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1 Introduction

A strongly-coupled extension of the Standard Model (SM) has the potential to protect the
hierarchy between the electroweak scale, v ' 246GeV, and large new physics scales. A
new, strong interaction can dynamically induce a mass gap in the multi-TeV range, and
the Higgs boson can emerge as a composite, pseudo Nambu-Goldstone boson (NGB) of
such a strongly-coupled sector [1]. In this scenario, reviewed e.g. in [2, 3], not only should
the Higgs properties depart from the SM predictions by order-(v/f)2 corrections, with f

the Goldstone decay constant, but also a number of additional composite states should
appear in the spectrum. While their typical mass should be of the order of the mass gap
or higher, m ∼ 4πf , it is plausible that some states are significantly lighter, providing a
target for experimental searches.

In order to characterise the composite spectrum, one needs to specify the ultraviolet
(UV) completion of the composite-Higgs scenario. We will introduce a new gauge theory,
hypercolour (HC), with no fundamental scalars, and fermions in specific representations of
the HC gauge group. To ensure that such a scenario respects electroweak precision tests,
and to have sizeable Yukawa couplings to the SM fermions via partial compositeness [4],
the HC fermions must carry non-trivial SM charges, and the HC chiral symmetries must
include the SM accidental global symmetries (custodial, baryon, and lepton number), which
otherwise would be badly broken by the strong HC dynamics. In addition, one wishes to
keep the HC sector in a strongly-coupled and quasi scale-invariant (walking) regime [5–7]
for a large range of energies above the mass gap, while avoiding Landau poles in the SM
gauge couplings. In the infrared (IR), the HC sector should confine, resulting in a plethora
of HC-invariant composite states appearing in the spectrum.

We will show that all these requirements could be satisfied if one introduces a large
number, NF ≥ 5, of Dirac fermions in the fundamental representation of HC. This is in
contrast with most HC models of composite Higgs, usefully classified in [8], where fermions
in different HC representations also carry SM charges. Some noteworthy exceptions, closer
to our approach, are motivated and analysed in [9, 10]. In order to exploit large-NC

arguments (where NC is the number of hypercolours), and because of the comparatively
large number of flavours, we are lead to consider the Veneziano limit, with the ratio xF ≡
NF /NC of order one [11].

A main challenge to the study of strongly-coupled dynamics comes from calculability.
In addition to lattice simulations and non-perturbative field theory methods, gauge-gravity
duality [12–14] provides a useful tool, relating certain strongly-coupled field theories in
the large-NC limit to weakly-coupled gravity theories in higher dimensions (for a review,
see [15]). Using the formalism of holographic renormalization [16–18], it is known how
to systematically compute field-theory correlators, from which the spectrum of composite
states can be extracted. Since its original inception in [12], gauge-gravity duality has
been extended to include examples describing non-conformal, confining dynamics on the
field theory side, see e.g. [19–23]. Moreover, it is possible to incorporate matter in the
fundamental representation of the gauge group by including flavour branes [24, 25] (see
also the review [26]). As long as NF � NC , such flavour branes can be treated as probes
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on top of given gravity backgrounds. However, in the Veneziano limit, when NF ∼ NC ,
their backreaction on the geometry has to be taken into account (for a review, see [27]).
This is analogous to going beyond the quenched approximation in field theory.

There exists by now a large literature on holographic models of composite Higgs,
following the original papers of [28, 29]. Most studies so far exist within the bottom-up
approach to holography, that is, phenomenologically motivated models where the gravity
description is not required to have a fundamental origin in string theory. The simplest,
commonly used setting, in order to describe non-conformal IR physics, is to consider an
Anti-de Sitter (AdS) background geometry in five dimensions (5D), and introduce a hard-
wall that ends the geometry in the IR. More realistically, one expects some dynamics to
induce a departure from AdS in the IR region. Such models, sometimes referred to as
soft-wall models, have been studied both in the context of holographic QCD [30–34] and of
the stabilisation of the electroweak scale [35–38]. In some of these papers the deformation
of the geometry was determined by the backreaction of a bulk scalar field, with a profile
chosen ad hoc [31–33, 36, 37]. A recent holographic analysis of composite-Higgs models,
inspired by top-down constructions can be found in [39, 40]. Although bottom-up studies
of holographic QCD addressing the Veneziano limit exist [41], such limit does not seem to
have been considered within the context of holographic composite Higgs.

Since the composite Higgs models we study are required to exhibit walking dynamics,
the question arises whether the spectrum contains a light dilaton [6, 42, 43], the pseudo-
Goldstone boson associated with spontaneous breaking of approximate scale invariance. It
has been suggested that such dynamics may arise close to the conformal window, hence
raising the question of the dependence of the dilaton mass on the number of flavours.
Within the rigorous context of top-down holography, there is evidence of dilaton dynamics
in theories for which the dual supergravity background is related to the conifold [44, 45]
(see also [46–49]). Additional examples are provided by the existence of a light dilaton on a
metastable branch of solutions in both Romans supergravity [50] as well as in a model [51]
related to the one proposed by Witten as a description of confinement [19]. Yet, none of
these studies rely on incorporating flavour. In a bottom-up context, the phase transition
at the lower edge of the conformal window has been discussed in [52] (see also [53–56]), and
it was argued in [57] that, even though a singlet scalar is typically the lightest resonance,
it cannot become parametrically light without fine tuning.

We will propose three models, built within the bottom-up approach to holography,
aimed at capturing the non-perturbative dynamics of the aforementioned HC gauge theory.
Our models are able to incorporate both non-conformal dynamics, leading to a dynamically
generated mass gap, as well as the backreaction of flavour on the geometry, as required by
the Veneziano limit. Since global symmetries on the field theory side correspond to gauge
symmetries in the bulk, we consider a bulk scalar field, charged under a gauged SU(2NF )
symmetry, that is dual to a scalar-meson operator in the field theory. In this model, which
we refer to as Model I, the scalar field acquires a non-trivial profile along the extra radial
dimension, which can be used to describe the spontaneous breaking of flavour symmetry
on the field theory side, due to the dual meson operator acquiring a vacuum expectation
value (VEV). Moreover, the backreaction of the scalar on the metric causes the geometry
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to depart from AdS, eventually yielding an end of the space in the deep IR, which in
turn induces a mass gap in the spectrum. Since these two phenomena are described by
the dynamics of a single bulk scalar field, on the field theory side the mass gap becomes
dynamically linked to the scale f of flavour symmetry breaking.

The spectrum contains spin-0 and spin-1 composite states in various flavour represen-
tations, as well as spin-2 states. Our Model I is engineered, by a special choice of the scalar
profile, to realise a purely spontaneous breaking of the flavour symmetry, with the asso-
ciated massless NGBs. At the same time, such scalar profile breaks spontaneously scale
invariance, leading to a massless dilaton. In a more realistic scenario we expect additional
sources to break explicitly scale invariance, and thus lift the mass of the dilaton, while
the flavour NGBs could remain massless. To this end, we introduce a second bulk scalar
field that is a flavour singlet, and whose dynamics encodes the explicit breaking of scale
invariance. We will discuss two varieties of such scenario, referred to as Model IIA and
IIB, which differ in the choice of scalar potential, allowing us to assess the generality of our
results. Our framework turns out to be flexible enough to describe all possible combina-
tions of spontaneous and explicit symmetry breaking, of the flavour symmetry and of scale
invariance, and to study correspondingly the various limits where the Goldstone bosons
and the dilaton become parametrically light.

While our models are constructed within the bottom-up approach to holography, the
bulk scalar potentials that we consider can be thought of as modifications of the one of
the GPPZ model [58], originally proposed as the gravity dual of N = 1∗ super Yang-
Mills (SYM), a confining four-dimensional gauge theory obtained as a mass deformation
of N = 4 SYM. We choose this scalar potential because the corresponding backreaction
of the scalar field on the geometry dynamically generates an end of space and a mass gap.
Our modification is such that the amount of backreaction is related to xF . When xF is
small and the explicit breaking of conformal invariance is small, our models can be made
to resemble the ones of [28, 29] for which the background geometry is a slice of AdS. On
the other hand, when xF is large, the backreaction of the flavour sector plays a dominant
role in determining the geometry. Although our models incorporate the backreaction on
the geometry, as required by the Veneziano limit, another subtlety arises due to the large
number (order N2

F ) of degrees of freedom in the bulk, which implies potentially large
quantum corrections on the gravity side [57].1 Since we treat our holographic models in
the classical approximation, these effects will not be accounted for. As a consequence,
when xF becomes large, our predictions for the spectrum are not expected to be accurate.
Nevertheless, we will give arguments for why the classical approximation may still capture
the spectrum of light states, even as xF ∼ 1.

The predictions of our holographic analysis can be confronted with other non-
perturbative techniques applied, ideally, to the same HC gauge theory. These include
lattice simulations, as well as phenomenological models that provide some analytic approx-

1Similar comments apply to top-down models, where in order to realize a U(NF ) global symmetry, one
would need to consider the non-Abelian DBI action of NF number of (coincident) flavour branes, which
becomes strongly coupled in the Veneziano limit. This problem is to some extent overcome by the procedure
of smearing the flavour branes [27, 59–62], which however breaks explicitly the flavour symmetry to U(1)NF .
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imation of the strong dynamics, such as Nambu-Jona-Lasinio (NJL) [63, 64]. The latter
approach was pursued by some of the authors in [65], where general results on HC theories
were also derived. We attempt a comparison of the bosonic spectrum from holography,
with some of the existing lattice and NJL literature, underlining the similarities and dif-
ferences in the specific gauge theory that is considered, and in the regime of parameters
where each technique is more reliable.

While in this paper we provide a comprehensive description of the composite spectrum
in the bosonic sector, we postpone to a companion paper [66] the analysis of the fermionic
spectrum in this scenario, especially relevant to implement fermion partial compositeness.
While the fermions will be sensitive to the symmetry breaking pattern — through the
background geometry and scalar profiles of the 5D gravity dual — which we define in this
paper, their addition will not modify any of the results presented here.

This paper is organised as follows. In section 2 (see also appendices A and B), we
introduce the new gauge theory, proposed as the UV completion of the composite-Higgs
scenario. In particular, in section 2.1, we present the most relevant operators that interpo-
late bosonic composite states. A full classification of the bosonic operators is provided in
appendix C. In section 3, we introduce some minimal holographic models (with no flavour
symmetry), to pedagogically illustrate the holographic dictionary, as well as the dependence
of the results on the choice of the bulk scalar potential. This also allows us to demonstrate
the formalism used to compute spectra, detailed in appendices D and E. The holographic
models describing the flavour sector are introduced in section 4, while the computation
of their spectra is detailed in section 5, where our results are illustrated as a function of
the number of flavours xF , the 5D gauge coupling, and the scaling dimension of the scalar
operator(s). Section 6 contains the comparison of the spectrum to lattice simulations and
the NJL model. Finally, we summarise and discuss our results in section 7.

2 Requirements on the hypercolour gauge theory

We aim to describe electroweak symmetry breaking by a strongly-coupled sector, with the
observed Higgs boson emerging as a composite, pseudo NGB. In this section we characterise
the gauge theory we will adopt as the ultraviolet (UV) completion of this scenario. Let us
start from general considerations on the suitable class of gauge theories, before motivating
our specific choice. Our analysis presents many similarities and some crucial differences
with respect to the classification in [8].

We restrict ourselves to gauge theories of fermions, with no fundamental scalar fields.
The latter would reintroduce a hierarchy problem, unless they are protected by supersym-
metry, an avenue we do not pursue here. We consider a HC gauge group GHC that is
simple, with gauge coupling gHC. We assume the theory is asymptotically free at very high
energies, then enters a strongly-coupled, walking (approximately scale-invariant) regime at
some UV scale ΛUV , and eventually develops a mass gap at some IR scale m∗. A large
walking region, that is, a hierarchy m∗ � ΛUV , is required to induce the SM Yukawa
couplings and to suppress flavour violation at the same time. The holographic models that
we present in section 4 are meant to describe the theory for scales µ < ΛUV , by providing
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a dual gravitational description in five dimensions; the geometries that we consider are
asymptotically AdS in the UV, which on the field theory side corresponds to a UV fixed
point, and end in the IR at some finite value of the radial coordinate, which produces a
mass gap.

A crucial issue is the choice of the global symmetry of the theory. A generic gauge
theory with (massless) fermions in k different representations of GHC has flavour symmetry

GF = SU(N1)× · · · × SU(Nk)×U(1)k−1 , (2.1)

where Ni is the number of Weyl fermions in the representation Ri. Note that the fermion
kinetic term of each sector has symmetry GiF = U(Ni) = SU(Ni) × U(1) at the classi-
cal level, but only k − 1 linear combinations of the U(1) symmetries have no anomaly
with respect to GHC. We restrict ourselves to vector-like gauge theories, with complex
representations in conjugate pairs, and/or real representations, and/or an even number of
pseudoreal representations, that are free from local and global anomalies. In each sector
the strong dynamics may either preserve GiF , or break it spontaneously to its vector sub-
group H i

F [67, 68], e.g. via the vacuum expectation value of a fermion-bilinear operator.
The vector subgroup depends on the type of representation [69],

ψ1, . . . , ψN ∼ Ri real : H i
F = SO(N) ,

ψ1, . . . , ψ2N ∼ Ri pseudoreal : H i
F = Sp(2N) ,

(ψ1, ψ̄1), . . . , (ψN , ψ̄N ) ∼ (Ri, R̄i) complex : H i
F = SU(N)V ×U(1)V .

(2.2)

This stage of spontaneous symmetry breaking (SSB) occurs at some scale of order m∗.
At least some of the constituent fermions should transform non-trivially under some

of the SM symmetries, providing several requirements on the coset GF → HF , as detailed
in the following. The electroweak group SU(2)L × U(1)Y must be embedded in HF in
order to realise the SM Higgs as a composite NGB, h ∼ 21/2. Generic strong dynamics
would break the SM custodial symmetry, leading to a strong lower bound on m∗ from the
electroweak precision tests, e.g. the T -parameter, which introduces a significant hierarchy
problem. This minimal scenario cannot be excluded, in the absence of a new physics signal
at colliders. To insist on naturalness, we rather assume the strong dynamics to preserve
the custodial symmetry, HF ⊃ SU(2)L × SU(2)R, with a NGB Higgs h ∼ (2L, 2R). The
minimal realisation [70–72] satisfying these requirements is provided by four Weyl fermions
in the fundamental, pseudoreal representation of GHC = Sp(2NC), ψa with a = 1, 2, 3, 4
the flavour index. The associated flavour symmetry is GF = SU(4) → HF = Sp(4), the
only U(1) factor being anomalous.

In addition to providing the composite NGB Higgs, the HC sector should couple to
the SM fermions in order to induce their Yukawa couplings. A linear mixing between the
SM fermions and composite operators at the scale ΛUV is preferable, in order to gener-
ate sizeable Yukawa couplings while suppressing flavour and CP violation. In contrast,
the couplings of SM fermion-bilinears to the composite sector can hardly satisfy all con-
straints [2, 3], in particular for the case of the large top-quark Yukawa. This means that
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the HC sector has to contain operators with the quantum numbers of the top-quark dou-
blet q = (t b)T and singlet tc, in order to linearly mix with them. Therefore, some of the
constituent fermions should also carry colour and hypercharge, and the coset should satisfy
HF ⊃ SU(3)c × SU(2)L × SU(2)R × U(1)X . Here the U(1)X factor is required to properly
embed hypercharge, according to Y = TR3 +X.

Besides the SM gauge symmetries and the approximate custodial symmetry, the SM
has additional accidental symmetries, the baryon number U(1)B and the lepton number
U(1)L. As violations of these symmetries are severely constrained experimentally, the HC
sector (as any new physics close to the electroweak scale) is bound to preserve them to a
high degree of accuracy. As proved in appendix A, the (only) safe possibility is to require
U(1)B,L to be part of the unbroken global symmetry HF ,

HF ⊃ SU(3)c × SU(2)L × SU(2)R ×U(1)B ×U(1)L . (2.3)

This would imply rank(HF ) ≥ 6, but for simplicity we will drop the U(1)L factor and
restrict our analysis to U(1)B. The latter is sufficient to realise quark partial compositeness,
thus allowing for a minimal rank(HF ) = 5. In eq. (2.3) we dropped the U(1)X factor
introduced previously, because we will see below that, in the minimal model, U(1)B is
sufficient to embed hypercharge satisfactorily. The additional U(1)L can be introduced
along the same lines, as outlined at the end of appendix A.

The required large rank of the global symmetry group calls for many flavours of con-
stituent fermions. Here we argue that is preferable to ascribe the large rank of HF to
sufficiently many copies of the fundamental representation of GHC. In order to build all
desired hypercolour-singlet operators, such as the top-quark partners, it is sufficient to add
one single fermion in a larger representation of GHC, with no SM charges. This class of
models presents both practical and conceptual motivations:

• Asymptotic freedom can be preserved in the large NC limit, despite a large number
of flavours NF .

• The contribution of the HC sector to the running of the SM gauge coupling is min-
imised, in order to postpone Landau poles well above the scale m∗.

• By embedding the SM gauge group into a simple subgroup of GF , one can ac-
tually control gauge coupling unification, despite a strongly-coupled composite
sector [73, 74].

• A ratio xF ≡ NF /NC of order one is typically required to sit close to the conformal
window, and thus realise the desired approximately scale-invariant, walking behaviour
over a large range of scales, m∗ � ΛUV .

The analysis of the beta-function of HC is presented in detail in appendix B, where we
also comment on the (perturbative) conditions for an IR fixed-point, and on the SM gauge
coupling evolution. The gauge-gravity duality in the Veneziano limit, large NC and large
NF , was not extensively explored in the composite-Higgs literature. In this regime the
flavour sector backreacts significantly on the metric, while most studies treat the flavour
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sector as a probe on a fixed background. While such study is technically challenging, we
will see in the coming sections that it may lead to physically novel effects.

To explicitly realise the above requirements on the gauge theory, we will focus for
definiteness on the case

GF = SU(2NF )×U(1)→ HF = Sp(2NF ) , (2.4)

corresponding to 2NF Weyl fermions in the fundamental of GHC = Sp(2NC), ψa ∼ , with
a = 1, . . . , 2NF . The extra U(1) factor originates from the presence of one additional Weyl
fermion in a two-index representation of Sp(2NC), see the discussion following eq. (2.1).
We will consider both possible options: χ ∼ in the two-index antisymmetric, traceless
representation, or χ′ ∼ in the two-index symmetric representation. Note that, while the
fundamental is pseudoreal, both two-index representations are real, so such single Weyl
fermion does not introduce a gauge anomaly. A two-index fermion is needed [65, 71] to
build hypercolour-singlet trilinear operators (ψψχ) or (ψψχ′), that correspond to fermionic
composite states such as top-quark partners. The composite fermion spectrum will be
studied in detail in a companion paper [66].

The minimal model has NF = 5, with

HF = Sp(10) ⊃ SU(3)c × SU(2)L × SU(2)R ×U(1)B . (2.5)

The detailed decomposition of the relevant Sp(10) representations is provided in eq. (A.4).
The hypercharge can be embedded in two ways, according to Y = ±TR3 + B/2. One can
check that (ψaψb) contains a component with the Higgs quantum numbers, h ∼ (1, 2, 2)0,
and that (ψaψbχ) contains components with the quark quantum numbers,

qL ∈ (3, 2, 1)1/3 , t cR ∈ (3, 1, 2)−1/3 , b cR ∈ (3, 1, 2)−1/3 or (3, 1, 1)2/3 . (2.6)

A large number of flavours in the HC fundamental representation implies large mul-
tiplets of composite states. Indeed, the bilinear ψaψb carries two Sp(2NF ) indexes, which
amount to (2NF )2 components. This is not a problem for heavy multiplets, whose mass
is of the order of the mass gap. However one may worry about the Goldstone multiplet,
that includes several states beside the Higgs. They eventually receive non-zero masses
from various sources of SU(2NF ) explicit symmetry breaking: SM couplings and/or HC
fermion masses. The NGB masses induced by the SM gauge couplings and from a mass
term mabψ

aψb are detailed in section II.E of [65]. For example, the coloured NGBs, sub-
ject to the strongest experimental constraints, receive a sizeable mass from gluon one-loop
contributions. If needed, they can be further lifted by giving a mass ma only to those
flavours ψa which carry colour. For the phenomenology of composite Goldstone bosons see
e.g. [75–77]. We will see that the spectrum can also include a light SM-singlet associated
with SSB of scale invariance, the dilaton: for its phenomenology see e.g. [78–80].

We remark that our scenario, both for the gauge theory and for the dual gravity
description, could be easily generalised to other classes of theories. By replacing Sp(2NC)
by SO(NC), whose fundamental representation is real, the analysis would remain analogous
in most respects. In this case, for NF fundamental fermions ψa and one two-index fermion
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χ, the associated flavour coset becomes SU(NF ) × U(1) → SO(NF ). The case GHC =
SU(NC), with a complex fundamental representation, could be treated similarly as well,
by introducing conjugate pairs (ψ,ψc)a.

2.1 Significant operators

Before developing the gravity dual description, let us identify the set of field theory op-
erators that we want to study. Analogously to QCD, there is a long (infinite) series of
HC-invariant operators, in all sorts of Lorentz and flavour representations, and an asso-
ciated plethora of composite states of various spins organised in flavour multiplets. In
this paper we focus on bosonic operators only, while an analogous analysis of fermionic
operators will be presented in [66]. While a systematic classification is presented in ap-
pendix C, here we restrict ourselves to a significant subset of bosonic operators, which (i)
are especially relevant to characterise the low energy spectrum of the theory, and (ii) admit
a simple gravity-dual description.

Let us begin by recalling the definition of the energy-momentum tensor. In terms of
the action S =

∫
d4x
√
−gL, where L is the Lagrangian density of matter fields and gµν is

the four-dimensional metric, it is given by

Tµν ≡ −
2√
−g

δS
δgµν

=
(
Tµν −

1
4T

ρ
ρ gµν

)
+ 1

4T
ρ
ρ gµν , Tµν = Tνµ , ∇µTµν = 0 .

(2.7)
As Tµν is symmetric and conserved, it contains six independent degrees of freedom: the
trace Tµµ transforms as a Lorentz scalar, while the traceless part, in brackets in eq. (2.7),
transforms in the Lorentz representation (1, 1). In the gravity description, the UV-
boundary value of the 5D metric will be the source for Tµν .

Operators involving only the HC gauge fields describe the glueball sector of the
spectrum. Let us consider the gauge kinetic term, L(g) = −(1/4)FAµνFAµν =
−(1/2)Tr(FµνFµν), where we defined Fµν ≡ FAµνT

A, with TA the Sp(2NC) generators.
Here and elsewhere we normalise the generators by 2 Tr(TATB) = δAB. The correspond-
ing part of the energy-momentum tensor reads

T (g)
µν ≡ −

2√
−g

δS(g)

δgµν
= 2Tr(FµρF ρ

ν )− 1
2gµνTr(FρσF ρσ) . (2.8)

When the model includes fermion flavours, glueballs and mesons mix. In the absence of
fermions, the trace operator Tr(FρσF ρσ) describes spin-0 glueballs, while the traceless part
of T (g)

µν describes spin-2 glueballs. In appendix C.1 we present a more general classification
of the operators that can be built with Fµν .

Coming to HC fermions, ψa and χ, the simplest HC-invariant operators are fermion
bilinears (their structure remains the same if χ is replaced by χ′). Let us begin from the
Lorentz scalars,

Sab ≡ (ψaψb) , s ≡ (χχ) , (2.9)

which will be sourced by bulk scalar fields Φab and Z, respectively. The antisymmetry
Sab = −Sba is a combined consequence of the anticommutation of the two spinors, and
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the contraction of Lorentz and HC indexes, which are both antisymmetric. To minimise
notations, we relegate the analysis of index contractions to appendix C.2, see in particular
table 3. The SSB of eq. (2.4) can be realised by the VEV of Sab, that is proportional
to a real, antisymmetric, dimensionless matrix Σab, normalised such that Σ2 = −1. The
VEV of s also contributes to the spontaneous breaking of U(1). The complex operator
Sab can be decomposed in scalar and pseudoscalar parts, as well as in trace (SabΣab) and
traceless parts. The Goldstone bosons πab are associated to the pseudoscalar, traceless
part. An additional, singlet Goldstone η is associated to a linear combination of the
pseudoscalar parts of SabΣab and s. The spectrum includes also a pseudoscalar η′, whose
mass is generated by the HC anomaly.

Among the fermion-bilinear, Lorentz-vector operators we have the currents of the
flavour symmetry,

J b
µa ≡ (ψaσµψb) , Jµ ≡ (χσµχ) . (2.10)

The traceless part of J b
µa transforms in the adjoint of SU(2NF ). The trace J a

µa as
well as Jµ are SU(2NF ) singlets, associated to the fermion-number symmetries U(1)ψ ×
U(1)χ. Only one linear combination of these is anomaly-free with respect to HC, and
therefore a true U(1) global symmetry of the model. These currents are associated to vector
and axial-vector resonances, according to the symmetry-breaking pattern in eq. (2.4): the
vector generators TA of the global SU(2NF ) symmetry group are provided by those of
the unbroken Sp(2NF ) subgroup, whereas the axial generators T Â are those that span the
symmetric coset space SU(2NF )/Sp(2NF ). They are conveniently characterized by the
identities

TAΣ + Σ(TA)T = 0 , T ÂΣ− Σ(T Â)T = 0 , (2.11)

which will prove useful in the following. Explicitly, these vector and axial currents read,
respectively,

JAµ = J b
µa (TA)a b , J Âµ = J b

µa (T Â)a b . (2.12)

The SU(2NF ) currents will be sourced by bulk gauge fields A b
Ma in the adjoint, with M a

5D spacetime index. The anomaly-free U(1) current can be sourced by a bulk gauge field
aM . The Goldstone decay constant FG can be extracted from the residue at q2 = 0 of the
two-point function of the axial current J Âµ , according to2

q2ΠA(q2)PµνδÂB̂ ≡ i

∫
d4x e−iqσx

σ〈J Âµ(x)J B̂ν(0)〉 = i

∫
d4p〈J Âµ(q)J B̂ν(p)〉 , (2.13)

F 2
G ≡ lim

q2→0

{
−q2ΠA(q2)

}
. (2.14)

We note that FG is related to the decay constant f commonly used in the composite-Higgs
literature according to

f ≡
√

2FG . (2.15)
2Our conventions for the transverse projector and the Fourier transforms are

Pµν = ηµν − qµqν

q2 , φ(q) =
∫

d4x

(2π)2 e
−iqµxµφ(x) , δ4(q) =

∫
d4x

(2π)4 e
iqµx

µ

.

with Minkowski metric ηµν = diag(−1,+1,+1,+1).
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3 Symmetry breaking in holography with backreaction

As a warm-up exercise, let us first study two examples of holographic models that exhibit
explicit and/or spontaneous breaking of a global U(1) symmetry. In these models, a bulk
scalar field charged under a U(1) gauge symmetry acquires a non-trivial profile as a function
of the radial coordinate. We are interested in the case when backreaction on the metric
is important, and hence we consider that symmetry breaking occurs in a sector that in
the bulk is described by an action that is order N2

C . This can be the case when the
operator dual to the bulk scalar is built up of fields in a two-index representation of the
HC group. We find these simple examples to be useful in illustrating the formalism as well
as building intuition for the case that we ultimately have in mind, namely field theories
with fermions in the fundamental representation of hypercolour, for which backreaction in
the bulk description becomes important at large number of flavours NF ∼ NC .

To this end, consider a model consisting of gravity, two gauge fields VM and AM
corresponding to a U(1)V × U(1)A gauge symmetry, and a complex scalar X = σ√

2e
iπ

charged under U(1)A. The scalar X is uncharged under the U(1)V , which remains unbroken,
but which we include in view of the larger cosets that we will consider in the next section.
The action is given by

S = 1
4πG5

∫
d5x
√
−g

{
R

4 − |DMX|2 − V(|X |)− 1
4
∑
i=V,A

F
(i) 2
MN

}
(3.1)

= N2
CL
−3
∫

d5x
√
−g

{
R

4 −
1
2(∂Mσ)2 − V(σ)− 1

4
∑
i=V,A

F
(i) 2
MN −

1
2σ

2(∂Mπ + g5AM )2
}
,

where DMX = (∂M + ig5AM )X , and our conventions are such that the metric has mostly
plus signature, five-dimensional indices take values M,N = 0, 1, 2, 3, 5, and we denote
four-dimensional indices by Greek letters µ, ν = 0, 1, 2, 3. The bulk fields X , AM , and
VM are normalized to be dimensionless, while the five-dimensional gauge coupling g5 has
dimensions of inverse length.

We will assume the potential V has a maximum at X = 0 with V(0) = − 3
L2 , so that

the action admits an AdS solution with scale L. In the following, we fix units such that
L = 1, and hence the 5D Newton’s constant is given by G5 = 1

4πN2
C
. Note that the prefactor

N2
C of the action implies that correlators of the operators dual to the bulk fields scale as

N2
C . The precise overall normalization can only be fixed in a fully top-down model. We

have also made the simplifying assumption that the prefactors of the kinetic terms are
constant, rather than functions of the scalar fields of the model as is generically the case
in supergravities with dual field theory descriptions.

Let us consider background solutions in which only the scalar σ and the metric are
turned on. In order to preserve four-dimensional Poincare invariance, we furthermore
assume that the background fields only depend on the radial coordinate, and that the
metric has the domain wall form

ds2 = gMNdxMdxN = dr2 + e2Adx2
1,3 , (3.2)
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where A(r) is the warp factor, and the Minkowski part dx2
1,3 has the metric ηµν =

diag(−1, 1, 1, 1). The background equations of motion are then given by

∂2
rσ + 4∂rA∂rσ −

∂V
∂σ

= 0 , (3.3)

6(∂rA)2 − (∂rσ)2 + 2V = 0 .

The solutions we will consider flow to the UV fixed point at σ = 0 as r → +∞, and are
asymptotically AdS corresponding to A ' r. Under this assumption, the general solution
of σ has the UV expansion given by3

σ = σ−(e−∆−r + · · · ) + σ+(e−∆+r + · · · ) , ∆± ≡ 2±
√

4 +M2
σ , (3.4)

where M2
σ is the bulk mass (squared) of σ obtained from expanding the potential around

the UV fixed point, i.e. V(σ) = −3 + 1
2M

2
σσ

2 + · · · . As usual in gauge-gravity duality, σ−
corresponds to turning on a source for the operator Oσ (dual to the bulk field σ), while the
presence of σ+ indicates that the same operator acquires a VEV. The scaling dimension of
σ± is [σ±] = ∆±, while for the dual operator [Oσ] = ∆+.

In a geometry given by the metric of eq. (3.2) with a warp factor A, the field theory
energy scale Λ corresponding to the bulk radial coordinate r can be estimated to be [81]4

Λ(r)−1 =
∫ ∞
r

dr̃ e−A(r̃) . (3.5)

The solutions we will consider have an end of space in the IR of the geometry at some
value of the radial coordinate r = ro, either dynamically generated or imposed by hand.
The IR scale, typically related to the mass gap of the theory, can be estimated to be
ΛIR ≡ lim

r→ro
Λ(r).

It is convenient to pick the scalar potential V so that it can be written in terms of a
function W, commonly called superpotential,

V(σ) = 1
2(∂σW)2 − 4

3W
2 . (3.6)

Even though this form is inspired by supergravity, we do not assume any supersymmetry
here. It is then straightforward to verify that solutions to the equations of motion given in
eq. (3.3) can be found by solving the first-order equations

∂rσ = ∂σW , ∂rA = −2
3W . (3.7)

This conveniently allows one to generate a subset of the general class of solutions of
the system.

We will soon consider two explicit forms of the superpotential, dubbed Examples A
and B below, leading to different kinds of dynamics (the scalar sector in both cases was
studied in [82]). Our motivation is to gain intuition to build holographic models suitable to

3For the special case ∆± = ∆ = 2, the two modes behave as e−2r and re−2r.
4For AdS, A(r) = r, and one obtains the familiar result Λ(r) = er ≡ z−1.
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describe composite-Higgs models, that we will construct later in section 4. In Example A,
the superpotential is quadratic in σ and, depending on the coefficient of the quadratic
term, the background solution may describe either the spontaneous or explicit breaking
of the U(1)A symmetry. This simple setting illustrates the formalism for computing the
spectrum and the Goldstone decay constant. However, we are ultimately interested in
models for which the bulk scalar dynamics is responsible for the end of the space in the
IR. This requires knowing also higher order terms in the superpotential, which affect
the IR dynamics of the dual field theory. Such terms can only be determined in a top-
down framework, where the holographic model has a rigorous origin in supergravity. Our
models will be constructed within the bottom-up approach to holography. Nonetheless, in
Example B we take inspiration from the top-down GPPZ model [58], slightly generalising
its superpotential. The GPPZ model was originally introduced to describe N = 1∗ SYM,
a four-dimensional confining gauge theory obtained as a mass deformation of N = 4 SYM.
Its superpotential is such that the end of space is dynamically generated, leading to a mass
gap and a discrete spectrum. These features will allow us to construct a model in which
the symmetry breaking scale becomes dynamically linked to the mass gap. Example B
will provide the starting point for the composite-Higgs models in section 4, where we will
identify which kind of scalar potential is suitable to capture the essential features of the
dual field theory.

The field-theory dynamics can be probed by computing the spectrum of composite
states and, in the cases when a Goldstone boson is present, its decay constant FG. We
summarise here the formalism used to compute these observables, and refer the Reader to
appendices D and E for more details. The spectrum can be found by solving the linearised
equations of motion for the fluctuations of the bulk fields around a given background and
imposing appropriate boundary conditions in the IR and the UV, chosen such that they
extract the poles of the two-point functions of the corresponding dual field theory operators.
This typically limits the space of solutions to discrete values of the four momenta q2, which
in turn give the mass spectrum according to m2 = −q2. In practice, and in order to make
the problem numerically tractable, one introduces IR (UV) cutoffs at r = r1 (r = r2).
Setting up the boundary conditions at r1,2, one then studies the spectrum taking r1 → ro
in the IR, and r2 → +∞ in the UV, making sure that cutoff effects are negligible.

The scalar sector of the model consists of a fluctuation ϕ(q, r) of σ(q, r) = σ(r)+ϕ(q, r)
around the background solution σ(r). Such fluctuation in general mixes with the scalar
fluctuation h(q, r) of the metric defined in Eq (D.6). As explained in appendix D, it is
convenient to form a gauge-invariant (diffeomorphism-invariant) combination [82–86] of
the two which in the present case reads a(q, r) = ϕ(q, r)− σ′

6A′h(q, r) where primes denote
derivatives with respect to r. The spectrum of scalar composite states can then be obtained
by solving the equation of motion given in eq. (D.9)[

∂2
r + 4A′∂r −

(
∂2
σV + 8σ′

3A′∂σV + 16σ′2
9A′2 V

)
− e−2Aq2

]
a = 0 , (3.8)

imposing boundary conditions given in eq. (D.10)

∂ra
∣∣∣
ri

= 3A′
2σ′2

[
e−2Aq2 − A′

2 ∂r
(
A′′

A′2

)]
a
∣∣∣
ri
. (3.9)
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Here and below it is understood that the coefficients appearing in the equations of motion
for the fluctuations and in the boundary conditions are evaluated on the background solu-
tion.

Similarly, the spectrum of spin-2 resonances can be found by solving the equations of
motion for the tensor part of the metric eµν(q, r) given in eq. (D.7)[

∂2
r + 4A′∂r − e−2Aq2

]
eµν = 0 , (3.10)

with boundary conditions ∂reµν |ri = 0.
The transverse part of the vector VM (q, r) satisfies the equation of motion[

∂2
r + 2A′∂r − q2e−2A

]
PµνVν(q, r) = 0 , (3.11)

where Pµν is defined in footnote 2. The boundary conditions are given by Pµν∂rVν |r1 = 0
and PµνVν |r2 = 0.

The transverse part of the axial-vector AM (q, r) satisfies the equation of motion given
in eq. (E.3) [

∂2
r + 2A′∂r −

(
q2e−2A + g2

5σ
2
) ]
PµνAν(q, r) = 0 , (3.12)

with boundary conditions Pµν∂rAν |r1 = 0 and PµνAν |r2 = 0. The pseudoscalar X(q, r)
(which is a combination of π and the longitudinal part of AM defined by eq. (E.11)) satisfies
the equation of motion given in eq. (E.12)[

∂2
r − 2

(
A′ + σ′

σ

)
∂r −

(
q2e−2A + g2

5σ
2
) ]
X(q, r) = 0 , (3.13)

with boundary conditions X
∣∣
r=r1

= 0 and ∂rX
∣∣
r=r2

= 0. For illustrative purposes, in
appendices D and E, we show the explicit calculation of two-point functions in the axial-
vector, pseudoscalar sector for Example B introduced below.

Finally, when the breaking of U(1)A is purely spontaneous, the Goldstone decay con-
stant FG can be extracted from eq. (2.14), using the expression for the axial current two-
point function 〈Jµ(q)Jν(−q)〉 obtained from eq. (E.10).5 Observing that its longitudinal
part vanishes due to the purely spontaneous breaking of U(1)A, we then have

F 2
G = lim

r→∞

{
N2
C

e2A

g2
5

∂ra

a

∣∣∣
q2=0

}
, (3.14)

where in the derivation we wrote PµνAν(q, r) = Ãµ(q)a(q, r), such that a(q, r) satisfies the
equation of motion given in eq. (3.12) with IR boundary condition ∂ra|r1 = 0. Note that
a(q, r) is defined up to an overall rescaling that does not affect the result for the decay
constant FG. In the class of models of this section, the decay constant scales as FG ∼ NC .
Taking out the factor of NC , we define F̃G ≡ FG/NC .

5With a slight abuse of notation, we will frequently write

〈O(q)O(p)〉 = δ4(q + p)〈O(q)O(−q)〉 ,

thus extracting the non-trivial part of a two-point function, that does not follow from momentum conser-
vation.
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3.1 Example A

A simple superpotential giving rise to dynamics that deviate from the pure AdS case is
given by

W(σ) = −3
2 −

∆
2 σ

2 , (3.15)

where ∆ is a free parameter. By solving the first order equations eq. (3.7) coming from
the superpotential, one finds the solution

σ(r) = σ̃ e−∆r , (3.16)

A(r) = r − σ̃2

6 e
−2∆r ,

where σ̃ is an integration constant, and we fixed another integration constant corresponding
to a shift in the warp factor A such that A ' r for large values of r.6 In order to obtain
a mass gap, we introduce a hard-wall cutoff in the IR, roughly mimicking confinement,
as triggered by the vacuum expectation value of a operator with infinite dimension [87].
Without loss of generality, we can choose the IR cutoff to be at ro = 0. The parameters of
the model are hence ∆, g5, and σ̃.

Let us first consider the meaning of ∆. By comparing the general UV expansion of σ
given in eq. (3.4) with the solutions picked by the superpotential and given in eq. (3.16), we
see that for ∆ < 2 the CFT is deformed by the operator Oσ with scaling dimension equal to
4−∆, whereas for ∆ > 2, the same operator has scaling dimension ∆ and acquires a VEV.
In the latter case, the VEV breaks the global U(1)A in the dual field theory, and we hence
expect a Goldstone boson in the spectrum. In addition, we also expect a massless dilaton to
be present, because σ− vanishes identically in eq. (3.4), and consequently scale invariance
is not broken explicitly. Notice that this is an artefact of choosing background solutions
generated by the first-order equations (3.7), with a superpotential given by eq. (3.15).

The meaning of the bulk gauge coupling g5 could be estimated from considering the
large q2 behaviour of the transverse part of the (axial-)vector current two-point func-
tion, and matching with the perturbative field theory result along the lines of holographic
QCD [88]. However, since such a calculation matches a strong coupling result with a per-
turbative one, it should be taken with caution. We will instead investigate the dependence
of the spectrum and decay constant on g5, treating it as a free parameter, with the aim of
extracting the generic behaviour. We will return to this point at the end of section 5.1.

From eq. (3.4) and eq. (3.16), we see that σ̃ is related to the size of the source (for ∆ <

2) or the VEV (for ∆ > 2) of the operator Oσ. On the gravity side, one can independently
vary the value of σ̃ and ΛIR (through the choice of ro). We may consider three regimes,
in which the dimensionless ratio σ̃1/∆/ΛIR is either much smaller than one, order one, or
much larger than one. On the field theory side, these three regimes are characteristed by
different physics. We illustrate this for the case ∆ = 3 in figure 1, where we plot the decay
constant FG in units of mass mT of the lightest tensor (characterising the scale of the mass

6This can always be accomplished by rescaling the boundary coordinates and hence corresponds to an
overall rescaling of energies.
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Figure 1. Example A. The dimensionless ratio σ̃1/3/ΛIR (left panel) and the decay constant (right
panel) as a function of σ̃ for ∆ = 3, g5 = 5. We used the UV cutoff r2 = 8 when extracting the
decay constant.
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Figure 2. Example A. Spectrum as a function of σ̃ for ∆ = 3, g5 = 5, r1 = 0, r2 = 8. The left
panel is normalized to the mass mT of the lightest tensor, while the right panel is normalized to the
decay constant F̃G = FG/NC . The colour coding for the spectrum is: scalar (blue), tensor (red),
pseudoscalar (black), vector (green), axial-vector (green diamonds). Since ∆ > 2, there is also a
massless dilaton in the spectrum, as can be seen from figure 3; due to the numerical resolution
deployed only the Goldstone is shown in the present two plots. In the right panel, it is understood
that heavier states are present in the right-upper corner.

gap) as a function of the parameter σ̃. As can be seen, when σ̃1/∆/ΛIR � 1 the decay
constant can be made arbitrarily small close to σ̃ = 0. Conversely, when σ̃1/∆/ΛIR � 1
the decay constant becomes large compared to mT . Finally, when σ̃1/∆/ΛIR ∼ 1, there is
a plateau between 1 . σ̃ . 4 in which the decay constant (in units of mT ) stays nearly
constant. This intermediate regime can be expected to capture the features of a generic
strongly coupled field theory with a single characteristic energy scale. In figure 2, we show
the spectrum as a function of σ̃ for the case ∆ = 3. For all values of σ̃, there is a massless
dilaton and Goldstone boson, associated with the spontaneous breaking of scale invariance
and the global U(1)A symmetry, respectively.

Figure 3 shows the dependence of the spectrum on ∆. There is a light dilaton in the
spectrum for ∆ close to zero, as well as for ∆ > 2. In the former case, this is due to the
CFT being deformed by the nearly marginal operator Oσ (as familiar from Goldberger-
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Figure 3. Example A. Spectrum as a function of ∆ for g5 = 5, σ̃ = 2, r1 = 0, r2 = 8. The left
panel is normalized to the mass mT of the lightest tensor, while the right panel is normalized to
the decay constant F̃G = FG/NC . The colour coding is: scalar (blue), tensor (red), pseudoscalar
(black), vector (green), axial-vector (green diamonds).
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Figure 4. Example A. Spectrum as a function of g5 for ∆ = 3, σ̃ = 2, r1 = 0, r2 = 8. The left
panel is normalized to the mass mT of the lightest tensor, while the right panel is normalized to
the decay constant F̃G = FG/NC . The colour coding is: scalar (blue), tensor (red), pseudoscalar
(black), vector (green), axial-vector (green diamonds). Since ∆ > 2, there is also a massless dilaton
in the spectrum, as can be seen from figure 3; due to the numerical resolution deployed only the
Goldstone is shown in the present two plots.

Wise [89, 90]), while in the latter, the breaking of conformal invariance is spontaneous. In
addition, for ∆ > 2, there is also a Goldstone corresponding to the spontaneous breaking of
the U(1)A symmetry. Note that the cutoff effects due to finite r2 are especially pronounced
around ∆ = 2, increasing the masses of both the Goldstone and dilaton, which in the limit
r2 → +∞ remain massless all the way down to ∆ = 2.

Finally, in figure 4, we show the spectrum as a function of g5. As seen from eq. (3.11)
and eq. (3.12), the spectra of the vector and axial-vector resonances coincide in the limit
of g5 going to zero. In order to depart from this special and unrealistic case, one should
increase the bulk gauge coupling to (at least) g5 ∼ 5, thus capturing the more generic
behaviour.
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Figure 5. Example B. Spectrum as a function of ∆ for r1 = 10−4, r2 = 8, and g5 = 1 (left), g5 = 5
(right), normalized to the mass mT of the lightest tensor. The colour coding is: scalar (blue), tensor
(red), pseudoscalar (black), vector (green), axial-vector (green diamonds).
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Figure 6. Example B. Spectrum as a function of g5 for ∆ = 3, r1 = 10−4, r2 = 8. The left
panel is normalized to the mass mT of the lightest tensor, while the right panels are normalized to
the decay constant F̃G = FG/NC . The colour coding is: scalar (blue), tensor (red), pseudoscalar
(black), vector (green), axial-vector (green diamonds). Since ∆ > 2, there is also a massless dilaton
in the spectrum, as can be seen from figure 5; due to the numerical resolution deployed only the
Goldstone is shown in the present two plots.

3.2 Example B

The second example that we consider has the superpotential

W(σ) = −3
4

[
1 + cosh

(
2

√
∆
3 σ
)]

, (3.17)

where again ∆ is a free parameter. This choice of superpotential is inspired by the top-down
GPPZ model [58], which admits consistent truncations to the cases ∆ = 1 and ∆ = 3.

Solving the first order equations (3.7) coming from the superpotential leads to

σ(r) =
√

3
∆arctanh

(
e−∆r

)
= 1

2

√
3
∆ log

(
coth

(∆r
2

))
, (3.18)

A(r) = 1
2∆ log

(
e2∆r − 1

)
,
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where we have fixed an integration constant corresponding to a shift in the radial coordinate
so that the end-of-space in the IR is at ro = 0, and again required that A ' r for large values
of r. The parameters of the model are hence ∆ and g5. By requiring that the end-of-space
coincides with the value of the radial coordinate at which the scalar σ becomes singular,
so that the mass gap becomes dynamically determined, we have in effect eliminated one of
the parameters as compared to Example A.

For large r, we have that

σ = σce
−∆r + · · · , σc ≡

√
3
∆ , (3.19)

which (as in Example A) for ∆ < 2 has the interpretation that the CFT is deformed
by the operator Oσ with scaling dimension equal to [Oσ] = 4 − ∆, whereas for ∆ > 2,
Oσ has scaling dimension [Oσ] = ∆ and acquires a VEV. Hence, as before, in the latter
case we expect a Goldstone boson associated with the spontaneous breaking of the global
U(1)A symmetry, as well as a massless dilaton associated with the spontaneous breaking
of scale invariance.

As previously alluded to, the main difference between Example A and Example B
is that the latter model has one less free parameter. In Example B, the mass gap gets
generated by the same dynamics that breaks the U(1)A, encoded in the bulk as the radial
profile of the scalar σ. Therefore, the scale of the mass gap cannot be varied independently
from that of the decay constant FG. We believe that for this reason, Example B is a more
realistic (and constraining) model than Example A.

Figure 5 and figure 6 show the spectrum as a function of ∆ and g5. As can be seen, the
ratio FG/mT strongly decreases as g5 grows, while we have checked that its dependence on
∆ is mild. We also note that when ∆ < 2, as g5 grows the lightest pseudoscalar resonance
becomes progressively heavier than the lightest scalar resonance. In later sections, we will
show how to lift the mass of the dilaton independently from that of the Goldstone bosons
by including an additional bulk scalar in the model, that encodes the explicit breaking of
conformal invariance due to a deformation of the dual field theory by a relevant operator.

Finally, let us comment on the possibility of more than one characteristic energy scale
arising in this model. From the IR expansion of A(r), we see that as ∆ → 1

2 , the typical
IR scale defined below eq. (3.5) diverges, i.e. ΛIR → +∞. Since, in the same limit, σc
remains finite, following the same reasoning as for Example A, we are led to the conclusion
that in the vicinity of ∆ ' 1

2 , the model exhibits multi-scale dynamics. We illustrate this
in figure 7, where the left panel shows σ1/∆

c /ΛIR as a function of ∆, while the right panel
shows the resulting spectrum close to ∆ ' 1

2 . As can be seen, close to ∆ ' 1
2 , the spectrum

approaches that of a gapped continuum, and the presence of two scales is apparent in that
the mass gap becomes parametrically larger than the typical spacing of the resonances
above it. While this behaviour is not a generic feature for strongly-coupled field theories, it
has been observed in certain special cases, such as close to the CVMN solution [21, 22] on
the baryonic branch of the Klebanov-Strassler system [44, 45], as well as on the Coulomb
branch of N = 4 SYM [91, 92]. It is also a characteristic feature of linear-dilaton/clockwork
models [93–96].
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Figure 7. Example B. The left panel shows the dimensionless ratio σ1/∆
c /ΛIR. The right panel

shows the spectrum as a function of ∆ (close to ∆ ' 1
2 ) for g5 = 5, r1 = 10−10, r2 = 8, normalized

to the mass mT of the lightest tensor.

4 Holographic composite Higgs with many flavours

In this section, we will construct holographic models built from the bottom-up with the
aim of capturing the dynamics of the kinds of field theories described in section 2.

In the scalar sector, there are two field theory operators, ψaψb and χχ, that we will
consider. On the bulk side they are dual to a complex antisymmetric scalar Φab and
a complex scalar Z. Both of these operators have correlators that scale as N2

C in the
Veneziano limit, which implies that in general Φab and Z will backreact on the metric.
In order to study the breaking of the global symmetry to Sp(2NF ), it is convenient to
parametrize Φ as7

Φ = U(Π)ΦHΣU(Π)T (4.1)

ΦH = σ

21 + SÂT
Â .

where Σ is the anti-symmetric matrix introduced below eq. (2.9), ΦH is a Hermitian matrix
(σ and S are real), T Â are the broken generators of SU(2NF ), and U(Π) is a U(2NF )-
transformation along the broken directions:

U(Π) = exp(iΠ) , (4.2)

Π = π0
2
√
NF

1 + πÂT
Â .

7To show that (at least locally) this parametrizes all the degrees of freedom of Φ, note that to first order
in Π, we have that

Φ =
[(

1 + iπ0√
NF

)(
σ

21 + SÂT
Â
)

+ iπÂ

(
σT Â + SB̂{T

Â, T B̂}
)]

Σ ,

where we made use of the identities given in eq. (2.11). Furthermore, since dAB̂Ĉ ≡ 1
2 Tr(TA{T B̂ , T Ĉ}) = 0,

it follows that the expression in the parenthesis before Σ is a (complex) linear combination of the broken
generators. This is the general form of a complex antisymmetric matrix.
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As we shall see, a non-trivial radial profile of σ in the bulk will encode the breaking of the
global symmetry on the field theory side. We also decompose the complex scalar Z into
its absolute value and a phase, as Z = |Z| eiθ.

Now let us comment on the gauge symmetry on the gravity side, related to the global
symmetry of the dual field theory. As explained in section 2, there is a linear combination
of U(1)ψ and U(1)χ transformations (associated with shifting the phases π0 and θ) that
is a global symmetry, while the remaining factor is anomalous. This latter fact results
in η′ receiving a mass, which (contrary to e.g. QCD) is of order O(1) in the large-NC

limit due to χ transforming in a two-index representation of the HC group. Furthermore,
in the Veneziano limit we have that NF ∼ NC , and the contribution of the fundamental
fermions ψa to m2

η′ is of order NF /NC = O(1) [97, 98]. In order to capture these effects
in a holographic model, one would have to gauge both U(1)ψ and U(1)χ symmetries.
One would also have to account for the operator mixing with Tr(F̃µνFµν), related to
pseudoscalar glueballs. This is a non-trivial, but interesting, exercise that we leave for a
future study (for the treatment of the U(1)A anomaly in the context of holographic QCD,
see for example [99–101]). In this work, we hence only gauge the remaining SU(2NF )
symmetry in the bulk, and put π0 = θ = 0, thus neglecting the aforementioned sector in
our study. Although this results in one fewer Goldstone boson in the spectrum, we stress
that including this extra sector would not affect our results for the observables that we do
compute. We parametrise the SU(2NF ) gauge field AM as

AM = AÂMT
Â + VAMT

A , (4.3)

where T Â (TA) are the broken (unbroken) generators of SU(2NF ).
We will present three models. The first one, which we refer to as Model I, is simpler

in that it does not contain the complex scalar Z. The complex scalar Φab is in the an-
tisymmetric representation of SU(2NF ), and its radial profile will be responsible for the
breaking of the global symmetry SU(2NF ) → Sp(2NF ). In addition, the model contains
the metric gMN and the SU(2NF ) gauge field AM . As usual, the former is dual to the
stress-energy tensor Tµν of the field theory, while the latter is dual to the current J µab
defined in eq. (2.10). We will see that Model I is too simple to break explicitly conformal
invariance without explicit breaking of the flavour symmetry. To overcome this drawback,
the second and third models, referred to as Models IIA and IIB, additionally contain a bulk
field φ, whose radial profile will correspond to adding a relevant deformation, thus lifting
the mass of the dilaton. One possibility is that φ is the modulus of Z = φ eiθ, in which
case the relevant deformation in question is a mass term for χ. This would then describe
a situation in which the vanishing of said mass term leads to the field theory flowing to an
IR fixed point, such as is the case for example when xF = NF /NC is within the conformal
window. Note that the presence of the mass term for χ not only would lift the mass of the
dilaton, but also that of the extra NGB, alluded to in the previous paragraph, although
we do not include it in our present study of the spectrum. This being said, our analysis
does not rely on which operator is dual to φ, only that it encodes the explicit breaking of
scale invariance.
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Before presenting the models described above, let us make some general comments
about the Veneziano limit. In holographic models, the large-NC limit usually implies that
the gravitational description becomes weakly coupled. This then allows to describe non-
perturbative physics on the field theory side by translating to a classical computation on
the bulk side. In the Veneziano limit, the number of degrees of freedom in the bulk grows
as N2

F . This implies that loops on the gravity side are no longer suppressed, and hence
one should strictly speaking consider an expansion in xF = NF /NC . On the field theory
side, these issues are reflected by the fact that, in the Veneziano limit, multi-resonance
states contribute to, for instance, correlators of fermion bilinears, contrary to what is the
case in the usual large-NC limit. As a consequence, the poles of two-point functions may
acquire an imaginary part, leading to resonances with a non-zero decay width. This effect
clearly cannot be described by the classical approximation on the gravity side, and since
we do not have anything to add in this respect we will not include it, assuming that
the single-resonance exchanges provide a sufficiently correct description of the spectrum.
Nevertheless, one may expect that such approximation captures reasonably well the masses
of the lightest states even when xF ∼ 1, as these have fewer decay channels available,
leading to a narrow width, and in turn suggesting that the impact of multi-resonance
exchange on the masses of the lightest states is small.

4.1 Model I

The first model that we consider consists of gravity, an antisymmetric complex scalar Φ,
and an SU(2NF ) gauge field AM . Φ is parametrized as in eqs. (4.1) and (4.2) (recall that
π0 = 0), while AM is parametrized as in eq. (4.3). The action is given by

S =
∫

d5x
√
−g

{
N1

(
R

4 −
Λ̃
2

)
−N2Tr

[
gMN (DMΦ)†DNΦ

]
−N3Tr

[1
4g

MP gNQFMNFPQ
]
−N4VΦ(Φ)

}
, (4.4)

where the cosmological constant is equal to Λ̃ = −6, the potential VΦ(Φ) is defined to
be an SU(2NF ) invariant, FMN is the field strength associated with the gauge field AM ,
and the covariant derivative is given by DMΦ = ∂MΦ + ig5

(
AMΦ + ΦATM

)
. The overall

normalisation factors in the action are chosen to be N1 = N4 = N2
C and N2 = N3 =

NC , so as to recover the expected large-NC counting of the dual field theory, as we shall
now discuss.

First, as usual N1 is required to scale as N2
C in order to reproduce the correct large-NC

scaling of correlation functions of the stress-energy tensor on the field theory side. Second,
the large-NC scaling of N2 is fixed by the requirement that the pseudoscalar two-point
functions scale as NC . Third, the large-NC scaling of the decay constant is determined by
N3 as F 2

G ∼ N3 = NC , which is what is expected from field theory considerations.
The fourth feature that we would like to capture concerns the operator dual to σ,

namely Oσ = Tr(Σabψ
aψb), which also will be responsible for symmetry breaking. In the

Veneziano limit, its correlators scale as N2
C . Note that with the above choice of N2, the
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coefficient in front of the kinetic term for σ already scales as NFNC ∼ N2
C . In order to

describe symmetry breaking, we need to ensure that σ acquires a background profile, which
leads us to also choose the factor N4 in front of the potential VΦ to scale as N2

C . We will
soon describe in more detail how we choose the form of the potential itself.

We anticipate that, with the choices explained in the previous paragraph, the action
can be written as

S = N2
C

∫
d5x
√
−g

{
R

4 −
xF
2 (∂Mσ)2 − Λ̃

2 − VΦ(Φ)
}

(4.5)

+NC

∫
d5x
√
−g

{
− 1

2(∂MSÂ)2 − 1
4
∑
i=A,V

(F (i)
MN )2 − σ2

2 (∂MπÂ + g5AÂM )2
}

+ · · · ,

where the field strengths are given by F (i)
MN ≡ ∂MA(i)

N − ∂NA(i)
M , and the dots contain

interaction terms (we provide more details in section 5). As we shall see, the part of
the action on the first line, proportional to N2

C , will be responsible for determining the
background geometry.

4.1.1 Equations of motion

As in section 3, for the background solutions that we will consider, the gauge fields vanish,
the metric takes the domain wall form given in eq. (3.2) with warp factor A(r), and the
scalar field Φ(r) only depends on the radial coordinate r. Furthermore, given the decompo-
sition of Φ in eq. (4.1), and the fact that VΦ is SU(2NF ) invariant and hence independent
of Π, it is consistent to set Π to zero in the ansatz for the background solutions. This leads
to the background equations of motion for the scalars σ and S, and the warp factor A:

∂2
rσ + 4∂rA∂rσ − x−1

F

∂VΦ
∂σ

= 0 ,

∂2
rSÂ + 4∂rA∂rSÂ −NC

∂VΦ
∂SÂ

= 0 , (4.6)

6(∂rA)2 − xF (∂rσ)2 −N−1
C (∂rS)2 + Λ̃ + 2VΦ = 0 .

The factor of NC in the second equation originates from the fact that S and VΦ enter in
the action with different factors of NC . Yet, we anticipate that, because of our choice of
potential VΦ, the large NC limit will still lead to a well-defined equation of motion for S.

We will choose VΦ such that it is a function of an SU(2NF ) invariant I built from Φ,
on which we impose two conditions,

I
∣∣
S=0 = σ ,

∂I
∂SÂ

∣∣∣∣
S=0

= 0 . (4.7)

These conditions ensure that (i) it is consistent to put SÂ = 0 in eq. (4.6), and (ii) the
resulting equations of motion for σ and A do not depend on the choice of the invariant I.
An example of an invariant satisfying the conditions in eq. (4.7) is given by

I1 ≡
[

2Tr(Φ†Φ)
NF

]1/2

=
√
σ2 +N−1

F S2 , (4.8)

We will comment on other choices of invariants in section 5.
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4.1.2 Scalar potential

We next follow a logic similar to that of the examples in section 3, chosing the potential VΦ
such that it can be written in terms of a superpotential. Noting that both the cosmological
constant Λ̃ and VΦ contribute to the full potential V, we write

V(I) ≡ Λ̃
2 + VΦ(I) = 1

2xF
W ′(I)2 − 4

3W(I)2 , (4.9)

where the factor x−1
F in front of the first term on the right hand side originates from that

the sigma-model metric component associated with σ is equal to Gσσ = xF . Making use
of eq. (4.7), solutions to the background equations of motion (4.6) can then be obtained
by putting SÂ = 0, and solving the first-order equations for the scalar σ and the warp
factor A,

∂rσ = 1
xF

∂σW(σ) , ∂rA = −2
3W(σ) . (4.10)

Inspired by Example B of section 3.2, we pick the superpotential to be

W(I) = −3
2

1 + xF sinh2

√∆
3 I

 , (4.11)

which for xF = 1 coincides with the superpotential defined in eq. (3.17). For completeness,
let us write explicitly the resulting potential

VΦ(I;xF ) = 3xF
4 sinh2

√∆
3 I

(∆− 2xF ) cosh

2

√
∆
3 I

+ ∆ + 2xF − 8

 . (4.12)

Let us make a few comments about the form of this potential. First, we observe that
in the limit xF → 0, one obtains that VΦ vanishes, thus resulting in a model with only
a cosmological constant and no backreacting flavours. Hence, in this limit our model
resembles the composite-Higgs models of [28, 29] in which the background geometry is
a slice of AdS. Conversely, when xF ∼ 1, the backreaction of the flavour sector becomes
significant. This is in agreement with expectations from field theory where, in the Veneziano
limit, there is non-trivial (order xF ) mixing between the glue and matter sectors, and both
contribute to the dynamics responsible for confinement. In this case, the geometry is
close to that of Example B of section 3.2, which in turn is a generalisation of the GPPZ
model [58]. The GPPZ model is dual toN = 1∗ SYM, and the backreaction on the geometry
occurs not because of the Veneziano limit, but because the fermion (and all other) fields
of the dual field theory are in the adjoint representation (for instance, when ∆ = 3, the
bulk scalar field encodes the dynamics leading to a non-trivial gaugino condensate). The
reasons why we choose a GPPZ-inspired potential, despite these differences, are to capture
the essential features of confinement, the link between a dynamically generated mass gap
and the flavour symmetry-breaking scale, as well as to obtain a discrete mass spectrum.
We also note that, while these features can be expected on general grounds, our models are
not engineered to address detailed questions regarding the dynamics at the lower edge of
the conformal window, in particular the critical values of xF and ∆, which we hence keep
as free parameters.
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Figure 8. Model I. The dimensionless ratio σ1/∆
c /ΛIR, as a function of xF with ∆ = 3 (left panel)

and as a function of ∆ with xF = 2 (right panel). The vertical gray line indicates the value of
∆ = 2 when the interpretation of σc switches from being a source (∆ < 2) or a VEV (∆ > 2).

4.1.3 Background solution

The background solution that we will consider is obtained by solving the first order equa-
tions (4.10), and is given by

σ(r) =
√

3
∆arctanh

(
e−∆r

)
, (4.13)

A(r) = r + xF
2∆ log

(
1− e−2∆r

)
.

As can be seen, this is exactly the same solution as in Example B, apart from the factor
xF appearing in the warp factor. Notice that by choosing a small xF , one can make the
metric close to AdS except for an arbitrarily small region near r = 0, thus resembling AdS
with a hardwall cutoff. Conversely, for larger values of xF the backreaction of the flavours
on the geometry becomes significant. We note that for the specific cases of xF = 1 and
∆ = 1 or 3, the sectors corresponding to gravity and the scalar σ coincide with two possible
consistent truncations of the GPPZ model [58].

Let us now comment on the asymptotic UV expansion of the background solution. In
terms of the canonically normalized scalar field σ(n) ≡ x1/2

F σ, we have that

σ(n) = σce
−∆r + · · · , σc ≡

√
3xF
∆ , (4.14)

which implies that for ∆ < 2 the flavour symmetry is broken explicitly, while for ∆ > 2 it
is broken spontaneously. Thus, the coefficient σc is related to either the size of the source
(∆ < 2) or the VEV (∆ > 2) of the operator Oσ/

√
xF that is dual to σ(n). In the latter

case, taking into account the N2
C prefactor in the action, one expects 〈Oσ〉 ∼

√
xFσcN

2
C =√

3/∆ NFNC , which becomes enhanced at large number of flavours. We will come back to
this observation in section 5 when we will study the spectrum.

In Example B of section 3.2, we showed that, as one approaches ∆ ' 1
2 , the IR

scale ΛIR vanishes, giving rise to multi-scale dynamics, which is exhibited in the spectrum
approaching a gapped continuum. While these are interesting features, we aim to capture
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the dynamics of generic strongly-coupled field theories, and hence will require that ΛIR
remains finite. In the present case, this leads to an upper bound on the number of flavours,
xF < 2∆. In order to estimate whether more than one characteristic energy scale is present,
we show the dependence of the dimensionless ratio σ1/∆

c /ΛIR on xF and ∆ in figure 8.

4.2 Model II

In this model, we introduce an additional bulk scalar field φ that is a flavour singlet. The
motivation for this is to allow for the possibility of explicit breaking of scale invariance
without also explicitly breaking the flavour symmetry. The action of the model is given by

S =
∫

d5x
√
−g

{
N2
C

[
R

4 −
1
2g

MN∂Mφ∂Nφ− V(Φ, φ)
]

−NCTr
[
gMN (DMΦ)†DNΦ + 1

4g
MP gNQFMNFPQ

]}
, (4.15)

where we made the same choices for the factors of NC as in Model I, with the additional
requirement that the kinetic term for φ scales as N2

C . This latter choice is motivated by the
requirement that the correlators of the operator Oφ dual to φ be of order N2

C , as would be
the case if φ is the modulus of Z (dual to χχ) as suggested in the beginning of this section.
It would also be the case if Oφ were built from the glue of the field theory. In addition,
requiring that φ is accompanied by the same NC-scaling as that of gravity allows for φ to
backreact on the geometry, such that it may play the role of explicitly breaking conformal
invariance in the dual field theory and lift the mass of the dilaton. However, since we
remain agnostic regarding the precise form of Oφ, we can only give general arguments for
how φ enters into the bulk action. In particular, one could imagine that the factor in front
of its kinetic term has a non-trivial dependence on xF , whereas we have made the simplest
possible choice in this regard.

We assume that the scalar potential V depends on φ, as well as on an invariant I built
from Φ. As before, we require that I satisfies the conditions given in eq. (4.7). We next
choose the scalar potential V(I, φ) such that it can be written in terms of a superpotential
W(I, φ) as

V(I, φ) = 1
2xF

(
∂W
∂I

)2
+ 1

2

(
∂W
∂φ

)2
− 4

3W
2 , (4.16)

with W(I, φ) defined to be the sum of the superpotential of Model I given in eq. (4.11)
and a function w(φ):

W(I, φ) = −3
2

1 + xF sinh2

√∆
3 I

+ w(φ) , (4.17)

We consider two choices of w(φ), analogous to Example A and B of section 3, namely

wA(φ) = −∆φ

2 φ2 , (4.18)

wB(φ) = −3
2 sinh2

√∆φ

3 φ

 , (4.19)

which we will refer to as Model IIA and Model IIB, respectively.
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As for Model I, solutions to the equations of motion can be found by first setting
SÂ = 0, and then solving the first order equations

∂rσ = 1
xF

∂σW(σ, φ) , ∂rφ = ∂φW(σ, φ) , ∂rA = −2
3W(σ, φ) . (4.20)

We hence obtain the following solutions for the respective cases A and B:

φ(r) = φA e
−∆φr ,

A(r) = r + xF
2∆ log

(
1− e−2∆r

)
− φ2

A

6 e−2∆φr , (4.21)

and

φ(r) =
√

3
∆φ

arctanh
(
φB e

−∆φr
)
,

A(r) = r + xF
2∆ log

(
1− e−2∆r

)
+ 1

2∆φ
log

(
1− φ2

Be
−2∆φr

)
. (4.22)

In both cases, σ(r) is the same as for Model I and given in eq. (4.13). φA and φB are
integration constants that for ∆φ < 2 (∆φ > 2) govern the size of the source (VEV) of the
operator Oφ dual to φ. We observe that, as for Model I, the requirement that the typical
IR scale ΛIR remains finite leads to the same bound xF < 2∆. Furthermore, we note that
for the specific case of xF = 1 and ∆ = 3 and ∆φ = 1, the sectors corresponding to gravity
and the scalars σ, φ of Model IIB coincide with the GPPZ model [58].

Consider Model IIB, and suppose that ∆ > 2 and ∆φ < 2. In this case, as can be
seen from the asymptotic UV behaviour of σ, the breaking of the global flavour symmetry
of the dual field theory is spontaneous. At the same time, turning on a non-zero φ in
the bulk corresponds to introducing explicit breaking of conformal invariance on the field
theory side. If 0 ≤ φB < 1, the end-of-space is dynamically generated due to the scalar σ
diverging at r = 0, and as in Example B, the scales of the mass gap and the decay constant
become linked. Conversely, when φB > 1, it is rather the dynamics of φ that breaks the
conformal invariance that also generates the mass gap, and there is no reason for the decay
constant to be of the same order. For this reason, we will require that 0 ≤ φB < 1 (for a
discussion of the case φB > 1 in a different context, see [102]).

On the other hand, in Model IIA, it is always σ that is responsible for the end-of-space
of the geometry and the generation of the mass gap. However, as in Example A, it can
be argued that values of φA � 1 do not capture the dynamics of generic strongly coupled
field theories, thus leading us to a similar conclusion regarding the range of the integration
constant φA.

5 Mass spectrum of composite states

In this section, we compute the bosonic spectrum of Models I and II introduced in section 4.
The calculations proceed along lines similar to those of Examples A and B of section 3,
with a few key differences. First, we need to bring the actions of the models into a form
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that is amenable to the formalism presented in appendices D and E. To this end we note
that, as long as we are only interested in computing two-point functions, it is sufficient to
retain in the action fluctuations to second order around a given background solution. We
remind the Reader that, for the background solutions that we consider, the only non-zero
fields are the σ-component of Φ, the warp factor A, and (for Model II) φ.

5.1 Formalism

Consider first the kinetic term for the gauge field AM appearing in the actions of eq. (4.4)
and eq. (4.15). Expanding in AM , we have

−NC

∫
d5x
√
−gTr

[1
4g

MP gNQFMNFPQ
]

= −NC

∫
d5x
√
−g

{
1
4
∑
i=A,V

(F (i)
MN )2 + · · ·

}
,

(5.1)
where the field strengths are given by

F (i)
MN ≡ ∂MA

(i)
N − ∂NA

(i)
M , (5.2)

we decomposed AM along the broken and unbroken directions, writing A(i)
M = (AM , VM ),

and the dots contain terms that are cubic or higher order in AM . As can be seen, the
two-point functions are only sensitive to the Abelian part of the flavour group.

Next, let us work out the form of the kinetic term for Φ. Using the decomposition of
Φ in eq. (4.1), we have

DMΦ = U
[
∂MΦHΣ + XMΦHΣ + ΦHΣX TM

]
UT ,

(DMΦ)† = U∗
[
− Σ∂MΦH + ΣΦHXM + X TMΣΦH

]
U † , (5.3)

XM ≡ U−1(∂M + ig5AM )U .

The scalar kinetic term is hence given by

−Tr
(
|DMΦ|2

)
= −Tr

{
(∂MΦH)2+2XM [ΦH , ∂MΦH ]−2Φ2

H(XM )2+2ΦHXMΦHΣX TMΣ
}

= −NF

2 (∂Mσ)2 − 1
2(∂MSÂ)2

−Tr
{

2XM [S, ∂MS]− 2Φ2
H(XM )2 + 2ΦHXMΦHΣX TMΣ

}
(5.4)

= −NF

2 (∂Mσ)2 − 1
2(∂MSÂ)2 + σ2

2 Tr
[
(XM )2 −XMΣX TMΣ

]
+ · · · ,

where we used eq. (2.11), and again the dots contain terms cubic or higher order in the
fluctuations. At linear order in the fluctuations

XM = i(∂MΠ + g5AM ) + · · · , (5.5)

thus using eq. (2.11) we obtain

− Tr
(
|DMΦ|2

)
= −NF

2 (∂Mσ)2 − 1
2(∂MSÂ)2 − σ2

2 (∂MπÂ + g5AÂM )2 + · · · . (5.6)
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Putting everything together, we can write the action of Model I defined in eq. (4.4) as

S = N2
C

∫
d5x
√
−g

{
R

4 −
xF
2 (∂Mσ)2 − V [I(σ, S)]

}
(5.7)

+NC

∫
d5x
√
−g

{
− 1

2(∂MSÂ)2 − 1
4
∑
i=A,V

(F (i)
MN )2 − σ2

2 (∂MπÂ + g5AÂM )2
}

+ · · · .

Similarly, for the action of Model II defined in eq. (4.15), we obtain

S = N2
C

∫
d5x
√
−g

{
R

4 −
xF
2 (∂Mσ)2 − 1

2(∂Mφ)2 − V [I(σ, S), φ]
}

(5.8)

+NC

∫
d5x
√
−g

{
− 1

2(∂MSÂ)2 − 1
4
∑
i=A,V

(F (i)
MN )2 − σ2

2 (∂MπÂ + g5AÂM )2
}

+ · · · .

Neglecting the higher-order terms contained in the dots, these actions are on a form suitable
for the formalism of appendices D and E.

Let us now comment on how the computation of the spectrum and decay constant in
Model I and Model II differs from the examples of section 3. First, the scalar fluctuations
aa, involve not only the fluctuation of σ, but also the fluctuations SÂ in both Models I
and II, and additionally the fluctuation of φ in Model II. Their equations of motion and
boundary conditions are given in eq. (D.9) and eq. (D.10). Second, the decay constant f
scales differently with NC with respect to eq. (3.14), and can be obtained as

f2 ≡ 2F 2
G = lim

r→∞

{
2NC

e2A

g2
5

∂ra

a

∣∣∣
q2=0

}
. (5.9)

We remind the Reader that a(q, r) encodes the radial profile of the transverse part of the
axial-vector, PµνAÂν (q, r) = ÃÂµ(q)a(q, r). We present the results in terms of a rescaled
decay constant, f̃ ≡ f/

√
NC . The remaining equations of motion and boundary conditions

— for the tensor, vector, axial-vector, and pseudoscalar fluctuations — take the same form
as in eqs. (3.10)–(3.13).

Finally, let us derive a perturbative estimate for g5, following [88]. The vector-current
two-point function reads

q2ΠV (q2)PµνδAB ≡ i
∫

d4x eiqσx
σ〈JAµ(x)JBν(0)〉 . (5.10)

The asymptotic UV behaviour of the vector is determined by eq. (3.11). Writing
PµνV A

ν (q, r) = Ṽ Aµ(q)v(q, r), and expanding in powers of e−r, we find that in all our
models

v(q, r) ∝ 1 +
[
v2(q) + 1

4q
2 log

(
q2e−2r

)]
e−2r + · · · , (5.11)

where v2(q) is an integration constant. Similar to the derivation leading to eq. (E.10) for
the transverse part of the axial-vector-current two-point function, this implies that the
regularized expression for ΠV is given by

Πreg
V (q2, r) = −NC

e2A

q2g2
5

∂rv(q, r)
v(q, r) = NC

g2
5

[
1
2 + 2v2(q)

q2 + log
(
q2e−2r)
2

]
+ · · · . (5.12)
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Comparing the coefficient in front of log(q2) with the perturbative one-loop field-theory
result in the large q2 limit

ΠV (q2) ' d(R)T (R)
24π2 log

(
q2

µ2

)
= NC

24π2 log
(
q2

µ2

)
, (5.13)

where µ is an arbitrary renormalization scale, and we used the values of d(R) and T (R) for
fermions in the fundamental of Sp(2NC), given in appendix B, one obtains the estimate
g5 '

√
12π ' 10.9. While this gives some indication for the value of g5, the estimate relies

on a perturbative computation in a strongly-coupled field theory. Hence, in this section
we rather take the approach of studying the dependence of the spectrum on g5, keeping
it as a free parameter. We will return to the choice of the g5 value in section 6, when we
compare our results to those of lattice simulations.

5.2 Model I

Let us work out explicitly the linearised equations of motion and boundary conditions for
the scalar fluctuations aa =

(
aσ, aS

)
starting from eq. (D.9) and eq. (D.10). By making

use of eq. (4.7), it can be shown that the equations for aσ and aS decouple, leading to[
∂2
r + 4A′∂r −

(
1
xF

∂2
IV + 8σ′

3A′∂IV + xF
16σ′2
9A′2 V

)
− e−2Aq2

]
aσ = 0 , (5.14)

with boundary conditions

∂ra
σ
∣∣∣
ri

= 3A′
2xFσ′2

[
e−2Aq2 − A′

2 ∂r
(
A′′

A′2

)]
aσ
∣∣∣
ri
, (5.15)

and [
∂2
r + 4A′∂r −NC∂

2
SI ∂IV − e−2Aq2

]
aS = 0 , (5.16)

with boundary conditions aS |ri = 0. We observe that aS is the only fluctuation for which
the choice of the invariant I matters.

We now have everything in place to compute the bosonic spectrum of Model I. As for
Examples A and B of section 3, one needs to introduce IR and UV cutoffs that serve as
regulators, with the physical results recovered as they are taken towards the end-of-space
and the boundary, respectively. In order to ensure that the numerics captures the dynamics
close to the end-of-space, we find it convenient to work with the radial coordinate ρ defined
as r = 1

2
[
ρ+log (2 cosh ρ)

]
in terms of which the IR (r = 0) and UV (r → +∞) are located

at ρ = −∞ and ρ = +∞, respectively, while ρ ' r for large r. We report on the numerical
results in terms of the IR and UV cutoffs ρ1 and ρ2, having checked that these are chosen
such that the spectrum has converged sufficiently in order for cutoff effects to be negligible,
unless explicitly stated.

Let us first consider the spectrum of S-resonances, which as mentioned depends on
the choice of invariant I. The simplest non-trivial invariant I1 =

[
2N−1

F Tr(Φ†Φ)
]1/2

was
given in eq. (4.8). The dependence of the resulting spectrum as a function of xF and ∆ is
represented by the black dots in figure 9. Since the numerical results are rather sensitive to
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Figure 9. Model I. Spectrum of S-resonances normalized to the mass mT of the lightest tensor,
as a function of xF with ∆ = 3 (left panel) and as a function of ∆ with xF = 2 (right panel). Both
panels have ρ2 = 10. The result of using the scalar-potential invariant I1 is shown in shades of gray
for different values of the IR cutoff ρ1 = −13,−10,−7,−4 (darker to lighter), whereas the result of
using the invariant I2 and ρ1 = −13 is shown in blue diamonds.
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Figure 10. Model I. Spectrum as a function of ∆ for xF = 2, g5 = 5, ρ1 = −7, ρ2 = 10. The
left panel is normalized to the mass mT of the lightest tensor, while the right panel is normalized
to the decay constant f̃ ≡ f/

√
NC . The colour coding for the spectrum is: singlet scalar (blue),

non-singlet scalar (blue diamonds), tensor (red), pseudoscalar (black), vector (green), axial-vector
(green diamonds).

the IR cutoff, we have included a few different values of ρ1, represented by the gray dots.
As can be seen, for sufficiently large values of xF , there is a parametrically light state.
In order to investigate the origin of this light state, we computed the spectrum using a
different invariant

I2 =
[
c1Tr(Φ†ΦΦ†Φ) + c2

(
Tr(Φ†Φ)

)2
]1/4

, (5.17)

that also satisfies eq. (4.7), but is more generic in the sense that it contains more than one
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Figure 11. Model I. The left panel shows the spectrum as a function of xF for ∆ = 3, g5 = 5,
ρ1 = −7, ρ2 = 8. The right panel shows the spectrum as a function of g5 for xF = 2, ∆ = 3,
ρ1 = −7, ρ2 = 10. Both panels are normalized to the decay constant f̃ ≡ f/

√
NC . The colour

coding for the spectrum is: singlet scalar (blue), non-singlet scalar (blue diamonds), tensor (red),
pseudoscalar (black), vector (green), axial-vector (green diamonds). Since ∆ > 2, there is also a
massless dilaton in the spectrum, as can be seen from figure 10; due to the numerical resolution
deployed only the Goldstone is shown in the present two plots.

kind of single-trace term. For simplicity, we pick c1 and c2 such that I2 = σ + O(S4), in
order for the third term of eq. (5.16) to vanish on the background, so that aS satisfies the
equation of motion of a massless scalar field propagating on a fixed background geometry.
The resulting spectrum of S resonances is represented by the blue diamonds of figure 9.
While the qualitative features of the heavy states remain similar to the case of I = I1, the
light S resonance is no longer present. This suggests that the choice I1 is too simplistic
in order to result in a realistic model, since the HC gauge theory has no symmetry which
could explain the lightness of S.

In figure 10 we show the spectrum as a function of ∆. For completeness, we included
the spectrum of S-resonances, with the choice I = I2, keeping in mind that such result
may have a strong model dependence. For ∆ > 2, both SU(2NF ) and scale invariance are
broken spontaneously; however, the masses of both the dilaton and the NGBs are lifted,
due to cutoff effects that are most pronounced around ∆ ' 2. We note that in figure 10,
the dilaton always remains lighter than the Goldstone bosons associated with the breaking
of SU(2NF ). In figure 11, we show the dependence of the spectrum on xF , and g5, for
fixed ∆ = 3. We remind the Reader that for xF → 0, the background geometry is close to
AdS. The spectrum altogether has a mild dependence on the number of flavours, while the
dependence on g5 is stronger. We observe that the S-resonances coincide with the tensor
for large xF . Because of our choice of invariant I = I2, these modes satisfy the same
equations of motion, but their boundary conditions differ.
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Let us stress again that the presence of a massless dilaton in the spectrum is an
artefact of the minimality of Model I: the profile of the bulk scalar σ, given by eq. (4.14), is
chosen to realise a purely spontaneous breaking of scale invariance when ∆ > 2. A realistic,
composite-Higgs field theory, that we aim to describe, does contain explicit breaking sources
as well. We move, therefore, to the analysis of the spectrum of Model II, where the dilaton
mass will be lifted.

5.3 Model II

Consider the linearised equations of motion and boundary conditions for the scalar fluctu-
ations aa =

(
aσ, aS , aφ

)
given in eq. (D.9) and eq. (D.10). As in Model I, the fluctuations

of S decouple, leading to the same equation of motion (5.16) and boundary conditions
aS |ri = 0. However, the fluctuations of σ and φ mix, leading to the following linearised
equations of motion:[

∂2
r + 4A′∂r −

(
1
xF

∂2
IV + 8σ′

3A′∂IV + xF
16σ′2
9A′2 V

)
− e−2Aq2

]
aσ (5.18)

−
[ 1
xF

∂I∂φV + 4φ′
3xFA′

∂IV + 4σ′
3A′∂φV + 16σ′φ′

9A′2 V
]
aφ = 0 ,[

∂2
r + 4A′∂r −

(
∂2
φV + 8φ′

3A′∂φV + 16φ′2
9A′2 V

)
− e−2Aq2

]
aφ (5.19)

−
[
∂I∂φV + 4φ′

3A′∂IV + xF
4σ′
3A′∂φV + xF

16σ′φ′
9A′2 V

]
aσ = 0 .

with boundary conditions

σ′
(
xFσ

′∂ra
σ + φ′∂ra

φ
) ∣∣∣

ri
= 3A′

2

[
e−2Aq2 − A′

2 ∂r
(
A′′

A′2

)]
aσ
∣∣∣
ri
, (5.20)

φ′
(
xFσ

′∂ra
σ + φ′∂ra

φ
) ∣∣∣

ri
= 3A′

2

[
e−2Aq2 − A′

2 ∂r
(
A′′

A′2

)]
aφ
∣∣∣
ri
. (5.21)

The main motivation for introducing Model II is to study how explicit breaking of scale
invariance can lift the mass of the dilaton while keeping the NGBs massless. In section 4.2
we introduced two possible forms of the superpotential W, corresponding to Models IIA
and IIB, leading to different background solutions for the scalar φ. In both models, we
present the results obtained with the choice of invariant I = I2, which only affects the S
resonances, as for Model I.

In figure 12, we show the spectrum as a function of ∆φ, which encodes the scaling
dimension of the operator dual to φ. We have chosen a sizeable value (see later discussion)
for the integration constant φA,B, which determines the amount of explicit (∆φ < 2) or
spontaneous (∆φ > 2) breaking. The resulting spacing among singlet-scalar resonances is
roughly reduced by one half, with respect to theories with only one bulk scalar, such as
Model I. Indeed, one can think of the spectrum as consisting of two towers of resonances,
arising from the mixing of the fluctuations {aσ, aφ}. Some features are similar to the
spectrum of Example A in figure 3: a light dilaton when Oφ is nearly marginal (∆φ ' 0),
as well as when the scale-invariance breaking is spontaneous (∆φ > 2). However, contrary
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Figure 12. Model IIA (left) and IIB (right). Spectrum as a function of ∆φ for xF = 1, ∆ = 3,
g5 = 5, ρ1 = −13, ρ2 = 8, and φA = 1.5 (Model IIA, left), φB = 0.9 (Model IIB, right), normalized
to the decay constant f̃ ≡ f/

√
NC . The colour coding for the spectrum is: singlet scalar (blue),

non-singlet scalar (blue diamonds), tensor (red), pseudoscalar (black), vector (green), axial-vector
(green diamonds).
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Figure 13. Model IIA (left) and IIB (right). Spectrum as a function of g5 for xF = 1, ∆ = 3,
∆φ = 1, ρ1 = −13, ρ2 = 8, and φA = 2 (Model IIA, left), φB = 0.9 (Model IIB, right), normalized
to the decay constant f̃ ≡ f/

√
NC . The colour coding for the spectrum is: singlet scalar (blue),

non-singlet scalar (blue diamonds), tensor (red), pseudoscalar (black), vector (green), axial-vector
(green diamonds).
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Figure 14. Model IIA. Spectrum as a function of φA for ∆ = 3, ∆φ = 1, g5 = 5, ρ1 = −13, ρ2 = 8,
and xF = 0.5 (left), xF = 1.5 (right), normalized to the decay constant f̃ ≡ f/

√
NC . The colour

coding for the spectrum is: singlet scalar (blue), non-singlet scalar (blue diamonds), tensor (red),
pseudoscalar (black), vector (green), axial-vector (green diamonds).
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Figure 15. Model IIB. Spectrum as a function of φB for ∆ = 3, ∆φ = 1, g5 = 5, ρ1 = −13, ρ2 = 8,
and xF = 0.5 (left), xF = 1.5 (right), normalized to the decay constant f̃ ≡ f/

√
NC . The colour

coding for the spectrum is: singlet scalar (blue), non-singlet scalar (blue diamonds), tensor (red),
pseudoscalar (black), vector (green), axial-vector (green diamonds).

to Example A, the Goldstone bosons are always massless, as we fixed ∆ = 3. In figure 13,
we show that the resonance masses moderately grow with g5. From both figure 12 and 13,
we observe that the spectra of Model IIA and IIB are in close agreement for the heaviest
resonances. Indeed, the UV asymptotics in both models is that of AdS, and the heavy
modes are less sensitive to the differing dynamics in the deep IR.

Meanwhile, in figure 14, we picked ∆ = 3 and ∆φ = 1 such that conformal invariance
is broken explicitly while the flavour symmetry is broken spontaneously, and computed the
spectrum of Model IIA as a function of φA for xF = 0.5 and xF = 1.5. As in Example A, the
model becomes problematic for large values of the integration constant φA. The problem
is manifest in the maximum value of the dilaton mass, around φA ∼ 2: we believe that the
decrease of the dilaton mass at larger φA is unphysical. Interestingly, the maximum value
of the dilaton mass is suppressed as xF grows. In order to confirm the model-independence
of this result, we carried out the same study for Model IIB, see figure 15. The dilaton mass
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Figure 16. Model IIA (left) and IIB (right). Spectrum as a function of xF for ∆ = 3, ∆φ = 1,
g5 = 5, ρ1 = −13, ρ2 = 8, and φA = 2 (Model IIA, left), φB = 0.9 (Model IIB, right), normalized
to the decay constant f̃ ≡ f/

√
NC . The colour coding for the spectrum is: singlet scalar (blue),

non-singlet scalar (blue diamonds), tensor (red), pseudoscalar (black), vector (green), axial-vector
(green diamonds).
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Figure 17. Model IIA (left) and IIB (right). Spectrum of scalar resonances (blue) compared to the
probe approximation (black diamonds) as a function of xF for ∆ = 3, ∆φ = 1, g5 = 5, ρ1 = −13,
ρ2 = 8, and φA = 2 (Model IIA, left), φB = 0.9 (Model IIB, right), normalized to the decay constant
f̃ ≡ f/

√
NC .

grows in the range 0 ≤ φB . 1, and its maximum value decreases as the number of flavours
increases.

This phenomenon is further illustrated in figure 16, which shows the spectrum as a
function of xF for both Models IIA and IIB, with φA,B chosen such that the mass of
the dilaton is near its maximum value. We interpret the presence of a parametrically
light dilaton, suppressed by the number of flavours, as follows: the VEV 〈Oσ〉, that breaks
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spontaneously the flavour symmetry as well as scale invariance, is of order NCNF ' xFN2
C ,

becoming enhanced at large xF . In contrast, no such enhancement is present for the explicit
breaking of scale invariance, encoded by the profile of the scalar φ.

Finally, in order to confirm that the light scalar state seen in figure 16 for large xF
indeed is a dilaton, we perform a test suggested in [103], namely to compare the correct
calculation of the scalar spectrum to the result in the probe approximation. The former
calculation, detailed in appendix D, involves the gauge-invariant variables aa = ϕa− Φ′a

6A′h,
where ϕa contains the fluctuations of the scalar fields σ or φ, while h originates from
the trace of the metric and is associated with the dilatation operator on the dual field
theory side. The probe approximation consists of neglecting the contribution of the metric
fluctuation h (for details we refer to [103]). If the resulting spectrum agrees with the
correct gauge-invariant calculation, we may conclude that the light scalar state is not a
dilaton. Conversely, if the probe approximation fails to capture the light state, we may
conclude that it has significant overlap with the dilaton. As can be seen from figure 17,
in both Model IIA and IIB, the probe approximation not only fails to capture the light
scalar state, but also some of the heavy resonances (the failure is particularly pronounced
at large xF for which the probe approximation results in several tachyonic states). Hence,
we conclude that the light scalar state is indeed a dilaton.

6 Comparing different approaches to non-perturbative dynamics

Let us compare, as far as possible, our present results with existing ones for the bosonic
spectra in closely related models, obtained from non-perturbative calculations alternative
to the present holographic framework. We mainly compare with rather recent lattice
simulation results [104, 105] of an Sp(4) gauge theory. We also compare with a previous
analysis of some of us [65] in the framework of the NJL model [63, 64, 106, 107]. Before
comparing concrete meson spectra results, it is useful to recapitulate the main features of
these alternative calculations, stressing their differences, as well as some of their limitations.

6.1 Lattice simulations

We first consider the analysis of [104] for a Sp(2NC) gauge symmetry, more precisely per-
formed for Sp(4), with fermions in two different representations, the fundamental and a
two-index representation. The meson masses and decay constants have been extracted as
usual from Euclidean two-point correlation functions with appropriate quantum numbers.
Note most importantly that the analysis in [104] is performed in the quenched approxima-
tion, i.e. with no dynamical fermions involved. Among the limitations that this implies, it
means that the resulting meson masses and decay constant are insensitive to the number
of fermion flavors, either for the fermions of the fundamental or two-index representations
(respectively NF and nF in the notation of appendix A). While the quenched approxima-
tion is exact for the ψ-fermions (in the fundamental representation) when NC → ∞ at
fixed value of NF , the same is not true for the χ-fermions (in the anti-symmetric repre-
sentation), even when nF remains small as compared to NC . Another source of difference
is that the holographic models require NC � 1 in order for the gravity description to be
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weakly coupled. We can also compare our results with available lattice simulations with
dynamical fermions, that have been performed for Sp(4) [105]. Note, however, that this
study only considers the fermions in the fundamental representation.

Another limitation of [104, 105] is that the singlet mesons were not considered, the
corresponding disconnected contributions to the correlators being computationally very
challenging on the lattice. Concerning the important chiral and continuum extrapolation
limits, these were performed using the appropriate Wilson chiral perturbation theory [108,
109] (i.e. the double expansion in both small fermion mass and lattice spacing), at the
so-called tree-level NLO (i.e. not including chiral logarithms). Finally one shoud keep in
mind that the analyses in [104, 105] do not address any dynamical considerations (this is
obviously true for [104] where the quenched approximation is considered) about possibly
large anomalous dimensions and near-conformal dynamics.

Since our holographic study focused on the Sp(2NF ) sector, we compare our results
with the lattice results for the (non-singlet) mesons from the fundamental-fermion sector.
In order to compare with the holographic results, we extract the ratios mi/FG, in the
chiral and continum limits, from table V of [104], that provide the (lattice-normalized)
equivalents of F 2

G and m2
i , i = V,A, S in our notation. The meson mass hierarchy obtained

in this way is8

mS

FG
: mA

FG
: mV

FG
= (14.1± 0.5) : (12.2± 0.9) : (7.7± 0.2) , (6.1)

where S stands for the non-singlet scalar and A, V for the (axial-)vectors, respectively.
We next consider the unquenched lattice simulations for Sp(4) with dynamical fermions
in the fundamental representation [105]. The results in the continuum and chiral limits,
explicitly given in their table 11, give slightly larger V,A masses (although with slightly
larger uncertainties) compared to the above quenched results:

mS

FG
: mA

FG
: mV

FG
= (14.2± 1.7) : (13.4± 1.5) : (8.1± 0.3) . (6.2)

Let us also quote some independent and complementary lattice results for a closely
related model [110]. This study considered a more standard SU(4) gauge theory and, for
technical reasons, a somewhat simplified model with two Dirac fermions respectively in
the fundamental and two-index antisymmetric representations, with a symmetry breaking
SU(4)/SO(4) coset that does not accomodate the SM Higgs. Despite this simplification
the main qualitative features of other important aspects of a composite Higgs scenario
are assumed [110] to be essentially captured. This study also illustrates the reasonably
good agreement with large-NC expectations in the two fermion sectors, concerning the
behavior of masses and decay constants. A qualitative addition of [110] with respect to [104]
and [105] is that the two fermion species are dynamical and simultaneously simulated. The
chiral and continuum limits were also performed from a more elaborate NLO Wilson chiral
perturbation theory (in particular [110] includes chiral logarithms and a generalized chiral
perturbation accounting for the non-trivial mixing of the two fermion species [111]). For

8Statistical and systematic uncertainties are combined from the fit values given in table V of [104].
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the fundamental-fermions sector, we extract the ratio mV /FG in the continuum limit by
taking the chiral extrapolation of the bands shown in figure 12 (top) and figure 5 (bottom)
of [110].9 One obtains roughly

mV

FG
' 8.8± 0.6 , (6.3)

which is somewhat larger compared to the quenched result in eq. (6.1) and the unquenched
one in eq. (6.2). For completeness, we mention another independent lattice analysis [112]
of the very same model with a different lattice setup, giving complementary results. Since
this paper does not address the chiral and continuum extrapolations, we do not elabo-
rate further.

We now compare these lattice results with the spectra obtained in the holographic
models of section 4. Although this comparison is most suitable for Models IIA and IIB,
which incorporate the explicit breaking of conformal invariance, we also include the results
from Model I in our analysis. The results of ref. [104], displayed in eq. (6.1), were obtained
in the quenched approximation, and hence we make the comparison for small xF → 0.
Conversely, the results of ref. [105], displayed in eq. (6.2), were obtained with dynamical
fermions, and we make the comparison at xF ≡ (NF = 2)/(NC = 2) = 1. As can be
seen from figures 11 and 13, the spectra computed holographically have a strong depen-
dence on the 5D gauge coupling g5. Several studies on holographic QCD [88] (and also
very recently in similar composite Higgs models holography analysis [39]) extract g5 by
matching the large-q2 behaviour of the (axial-)vector current two-point function computed
holographically to the perturbative field theory result. In our models, this would give
g5 =

√
12π ' 10.9. However, while this value gives some indication, it requires trusting the

perturbative field theory result in the strongly-coupled regime for which the holographic
models are applicable. In order to estimate the value of g5, we rather extract masses from
figures 11 and 13 in a reasonable range 7 . g5 . 9. For the first low-lying resonances, this
gives approximately

mS

f̃
: mA

f̃
: mV

f̃
' (11.5− 15.1) : (11.5− 15.3) : (6.5− 7.7) (6.4)

for Models I, IIA, and IIB, in units of f̃ ≡ FG
√

2/NC . Note that the numbers in eqs. (6.4)
can be directly compared with the Sp(4) lattice results in eqs. (6.1) and (6.2), since for
NC = 2, f̃ ≡ FG. Within both lattice and holographic uncertainty ranges as above
quoted, the previous numbers appears in reasonably good agreement with lattice results
from [104, 105, 110] in eqs. (6.1), (6.2), (6.3). In figure 18, we show the spectrum in
all three holographic models (I, IIA, and IIB) as a function of xF , having fixed g5 = 8.
We also include in this figure the lattice results from eqs. (6.1) and (6.2). As can be
seen, the spectra obtained from holography, while predicting a slightly lower value of mV ,
agree well with the unquenched lattice results of ref. [105]. We also observe that, when
restricting ourselves to the (axial-)vector and scalar S resonances, the predictions of all
three holographic models are very similar, while their differences manifest primarily in the
singlet-scalar and pseudoscalar sectors.

9The decay constant FP in [110] is differently normalized than in [104]: FP = f =
√

2FG. In QCD,
FG ' 92MeV.
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Figure 18. Spectrum as a function of xF for Models I (left), IIA (center) and IIB (right) compared
to lattice results taken from eq. (6.1) (quenched, at xF = 0) and eq. (6.2) (unquenched, at xF = 1),
with the vector in green, axial-vector in light green, and the scalar S in light blue. In Model I:
∆ = 3, g5 = 8, ρ1 = −7, ρ2 = 8. In Models IIA and IIB: ∆ = 3, ∆φ = 1, g5 = 8, ρ1 = −13, ρ2 = 8,
and φA = 2 (Model IIA), φB = 0.9 (Model IIB). All masses are normalized to the decay constant
f̃ ≡ f/

√
NC . The colour coding for the spectrum (computed in the holographic models) is: singlet

scalar (blue), non-singlet scalar (blue diamonds), tensor (red), pseudoscalar (black), vector (green),
axial-vector (green diamonds).

Let us make a somewhat digressive comment regarding the value of bulk gauge coupling
g5. In a top-down model, the action of the gravity theory is constrained to take a particular
form. In contrast, since the holographic models of section 4 were built from the bottom-
up, various simplifying assumptions regarding their actions were made. In particular, if we
were to allow for the rescaling of the action by an overall factor, this would not affect the
location of poles of two-point functions, and hence the spectrum, but it would rescale their
residues. Hence, in units of the decay constant f̃ , the entire spectrum would be rescaled.
With this extra freedom, it is possible to get good agreement with lattice results also for
smaller values of g5 ' 5.

We close our comparison with lattice by considering very recent results [113, 114] for
the scalar and tensor glueball masses in the Sp(2NC) model, for different NC values, where
extrapolation to large NC is also provided. The glueball masses in [113, 114] are obtained
in units of the string tension of the pure Yang-Mills theory. In order to compare with our
holographic results, we rather quote the lattice result for the ratio of glueball masses. For
the lightest scalar (A+

1 ) and spin-2 glueball (E+),10 the lattice finds

mA+
1

mE+
= 0.711± 0.021 (0.678± 0.032) , (6.5)

where the first (second) value corresponds to NC = 2 (the large NC extrapolation) [114].
Note, however, that these are results for pure Yang-Mills glueballs, thus far from a possible

10Strictly speaking, A+
1 and E+ correspond to irreducible representations of the lattice octahedral group,

but in the continuum limit their masses correspond respectively to a spin-0 and spin-2 representation of
the Poincaré group.
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conformal window. Accordingly, the explicit breaking of scale invariance is large, and one
does not expect a light dilaton to be present in the spectrum. Our results reproduce eq. (6.5)
to the extent that i) our models match the GPPZ model [58] for some specific choices of
the parameters, as explained below eqs. (4.13) and (4.22), and ii) it has been observed [113]
that the lattice results agree well with GPPZ, which predicts the ratio corresponding to
eq. (6.5) to be 1/

√
2 ' 0.71 [115].

6.2 Nambu-Jona-Lasinio model

The NJL model is based on four-fermion interactions, that provide an effective low-energy
approximation of the underlying strongly-coupled gauge dynamics. Restricting ourselves
to the HC fermions ψa, with coset SU(2NF )/Sp(2NF ), the NJL Lagrangian reads

LNJL = κA
2NC

(ψaψb)(ψ̄aψ̄b) + . . . , (6.6)

where brackets indicate HC and Lorentz singlets, and the dimensionful coupling κA is
NC-independent in the large NC limit. The dots designate other possible fermion effec-
tive interactions invariant under SU(2NF ) [65, 71], whose role is briefly discussed below.
Eq. (6.6) is sufficient to capture the main features of the SU(2NF )→ Sp(2NF ) SSB, that
occurs above a certain critical value for κA, resulting in a mass gap and massless Goldstone
bosons. The meson masses and decay constants are obtained respectively as the poles and
residues of large-NC resummed correlators in the appropriate meson channels. For vector
mesons, the relevant four-fermion interactions can be obtained from eq. (6.6) by a Fierz
transformation, an approximation justified in the large-NC limit (the analogous assumption
gives good predictions in the QCD case).

The NJL model being a large-NC approximation, valid for large NF as well, it is
appropriate to compare its predictions with our holographic approach in the Veneziano
limit, while lattice simulations are typically limited to small NC and NF . Among the NJL
limitations, however, one should remark that the model does not immediately incorpo-
rate dynamical effects from large anomalous dimensions, and it does not describe specific
properties of gauge theories close to the conformal window, at least in the simplest NJL
realisation.11

One can define the NJL mass gap by x ≡M2
ψ/Λ2, where Mψ is the dynamical fermion

mass induced by the strong dynamics, and Λ is the UV cutoff of the four-fermion interac-
tions. The mass gap is determined by the equation

1− x ln
(

1 + 1
x

)
= 1
ξ
, ξ ≡ NF

2
(κA + κB)Λ2

4π2 , (6.7)

where κB parametrises the potential contribution of other operators in eq. (6.6). The
effective, dimensionless coupling ξ should lie in the range 1 ≤ ξ . 3, where the lower
bound comes from the requirement of SSB with a non-vanishing mass gap, while the upper
bound follows from the condition Mψ . Λ, as the NJL predictions are no longer reliable

11For an extended “gauged-NJL” framework, possibly addressing large anomalous dimensions and near-
conformal dynamics, mostly in the context of technicolour models, see e.g. [116, 117].
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Figure 19. NJL mass spectrum mi/f̃ as a function of xF = NF /NC , for ξ = 1.3 and κB/κA = 0.5
(left panel), as well as for ξ = 1.1 and κB/κA = 0.7 (right panel).

for Mψ ∼ Λ. One can relate ξ to the underlying HC gauge coupling gHC, by assuming that
eq. (6.6) is generated, through a Sp(2NC) Fierz identity, by the current-current operator
induced by single-gluon exchange. In this approximation, and neglecting κB, one finds [65]

ξ ' NFNCg
2
HC

8π2 = NF λ

8π2 . (6.8)

According to this rough estimate, NF should not be taken too large to trust the NJL
results, say Nmax

F ' 16π2/λ. This bound can be easily satisfied for NF . 10, even for
a large ’t Hooft coupling λ ∼ 4π, as required in order for our holographic models to be
applicable.

Once a value for ξ is chosen, the only other independent parameter that determines
the NJL meson spectrum is κB/κA. It turns out [65] that κB effectively parametrizes the
axial U(1)A breaking by the HC anomaly, thus providing a mass to the HC meson η′, in
analogy with QCD. This effect can be described in the IR by a four-fermion operator when
NF = 2, and by a larger operator when NF > 2 [65]. The bottom line is that κB/κA should
be sizeable, if one wants the η′ mass, m2

η′ ∼ (κB/κA)NF /NC , to be of the same order as the
other (non-Goldstone) meson masses. As already discussed at the beginning of section 4,
in our holographic framework we did not study the η′ sector. However, κB/κA has some
influence on the other meson masses, in particular it breaks the degeneracy between the
scalar non-singlet S and the scalar singlet σ.

With the above summary of the NJL framework in mind, we can compare the NJL
meson spectrum with our holography results. In the limit ξ → 1, mσ and FG ∝Mψ rapidly
vanish, restoring the chiral symmetry [65]. Thus, the scalar singlet σ is substantially
lighter than the other (non-Goldstone) mesons when ξ is close to one, potentially matching
holographic scenarios with a light dilaton. It is not easy to match all other meson masses
to our holography results. For example, choosing the NJL parameters xF ' 1, ξ ' 1.3 and
κB/κA ' 0.5, we find

mA

f̃
: mS

f̃
: mV

f̃
: mσ

f̃
' 13.5 : 11.1 : 10.5 : 8.0 , (6.9)

(with ∼ 10% variations in mV ,mA in the window ξ ∼ 1.2 − 1.6 and κB/κA ∼ 0.3 − 0.7),
where f̃ ≡ FG

√
2/NC is the same unit adopted in our results from holography. Comparing
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with figure 13, one observes that the NJL masses are typically closer to each other with
respect to the holography ones. Varying g5, one can roughly reproduce the NJL values for
A and S, however V is typically lighter in our holographic models.

The behaviour of the NJL meson masses as a function of xF is illustrated in figure 19,
for two representative values of ξ and κB/κA.12 The increase of the NJL masses with xF
is simple to understand: neglecting subleading form-factor dependences [65], the meson
squared masses receive a contribution ∝ 1/κA + O(M2

ψ), except for m2
σ ' 4M2

ψ. Thus,
for a fixed ξ, the masses increase with NF while mσ remains constant. This behaviour is
partly damped by the normalisation to f̃ , which also moderately increases with NF due
to form-factor effects. One finds mA > mS , except for very large κB/κA & 0.8, that may
be problematic, as some of the NJL masses are singular for κB/κA → 1 [65]. Note that
in holography mA > mS can be obtained for sufficiently large g5, see figure 13, since mA

grows faster than mS with g5. The growth at large xF , not accessible in quenched lattice
simulations, is not present in holography, where the meson masses (except for the singlet
scalar) are almost xF independent, see figure 16. This is hardly surprising, as the set of
parameters which has been fixed, as xF varies, is not necessarily equivalent in the NJL and
holographic approaches.

Finally let us compare the NJL prediction for mσ, in eq. (6.9) and in figure 19, with
the relatively light dilaton obtained in holography. According to figure 13, for xF ' 1 and
g5 ' 8 the lightest singlet scalar has mass

mdilaton

f̃
' (2.5− 5) , (6.10)

depending on whether Model IIA or IIB is considered. As explained above, in the NJL
model one can lower mσ by taking ξ → 1, as apparent from the comparison of the two
panels in figure 19: agreement with Model IIB can be reached at ξ = 1.1. Note that, for
ξ . 1.1 (depending also on κB/κA and xF ) the complete NJL calculation (accounting for
form factors and pole-mass dependences) is no longer reliable for mV and mA, as the latter
develop a large unphysical imaginary part [65]. Besides, the NJL model behavior very close
to ξ = 1 is, in any case, conceptually problematic, calling for extensions of the simplest
NJL framework to evade triviality [71, 116]. We conservatively conclude that, within the
parameter range where the NJL approximation is more reliable, it is difficult to correctly
describe a near-conformal regime.

7 Conclusions

We showed that strongly-coupled gauge theories with a large number of flavours provide
several attractive features to UV-complete composite Higgs models. They allow for protec-
tion of the SM accidental symmetries, while keeping the evolution of the gauge couplings
under control. Moreover, gauge theories in which the number of flavours and colours are

12In figure 19 the curves start at a value xmin
F , chosen in order for the full NJL calculation (involving

form factors and pole-mass dependences) to remain reliable [65].
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of the same order may sit close to the conformal window, leading to walking dynam-
ics that provides a mechanism to generate the SM Yukawa couplings while suppressing
flavour violation.

The Veneziano limit, in which the ratio xF = NF /NC is kept fixed while NC → ∞,
allows making use of large-NC arguments, while going beyond the quenched approximation.
In holographic models, large NC ensures that the gravity theory is weakly coupled, while
xF ∼ 1 implies that the flavour sector backreacts on the geometry. Within the bottom-up
approach to holography, we presented models in which the flavour symmetry of the dual
field theory is broken due to a bulk scalar acquiring a non-trivial profile along the extra
radial dimension. At the same time, the dynamics of this scalar field generates an end-
of-space for the geometry in the IR, leading to a mass gap in the dual field theory. This
implies that the decay constant, associated with the spontaneous breaking of the flavour
symmetry, becomes dynamically related to the mass gap.

In Model I, consisting of gravity coupled to a single scalar field charged under an
SU(2NF ) symmetry, together with the SU(2NF ) gauge field, we choose a scalar potential
such that the backreaction on the geometry grows with xF . The resulting solution of the
equations of motion interpolates between an AdS background for xF → 0, and geome-
tries with a significant backreaction on the metric for xF ∼ 1. An additional parameter
∆ controls the dimension of the operator Oσ responsible for the breaking of the flavour
symmetry, [Oσ] = 2 + |∆− 2|. We chose a special form of the bulk scalar profile, such that
for ∆ > 2 the breaking is purely spontaneous, while for ∆ < 2 explicit breaking is present.

We computed the spectrum of scalar, pseudoscalar, vector, axial-vector, and tensor
resonances, as a function of xF and ∆. In addition to states of the order of the mass
gap and heavier, for ∆ > 2 the spectrum contains massless NGBs, associated with the
flavour SSB, as well as a massless dilaton, present due to the spontaneous breaking of scale
invariance. For ∆ < 2, the explicit breaking causes both the dilaton and the Goldstone
bosons to acquire masses. We found that the dilaton is typically lighter than the NGBs.
In addition, we found that the spectrum has a rather mild dependence on the number
of flavours.

In Model II, we introduced an additional scalar in the bulk, as a way to capture a
more realistic, non-conformal dynamics on the field theory side. We chose this scalar field
to be a singlet under the flavour symmetry, allowing for the possibility of breaking scale
invariance explicitly while breaking flavour symmetry spontaneously. We proposed two
variations, Model IIA and IIB, corresponding to a different choice of the scalar potential.
The resulting spectra of (pseudo-) scalar, (axial-)vector, and tensor resonances show similar
features in the two models, testifying to the genericness of our predictions. Thanks to the
independent source of scale-invariance breaking, it is possible to lift the mass of the dilaton,
while keeping massless Goldstone bosons. Still, the dilaton may become light when the
operator dual to the singlet scalar, [Oφ], is close to marginal.

Even more interestingly, we found that, as the number of flavours is increased, it
becomes progressively more difficult to lift the mass of the dilaton. In our models the
IR end-of-space, and hence the mass gap, is generated by the scalar associated with the
breaking of the flavour symmetry. In such setting the maximum possible mass of the
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dilaton (as a function of the remaining parameters of the model) is suppressed as xF
grows: already for xF ∼ 1.5 the dilaton is much lighter than the mass gap. We interpret
this effect to be due to the enhancement of the flavour condensate, responsible for SSB of
scale invariance and flavour symmetry, which scales as NFNC ∼ xFN

2
C in the Veneziano

limit. The question of whether this mechanism for a light dilaton can be accomplished in a
strongly-coupled field theory is subtle. The lower edge of the conformal window may well
lie at large xF , however it is far from obvious that one can approach this edge keeping the
SSB of scale invariance parametrically larger than its explicit breaking. While our bottom-
up approach to holography can well describe such a hierarchy of scales, a convincing proof
of existence requires to rigorously study top-down models obtained from supergravity, for
which a field-theory dual is known to exist. We leave these interesting questions for future
studies.

We attempted a comparison of our holographic spectra with those extracted from
lattice simulations of similar gauge theories. It is remarkable that — despite several,
complementary limitations of the two approaches — the spectra of the first resonances
are qualitatively similar. We also compared with the NJL model, suitable to describe
non-perturbative flavour SSB at large NC , finding some useful correspondence between the
holography and NJL parameters.

As a concluding remark, we note that the large number of flavours in the Veneziano
limit need not all be treated equally. In general, one could conceive of splitting the flavours
into different subsets, e.g. adding an explicit mass only for some of the hyper-fermions,
implying that large Sp(2NF ) multiplets are divided into smaller multiplets of composite
states. In this case, the shape of the background solutions in the dual gravity theory would
be affected, to account for a flavour-dependent symmetry breaking. The Higgs would
be accompanied by fewer light composite states. Besides, the light flavours would not
be subject to the issue of the Veneziano limit, where 5D loops become non-perturbative
because of the large flavour multiplets. We leave the study of such generalised scenarios
for the future.
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A How to preserve baryon number

As baryon number is extremely well conserved, the HC sector should not induce dangerous
baryon-number-violating operators suppressed by the IR scale m∗, as we wish to keep m∗
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close to the electroweak scale. Some hyper-fermions need to carry baryon number, in order
to form operators mixing linearly with the quarks, especially the top. Thus, both the SM
and the HC sector have to transform non-trivially under U(1)B. In previous HC models for
composite Higgs, the baryon number is necessarily present, either implicitly (see e.g. [8, 71])
or explicitly (see e.g. [10]). In this section we present a general discussion of the possible
ways to implement this symmetry, as well as the specific implementation that we adopt.
At the end, we will comment on generalisations including lepton number as well.

The HC fermion kinetic terms have a global symmetry group GF × U(1)A, where GF
is given in eq. (2.1) and U(1)A is the independent linear combination of fermion numbers,
anomalous with respect to hypercolour. In principle, there are three qualitatively different
possibilities to embed baryon number within this group: U(1)B could be identified with
U(1)A, or with a generator in the coset GF /HF , or with a generator in HF , where the latter
is defined as the subgroup that cannot undergo SSB. Let us discuss these three options
in turn.

The U(1)A − GHC − GHC anomaly implies that U(1)A is broken non-perturbatively.
One might hope that baryon number violation could be exponentially suppressed, roughly
proportionally to exp(−8π2/g2

HC) = exp(−8π2NC/λ). This estimate, based on the instan-
ton dilute-gas approximation, may provide a strong suppression in the large-NC limit, even
if the ’t Hooft coupling λ is large, but fixed. However, experience from QCD indicates that
U(1)A breaking is actually stronger, as the η′ mass is not exponentially suppressed in the
large-Nc limit, rather m2

η′ ∼ 1/Nc. As we consider HC in the strongly-coupled regime,
given the tight constraints on baryon number violation, the possibility U(1)B = U(1)A
must be discarded.

If U(1)B is embedded in the coset GF /HF , it can be spontaneously broken by the
VEV of any Lorentz- and hypercolour-invariant operator O which carries a non-zero baryon
number. For any factor group GiF ⊂ GF , the subgroup H i

F defined in eq. (2.2) is maximal.
As a consequence, either GiF is entirely preserved, or all generators in GiF /H

i
F undergo

spontaneous breaking [67]. Therefore, baryon number conservation requires to preserve
each GiF that has an intersection with U(1)B, otherwise spontaneous U(1)B breaking at
scale m∗ would typically induce too large baryon-number violating operators. In principle,
one could conceive that the HC dynamics sets to zero the VEV of all operators with B 6= 0.
However this is a very non-trivial assumption, that is hard to justify. In addition, SSB may
even be unavoidable, to match the GF global anomalies [68]: the only other possibility to
match the UV anomalies requires massless composite fermions in the IR, an option non-
trivial to realise in practice [65].

Thus, we are left with the unique option to embed U(1)B in the vector subgroup HF ,
as anticipated in eq. (2.3). In this case baryon number is protected from SSB and anomaly
breaking. Still, one should worry about other potential sources of explicit breaking of
baryon number.

Firstly, consider a non-zero hyper-fermion mass matrix, M , with eigenvalues
m1, . . . ,mNF . If these eigenvalues are not all equal, HF is explicitly broken to a smaller
subgroup HM . When m1, . . . ,mNF are all different, the three types of flavour symme-
tries listed in eq. (2.2) break according to SO(NF ) → ZNF2 (real), Sp(2NF ) → Sp(2)NF
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(pseudoreal), and SU(NF )× U(1) → U(1)NF (complex). For a given embedding of U(1)B
within HF , one should restrict fermion masses to preserve it. In the pseudoreal and com-
plex cases, this is not a significant restriction, since one can always consider the basis
where each fermion flavour has a definite B-charge, and then choose M to be diagonal and
B-preserving in this basis.

Secondly, consider the interactions between the HC sector and the SM. The (lin-
ear) mixing of composite operators with the SM fermions may generically violate U(1)B.
Therefore, one is forced to forbid (or sufficiently suppress) by hand all those couplings
incompatible with the chosen assignment of B-charges. Concerning the mixing with the
SM gauge bosons, since the SM gauge group and U(1)B are separately embedded into
HF , the weak gauging of the SM does not break baryon number perturbatively. The elec-
troweak anomaly of U(1)B represents a negligible, exponentially-suppressed violation of
baryon number, as in the SM.

We are now in the position to provide an explicit embedding of U(1)B in models with
HF = Sp(2NF ). The minimal number of flavours is NF = 5, with

Sp(10) ⊃ SU(3)c × SU(2)L × SU(2)R ×U(1)B , Y = ±TR3 + B

2 . (A.1)

The embedding of the SU3221 subgroup within Sp(10) is unique, and we indicated the two
inequivalent ways to embed hypercharge. The 10 Weyl fermions ψa in the fundamental of
HC transform as

10SU(10) = 10Sp(10) =
[
(3, 1, 1)1/3 + (3̄, 1, 1)−1/3 + (1, 2, 1)0 + (1, 1, 2)0

]
SU3221

. (A.2)

In general, we are interested in fermion-bilinear operators with flavour structure (ψaψb) or
(ψaψb), as well as fermion-trilinear operators with flavour structure (ψaψbχ) or (ψaψbχ).
Upper and lower SU(2NF ) indexes are indistinguishable from the perspective of the
Sp(2NF ) subgroup, in particular ψa transform in the same way as ψa, since 10SU(10) =
10Sp(10). Therefore, all relevant operators transform as

(10× 10)Sp(10) = (1A + 44A + 55S)Sp(10) . (A.3)

Note that each specific operator is either symmetric (55S) or antisymmetric (1A + 44A) in
the flavour indexes a, b, depending on the symmetries of the Lorentz and HC contractions
among the anti-commuting spinors, see appendix C. The SM charges can be read from the
decomposition under the subgroup of eq. (A.1), which reads

(1A)Sp(10) = [(1, 1, 1)0]SU3221
,

(44A)Sp(10) =
[
2× (1, 1, 1)0 + (1, 2, 2)0 + (8, 1, 1)0 + (3, 1, 1)−2/3 + (3, 1, 1)2/3

+ (3, 2, 1)1/3 + (3, 2, 1)−1/3 + (3, 1, 2)1/3 + (3, 1, 2)−1/3
]

SU3221
,

(55S)Sp(10) = [(1, 1, 1)0 + (1, 2, 2)0 + (1, 1, 3)0 + (1, 3, 1)0

+ (8, 1, 1)0 + (6, 1, 1)2/3 + (6, 1, 1)−2/3 + (3, 2, 1)1/3

+ (3, 2, 1)−1/3 + (3, 1, 2)1/3 + (3, 1, 2)−1/3
]

SU3221
.

(A.4)
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The Higgs doublet is identified with the antisymmetric (1, 2, 2)0 component, as it is embed-
ded in the operator (ψaψb) = −(ψbψa). The embedding of top and bottom quark multiplets
were given in eq. (2.6). Depending on the sign in the definition of hypercharge in eq. (A.1),
the top and bottom components are embedded in a flipped way into the SU(2)L × SU(2)R
doublets.

By inspection of eq. (A.4), one observes that (10× 10)Sp(10) also contains components
with the charges of the SM lepton multiplets. However, these potential lepton partners
do not preserve lepton number, that is, they interact with the other composite states in a
generic way. The simple reason is that there is no room, within Sp(10), for an additional
conserved U(1)L factor. To avoid lepton number violation, one has to forbid any SM
operator carrying non-zero lepton number to couple to the HC sector, that is, one assumes
the HC sector to be neutral under U(1)L.

In the absence of composite states carrying lepton number, one cannot implement
partial compositeness for leptons. However, the latter would be useful to explain the
hierarchy (and the size) of the charged lepton Yukawa couplings, as well as the suppression
of lepton flavour and CP violation, see [118] for a recent analysis. To implement lepton
partial compositeness, the rank of Sp(2NF ) should be increased to include U(1)L. This
generalisation is straightforward for e.g. NF = 6, but we do not need to display it explicitly
here. Finally, the UV origin of (tiny) baryon and lepton number violations and their
interplay are important, of course, for the analysis of e.g. Majorana neutrino masses and
proton decay channels. These developments go beyond our present purposes.

B The hypercolour and colour β-functions

Let us fix our conventions for the Renormalisation Group Equation (RGE) of a gauge
coupling g. We define the β-function by

dα

d lnµ = β(α) , β(α) = −α
2

2π

(
b0 + α

4πb1 + . . .

)
, (B.1)

where α ≡ g2/(4π) and µ is the renormalisation scale. For a gauge theory of fermions, the
first two coefficients of the β-function are given by

b0 = 11
3 C(RA)− 2

3
∑
f

T (Rf ) ,

b1 = 34
3 C(RA)2 − 2

∑
f

C(Rf )T (Rf )− 10
3 C(RA)

∑
f

T (Rf ) ,
(B.2)

where RA is the adjoint representation, the sums run over all Weyl fermions in various
representations Rf , C(R) is the quadratic Casimir and T (R) the Dynkin index, normalised
to 1/2 for the fundamental.

The condition for asymptotic freedom is b0 > 0, such that α and β(α) vanish in
the UV. We are interested in theories with an approximate IR fixed point, where β(α)
goes back to zero for some finite value α = ᾱ. We are also interested in the limit of
large number of colours, NC � 1. In this limit each additional loop is proportional to
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Sp(2N)

d(R) 2N N(2N + 1) 2N2 −N − 1

T (R) 1
2 N + 1 N − 1

C(R) 2N + 1
4 N + 1 N

Table 1. The dimension, Dynkin and Casimir of the smallest Sp(2N) representations.

αNC/(4π) ≡ λ/(16π2), where λ is the ’t Hooft coupling, so that the β-function coefficients
scale as bi ∼ N i+1

C . A perturbative IR fixed point requires

− b0NC

b1
' ᾱNC

4π � 1 . (B.3)

This occurs for b1 negative and b0/b1 sufficiently small. As b0/b1 increases, one enters the
non-perturbative regime, and the existence of the fixed point becomes speculative. The
dual description of the gauge theory in terms of classical gravity is expected to be more
reliable in the regime NC � 1 (small quantum gravity corrections) and λ � 1 (small
string corrections). For orientation, we will take b1 ∼ −4πNCb0 as a suggestive value for
the existence of an IR fixed-point at λ̄ ∼ 4π.

For definiteness, let us concentrate on a Sp(2NC) gauge theory, where the tensor
product of two fundamentals reads

× = •A + S +
A
. (B.4)

Here the bullet stands for a singlet and the subscripts indicate the (anti)symmetry under
the exchange of the two factors. The two-index symmetric representation is actually the
adjoint of the group Sp(2N). Some properties of the relevant representations are collected
in table 1 (see e.g. [119, 120]).

If the gauge theory contains the Weyl fermions ψa ∼ for a = 1, . . . , 2NF , and χb ∼
for b = 1, . . . , nF , one obtains

b0 = 1
3(11− 2nF )NC −

2
3NF + 1

3(11 + 2nF ) ,

b1 = 2
3(17− 8nF )N2

C −
13
3 NFNC + 2

3(34 + 3nF )NC −
23
6 NF + 2

3(17 + 5nF ) .
(B.5)

Note that asymptotic freedom sets an upper bound on the number of fermion flavours,
2[NF + (NC − 1)nF ] < 11(NC + 1). On the other hand, one expects a lower bound on
the number of flavours to generate an IR fixed point, and enter the so-called conformal
window. Perturbatively, the criterion would be b1 < 0, however the lower boundary of
the conformal window may well correspond to a strongly non-perturbative regime for the
gauge coupling.
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Let us study the large NC limit, keeping xF ≡ NF /NC finite while nF /NC � 1. In
the case nF = 1, the two-loops estimate for the IR fixed point reads

λ̄(nF = 1)
16π2 ' 9− 2xF

13xF − 18 , e.g. xF = 2.5 ⇒ λ̄(nF = 1)
4π ' 3.4 . (B.6)

Note that we neglected subleading terms in 1/NC , even though they may be quantitatively
important for NC = O(10). From this perturbative estimate, one could infer that xF of
order one (a few) is preferable to realise a strongly-coupled IRFP.

Taking an increasing nF = 2, . . . , 5, a given λ̄ is obtained for a decreasing value of
xF . For nF ≥ 6, the limit NC → ∞ becomes incompatible with asymptotic freedom. In
the case nF = 6 [65, 71], asymptotic freedom requires NC < 23 − 2NF . The perturbative
estimate for the IR fixed point reads

λ̄(nF = 6)
16π2 ' 23−NC − 2NF

62NC + 13NF − 104 , e.g. NC = 4, xF = 0.5 ⇒ λ̄(nF = 6)
4π ' 1.1 .

(B.7)
Note that only moderate values of NC are compatible with a large ’t Hooft coupling,
and gauge-gravity duality is expected to provide less accurate results for small NC . In
other words, HC models with nF ≥ 6 appear disfavoured to realise a strongly-coupled,
walking regime.

If we modify the theory by replacing χb with χ′b ∼ for b = 1, . . . , nF , then 3b0 =
(11−2nF )(NC +1)−2NF . Therefore, if nF ≥ 6 asymptotic freedom is lost for any value of
NC . On the other hand, for 1 ≤ nF ≤ 5 the behaviour is qualitatively the same as before,
in particular eq. (B.6) is unchanged.

Let us now consider the RGE of the SM gauge couplings α1,2,3, where we define α1 ≡
(5/3)αU(1)Y , α2 ≡ αSU(2)L and α3 ≡ αSU(3)c . As the HC sector carries SM charges, it
modifies the SM evolution above the scale m∗. Too many additional SM-charged states
may drive αi(µ) to a Landau pole at some scale ΛLP close above m∗, limiting the range
of validity of the model. As the HC sector is supposed to be in the strongly-coupled over
a large walking region, m∗ < µ < ΛUV , the HC contribution to the running should be
extracted by summing over composite states. More precisely, one would need to evaluate
the two-point correlators of SM gauge currents, integrated over squared momenta p2 > m2

∗.
Such correlators could be estimated e.g. via gauge-gravity duality, but this relies on a
detailed knowledge of the composite spectrum over a large range of scales. For a naive
estimate, one can compute the contribution to the one-loop β-function generated by the
constituent fermions ψa, and in the following we will take it as a rough approximation of
the non-perturbative result.

In the minimal model the HC fermion content is defined by eq. (A.2), which implies

b1,HC
0 = − 8

15NC , b2,HC
0 = −2

3NC , b3,HC
0 = −4

3NC . (B.8)

At scale m∗, these coefficients must be added to the usual SM contributions, b1,SM
0 =

−41/10, b2,SM
0 = 19/6 and b3,SM

0 = 7. From the UV perspective, one observes that the
asymptotic freedom of SU(2)L (SU(3)c) is preserved for NC < 5 (NC < 6), while for
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Lorentz Sp(2NC) SU(2NF ) U(1)

Aµij (1/2, 1/2)µ ij • 0

ψαai (1/2, 0)α i
a qψ

ψ
α̇

ai ≡ ψ
†α̇
aj Ωji (0, 1/2)α̇ i a −qψ

χαij (χ′αij ) (1/2, 0)α ij ( ij) • qχ (qχ′)

χα̇ij ≡ Ωikχ†α̇kl Ωlj (χ′αij ) (0, 1/2)α̇ ij ( ij) • −qχ (−qχ′)

Table 2. The transformation properties of the HC gauge bosons A and fermions ψ and χ (χ′). The
Sp(2NC) indexes are denoted by i, j, . . . , and Ωij is the antisymmetric invariant tensor of Sp(2NC).
Lorentz vector and spinor indexes are denoted by µ, ν, . . . , and α, β . . . , α̇, β̇, . . . , respectively. The
flavour SU(2NF ) indexes are denoted by a, b, . . . . The bullet stands for the singlet representation.
The ratio qψ/qχ (qψ/qχ′) is fixed by requiring the U(1)− Sp(2NC)− Sp(2NC) anomaly to vanish.

a larger number of hypercolours a Landau pole should be reached at some finite scale
ΛLP. Taking the experimental values of αi(mZ), evolving them with bi0 = bi,SM

0 up to
m∗ = 10TeV, and then using bi0 = bi,SM

0 + bi,HC
0 , we find 1/α3(ΛLP)→ 0 for ΛLP ' 7 · 106

(7 · 103)TeV if NC = 10 (15), while α1,2 remain perturbative longer. Thus, our scenario
remains reliable up to scales much larger than m∗, even for a moderately large number of
hypercolours, NC ∼ 10.

The situation would badly deteriorate if the hyperfermions transforming as SU(3)c-
triplet and antitriplet were six copies of χa rather than ψa, because in this case b3,SM

0
would be proportional to their HC dimension, (2N2

C −NC − 1) rather than (2NC). In this
case asymptotic freedom is lost already for NC = 3, and the Landau pole in α3(µ) occurs
already at ΛLP ' 20TeV if NC = 10. This strongly disfavours models with several flavours
in HC representations other than the fundamental.

C The inventory of composite bosonic operators

We consider a HC gauge theory Sp(2NC), with 2NF Weyl fermions ψ in the fundamental
representation, and one additional Weyl fermion, either χ in the two-index antisymmetric,
traceless representation, or χ′ in the two-index symmetric representation. Once the HC
theory confines, the constituent degrees of freedom, HC gauge bosons and fermions, are
replaced by composite, HC-singlet states. They are associated to operators constructed
out of the constituents, and they transform in given Lorentz and flavour representations.
The transformation properties of the constituents are collected in table 2. Here we classify
all possible bosonic operators, while fermionic ones are classified in [66].

C.1 Gluon bilinears

Let us consider the HC field strength FµνA , transforming in the adjoint, and its contraction
with the Sp(2NC) generators, (Fµν)ij ≡ FµνA (TA)ij . The hypercolour-invariant operator
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with the smallest possible canonical dimension (four) is

(Fµν)ij(F ρσ)ji = 1
2F

µν
A F ρσA . (C.1)

Note the adjoint representation of Sp(2NC) coincides with the two-index symmetric repre-
sentation. One can indeed define a two-index symmetric field strength,

Fµνij ≡ Ωik(Fµν)kj = (ΩTA)ijFµνA , (C.2)

where Ω is the Sp(2NC) invariant tensor, satisfying Ωij = −Ωji, ΩikΩkj = −δij , and
(TA)T = ΩTAΩ.

Let us decompose FµνF ρσ in irreducible Lorentz representations (dropping HC indexes
from now on). The field strength Fµν = i

g [Dµ, Dν ] transforms as (1, 0) + (0, 1) under
Lorentz. One can project out the two irreducible components as

F β
α ≡ Fµν(σµν) β

α , F α̇
β̇
≡ Fµν(σµν)α̇

β̇
, (C.3)

where α, β, . . . , α̇, β̇, . . . are spinor indexes, 4σµν ≡ i(σµσν − σνσµ), and 4σµν ≡ i(σµσν −
σνσµ). Note that Fαβ = F γ

α εγβ is symmetric, as required for a (1, 0) representation, and
analogously for the dotted counterpart. The product FαβFγδ transforms as (1, 0)× (1, 0) =
(0, 0)s+(1, 0)a+(2, 0)s. The spin-1 component vanishes by antisymmetry, while the spin-0
and spin-2 components can be written as

F β
α F α

β , FαβFγδ + FαγFβδ + FαδFβγ . (C.4)

Note the latter, fully symmetric tensor is automatically traceless, that is, it vanishes when
contracted with ε tensors. Analogous considerations hold for the product Fα̇β̇Fγ̇δ̇. The two
scalar components can be rewritten in the familiar form

FµνF
µν = 1

2
(
F β
α F α

β + F α̇
β̇
F β̇α̇

)
, FµνF̃

µν = i

2
(
F β
α F α

β − F α̇β̇F
β̇
α̇

)
, (C.5)

where F̃µν ≡ εµνρσFρσ/2. They correspond to scalar and pseudoscalar glueballs, while
the second operator in eq. (C.4) and its dotted counterpart correspond to spin-2 glueballs.
Finally, the product F β

α F γ̇
δ̇
transforms in the Lorentz representation (1, 0)×(0, 1) = (1, 1).

This operator corresponds, in tensor notation, to the traceless energy-momentum tensor
shown in eq. (2.7), that is associated to additional spin-2 glueballs.

C.2 Fermion bilinears

Let us build hypercolour-invariant fermion bilinears. The available fermion constituents
are ψai for a = 1, . . . , 2NF , and χij = −χji with χijΩij = 0 (or alternatively χ′ij = χ′ji), all
defined as left-handed Weyl (anticommuting) spinors.

We list all possible hypercolour-singlet bilinears in table 3, together with their Lorentz
and flavour representations. The ψψ operators obviously have ψ ψ conjugate operators, and
similarly for the χχ ones. The Young tableaux for SU(2NF ) representations involve upper
and lower indexes, associated to the fundamental and anti-fundamental representations, a
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Lorentz SU(2NF ) U(1) Sp(2NF )

Sab = ψαai ψβbj Ωijεαβ (0, 0) ab 2qψ ab + •aa

T abµν = ψαai ψbβjΩij(σµν) βα (1, 0)µν ab 2qψ ab

J b
µa = ψα̇iaψ

b
βjΩijσα̇βµ (1/2, 1/2)µ b

a + •aa 0 ab + ab + •aa

s = χαijχ
β
klΩjkΩliεαβ (0, 0) • 2qχ •

Jµ = χα̇ijχβklΩjkΩliσα̇βµ (1/2, 1/2)µ • 0 •

Table 3. The fermion bilinear operators, and their transformation properties with respect to
Lorentz and to the flavour symmetry, before and after SSB. One can straightforwardly replace χ
with χ′ everywhere, if desired.

and a, where the bar stands for a column of 2NF − 1 boxes. As Sp(2NF ) does not have
complex representations, in the associated Young tableaux we do not distinguish upper and
lower indexes. Note that the operator Tµν = χσµνχ vanishes, because the contraction of
HC and Lorentz indexes are both symmetric, under the exchange of the two anticommuting
fermions.

When χ is replaced by χ′, the non-vanishing bilinears s′ and J ′µ have exactly the same
structure as s and Jµ, basically because the different symmetry of HC indexes reduces to
(−1)2 = 1.

These bilinear operators excite spin-zero and spin-one composite states, that are or-
ganised in multiplets of the flavour symmetry, either SU(2NF ) if SSB did not occur, or
Sp(2NF ) if SSB took place. We assume the latter possibility is realised, in order to obtain
the Higgs as a composite pNGB. According to eq. (2.3), the SM symmetries are embedded
into Sp(2NF ), therefore the flavour multiplets, ab and ab, decompose into SM multi-
plets, while the flavour singlets carry no SM charges. In the minimal case NF = 5, the
meson assignments under SU(3)C × SU(2)L × SU(2)R ×U(1)B can be found in eq. (A.4).

C.3 Operators with more than two constituents

Let us classify operators involving more than two constituents, beginning from operators
involving HC fermions only. The unique Sp(2NC)-invariant tensor is the antisymmetric ma-
trix Ωij , therefore it is easy to enumerate all possible HC-invariant, single-trace operators:

ψTΩ(χΩ)nψ , Tr [χΩχΩ(χΩ)n] , n = 0, 1, 2, . . . . (C.6)

These operators involve 2 + n fermion constituents, therefore they are bosonic (fermionic)
for n even (odd). It is understood that each ψ (χ) can be replaced by ψ (χ, χ′, or χ′), as
they carry the same Sp(2NC) indexes. Since the canonical scaling dimension is 3 + 3/2n,
one naively expects the operators to become more irrelevant as n grows, and the associated
composite states to become heavier. These fermion chains have some analogies but also
qualitative differences with the concept of baryon in SU(NC) theories, which relies on
the invariant tensor εi1...iNC . In this paper we need only consider the minimal baryonic
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operators, with n = 0, which we already analysed above. In [66] we will analyse the
minimal fermionic operators, with n = 1.

Coming to operators involving also the HC field strength Fµν , it is sufficient to notice
that it transforms in the HC two-index symmetric representation, according to eq. (C.2).
Therefore, one can replace χ’s in eq. (C.6) with F ’s. Beside the minimal F 2 operators
already studied in section C.1, the next-to-minimal bosonic operators are made of three
constituents: F 3 (canonical dimension 6), ψ2F and χ2F (canonical dimension 5). Note
also the minimal fermionic operator χ′F , with canonical dimension 7/2, that will be dis-
cussed in [66].

For completeness, we mention that each operator in the above classification can be
dressed with (extra) derivatives. Each additional derivative increases the canonical scaling
dimension by one unit and, of course, it changes the Lorentz representation of the operator.

D Sigma-model coupled to gravity

In this appendix, we summarise the formalism [82–86] that we use to study a sigma-model
consisting of a number of scalars coupled to gravity. For further details, the Reader is
referred to [82]. We start with the 5D action given by

S = 1
4πG5

∫
d4xdr

{
√
−g

[
R

4 −
1
2Gab(Φ)gMN∂MΦa∂NΦb − V(Φ)

]
+
∑
i=1,2

δ(r − ri)(−)i
√
−g
[
K

2 + Li
]}

, (D.1)

where Φa (a = 1, · · · , n) are scalars with sigma-model metric Gab and potential V. The
signature of gMN is mostly plus, andM = 0, 1, 2, 3, 5 while µ = 0, 1, 2, 3. Here r1 and r2 are
regulators introduced in order to perform the numerical calculations. The physical results
are obtained taking the limits r1 → ro, where ro denotes the end-of-space corresponding to
the IR, together with r2 → +∞ approaching the UV boundary. The second line contains
the boundary terms necessary to make the variational problem well-defined, including the
Gibbons-Hawking term containing the extrinsic curvature K. Our conventions, as well as
the detailed form of Li can be found in [82].

We will study backgrounds for which the scalars Φa and the metric only depend on
the radial coordinate r. The background metric is taken to be of the domain-wall form of
eq. (3.2),

gMN = diag(−e2A, e2A, e2A, e2A, 1)MN , (D.2)

where A(r) is the warp factor. The background equations of motion are

∂2
rΦa + 4∂rA∂rΦa + Gabc∂rΦb∂rΦc − Va = 0 ,

6(∂rA)2 −Gab∂rΦa∂rΦb + 2V = 0 , (D.3)

where Va = GabVb = Gab∂bV = Gab ∂V
∂Φb and Gabc = 1

2(∂bGca + ∂cGab − ∂aGbc). In the case
where the potential V can be obtained from a superpotential W as

V = 1
2WaWa − 4

3W
2 , (D.4)
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one can obtain solutions to the equations of motion (D.3) by solving the first order equations

∂rΦa =Wa , ∂rA = −2
3W . (D.5)

The spectrum of spin-0 and spin-2 states can be found by studying the fluctuations of
the scalar fields and gravity around a given background solution. One Fourier transforms
along Minkowski directions, writing the fluctuations as functions of the four-momentum qµ

and the radial coordinate r. The linearised equations of motion admit solutions satisfying
the appropriate boundary conditions in the IR and the UV only for certain values of
q2 = −m2. These boundary conditions are chosen such that, as long as m2 > 0, they select
the poles of the two-point functions of the dual field-theory operators, thus providing a
method for calculating the spectrum.

More precisely, given a background solution, defined by Φ̄a(r) and A(r), we expand
around it in the fluctuations {ϕa, ν, νµ, eµν , h,H, εµ} as

Φa = Φ̄a + ϕa,

ds2 = (1 + 2ν + νµν
µ)dr2 + 2νµdxµdr + e2A(ηµν + hµν)dxµdxν ,

hµν = eµν + iqµεν + iqνε
µ + qµqν

q2 H + 1
3δ

µ
νh . (D.6)

Here eµν is transverse and traceless, εµ is transverse, and the four-dimensional indices µ, ν
are raised and lowered by the boundary metric η.

The spin-2 fluctuation eµν satisfies the linearised equation of motion[
∂2
r + 4A′∂r − e−2Aq2

]
eµν = 0 , (D.7)

with boundary conditions given by ∂reµν |ri = 0. We denote differentiation with respect to
r with a prime, e.g. A′ ≡ ∂rA. After forming the gauge-invariant combination (invariant
under diffeomorphisms) [84, 86]

aa = ϕa − Φ̄′a
6A′h , (D.8)

it can be shown that the linearised equation of motion for the fluctuations in the spin-0
sector can be written as n second-order differential equations,[
D2
r + 4A′Dr − e−2Aq2]aa −

[
Va|c −RabcdΦ̄′bΦ̄′d + 4(Φ̄′aVc + VaΦ̄′c)

3A′ + 16VΦ̄′aΦ̄′c
9A′2

]
ac = 0 ,

(D.9)
while the boundary conditions are given by [49]

Φ̄′aΦ̄′bDrab
∣∣∣
ri

= 3A′
2

[
e−2Aq2 − A′

2 ∂r
(
A′′

A′2

)]
aa
∣∣∣
ri
. (D.10)

The different quantities involved in these expressions are

Draa = ∂ra
a + GabcΦ̄′bac , Φ̄′a = GabΦ̄′b ,

Rabcd = ∂cGabd − ∂dGabc + GaceGebd − GadeGebc , Va|b = ∂Va

∂Φb
+ GabcVc .

(D.11)

As can be seen, Rabcd is the Riemann tensor corresponding to the sigma-model metric.
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E Axial-vector and pseudoscalar sector

In this appendix, we work out in detail how to compute two-point functions in the axial-
current and pseudoscalar sector of the dual field theory. For further details on the formalism
of holographic renormalization, see [16, 17].

Consider a U(1) gauge field AM and a pseudoscalar π with action

S =
∫ r2

r1
dr
∫

d4x
√
−g

{
− 1

4H(r)F 2
MN −

1
2G(r)(∂Mπ + g5AM )2

}
. (E.1)

We assume that the background metric takes the domain-wall form given in eq. (D.2). The
functions G and H depend on the radial coordinate r, and their form is model-dependent.

The boundary-localized counter-term action needed to cancel divergences in this sector
is given by

Sct =
∫

d4x
√
−g̃

{
− C2 (∂µπ + g5Aµ)2 − D4 F

2
µν −

E
2π

2
}∣∣∣∣
r=r2

, (E.2)

where g̃µν is the induced metric on the boundary, and C, D, E are required to be local.
Note that the term containing E breaks gauge invariance on the boundary (as explained
in [16], it is necessary for the case when there is a Goldstone).

We will work in the gauge Ar = 0. The equations of motion for the gauge field
and pseudoscalar written in Fourier space are (our conventions for Fourier transforms are
explained in footnote 2)[

∂2
r +

(
2∂rA+ ∂rH

H

)
∂r −

(
q2e−2A + g2

5
G

H

)]
PµνAν(q, r) = 0 , (E.3)

[
∂2
r +

(
2∂rA+ ∂rH

H

)
∂r − g2

5
G

H

]
qµqν

q2 Aν(q, r)− g5
G

H
iqµπ(q, r) = 0 , (E.4)

[
∂2
r +

(
4∂rA+ ∂rG

G

)
∂r − q2e−2A

]
π(q, r) + g5e

−2AiqµAµ(q, r) = 0 , (E.5)

g5e
2AG

H
∂rπ(q, r) + iqµ∂rAµ(q, r) = 0 , (E.6)

where indices are raised with ηµν so that q2 = ηµνqµqν and the projector is given by
Pµν = ηµν − qµqν

q2 .
The variational problem demands that we impose the IR boundary conditions

∂rA
µ(q, r)

∣∣
r=r1

= 0, ∂rπ(q, r)
∣∣
r=r1

= 0 , (E.7)

after which the action S + Sct evaluated on-shell becomes

Ssub =
∫

d4q

{
− e2A

2 Aµ(−q, r)
(
g2

5C + q2e−2AD +H∂r
)
PµνAν(q, r)

−e
2A

2 Aµ(−q, r)
(
g2

5C +H∂r
) qµqν

q2 Aν(q, r)
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−e
4A

2 π(−q, r)
(
q2e−2AC + E +G∂r

)
π(q, r)

−e2Ag5CiqµAµ(−q, r)π(q, r)
}∣∣∣∣∣
r=r2

. (E.8)

Correlators in the dual field theory are obtained by differentiating Ssub with respect
to the boundary values of the fields. The gauge field Aµ couples to the current Jµ as∫
d4x g5AµJ

µ, while the pseudoscalar field π couples to an operator which we denote
Oπ as

∫
d4xN−1

π πOπ where Nπ(r2) is a normalization factor that is included so that
limr2→∞N

−1
π (r2)π(r2) is finite. The precise form of Nπ(r2) is model-dependent and can

be read off from the UV expansion of π. We obtain the following two-point functions

〈Jµ(q)Jν(−q)〉 = − i

g2
5

lim
r2→∞

{
δ2Ssub

δAµ(−q, r2)δAν(q, r2)

}
,

〈Jµ(q)Oπ(−q)〉 = − i

g5
lim
r2→∞

{
Nπ(r2) δ2Ssub

δAµ(−q, r2)δπ(q, r2)

}
, (E.9)

〈Oπ(q)Oπ(−q)〉 = (−i) lim
r2→∞

{
N2
π(r2) δ2Ssub

δπ(−q, r2)δπ(q, r2)

}
.

This whole procedure is straightforward for the transverse part of the vector. After
writing PµνAν(q, r) = Ãν(q)a(q, r),13 and differentiating Ssub with respect to Ãν(q), we
obtain

PµσPνρ 〈Jσ(q)Jρ(−q)〉 = − i

g2
5

lim
r2→∞

{
PµσPνρ

δ2Ssub
δAµ(−q, r2)δAν(q, r2)

}
(E.10)

= lim
r2→∞

{
i e2A

(
C + q2e−2AD

g2
5

+ H

g2
5

∂ra

a

)
Pµν

∣∣∣∣
r=r2

}
.

On the other hand, since the longitudinal part of Aµ couples to the pseudoscalar, we need
to be careful about how to vary their boundary values independently. The general solution
to the equations of motion of the longitudinal part of the axial-vector and the pseudoscalar,
given in eqs. (E.5) and (E.6), satisfying the boundary conditions eq. (E.7) can be written as

π(q, r) = g5

[
c1(q)

∫ r

r1
dr̃ X(q, r̃)

e4AG
+ c2(q)

]
, (E.11)

iqµAµ(q, r) = c1(q)
[
q2
∫ r

r1
dr̃ X(q, r̃)

e4AG
− ∂rX(q, r)

e2AG

]
+ q2c2(q) .

where c1(q) and c2(q) are integration constants, and X(q, r) is a solution to the second
order differential equation14[

∂2
r −

(
2∂rA+ ∂rG

G

)
∂r −

(
q2e−2A + g2

5
G

H

)]
X(q, r) = 0 , (E.12)

13This decomposition is unique up to a relative rescaling of Ãν(q) and a(q, r) that does not affect the
final results for the correlation functions.

14Note the agreement with [121] where a different approach of using Rχ-gauge was implemented.
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with boundary condition
X(q, r)

∣∣
r=r1

= 0 . (E.13)

Hence, if we vary the action with respect to the integration constants c1(q) and c2(q), we
are ensured to stay within the space of solutions.

Defining χ(q, r) = (iqµAµ(q, r), π(q, r))T , C(q, r) = (c1(q, r), c2(q, r))T , we have that

χ(q, r) = B(q, r)C(q) , (E.14)

B(q, r) =
(
q2 ∫ r

r1
dr̃ X(q,r̃)

e4AG
− ∂rX(q,r)

e2AG
q2

g5
∫ r
r1
dr̃ X(q,r̃)

e4AG
g5

)
. (E.15)

After writing the relevant part of the action Ssub — the last three lines of eq. (E.8)—on
the form ∫

d4q

{
−1

2χ(−q, r)T (M∂r +N )χ(q, r)
} ∣∣∣∣

r=r2

=
∫

d4q

{
−1

2χ(−q, r)T
(
M (∂rB)B−1 +N

)
χ(q, r)

} ∣∣∣∣
r=r2

, (E.16)

where

M = diag
(
e2Aq−2H, e4AG

)
, (E.17)

N =

 e2A

q2 g
2
5C −e2Ag5C

−e2Ag5C e4A
(
q2e−2AC + E

)
 , (E.18)

we have that
− δ2Ssub
δχi(−q, r2)δχj(q, r2) =

[
M (∂rB)B−1 +N

]
ij

∣∣∣
r=r2

. (E.19)

Putting everything together, we obtain

− 1
g2

5

δ2Ssub
δAµ(−q, r2)δAν(q, r2)

= e2A
[(
C + q2e−2AD

g2
5

+ H

g2
5

∂ra

a

)
Pµν +

(
C +G

X

∂rX

)
qµqν

q2

] ∣∣∣∣
r=r2

,

− 1
g5

δ2Ssub
δAµ(−q, r2)δπ(q, r2)

= e2A
(
C +G

X

∂rX

)
iqµ

∣∣∣∣
r=r2

,

− δ2Ssub
δπ(−q, r2)δπ(q, r2)

= e4A
[
E + q2e−2A

(
C +G

X

∂rX

)] ∣∣∣∣
r=r2

, (E.20)

which we can plug into eq. (E.9) in order to obtain two-point functions of the dual field
theory. Note that these expressions do not rely on knowing the solutions to the equations

– 57 –



J
H
E
P
0
3
(
2
0
2
1
)
1
8
2

of motion analytically as in [16]. The precise form of C, D, and E appearing in the counter-
terms depends on the specific model and which divergencies need to be cancelled. We will
describe this for a particular example in the next section.

The behaviour of the two-point functions around q2 = 0 is important in order to
identify Goldstone bosons and their decay constants. One can show that the residue of the
pole at q2 = 0 in the first equation of (E.20) is given by

Y(r) ≡ e2A
(
G

X

∂rX
− H

g2
5

∂ra

a

) ∣∣∣∣
q2=0

. (E.21)

By differentiating with respect to r and using the equations of motion for a and X, one
can show that Y satisfies the first-order differential equation

∂rY(r) = −F(r)Y(r) , F(r) ≡ g2
5
H

[
G

X

∂rX
+ H

g2
5

∂ra

a

]
, (E.22)

with general solution Y(r) = C exp
(
−
∫ r
r1
dr̃F(r̃)

)
, where C is an integration constant.

However, by using the IR boundary conditions ∂ra|r1 = 0 and X|r1 = 0, one has that
Y(r1) = 0, so that

Y(r) = 0 (E.23)

for all values of r. Now, this may constitute a welcome property for the case where
the symmetry is explicitly broken and no massless pole develops in the axial channel.
There is, however, a subtle point to be made about the order of limits. Naively, the
preceding argument would imply that a massless pole is also absent when the symmetry
is spontaneously broken. However, in the computation of the correlation functions, the
correct order of limits is to first take r2 → ∞ in eq. (E.20), and, only after the result
has been obtained, take the limit of zero momentum. In this way one will generate a
massless Goldstone pole when the symmetry is spontaneously broken. In the example of
the next subsection, eq. (E.23) will prove useful in deriving various relations that serve as
consistency checks of the model.

E.1 Explicit computation of correlators

As an application of the formalism developed in the previous section, let us study Exam-
ple B, for which we have that G = σ2 and H = 1 (for the purposes of this appendix, we
suppress the overall factor N2

C appearing in the action). The background solutions for the
scalar σ and the warp factor A are given in eq. (3.18). We focus on the two cases ∆ = 3
and ∆ = 1. In the former case, the global U(1) symmetry of the model is spontaneously
broken, leading to a Goldstone boson, which is not present in the latter case that describes
explicit breaking.

(a) ∆ = 3. For ∆ = 3, the UV expansions of a and X are given conveniently in terms
of the coordinate z ≡ e−r as

a = a0(q)
[
1 +

(
a2(q) + q2

2 log(z)
)
z2
]

+O(z4) ,
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X = X0(q)
[
1− q2

4 z
2 +

(
X4(q)− q4

16 log(z)
)
z4

+
(

1
288

(
24g2

5 + q6 + 24q2X4(q)
)
− q6

192 log(z)
)
z6
]

+O(z8) , (E.24)

where a0, a2, X0, and X4 are integration constants.15 Note that a0 and X0 are overall
normalizations and hence will not appear in the two-point functions, while a2 and X4 are
to be determined by solving the equations of motion for a and X with the appropriate
boundary conditions in the IR.

Using eq. (E.24) and eq. (E.11), we have that

π = π0(q)z−2 + q2

2 π0(q) log(z) + 1
8q2

[
8g5α0(q) + π0(q)

(
q4 − 64X4(q)

) ]
+O(z2) ,

iqµAµ = α0(q) +O(z2) , (E.25)

where α0(q) is an integration constant and π0 = g5c1X0
2 . This shows that the normalization

factor in the coupling of π to the operator Oπ should be chosen to be Nπ = z−2. As
anticipated, no such normalization factor is needed for the coupling of Aµ to the current Jµ.

In order to cancel the divergencies in the on-shell action, the counter-terms need to be
chosen to be

C = σ2 (c̃+ log(z)) , D = d̃+ 1
2 + log(z) , E = −2σ2 , (E.26)

where c̃ and d̃ give finite contributions and correspond to the choice of regularization
scheme. Plugging eq. (E.20) into eq. (E.9), we obtain the two-point functions16

i〈Jµ(q)Jν(−q)〉 = q2ΠA(q)Pµν = 1
g2

5

(
2a2(q)− d̃ q2

)
Pµν ,

〈Jµ(q)Oπ(−q)〉 = −2qµ
q2 , (E.27)

i〈Oπ(q)Oπ(−q)〉 =
(3

4 − c̃
)
q2 − 16X4(q)

q2 ,

which leads to the presence of a massless pole. Moreover, the decay constant FG is defined as

F 2
G = lim

q2→0

{
− q2ΠA(q)

}
= −2a2(0)

g2
5

, (E.28)

and is regularization scheme independent.
15In a slight abuse of notation, we denote by O(zn) terms that are of order zn up to possible logarithmic

factors.
16Note that an alternative way to obtain the two-point functions of eq. (E.27) is to plug the UV expansions

of a, π, and iqµAµ into the on-shell action Ssub given in eq. (E.8) and differentiate with respect to a0, π0,
and α0 (note that these parameters can all be varied independently while staying in the space of solutions).
The final result of this exercise agrees with the above analysis as it should.
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We can define another decay constant GG as

G2
G = lim

q2→0

{
q2 i〈Oπ(q)Oπ(−q)〉

}
= −16X4(0) . (E.29)

As a consistency check, one needs to satisfy

FGGG = −qµ〈Jµ(q)Oπ(−q)〉 = 2 . (E.30)

This can be derived using eq. (E.23) from which it follows that a2(0)X4(0) = g2
5
8 .

(b) ∆ = 1. For ∆ = 1, the UV expansions of a and X are given by

a = a0(q)
[
1 +

(
a2(q) + 1

2(3g2
5 + q2) log(z)

)
z2
]

+O(z4) ,

X = X0(q)
[

log(z) + X̃0(q) (E.31)

+
(1

4
(
3g2

5 + q2)(X̃0(q)− 1
)
− 1

6 + 1
4(3g2

5 + q2) log(z)
)
z2
]

+O(z4) ,

where a0, a2, X0, and X̃0 are integration constants. Note that a0 and X0 are overall
normalizations and hence will not appear in the two-point functions, while a2 and X̃0 are
to be determined by solving the equations of motion for a and X with the appropriate
boundary conditions in the IR.

Using eq. (E.31) and eq. (E.11), we have that

π = π0(q) + 1
4
(
1− 2X̃0(q)− 2 log(z)

)(
g5α0(q)− q2π0(q)

)
z2 +O(z4) ,

iqµAµ = α0(q) +O(z2) , (E.32)

where α0(q) is an integration constant and π0 = g5
3q2 (3α0 − c1X0). This shows that the

normalization factor in the coupling of π to the operator Oπ should be chosen to be Nπ = 1.
In order to cancel the divergencies in the on-shell action, the counter-terms need to be

chosen to be
C = σ2 (c̃+ log(z)) , D = d̃+ 1

2 + log(z) , E = 0 , (E.33)

where c̃ and d̃ again correspond to the choice of regularization scheme. Plugging eq. (E.20)
into eq. (E.9), we obtain the two-point functions

i〈Jµ(q)Jν(−q)〉 =
(

3
2 − 3c̃− d̃ q2

g2
5

+ 2a2(q)
g2

5

)
Pµν + 3

(
X̃0(q)− c̃

) qµqν
q2 ,

〈Jµ(q)Oπ(−q)〉 = 3
(
X̃0(q)− c̃

)
qµ , (E.34)

i〈Oπ(q)Oπ(−q)〉 = 3
(
X̃0(q)− c̃

)
q2 .

The expression for 〈Jµ(q)Jν(−q)〉 might at first look worrisome because of the appearance
of a pole at q2 = 0. Again, we can use eq. (E.23) to show that X̃0(0) = 2a2(0)

3g2
5

+ 1
2 , so that

the poles in the longitudinal and transverse parts cancel.
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