2H, J = 12.9 Hz, ArCH2Ar),
3.35–3.62, 3.68, 3.76, 3.94 (several m, 12H, OCH2CH2CH2CH2NHa and OCH2CH2CH2CH3), 4.45, 4.54
(ABq, 2H, J = 13.3 Hz, CH2OCH2), 4.48, 4.87 (ABq, 2H, J = 12.8 Hz, CH2OCH2), 6.01, 6.05 (2t, 2H,
NHa), 6.19, 6.69, 6.76, 6.86, 7.11, 7.18, 7.19, 7.24 (8d, 8H, ArH), 7.29 (t, 1H, Napht), 7.35–7.47 (m, 5H,
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Napht), 7.56, 7.85, 7.97, 8.09 (4d, 5H, Napht), 7.65, 7.69 (2s, 2H, NHb), 7.76 (m, 3H, Napht); 13C-NMR
(CDCl3, 125.8 MHz) δ 13.9, 14.1 (OCH2CH2CH2CH3), 19.35, 19.41 (OCH2CH2CH2CH3), 26.4, 26.7,
27.0, 28.5 (OCH2CH2CH2CH2NHa), 29.5, 30.7, 30.8 (ArCH2Ar), 31.2, 31.3, 31.6, 31.7 [C(CH3)3], 32.3,
32.6 (OCH2CH2CH2CH3), 33.7, 33.9, 34.15, 34.22 [C(CH3)3], 40.3, 40.6 (OCH2CH2CH2CH2NHa), 69.2
(2C) (CH2OCH2), 73.1, 74.0, 74.6, 75.4 (OCH2CH2CH2CH2NHa and OCH2CH2CH2CH3), 119.7, 121.3,
121.5, 121.6, 123.6, 124.2 (2C), 124.4, 125.0, 125.2, 125.5, 125.7 (2C), 125.84, 125.87, 125.94, 126.0, 126.3,
126.8, 127.2, 128.3, 128.48 (ArH), 127.6, 128.52, 129.6, 131.8, 132.3, 132.6 (2C), 133.8, 134.1, 134.2 (3C),
134.3, 135.7, 144.4, 145.0, 145.1, 145.2, 152.4, 152.5, 153.0, 153.9 (Ar), 157.1, 157.6 (CO). Anal. Calcd for
C83H106N4O7: C, 78.39; H, 8.40; N, 4.41. Found: C, 77.97; H, 8.68; N, 4.28.

7,13,19,25-Tetra-tert-butyl-27,29-bis[[(N’-1-naphthylthioureido)butyl]oxy]-28,30-dibutoxy-2,3- dihomo-3-

oxa calix[4]arene (5c). Flash chromatography (SiO2, eluent CH2Cl2/MeOH, from 99.5:0.5 to 97:3);
the product obtained was chromatographed again (SiO2, eluent CH2Cl2/MeOH, from 99.7:0.3 to 97:3),
yielding 5c in 29% (0.31 g); m.p. 111–113 ◦C; 1H-NMR (CDCl3, 500 MHz) δ 0.75, 1.08, 1.11, 1.25 [4s, 36H,
C(CH3)3], 0.87 (t, 6H, J = 7.45 Hz, CH3), 1.23–1.42, 1.54–1.87 (several m, 16H, OCH2CH2CH2CH3 and
OCH2CH2CH2CH2NHa), 3.08, 4.26 (ABq, 2H, ArCH2Ar), 3.08, 4.28 (ABq, 2H, ArCH2Ar), 3.17, 4.24
(ABq, 2H, ArCH2Ar), 3.43–3.82 (several m, 12H, OCH2CH2CH2CH3 and OCH2CH2CH2CH2NHa),
4.30, 4.43 (ABq, 2H, CH2OCH2), 4.50, 4.53 (ABq, 2H, CH2OCH2), 6.02, 6,07 (2t br, 2H, NHa), 6.41, 6.87,
6.89, 6.99, 7.06, 7.07 (6d, 8H, ArH), 7.39–7.53 (several m, 8H, Napht), 7.57, 7.62 (2s, 2H, NHb), 7.82–7.96
(several m, 6H, Napht); 13C-NMR (CDCl3, 125.8 MHz) δ 14.10, 14.12 (OCH2CH2CH2CH3), 19.26, 19.34
(OCH2CH2CH2CH3), 25.7, 25.8, 27.3, 27.8 (OCH2CH2CH2CH2NHa), 29.7, 30.1, 30.7 (ArCH2Ar), 31.3,
31.4, 31.51, 31.54 [C(CH3)3], 32.2, 32.4 (OCH2CH2CH2CH3), 33.8, 33.9, 34.0, 34.1 [C(CH3)3], 45.7 (2C)
(OCH2CH2CH2CH2NHa), 68.4, 68.5 (CH2OCH2), 73.4, 73.8, 74.1, 74.9 (OCH2CH2CH2CH2NHa and
OCH2CH2CH2CH3), 122.5 (2C), 123.4, 123.6, 124.9, 125.2, 125.3, 125.4, 125.5, 125.7, 125.8, 125.9, 126.2,
126.3, 127.0, 127.1, 127.4, 127.5, 128.5 (2C), 128.9, 129.0 (ArH), 129.96, 130.02, 130.5, 131.5, 131.8, 132.8,
132.9, 133.4, 133.5, 133.7, 134.6, 134.7 (2C), 144.5, 144.9 (2C), 145.1, 152.0, 152.1, 152.5, 153.2 (Ar), 181.6
(CS). Anal. Calcd for C83H106N4O5S2: C, 74.46; H, 8.19; N, 4.30; S, 4.92. Found: C 75.18; H, 8.72; N,
4.05; S, 4.25.

3.1.2. Procedure for the Synthesis of Symmetric Urea 5b. Precursor 2b has Already been Obtained and
3b and 4b were Synthesised as Described for 3a and 4a

7,13,19,25-Tetra-tert-butyl-28,29-bis[(cyanopropyl)oxy]-27,30-dibutoxy-2,3-dihomo-3-oxacalix[4]arene (3b):
Flash chromatography (SiO2, eluent gradient from n-hexane/ethyl acetate 95:5 to 90:10), 61% yield;
RMN 1H (CDCl3, 500 MHz) δ 0.93, 1.19 [2s, 36H, C(CH3)3], 1.00 (t, 6H, J = 7.4 Hz, CH3), 1.45 (m,
4H, OCH2CH2CH2CH3), 1.76 (m, 4H, OCH2CH2CH2CH3), 2.28 (m, 4H, OCH2CH2CH2CN), 2.65 (m,
4H, OCH2CH2CH2CN), 3.24, 4.31 (ABq, 4H, J = 13.5 Hz, ArCH2Ar), 3.28, 4.26 (ABq, 2H, J = 13.0 Hz,
ArCH2Ar), 3.62, 3.75 (2m, 4H, OCH2CH2CH2CH3), 3.84, 3.91 (2m, 4H, OCH2CH2CH2CN), 4.49, 4.68
(ABq, 4H, J = 13.5 Hz, CH2OCH2), 6.66, 7.00, 7.07 (3d, 8H, ArH); RMN 13C (CDCl3, 125,8 MHz) δ 14.1
(OCH2CH2CH2CH3), 14.4 (OCH2CH2CH2CN), 19.3 (OCH2CH2CH2CH3), 26.1 (OCH2CH2CH2CN),
29.7, 30.3 (ArCH2Ar), 31.4 [C(CH3)3], 32.4 (OCH2CH2CH2CH3), 34.0, 34.1 [C(CH3)3], 67.1 (CH2OCH2),
72.1, 74.9 (OCH2CH2CH2CN and OCH2CH2CH2CH3), 119.9 (CN), 123.2, 125.6, 125.8, 126.0 (ArH),
130.9, 132.8, 133.3, 133.7, 145.3, 145.6, 151.9, 152.2 (Ar).

7,13,19,25-Tetra-tert-butyl-28,29-bis[(aminobutyl)oxy]-27,30-dibutoxy-2,3-dihomo-3-oxacalix[4] arene (4b):
0.83 g (87% yield) of product pure enough to be immediately used in the next step; RMN 1H
(CDCl3, 500 MHz) δ 0.94, 1.18 [2s, 36H, C(CH3)3], 1.01 (t, 6H, J = 7.38 Hz, CH3), 1.49–1.60 (m, 8H,
OCH2CH2CH2CH3 and OCH2CH2CH2CH2NHa), 1.79 (m, 4H, OCH2CH2CH2CH3), 1.98 (m, 4H,
OCH2CH2CH2CH2NHa), 2.78 (t, 4H, OCH2CH2CH2CH2NHa), 3.17, 4.40 (ABq, 4H, J = 13.5 Hz,
ArCH2Ar), 3.22, 4.39 (ABq, 2H, J = 13.0 Hz, ArCH2Ar), 3.60, 3.69 (2m, 4H, OCH2CH2CH2CH3), 3.78,
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3.84 (2m, 4H, OCH2CH2CH2CH2NHa), 4.60, 4.66 (ABq, 4H, J = 13.5 Hz, CH2OCH2), 6.69, 6.96, 6.97,
7.05 (4d, 8H, ArH).

7,13,19,25-Tetra-tert-butyl-28,29-bis[[(N’-1-naphthylureido)butyl]oxy]-27,30-dibutoxy-2,3-dihomo
-3-oxacalix[4]arene (5b). To a solution of 4b (0.83 g, 0.89 mmol) in CHCl3 (35 mL) was added
0.26 mL (1.77 mmol) of naphthyl isocyanate. The mixture was stirred at room temperature under
N2 for 4 h. Evaporation of the solvent yielded the crude product which was purified by flash
chromatography (SiO2, eluent CH2Cl2/MeOH, from 99.7:0.3 to 98:2), followed by recrystallization from
CH2Cl2/n-hexane: it was obtained in 40% yield (0.45 g); mp 211–213 ◦C; IR (KBr) 3329 cm−1 (NH), 1647
cm−1 (CO); 1H-NMR (CDCl3, 500 MHz) δ 0.87 (t, 6H, J = 7.35 Hz, CH3), 0.95, 1.17 [2s, 36H, C(CH3)],
1.42 (m, 4H, OCH2CH2CH2CH3), 1.70 (m, 8H, OCH2CH2CH2CH3 and OCH2CH2CH2CH2NHa),
1.98, 2.06 (2m, 4H, OCH2CH2CH2CH2NHa), 3.17, 4.33 (ABq, 4H, J = 13.1 Hz, ArCH2Ar), 3.20, 4.39
(ABq, 2H, J = 12.9 Hz, ArCH2Ar), 3.34, 3.43 (2m, 4H, OCH2CH2CH2CH2NHa), 3.56, 3.72 (2m, 4H,
OCH2CH2CH2CH2NHa), 3.74, 3.77 (2m, 4H, OCH2CH2CH2CH3), 4.52, 4.61 (ABq, 4H, J = 13.4 Hz,
CH2OCH2), 5.83 (t, 2H, NHa), 6.70, 6.95, 7.03 (3d, 8H, ArH), 7.37, 7.38, 7.43 (3t, 6H, Napht), 7.48 (s, 2H,
NHb), 7.61, 7.74, 7.81, 8.01 (4d, 8H, Napht); 13C-NMR (CDCl3, 125.8 MHz) δ 14.1 (OCH2CH2CH2CH3),
19.3 (OCH2CH2CH2CH3), 27.3, 27.9 (OCH2CH2CH2CH2NHa), 30.3, 30.5 (ArCH2Ar), 31.5 [C(CH3)3],
32.6 (OCH2CH2CH2CH3), 34.0 [C(CH3)3], 40.7 (OCH2CH2CH2CH2NHa), 67.4 (CH2OCH2), 74.21,
74.24 (OCH2CH2CH2CH2NHa and OCH2CH2CH2CH3), 121.1, 121.6, 123.2, 125.2, 125.56, 125.59,
125.61, 125.97, 126.04, 126.1, 128.5 (ArH), 128.2, 131.0, 133.2, 133.3, 133.7, 134.1, 134.4, 144.8, 145.0, 152.3,
153.0 (Ar), 157.3 (CO). Anal. Calcd for C83H106N4O7: C, 78.39; H, 8.40; N, 4.41. Found: C,78.51: H,
8.38; N, 4.40).

3.2. Determination of the Crystallographic Structures of 5a and 5b

Single crystals suitable for an X-ray investigation were obtained by slow evaporation of solutions
containing compound 5a and 5b using dichloromethane/ethanol solvent mixtures. Data collection was
carried out at the XRD1 beamline of the Elettra synchrotron (Trieste, Italy), employing the rotating-crystal
method with a Dectris Pilatus 2M area detector (DECTRIS Ltd., Baden-Daettwil, Switzerland). Single
crystals were dipped in paratone cryoprotectant, mounted on a loop and flash-frozen under a liquid
nitrogen stream at a 100 K. Diffraction data were indexed and integrated using the XDS package [36],
while scaling was carried out with XSCALE [37]. Structures was solved using the SHELXT program [38]
and structure refinement was performed with SHELXL-14 [39], operating through the WinGX GUI [40],
by full-matrix least-squares (FMLS) methods on F2. Non-hydrogen atoms with occupancy of more than
50% were anisotropically refined, while non-hydrogen atoms with a lower occupancy were refined
isotropically. Hydrogen atoms were added at the calculated positions and refined using the riding
model. Crystallographic data and refinement details are reported in Table S6.

3.3. H-NMR Titrations

The anion association constants (as log Kass) were determined in CDCl3 by 1H-NMR titration
experiments. Several aliquots (up to 10 equiv.) of the anion solutions (as TBA salts) were added to
0.5 mL solution of the receptors (2.5 × 10−3

−5 × 10−3 M) directly in the NMR tube. The spectra were
recorded after each addition of the salts, and the temperature of the NMR probe was kept constant at
25 ◦C. The association constants were evaluated using the WinEQNMR2 program [26] and following
the urea NH chemical shifts. The Job methods were performed keeping the total concentration in the
same range as before. In the case of ion-pair recognition studies, the percentage of complexation was
determined by direct 1H-NMR integration of the free and complexed peaks of the hosts and/or the
guests, present at equilibrium. The samples were prepared by mixing aliquots of stock solutions of the
host (600 µL) and guests (60 µL) to obtain a final equimolar host-guest solution of 1.0 × 10−3 M. For each
host-guest system titrations were repeated at least two times. Details related to these experiments have
already been described [20].
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3.4. UV-Vis Absorption and Fluorescence Studies

Absorption and fluorescence studies were done using an UV-3101PC UV-Vis-NIR
spectrophotometer (Shimadzu, Kyoto, Japan) and a Fluorolog F112A fluorimeter (Spex Industries,
Edison, NJ, USA) in right-angle configuration, respectively. The association constants were determined
in CH2Cl2 by UV-Vis absorption spectrophotometry and by steady-state fluorescence at 25 ◦C.
The absorption spectra were recorded between 260 and 370 nm and the emission ones between
325 and 550 nm, and using quartz cells with an optical path length of 1 cm. Several aliquots (up
to 10 equiv) of the anion solutions (as TBA salts) were added to a 2 mL solution of the receptors
(3.0 × 10−5–5.0 × 10−5 M) directly in the cell. The spectral changes were interpreted using the HypSpec
2014 program [41]. Details concerning the photophysical properties determination has already been
described [23].

3.5. Quantum Chemistry Calculations

Stationary points were optimized with the Gaussian 09 program [42] with the B3LYP [43] density
functional with the 6-31G(d,p) basis set. A D3-Grimme correction [44] was also used. Experimental X-ray
diffraction structure determinations were employed as the starting structures for the calixarene hosts
and different starting positions for the ions were used for the geometry optimization. All reported
structures were confirmed as energy minima, with no negative eigenvalue in the Hessian matrix.
The structures and energies given are the most stable conformations obtained after optimization. The
interaction energy ∆E between the calixarenes and the ions (∆E = E(complex) − E(free calix) − E(ion))
was calculated with respect to the optimized geometries of all species.

4. Conclusions

New fluorescent dihomooxacalix[4]arene receptors containing two (thio)urea moieties in distal
and proximal positions (1,3-dinaphthylurea 5a, 3,4-dinaphthylurea 5b and 1,3-dinaphthylthiourea
5c) at the lower rim linked by a butyl spacer were obtained in the cone conformation in solution.
The X-ray structures of 5a and 5b were reported and revealed only small differences in the cone
conformation. The main difference in the structures is ascribable to the mutual orientation of the
naphthyl rings of the ureido substituents, which are almost parallel in 5a and almost perpendicular in
5b. Both crystal structures are characterized by intra- and inter-molecular bifurcated H-bonds involving
the ureido groups. The anion binding affinity of these derivatives was established by 1H NMR, UV-Vis,
fluorescence and DFT studies. 1:1 complexes between anions of different geometries and the receptors
through hydrogen bonding were obtained. The results revealed that for all receptors the association
constants increase with the anion basicity, and the strongest complexes were obtained with F−, followed
by the carboxylates AcO− and BzO−. Symmetric urea 5b is a better anion receptor compared to
the asymmetric urea 5a, as shown by all the spectroscopic techniques used and corroborated by
the quantum mechanical calculations. Both ureido compounds are more efficient than thiourea
5c. As ditopic receptors, ureas 5a and 5b showed a very high affinity for the guests n-PrNH3

+
·Cl−

and n-BuNH3
+
·Cl− (Kass = 1.0 × 104

− 2.9 × 104 M−2 in CDCl3/DMSO-d6, 5:1), as well as for the
neurotransmitter GABA·HCl (Kass = 2.2 × 104 and 6.0 × 104 M−2 respectively, in CDCl3/CD3OD,
5:1). The bulkier CH3 groups of the betaine guest prevented its inclusion inside the macrocycle
cavity. Concerning chiral recognition, the enantiopure (R)-sec-BuNH3

+
·Cl− guest displayed a 5:2

selectivity towards (P) and (M) enantiomers of the inherently chiral host 5a. Based on DFT calculations,
the [(S)-sec-BuNH3

+
·Cl−/(M)-5a] complex was deduced as the more stable.

Supplementary Materials: The following are available online: Crystallographic data and refinement details;
titration curves with TBA salts in CDCl3; Job’s plots; absorption and emission spectra with TBA salts; COSY
spectra of 5a + GABA·HCl and 5a + sec-BuNH2·HCl; 1H, 13C and COSY spectra of compounds 3b, 5a, 5b and 5c.
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