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Abstract

In the Abelian Higgs model electric (and magnetic) fields of external charges (and
currents) are screened by the scalar field. In this contribution, complementing recent in-
vestigations of Ishihara and Ogawa, we present a detailed investigation of charge screening
using a perturbative approach with the charge strength as an expansion parameter. It is
shown how perfect global and remarkably good local screening can be derived from Gauss’
theorem, and the asymptotic form of the fields far from the sources. The perturbative
results are shown to compare favourably to the numerical ones.

Historically, the idea for a renormalisable model containing massive gauge fields (of which
the Abelian Higgs model is arguably the simplest one) came from the theory of shielding of
electromagnetism in a superconductor [1, 2].

The analogy between how the Abelian Higgs model converts a long-range interaction (medi-
ated by a massless gauge field) into a short-range one (mediated by a massive vector field) and
how electromagnetism is shielded by mobile charges is well-known. Motivated by the recent
investigation of charge screening in the Abelian Higgs model in Ref. [3], and two subsequent
papers, Refs. [4, 5], where the results are applied, we present a simple, systematic perturbative
framework to study this phenomenon analytically, complementing those studies. One is quickly
led to believing that all this must have long been done, since, e.g., screening in scalar electro-
dynamics has been considered in Refs. [6, 7, 8], and in Yang-Mills theories in Refs. [9, 10]. To
the best of our knowledge, however, prior to Ref. [3] there has been no detailed investigation
published about this “schoolbook” case.

This note is intended as a (pedagogical) complement of Ref. [3] where the physics of screening
in the Abelian Higgs model has been studied numerically and also analytically by various
approximations for both point-like and for extended charge distributions. Our note is tuned to
a perturbative study of the physics of charge screening, considering the external charge strength
as a “small” parameter and compute corrections to the usual massive Green’s function. In this
approach it is easy to investigate local charge screening, while global screening is shown to
follow from Gauss’ theorem [11]. The perturbative results are shown to agree remarkably well
with the numerical ones.
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The structure of the paper is as follows: in Sec. 1 we introduce the notations used in
the model, then in Sec. 2 choose a gauge and a suitable set of variables. Sec. 3 contains
the field equations for static solutions, it is exhibited how perfect screening follows from the
asymptotic behaviour of the fields and Gauss’ theorem and the setup of a series solution. In
Sec. 4 we consider the field of a point source, using both perturbation theory and numerical
methods. In Sec. 5, we calculate the field of a Gaussian charge distribution, in Sec. 6, that of
a homogeneously charged sphere, and then conclude. Appendix A contains the derivation of
the Green function in the static case. Appendix B is devoted to present the Green function
of the time-dependent massive Klein-Gordon equation in a closed form in coordinate space
representation, and demonstrate its consistency with the Green function of the static equation.
In Appendices C resp. D the interaction potential between two point sources in a Klein-Gordon
resp. a Proca field are calculated (using the method of Refs. [12, 14]).

1 The model considered

The Abelian Higgs model contains the following fields: a U(1) gauge field Aµ, whose mass is
to be generated by the Higgs field, a complex scalar field φ, which is subject to self-interaction
due to a potential, whose minimum is obtained at a non-zero value of φ. The model is specified
by the action integral,

S =

∫

d4xL , L = −1

4
FµνF

µν + (Dµφ)
∗Dµφ− V (φ∗, φ)− Aµj

µ
ext , (1)

where there is an implicit summation over repeated Greek indices from 0 to 4, indices are moved
up and down with the help of the Minkowski metric, gµν = diag(1,−1,−1,−1) (sign convention
of Ref. [12]), Greek indices run from 0 to 3, and Latin (spatial) ones from 1 to 3. In this paper,
we shall use units where the unit of length and time agree (velocity of light is unity).

The field strength tensor Fµν = ∂µAν − ∂νAµ is antisymmetric, containing the electric
and magnetic fields as F0i = Ei, Fij = εijkBk, where ǫijk is the fully antisymmetric unit
tensor in flat 3d space, ε123 = 1. The gauge covariant derivative of the scalar field is given as
Dµφ = (∂µ − ieAµ)φ, and the potential is

V (φ, φ∗) =
λ

4
(φ∗φ− η2)2 ,

where e is the electric charge and η a constant.
The vector field jµext shall always be a fixed (external) current density, assumed to be con-

served, ∂µj
µ
ext = 0. The induced current,

jµφ = ie [φ(Dµφ)∗ − φ∗Dµφ] , (2)

is also the Noether current corresponding to the symmetry φ→ eieαφ, α a real parameter (U(1)
phase symmetry), therefore it is conserved, ∂µj

µ
φ = 0.

The Euler-Lagrange equations corresponding to the action (1) are the Maxwell equations
for the gauge field Aµ, with the source being the sum of the external and the induced currents,

∂νF
µν = −jµ , jµ = jµφ + jµext , (3)

and the scalar field equation

DµD
µφ = − ∂V

∂φ∗
= −λ

2
(φ∗φ− η2)φ . (4)
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2 Gauge choice and identification of degrees of freedom

The action (1) is invariant to transformations of the kind

φ → φ′ = eieξφ , Aµ → A′

µ = Aµ + ∂µξ , (5)

where ξ is an arbitrary smooth function of space and time. In the Abelian Higgs model, a
customary gauge fixing is the unitary gauge, where the complex scalar field φ becomes real.
Parametrising φ as

φ =

(

η +
χ√
2

)

eiθ , χ =
√
2(|φ| − η) , θ = argφ , (6)

the unitary gauge corresponds to the choice of a gauge function ξ = −θ/e. Expressing the
Lagrangian L with the new variable χ one obtains:

L = −1

4
FµνF

µν+
1

2
m2

AAµA
µ+

1

2
∂µχ∂

µχ− λ

16
(χ2+2χv)2+e2vAµA

µχ+
e2

2
AµA

µχ2−Aµj
µ
ext , (7)

where m2
A = 2e2η2, v =

√
2η. The physical degrees of freedom of the theory are now manifest:

Aµ has been turned into a massive (Proca) vector field, χ is a massive, self-interacting scalar,
and there is a somewhat unusual coupling between the two.

The field equations are
∂νF

µν −m2
AA

µ = −j′µφ − jµext , (8)

(known as the Proca equation), where the induced current is

j′
µ
φ = −2e2vχAµ − e2χ2Aµ , (9)

and

∂µ∂
µχ = e2AµA

µ(χ+ v)− λ

4
(2v2 + 3vχ+ χ2)χ . (10)

Taking the divergence of the Proca equation (8) and using the antisymmetry of the field strength
tensor ∂µ∂νF µν = 0, one obtains

m2
A∂µA

µ = ∂µj
µ . (11)

Now assuming that the current is conserved, the resulting equation, ∂µAµ = 0 agrees formally
with the Lorentz gauge condition in electrodynamics. Putting it another way: in the Abelian
Higgs model, the unitary gauge in which the scalar field is real, implies also a Lorentz gauge
condition on the vector potential. The Proca equation (8) is therefore equivalent to

∂ν∂
νAµ +m2

AA
µ = j′

µ
φ + jµext , ∂µA

µ = 0 , (12)

i.e., the massive Klein-Gordon equation with an auxiliary condition (formally, the Lorentz gauge
condition).

Finally, let us consider the splitting of the equations into three dimensional parts. The
Proca electric, Ei, resp. magnetic, Bi, fields satisfy the Maxwell-type equations

Ei = Ȧi − ∂iA0 , ∂iEi +m2
AA0 = ̺φ + ̺ext , (13)

Bi = εijk∂jAk , εijk∂jBk +m2
AAi = −Ėi + j′φ,i + jext,i , (14)
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where we have introduced the notation ̺φ = j′φ,0 and ̺ext = jext,0.
The other two group of Maxwell equations are of the usual form:

εijk∂jEk = Ḃi , ∂iBi = 0 , (15)

making it possible to express Ei, resp. Bi, in terms of the potentials A0 and Ai. The energy
density of a field configuration can be written as

E =
1

2

(

E
2 +B

2
)

+
m2

A

2

(

A2
0 +A

2
)

+
1

2

(

χ̇2 +∇χ2
)

+
e2

2

(

A2
0 +A

2
) (

χ2 + 2vχ
)

+ V . (16)

The model may be rescaled by the following change of variables: xµ → xµ/(eη), ρ → ηρ,
Aµ → ηAµ. The resulting Lagrangian assumes the same form as the original one [Eq. (7)], with
an overall 1/e2 factor, and the following replacements: e→ es = 1 in the covariant derivatives,
λ→ β in the potential, where β = λ/e2. In the new units, the vector mass becomes mAs =

√
2

and the scalar one mss =
√
β, and the expectation value vs =

√
2. For the integrated quantities,

the replacement is Q → (1/e)Qs and E → (η/e)Es, where the rescaled quantities are given by
the same formulae as their unscaled counterparts, with the appropriately replaced parameters.
In what follows, we shall use these units, and drop the index “s”.

3 Static solutions

Let us now consider time-independent external sources, jµext(t, xi) = jµ(xi) and seek time-
independent solutions of the Proca equations (12) which now become :

− (∇2 −m2
A)A0 = ̺φ + ̺ext , −(∇2 −m2

A)Ai = j′φ,i + jext,i , (17)

where ∇2 = ∂i∂i. Eq. (10) for the scalar field is written as

(∇2 −m2
s)χ =

β

4
(3v + χ)χ2 − e2(A2

0 − A2
i )(v + χ) , (18)

where m2
s = βv2/2.

As the equations for the temporal and the spatial components of Eq. (17) agree, it is
sufficient to consider one (say, the temporal one) without loss of generality.

For later reference, let us also consider spherically symmetric solutions, where A0 = A0(r)
and χ = χ(r). The resulting radial equations are

1

r2
(r2A′

0)
′ = m2

AA0 + 2e2A0vχ+ e2A0χ
2 − ̺ext ,

1

r2
(r2χ′)′ = m2

sχ+
β

4
(3v + χ)χ2 − e2A2

0(v + χ) .

(19)

In Eq. (19), a prime on radial functions denotes d/dr.

3.1 Asymptotic solution

Let us first consider Eq. (17) for the case of a localised source, far from the source. Let us
introduce spherical coordinates r, ϑ, ϕ, in which the Laplacian ∇2 may be written as

∇2 =
∂2

∂r2
+

2

r

∂

∂r
+

1

r2
∇2

Ω , (20)
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where ∇2
Ω denotes the angular part of the Laplacian. Considering the equation to O(1/r),

the angular part may be neglected. In this order, therefore, the angle dependence of field is
arbitrary, and one may seek a solution in the form of an exponential times a series in 1/r. The
exponent is determined to be ±mAr, with the negative sign corresponding to a finite energy
solution, and the leading power of r is −1,

A0 =
e−mAr

r
f(ϑ, ϕ) +O(r−2e−mAr) . (21)

At this order, the angle dependence is arbitrary; it is, in fact, determined by the source.
Most importantly, the scalar potential A0 tends to zero exponentially (it is in fact of order
O(e−mAr/r)) for r → ∞. Let us now consider Gauss’ theorem:

Q =

∫

d3r(−m2
AA0 + ̺φ + ̺ext) =

∫

d3r∂iEi = lim
r→∞

r2
∫ π

−π

dϕ

∫ π

0

dϑ sin ϑEr = 0 , (22)

where Er = −∂A0/∂r.
The most important consequence of Eq. (22) is perfect shielding : the total induced charge

(the density of which is −m2
AA0 + ̺φ) exactly cancels the external charge globally.

3.2 Perturbative solution

Let us now consider the case when the sources are “weak”,i.e.

ρext = ǫ̺
(1)
ext , (23)

one can expand the fields in series of ǫ, as

A0 = ǫA
(1)
0 + ǫ2A

(2)
0 + . . . , χ = ǫ2χ(2) + . . . , (24)

[as the external charge is absent from the field equation (10), there is no linear contribution to
the scalar field χ].

In each order, the equations assume the form

(∇2 −m2
s)χ

(k) = −ξ(k) , (∇2 −m2
A)A

(k)
0 = −σ(k)

0 , (25)

where the source terms ξ(k), σ(k)
0 are determined by the lower order solutions (up to order

(k − 1)).
ξ(1) = 0 , σ

(1)
0 = ρ

(1)
ext ,

ξ(2) = e2vA(1)
µ A(1)µ , σ

(2)
0 = −2e2vχ(1)A

(1)
0 ,

(26)

and the induced charge density, in each order, is given as

−m2
AA

(k)
0 + σ

(k)
0 . (27)

It follows from Eqs. (19) that χ(1) = 0, and therefore ̺(1)φ = 0 too. In this order, all of the

induced charge comes from the term −m2
AA

(1)
0 .

The solution is obtained in each order with the help of the Yukawa Green function, Gi =
1/(4πr) exp(−mir), i = s, A, in the form

A
(k)
0 (xi) =

∫

d3x′GA(xi − x′i)σ
(k)
0 (x′i) , GA(x) =

1

4π|x| exp(−mA|x|) ,

χ(k)(xi) =

∫

d3x′Gs(xi − x′i)ξ
(k)(x′i) , Gs(x) =

1

4π|x| exp(−ms|x|) .
(28)
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The charge in subsequent orders is calculated as

Q(1) = Q
(1)
ext +Q

(1)
ind , Q(k) = Q

(k)
A +Q

(k)
φ , (29)

where

Q
(1)
ext =

∫

d3xρ
(1)
ext , Q

(k)
φ =

∫

d3xσ
(k)
0 , (30)

and

Q
(k)
A = −

∫

d3xm2
AA

(k) = −m2
A

∫

d3xd3x′GA(xi − x′i)σ
(k)
0 (x′i) = −Q(k)

φ , (31)

and similarly Q(1)
A = −Q(1)

ext, where the last equality in Eq. (31) is obtained by performing the
integration over x first.

The procedure for obtaining the full solution in the form of the series in Eq. (24) order by
order, each order having a source from the lower ones is referred to as a dressing procedure. Eq.
(31) shows, that there is perfect global charge screening, Q(k)

φ +Q
(k)
A = 0 in each order.

The Yukawa Green function used in Eq. (28) also tells us something about local charge

cancellation. The contribution of a point charge, if linear approximation suffices, is screened
within a sphere of radius O(1/mA). If the external sources do not change significantly on this
scale, the external charge density is cancelled by the induced charge to a very good accuracy.

Another length scale stems from the scalar, 1/ms. In the terminology of superconductivity,
the length scale 1/mA is termed penetration depth and 1/ms is the correlation length. This
determines the nature of the interaction between point particles at large distance: if the pene-
tration length is larger, the vector interaction dominates, and the interaction is repulsive, and,
on the contrary, if the correlation length is larger, scalar interaction dominates, and the inter-
action is attractive. The same holds for the interaction between flux tubes in superconductors,
and, therefore, this determines the magnetic properties of superconductors; see, e.g., Ref. [15].

3.3 Spherical symmetry

Let us also consider spherical symmetry for the series solution, i.e., when ρexr = ρext(r). In
this case, the A0 and χ are also spherically symmetric. Introducing the shorthand notation y(k)i

i = A, s for A(k)
0 resp. χ(k) Eqs. (25) can be compactly written as

1

r2

(

r2y
(k)
i

′
)′

−m2
i y

(k)
i = −h(k)i , (32)

where h(k)s = ξ(k) and h
(k)
A = σ

(k)
0 . Eqs. (32) are second order inhomogeneous linear differential

equations, which can be solved using the two linearly independent solutions, yi± = e±mir/r, of
the respective homogeneous equations, and their Wronskian Wi = yi+y

′

i− − y′i+yi− = −2mi/r
2,

(i = A, s) as

y
(k)
i (r) =

e−mir

r

r
∫

r0

dx
emixh

(k)
i (x)

Wi(x)
− emir

r

r
∫

∞

dx
e−mixh

(k)
i (x)

Wi(x)
, (33)

where the integration constants (limits) are chosen to ensure the boundary conditions. The
condition that both A0 and χ tend to 0 for r → ∞ is clearly implemented in Eqs. (33).

The boundary conditions at r = 0 come from regularity in the sense that terms ∝ 1/r at
r → 0 be absent (otherwise they would yield unwanted Dirac-delta sources in ∇2A0 or ∇2χ),
this fixes the value of the integration constant (r0).
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4 Point source

A point source is defined by a Dirac delta as the external charge density,

̺ext(x) = qδ(3)(x) . (34)

In this case, we shall use q as the expansion parameter, ǫ = q.
Assuming spherical symmetry the leading term is

A
(1)
0 (r) = GA(r) =

e−mAr

4πr
. (35)

The energy of the point particle solutions obviously diverges since for r → 0, G ∼ 1/(4πr),
the electromagnetic field contribution to the energy density, E

2/2 ∼ 1/(32π2r4), thus E =
4π

∫

Er2dr, which is divergent.
The second order contribution to the scalar field, χ(2)(r) is obtained from Eq. (33) yielding

χ(2)(r) = − e2v

2(4π)2msr

[

e−msr

(

Ei[(ms − 2mA)r]− log
|ms − 2mA|
ms + 2mA

)

− emsr Ei[−(ms + 2mA)r]
]

,

Ei(x) = −
x

∫

−∞

dt
et

t
.

(36)

where −
∫

denotes the principal value integral, see Refs.[16, 17]. In deriving χ(2)(r) we have also
used the expansion Ei(x) ∼ −γ + ln(|x|) + x for x → 0. From (36) it follows that for r → 0
χ(2)(r) ∝ log(r).

In the special case ms = 2mA, the solution in (36) is replaced by

χ(2)(r) = − e2v

2(4π)2msr

[

e−msr ln(r/r0)− emsr Ei[−2msr]
]

, r0 =
eγ

2ms
. (37)

4.1 Interaction energy

The interaction energy between two point charges q1, q2 placed at ~r1 resp. ~r2 at a separation
~r = ~r1 − ~r2 in both (massive) electrodynamics and in Klein-Gordon theory is calculated as ±1
times the product of the field of one charge at the position of the second one multiplied by the
value second charge (see Refs. [12, 13]and Appendices C and D).

In the case ms > mA, it is the field due to A(1)
0 which dominates for large r, yielding

VII(r) =
q1q2
4πr

e−mAr , (38)

whereas for mA > ms, it is the scalar field χ(2) which dominates. In this case, for r → ∞, the
leading contribution is given by

χ(2)(r) ∼ e2v

2(4π)2msr
e−msr log

|ms − 2mA|
ms + 2mA

. (39)

The field χ(2) in Eq. (39) is the field of a point source in a Klein-Gordon field with strength
e2v/2/(4π)/ms log |ms − 2mA|/(ms + 2mA).
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To obtain the interaction potential between q1 and q2, the field of charge q2 is approximated
as emanating from a point source determined by the near field limit (this approximation has
been used by Ref. [14] for the interaction energy of vortices in superconductors). That is ξ(2)

is replaced by q
(2)
s δ3(~r2), where q(2)s = −

∫

d3xξ(2) = −e2v/(8πmA). q
(2)
s multiplies the field of

the charge q1, yielding

VI(r) =
e4v2q21q

2
2

4(4π)3msmA
log

2mA −ms

2mA +ms

e−msr

r
. (40)

The indices “I” and “II” to distinguish mA > ms and ms > mA (β < or >
√
2) were choosen in

accord with the terminology of superconductivity [15]. In both cases, the force is exponentially
decreasing with the separation; however, in the case of a type I setting, like charges attract (the
logarithm is negative). Formulae (38) and (40) are valid for large separations r.

4.2 Numerical calculations

The Dirac delta source does not appear in the radial equations, which are only defined for
r > 0. Instead, it manifests itself in the boundary conditions [19, 7, 3], as r → 0, A0 ∼ q/(4πr),
i.e., very close to the source, it is unshielded. For a series solution, the leading power for a
scalar field is determined from considering the coefficient of the lowest power, yielding

r → 0 : A0 ∼
q

4πr
, χ ∼ χ0r

γ , (41)

with γ = −1/2 +
√

1/4− κ2 (for κ < 1/2), where κ = eq/(4π) and

r → 0 : A0 ∼
q

4πr
, χ ∼ χ0

1√
r
cos(γ1 log r + δ) , (42)

where γ1 =
√

κ2 − 1/4 for κ > 1. In eqs. (41) and (42), χ0 is a constant determined from the
numerical solution of the radial equations.

For r → 0, all fields approach their vacuum value,

r → ∞ : A0 → 0 , χ→ 0 . (43)

We have calculated numerical solutions using the Colnew package [20, 21]. An example
numerical solution is diplayed in Fig. 1a, and the corresponding charge in Fig. 1b. For the
given value of the charge q = 0.4 and self-interaction β = 2.0, the leading order series agrees
extremely well with the exact result (within line width of Fig. 1a).

In Fig. 2 we have plotted the radius Rc, defined as

Qφ(Rc) = −0.9q , (44)

as a function of q and β. We have found, that Rc is a decreasing function of q and an increasing
one of β.

5 Gaussian source

Another interesting example is a Gaussian source, with source radius Rs,

ρext =
q

(2π)3/2R3
s

e
−

r
2

2R2
s . (45)
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Figure 1: (a) The profile functions A0 and χ of a solution for point charge; β = 2.0, q = 0.4.
(b) The charge distributions of the same solution. The dashed vertical line shows r = Rc.
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Figure 2: Point source: the dependence of the radius of screening with a precision of 0.9 on (a)
the charge q and (b) the strength of self-interaction β (for q = 0.4).

Again, we shall use ǫ = q as the expansion parameter. The integration constant in the solution
given in Eq. (33) is chosen to ensure regularity for r → 0 (i.e. to cancel the 1/r terms), yielding

A
(1)
0 =

1

4πr
e−mAr e

m2

A
R2
s

2

2

[

Erfc

(

mAR
2
s − r√
2Rs

)

− e2mAr Erfc

(

mAR
2
s + r√
2Rs

)]

, (46)

where Erfc(x) = 1 −
∫ x

0
dx′ exp(−x2) = 1 − Erf(x) is the complementary error function (see

Ref. [18]).
The expression for the potential A(1)

0 of the Gaussian source in Eq. (46) starts with the
potential G of the point source, see Eq. (57). It is instructive to introduce an effective charge
as

Qeff = q lim
r→∞

A
(1)
0

G
= qe

m
2

A
R
2
s

2 ≈ q

(

1 +
m2

AR
2
s

2
+ . . .

)

, (47)
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where we have used the fact, that Erf(x) ∼ 1+ exp(−x2)/(√πx) for x→ ∞ (7.1.23 and 7.12.1
in Refs. [16, 17], resp.), i.e., the leading contribution comes from the constant 2 term in the
asymptotics of the first Erfc function in Eq. (46).

According to Eq. (47), at a large distance, the potential due to an extended source is stronger
than that of a point charge of the same magnitude. This is physically plausible, as for massless
electrodynamics, they agree, and here, some part of the source is less strongly screened.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

r

0.0

0.2

0.4

0.6

0.8
100χ(r)/q2

A0(r)/q

(a)

0 1 2 3 4 5

r

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

Q
φ
/
q

(b)

Figure 3: (a) The profile functions A0 and χ of a solution for the Gaussian charge distribution;
β = 2.0, q = 0.4, Rs = 0.1/

√
2. (b) The charge distributions of the same solution. The dotted

vertical line shows r = Rs and the dashed one r = Rc.

We have also calculated numerical solutions for the extended source distribution given by
Eq. (45), using the Colnew package [20, 21]. A typical solution is shown in Fig. 3. On
the figures, the half-width of the source Rs and the radius Rc where the screening reaches an
accuracy of 0.9 are also shown. Again an excellent agreement is found between the first order
analytical solution (46) and the numerical one depicted in Fig. 3a, the difference between the
two curves being smaller than the line width. We have also used the numerical solutions to
obtain Rc as a function of q, and have found that it is monotonically decreasing (Fig. 4a) and
of β (Fig. 4b), of which it is weakly increasing. Our results are in perfect agreement with the
numerical results of Ref. [3]. In the case of closed form formulae, our analyses complement
each other. Ref. [3] consider the case of a small source, Rs ≪ 1/mA, and in this case present
an expansion of A0 in r, and a large source, Rs ≫ 1/mA an in this case show that charge
cancellation is local, and A0 ≈ ρext/m

2
A in the leading order. These approximations are found

to be of good agreement with numerical results. Our analysis, on the other hand, provides the
expansion of the solution in the external charge q, and is also found to be in excellent agreement
with numerical results.

6 Homogeneous sphere

Let us also consider a homogeneous sphere as the source, ρext = ρ0Θ(Rs− r), where Θ(x) is the
Heaviside function, Θ(x < 0) = 0, Θ(x > 0) = 1. In this case, obtaining the scalar potential

10
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Figure 4: Gaussian source: the dependence of the radius of screening with a precision of 0.9
on (a) the charge q and (b) the strength of self-interaction β (for q = 0.4). In both cases,
Rs = 1/10/

√
2.

using formula (33) yields

A
(1)
0 (r) =

ρ0/q

2m3
Ar

[

e−mAr
(

−emAr<(1−mAr<) + e−mARs(1 +mARs)
)

+ emArΘ(Rs − r)
(

e−mAr(1 +mAr)− e−mARs(1 +mARs)
) ]

,

(48)

where r< = min(r, Rs). Again, we have used the total charge, q = 4πR3
sρ0/3 as the expansion

parameter. The agreement with the numerical result is again near perfect, within the line width
of Fig. 5a.
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Figure 5: (a) The profile functions A0 and χ of a solution for the homogeneous charge distri-
bution; β = 2.0, q = 0.4, Rs = 1/

√
2. (b) The charge distributions of the same solution. The

dotted red line shows r = Rs and the dashed blue one r = Rc.

The perturbative result, Eq. (48) allows one to introduce an effective charge again, by

11



comparing the asymptotic form of the solution to Qeff/(4πr)e
−mAr, which yields

Qh,eff =
2πρ0
m3

A

(

e−mARs(1 +mARs)− emARs(1−mARs)
)

≈ q

(

1 +
m2

AR
2
s

10
+ . . .

)

, (49)

again, the effective charge is slightly larger than the total external charge.
The behavior of the screening radius Rc on the parameters is similar as before: it is weakly

decreasing with q and increasing with β.
In Ref. [3], Eq. (48) has been derived with a matching procedure. In addition, they consider

the case of a lage sphere, in which case the fields inside the sphere are constant, and can be
found by neglecting derivatives in the radial equations (19). The latter approximation is also
used in Ref. [3] for a thick walled spherical source. Ref. [3] finds good agreement between the
approximate formulae and numerical results.

0.2 0.4 0.6 0.8 1.0

q

1

2

3

4

5

6

7

8

1
0
3
(R

c
−
2
.8
3
)

β = 3.0

β = 2.0

β = 0.5

(a)

0.5 1.0 1.5 2.0 2.5 3.0

β

1

2

3

4

1
0
6
(R

c
−
2
.8
3
3
4
7
2
)

(b)

Figure 6: Homogeneous sphere source: the dependence of the radius of screening with a preci-
sion of 0.9 on (a) the charge q and (b) the strength of self-interaction β (for q = 0.1). In both
cases, Rs = 1/

√
2.

7 Conclusions

The screening of time-independent external charges in the Abelian Higgs model has been con-
sidered, from multiple aspects. On one hand, using the asymptotic form of the gauge field far
from the charges, it has been shown, from Gauss’ law, that the charge screening is exact, the
charges induced in the fields of the Abelian Higgs model globally cancel the external charge
exactly. The same result has been demonstrated using perturbation theory considering the
charge as the perturbation parameter. Local cancellation occurs if the external charge distribu-
tion does not change significantly on the scale of 1/mA, where mA is the gauge boson mass. We
have obtained simple explicit formulae for the fields in the first nontrivial order in perturbation
theory and compared them to numerical results, and found very good agreement. We note that
our results are in perfect agreement and complementing those of Ref. [3].

Acknowledgements Á.L. acknowledges the support of the Spanish Ministerio de Ciencia,
Innovación y Universidades (Grant No. PCI2018-092896) and the EU (QuantERA CEBBEC).
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A The Yukawa Green function

The linearised equation is
(∇2 −m2)ψ = −σ , (50)

with ψ being A(n)
0 or χ(n) and σ its respective source, and m = mA or ms.

The solution of Eq. (50) may be constructed from the solution of the equation

(∇2 −m2)G = −δ(3)(xi) , (51)

in the form

ψ(xi) =

∫

d3x′G(xi − x′i)σ(x
′

i) . (52)

The function G is the Green function of the operator ∇2−m2. It may be computed by seeking
it in the form of a Fourier integral,

G(x) =

∫

d3k

(2π)3
G̃(k)eikx . (53)

Using the fact, that δ(x) =
∫

dk/(2π) exp(ikx), we learn that

G̃(k) = − 1

k2 +m2
. (54)

We may choose coordinates in k-space in such a way, that its kz axis is along the direction of
the vector x, and use spherical coordinates, resulting in

G =

∫

dkdϑdϕk2 sin ϑ

(2π)3
−1

k2 +m2
eikr cosϑ , (55)

where r = |x|. The integral over ϕ merely cancels one of the 2π factors. The integral over ϑ
can be performed by noting that d cosϑ = − sin ϑdϑ, and flipping the limits, yielding

G = i

∫

∞

0

dkk

2π2r
sin(kr) = i

∫

∞

0

dkk

4π2r

−1

k2 +m2
eikr . (56)

Considering now complex values of k, and closing the integration contour with a large semicircle
on the upper half-plane, its contribution vanishes exponentially, because r > 0. The direction
is positive (counter-clockwise), therefore one needs to add up the residues of poles on the upper
half-plane, with a prefactor of 2πi. There is one such pole, at k = im, yielding

G =
1

4πr
e−mr , (57)

which is nothing else than the Yukawa potential.

B The retarded Green function of the massive Klein-Gordon

equation

In this appendix, the Green function of the massive Klein-Gordon equation, satisfying

(∂µ∂
µ +m2)G4 = δ(t)δ(3)(x) , (58)
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is calculated, again, with the help of a Fourier transformations, based on the discussion in Ref.
[13],

G4(x, t) =

∫

dk0d
3k

(2π)4
e−i(k0t−kx)G̃4(k0,k) . (59)

Using the Fourier representation of the Dirac delta, G̃4 = −1/(k20 − k
2 −m2) is obtained, and,

using spherical coordinates for k, with the 3rd axis aligned along r, the form

G4 =

∫

dk0dkk
2d(cosϑ)dϕ

(2π)4
−1

k20 − k2 −m2
e−ik0teikr cosϑ (60)

is obtained. The integral over k0 is performed using the theorem of residues. For t > 0, the
contour may be closed with a large semicircle on the lower, whereas for t < 0, in the upper half-
plane. Causality demands, that the poles at k0 = ±

√
k2 +m2 be shifted slightly downwards,

so that G(x, t) = 0 for t < 0 results. For t > 0, the integration along the contour is clockwise,
pole contibutions are multiplied by 2π/i;

G4 = Θ(t)

∫

dkk2d(cos ϑ)dϕ

(2π)3
eikr cosϑ

sin(
√
k2 +m2t)√
k2 +m2

, (61)

where Θ(t) is the Heaviside theta function, Θ(t > 0) = 1 and Θ(t < 0) = 0. The integrals over
ϕ yields a factor of 2π and the one over d cosϑ a sine function, after which we transform the
product of two sines into two cosines, replace k → −k in the second one, and obtain

G4 =
Θ(t)

4π2r

∫

∞

−∞

dkk

2
√
k2 +m2

cos
(√

k2 +m2t− kr
)

= −Θ(t)

4π2r

∂

∂r

∫

∞

−∞

dk√
k2 +m2

sin
(√

k2 +m2t− kr
)

.

(62)

The last integral in Eq. (62) can be evaluated with a change of variable for t > r and
another one for r > t. In both cases, we change the variable k as k = m sinh κ, so that√
k2 +m2 = m cosh κ and dk = m cosh κdκ.
In the case t > r, we also transform as t = u cosh τ , r = u sinh τ , u =

√
t2 − r2 (invariant

interval). This way,

I =

∫

∞

−∞

dk√
k2 +m2

sin
(√

k2 +m2t− kr
)

=

∫

∞

−∞

dκ sin[mu cosh(κ− τ)] = πJ0(mu) , (63)

where J0 denotes the regular Bessel function of order 0 (see Refs. [18, 22]).
In the case r > t, we transform as t = u sinh τ and r = u cosh τ , obtaining

I =
dk√

k2 +m2
sin

(√
k2 +m2t− kr

)

=

∫

∞

−∞

dκ sin[mu sinh(κ− τ)] = 0 , (64)

as the integrand is odd.
The results of the integration can be summarised as

I = Θ(t− s)πJ0(mu) . (65)

Upon derivation w.r.t. r, we obtain

G(x, t) =
δ(t− r)

4πr
− mΘ(t− r)

4π
√
t2 − r2

J1

(

m
√
t2 − r2

)

. (66)
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In Ref. [13], the calculation is performed for arbitrary (integer) dimension of spacetime.
A good consistency check of our calculation is now comparing the Green function of the

time dependent Klein-Gordon equation, and that of ∇2 −m2 obtained in Sec. 3.2. What one
needs to show is that

∫

dtG4(x, t) = G(x) . (67)

The Dirac delta term yields 1/(4πr). In the second term, due to the Θ function, we need to
integrate over t from r to infinity. By a change of variable r = rt′, we are led to the integral
(Refs. [18, 23])

∫

∞

1

J1(b
√
x2 − 1)√

x2 − 1
dx =

1

b
(1− e−b) . (68)

C Interaction potential in the Klein-Gordon model

Let us consider interaction energy in the massive Klein-Gordon model, i.e., a massive real scalar
field, coupled to external Dirac-delta sources. The field satisfies the equation (for the static
case)

(∇2 −m2
s)φ = σ = s1δ

(3)(x) + s2δ
(3)(x− x0) . (69)

Using the linearity of the equation, we split the field as φ = φ1 + φ2, both satisfying

(∇2 −m2
s)φ1 = σ1 = s1δ

(3)(x) , (∇2 −m2
s)φ2 = σ2 = s2δ

(3)(x− x0) . (70)

The energy density of a static Klein-Gordon field is

EKG =
1

2
|∇φ|2 + 1

2
m2

sφ
2 + σφ . (71)

The interaction energy is therefore the cross term in the energy of φ1 + φ2

EKG,int = ∇φ1∇φ2 +m2
sφ1φ2 + σ1φ2 + σ2φ2 , (72)

and the interaction potential between the two particles corresponding to the Dirac delta sources
is

VKG =

∫

d3xEKG,int , (73)

where, in the first term, we apply the identity ∇φ1∇φ2 = ∇(φ1∇φ2) − φ1∇2φ2. Here, upon
integration, the first term gives a vanishing contribution,

∫

d3x∇(φ1∇φ2) =

∫

φ1∇φ2d
2
s = 0 , (74)

where the second interation is taken over a large sphere of radius R, in the limit R → ∞,
and d2

s is the surface element vector; the fields vanish exponentially, therefore, the integral
vanishes. What remains, cancels φ1σ2, yielding

VKG =

∫

d3xφ2σ1 = s1φ2(0) , (75)

using Eq. (70) the properties of the Dirac delta. Now, using the Green function of the operator
∇2 −m2

2, G = −1/(4πr) exp(−msr), we obtain

VKG = −s1s2
4πr

e−msr , r = |x0| . (76)
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Note, that had although we have used the field equation for φ2, the result is symmetric. Had
we used the vector identity as ∇φ1∇φ2 = ∇(∇φ1φ2) − ∇2φ1φ2, and the field equation for φ1

from Eq. (70), we would have arrived at the same result.

D Interaction potential in a Proca field

A static, purely electric Proca field with two point sources, one at zero, satisfy the field equation

(∇2 −m2
A)A0 = −ρ = −q1δ(3)(x)− q2δ

(3)(x− x0) , (77)

and the energy of the static, purely electric Proca field is

EP = −1

2
(∇A0)

2 − 1

2
m2(A0)

2 + ρA0 . (78)

We shall apply a similar splitting procedure as in the case of the Klein-Gordon field, A0 =
A1,0 + A2,0,

(∇2 −m2
A)A1,0 = −ρ1 = q1δ

(3)(x) , (∇2 −m2
A)A2,0 = −ρ2 = q2δ

(3)(x− x0) . (79)

The interaction energy, as before, is

EP,int = −∇A1,0∇A2,0 −m2A1,0A2,0 + ρ1A2,0 + ρ2A1,0 , (80)

and with the same partial integration technique, using now the Green function of −∇2 +m2,
G = 1/(4πr)e−mAr,

VP =
q1q2
4πr

e−mAr (81)

is obtained.
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