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Introduction

Periods are a countable set of complex numbers containing all the algebraic numbers as well as many of the transcendental constants of nature. In light of the ubiquity of periods in mathematics and the sciences, [START_REF] Kontsevich | Periods[END_REF] ask for the development of an algorithm to check for the equality of two given periods. We solve this problem for periods coming from quartic surfaces by giving a computable separation bound, that is, a lower bound on the minimum distance between distinct periods.

Let f P Crw, x, y, zs 4 be a homogeneous quartic polynomial defining a smooth quartic X f in P 3 pCq. The periods of X f are the integrals of a nowhere vanishing holomorphic 2-form on X f over integral 2-cycles in X f . The periods can also be given in the form of integrals of a rational function where γ is a 3-cycle in C 3 zX f . The integral (1) depends only on the homology class of γ. These periods form a group under addition. The geometry of quartic surfaces dictates that there are only 21 independent 3-cycles in C 3 zX f . These give 21 periods α 1 , . . . , α 21 P C such that the integral over any other 3-cycle is an integer linear combination of these periods. It is possible to compute the periods to high precision [START_REF] Sertöz | Computing Periods of Hypersurfaces[END_REF], typically to thousands of decimal digits, and to deduce from them interesting algebraic invariants such as the Picard group of X f [START_REF] Lairez | A Numerical Transcendental Method in Algebraic Geometry: Computation of Picard Groups and Related Invariants[END_REF]. This point of view has been fruitful for computing algebraic invariants for algebraic curves from their periods [START_REF] Booker | A Database of Genus-2 Curves over the Rational Numbers[END_REF][START_REF] Bruin | Numerical Computation of Endomorphism Rings of Jacobians[END_REF][START_REF] Costa | Rigorous Computation of the Endomorphism Ring of a Jacobian[END_REF][START_REF] Van Wamelen | Examples of Genus Two CM Curves Defined over the Rationals[END_REF].

For quartic surfaces, the computation of the Picard group reduces to computing the lattice in Z 21 of integer relations x 1 α 1 `¨¨¨`x 21 α 21 " 0, x i P Z. A basis for this lattice can be guessed from approximate α i 's using lattice reduction algorithms. But is it possible to prove that all guessed relations are true relations? Previous work related to this question [START_REF] Simpson | Algebraic Cycles from a Computational Point of View[END_REF]) require explicit construction of algebraic curves on X f , which becomes challenging very quickly. Instead, we give a method of proving relations by checking them at a predetermined finite precision. At the moment, this is equally challenging, but we conjecture that the numerical approach can be made asymptotically faster, see §4.5 for details.

The Lefschetz theorem on p1, 1q-classes ( §2.2) associates a divisor on X f to any integer relation between the periods of X f . In turn, the presence of a divisor imposes algebraic conditions on the coefficients of f . Such algebraic conditions define the Noether-Lefschetz loci on the space of quartic polynomials ( §3). In addition to the degree computations of [START_REF] Maulik | Gromov-Witten Theory and Noether-Lefschetz Theory[END_REF], we give height bounds on the polynomial equations defining the Noether-Lefschetz loci (Theorem 14). These lead to our main result (Theorem 17): Assume f has integer coefficients, then for x i P Z,

(2)

x 1 α 1 `¨¨¨`x 21 α 21 " 0 or |x 1 α 1 `¨¨¨`x 21 α 21 | ą 2

´cmax i |x i | 9
for some constant c ą 0 depending only on f . The constant c is computable in rather simple terms and without prior knowledge of the Picard group of X f . The result generalizes to f with algebraic coefficients (Theorem 19). As a consequence of this separation bound, we apply a construction in the manner of [START_REF] Liouville | Sur des classes très-étendues de quantités dont la valeur n'est ni algébrique, ni même réductible à des irrationnelles algébriques[END_REF] and prove, for instance, that the number (3)

ÿ ně0 p2 Ò 3nq ´1
is not a quotient of two periods of a single quartic surface defined over Q, where 2 Ò 3n denotes an exponentiation tower with 3n twos (Theorem 20, with θ i`1 " 2 2 2 θ i

).

of f . Let R .

" Crw, x, y, zs and let R 4 Ă R be the subspace of degree 4 elements. Let U 4 Ă R 4 denote the dense open subset of all homogeneous polynomials f of degree 4 such that X f is smooth. For our purposes, it will be useful to consider not only the periods of a single quartic surface X f but also the period map to study the dependence of periods on f . The topology of X f does not depend on f as long as X f is smooth: given two polynomials f and g P U 4 , we can connect them by a continuous path in U 4 and the surface X f deforms continuously along this path, giving a homeomorphism X f » X g , which is uniquely defined up to isotopy. In particular, if we fix a base point b P U 4 , then for every f P r U 4 , where r U 4 is a universal covering of U 4 , we have a uniquely determined isomorphism of cohomology groups H 2 pX b , Zq » H 2 pX f , Zq. Let H Z denote the second cohomology group of X b , which is isomorphic to Z 22 (e.g. Huybrechts 2016, §1.3.3).

An element of r U 4 can be viewed as a polynomial f P U 4 together with an identification of H 2 pX f , Zq with H Z . We often work locally around a given polynomial f and, in that case, we do not actively distinguish between U 4 and its universal covering.

The group H Z is endowed with an even unimodular pairing (4) px, yq P H Z ˆHZ Ñ x ¨y P Z,

given by the intersection form on cohomology. Through this pairing, the second homology and cohomology groups are canonically identified with one another. For K3 surfaces, such as smooth quartic surfaces in P 3 , the structure of the lattice H Z with its intersection form is explicitly known (ibid., Proposition 1.3.5).

The fundamental class of a generic hyperplane section of X f gives an element of H Z denoted by h. 

P H 2 pX f , Cq Þ Ñ ż γ Ω P C.
The group H 2 dR pX f , Cq has a distinguished element Ω f , a nowhere vanishing holomorphic 2-form, described below. Every other holomorphic 2-form on X f is a scalar multiple of Ω f (ibid., Example 1.1.3). Mapping Ω f to H C gives rise to the period map

(6) P : f P r U 4 Þ Ñ ω f . " ΘpΩ f q P H C .
The coordinates of the period vector ω f , in some fixed basis of H Z , generates the group of periods of X f . To make the connection clear, we first consider the tube map

(7) T : H 2 pX f , Zq Ñ H 3 pP 3 zX f , Zq,
constructed as follows (Griffiths 1969, §3). Let ε ą 0 be small enough. For x P X, the normal ε-circle over x is the set of all points y P P 3 such that dpy, Xq " ε and x is the closest point to y in X (which is unique if ε is small enough), that is dpx, yq " ε. The union of all normal ε-circles over the points of an effective 2-cycle γ P H 2 pX, Zq is a 3-cycle in P 3 zX, denoted by T pγq. The map T is a surjective morphism and its kernel is generated by the class of a hyperplane section of X f . We choose Ω f so that the following identity holds (8)

ż γ Ω f " 1 2πi ż T pγq
dx dy dz f p1, x, y, zq .

Therefore, in view of ( 5), the coefficients of ω f in a basis of H Z coincides with periods as defined in (1).

The image D of the period map P is called the period domain. It admits a simple description:

(9) D . " Pp r U 4 q " tw P H C z t0u | w ¨h " 0, w ¨w " 0, w ¨w ą 0u ,
where "¨" denotes the intersection form on H Z and h the fundamental class of a hyperplane section, as introduced above (Huybrechts 2016, Chapter 6). Moreover, by the local Torelli theorem for K3 surfaces (ibid., Proposition 6.2.8), the map P is a submersion; its derivative at any point of r U 4 is surjective.

2.2. The Lefschetz (1,1)-theorem. The linear integer relations between the periods of a quartic surface X f are in correspondence with formal linear combinations of algebraic curves in X f . Let C Ă X f be an algebraic curve. Its fundamental class is the element rCs of H Z obtained as the Poincaré dual of the homology class of C. The Picard group PicpX f q of X f is the sublattice of H Z spanned by the fundamental classes of algebraic curves. It follows from the definition that for any class rΩs P H 2 dR pX f q of a differential 2-form on X f , (10) rCs ¨ΘpΩq "

ż C Ω.
Moreover, if Ω is a holomorphic 2-form, then ş C Ω " 0 because the restriction of Ω to the complex 1-dimensional subvariety C vanishes. In particular rCs ¨ωf " 0. It turns out that this condition characterizes the elements of PicpX f q.

More precisely, let H 1,1 pX f q Ă H C denote the space orthogonal to ω f and ω f , the conjugate of ω f , with respect to the intersection form. This space is a direct summand in the Hodge decomposition of H 2 pX f , Cq.

The Lefschetz (1,1)-theorem (Griffiths and Harris 1978, p. 163) asserts that the lattice of integer relations coincide with the Picard group:

(11) PicpX f q " H Z X H 1,1 pX f q.
Noting that for any γ P H Z , γ " γ, where γ denotes the complex conjugate, we have ω f ¨γ " ω f ¨γ, so that (11) becomes (12) PicpX f q " tγ P H Z | γ ¨ωf " 0u . 

2.3.

› › › › 22 ÿ i"1 x i γ i › › › › 2 .
"

22 ÿ i"1 |x i | 2 .
For γ P H Z , if |γ ¨ωf | is small enough, then γ is close to being an integer relation between the periods of X f . We want to argue that, in this case, γ is a genuine integer relation between the periods of X g for some polynomial g P U 4 close to f .

Recall f, g P r U 4 means f and g are smooth quartics with second cohomology identified with H Z . The space r U 4 inherits a metric from U 4 so that r U 4 Ñ U 4 is locally isometric. The metric on U 4 Ă R 4 » C 35 is induced by an inner product. The choice of an inner product will change the distances but this is absorbed into the constants in the statements below.

Let f P r U 4 be fixed. For any g P R 4 and t P C small enough, the polynomials f `tg P R 4 lift canonically to r U 4 . For any γ P H C we consider the map

(14) φ γ,g ptq . " γ ¨Ppf `tgq
which is well-defined and analytic in a neighbourhood of 0 in C.

Lemma 1. There is a constant C ą 0, depending only on f , such that for any γ P H C satisfying γ ¨h " 0 and |γ ¨ωf | }ω f } ď 1 2 }γ}pω f ¨ωf q, there is a monomial m P R 4 for which ˇˇφ 1 γ,m p0q ˇˇě C}γ}.

Proof. Observe that φ 1 γ,m p0q " γ ¨df Ppmq. It follows that any constant C satisfying the following inequality would work, provided the infimum is not zero, (15)

C ă inf }γ}"1 max m |γ ¨df Ppmq| ,
with the infimum taken over γ satisfying h ¨γ " 0 and |γ ¨ωf | }ω f } ď 1 2 pω f ¨ωf q. If the infimum is zero, it is realized by some γ of norm one that annihilates d f Ppmq for each monomial m. It follows that γ is orthogonal (with respect to the intersection product) to the tangent space T ω f D of D at ω f . By (9), (16)

T ω f D " tw P H C | w ¨h " w ¨ωf " 0u .

It follows that γ " ah `bω f for some a, b P C. The condition γ ¨h " 0 implies a " 0 (note that ω f ¨h " 0 because ω f P D). Since }γ} " 1 we have |γ ¨ωf | " }ω f } ´1pω f ¨ωf q which is a contradiction.

The next statement is proved using the following result of [START_REF] Smale | Newton's Method Estimates from Data at One Point[END_REF]. Let φ be an analytic function on a maximal open disc around 0 in C with φ 1 p0q ‰ 0. [START_REF] Smale | Newton's Method Estimates from Data at One Point[END_REF]; see also Blum et al. 1998, Chapter 8, Theorem 2).

Proposition 2. For any f P r U 4 , there exists C f and ε f ą 0 such that for all ε ă ε f the following holds. For any γ P H R , if γ ¨h " 0 and |γ ¨ωf | ď ε}γ} then there is a monomial m P R 4 and t P C such that |t| ď C f ε and γ ¨ωf`tm " 0. 

Proof

β Smale pφ γ,m q ď |γ ¨ωf | C}γ} .
Moreover, for any k ě 2, and using C ď 1,

ˇˇˇˇ1 k! φ pkq γ,m p0q φ 1 γ,m p0q ˇˇˇˇ1 k´1 ď C ´1 ˇˇˇˇφ pkq γ,m p0q }γ} ˇˇˇˇ1 k´1 " C ´1 ˇˇˇγ }γ} ¨dk f Ppm, . . . , mq ˇˇˇ1 k´1 (21) ď C ´1 1 k! d k f P 1 k´1 , ( 22 
)
where ~¨~is the operator norm defined as ( 23)

1 k! d k f P . " sup γPH C sup h1,...,h k ˇˇγ ¨1 k! d k f Pph 1 , . . . , h n q ˇ} γ}}h 1 } ¨¨¨}h n } ,
with supremum taken over h 1 , . . . , h n P Crw, x, y, zs 4 . It follows that

(24) γ Smale pφ γ,m q ď C ´1 sup kě2 1 k! d k f P 1 k´1 .
Let Γ denote the right-hand side of (24). By Smale's theorem, together with ( 20) and ( 24)

, if |γ ¨ωf | ď 1 34 C 2 Γ ´1}γ}, then there is a t P C such that |t| ď 2C ´1 |γ ¨ωf | and γ ¨Ppf `tmq " 0. The claim follows with C f . " 2C ´1 and (25) ε f . " min ˆ1 34 C 2 Γ ´1, ω f ¨ωf 2}ω f } ˙.
The constants C f and ε f are actually computable with simple algorithms. The constant from Lemma 1 is not hard to get with elementary linear algebra. It only remains to compute an upper bound for Γ. We address this issue in §2.4.

Corollary 3. For any f P r U 4 , any ε ă ε f , and any γ P H Z , if |γ ¨ωf | ď 1 4 ε then there exists a monomial m P R 4 and t P C such that |t| ď C f ε and γ P PicpX f `tm q.

Proof. We may assume that γ ¨ωf ‰ 0 (otherwise choose any m and t " 0). Let γ 1 " γ ´1 4 pγ ¨hqh. Since h ¨h " 4, we have γ 1 ¨h " 0. Moreover γ 1 ¨ωf " γ ¨ωf ‰ 0. In particular, γ 1 ‰ 0 and since γ 1 P 1 4 H Z , we have }γ 1 } ě 1 4 and then ( 26)

ˇˇγ 1 ¨ωf ˇˇď 4}γ 1 } |γ ¨ωf | ď ε}γ 1 },
and Proposition 2 applies.

2.4. Effective bounds for the higher derivatives of the period map. In the proof of Proposition 2, only the quantity Γ is not clearly computable. We show in this section how to compute an upper bound for Γ using the Griffiths-Dwork reduction. We follow here [START_REF] Griffiths | On the Periods of Certain Rational Integrals[END_REF]. Firstly, as a variant of ( 8) avoiding dehomogeneization, we write

(27) Ppf q " ˜1 2πi ż T pγiq Vol f ¸1ďiď22
where Vol is the projective volume form (28) Vol

.

" wdxdydz ´xdwdydz `ydwdxdz ´zdwdxdy.

For any k ą 0 and a P R 4k´4 , we denote (29)

ż a Vol f k . " ˜1 2πi ż T pγiq a Vol f k ¸1ďiď22 P H C .
For any h P R 4 close enough to 0, we have the power series expansion (30)

ż Vol f `h " ÿ kě1 p´1q k´1 ż h k´1 Vol f k . Proposition 4. For any k ě 3, there is a linear map G k : R 4k´4 Ñ R 8 such that ż a f k Vol " ż G k paq f 3 Vol . Moreover,
there is a computable constant C, which depends only on f , such that for any k ě 3, ~Gk ~ď C k´3 , where R is endowed with the 1-norm (55).

Before we begin the proof of proposition, let us show that this is enough to bound Γ.

Let A : a P R 8 Þ Ñ ş a f 3 Vol P H C , then, using (30) we obtain (31) ż Vol f `h " ÿ kě1 p´1q k´1 ApG k ph k´1 qq,
and it follows that (32)

1 k! d k f Pph 1 , . . . , h k q " p´1q k ApG k`1 ph 1 ¨¨¨h k qq.
In particular,

› › 1 k! d k f Pph 1 , . . . , h k q › › ď ~A~~G k`1 ~}h 1 ¨¨¨h n } 1 (33) ď ~A~~G k`1 ~}h 1 } 1 ¨¨¨}h n } 1 , (34) and therefore 1 k! d k f P ď ~A~C k`1 , and it follows (35) Γ ď C max `~A~C 2 , 1 2.4.1.
Proof of Proposition 4. Let R " Crw, x, y, zs. We define two families of maps for this proof. First, for d ě 12, a multivariate division map

Q d : R d Ñ R 4 d´3 , such that for any a P R d , (36) a " 3 ÿ i"0 Q d paq i B i f.
Note that such a map exists as soon as d ě 12 by a theorem due to Macaulay (see Lazard 1977, Corollaire, p. 169). The choice of Q d is not unique. We fix Q 12 arbitrarily and define Q d paq, for d ą 12 and a P R 12 , as follows. Write a " ř 3 i"0 x i a i , in such a way that the terms of the sum have disjoint monomial support, and define (37)

Q d paq " 3 ÿ i"0 x i Q d´1 pa i q.
It is easy to check that this definition satisfies (36).

Second, for k ě 3, we define G k : R 4k´4 Ñ R 8 as follows. Begin with G 3 " id and then define G k for k ě 4 inductively as follows. For a P R 4k´4 we write pb 0 , . . . , b 3 q " Q 4k´4 paq and define

(38) G k paq . " G k´1 ˆ1 k ´1 pB 0 b 0 `¨¨¨`B 3 b 3 q ˙.
This map is the Griffiths-Dwork reduction, and it satisfies (39)

ż γ aΩ f k " ż γ G k paqΩ f 3 .
Lemma 5. For any d ě 12, ~Qd ~ď ~Q12 ~, where R is endowed with the 1-norm and R 4 with the norm }pf 0 , . . . , f 3 q} 1

.

" }f 0 } 1 `¨¨¨`}f 3 } 1 .
Proof. For any a P R d ,

}Q d paq} 1 " 3 ÿ i"0 }Q d paq i } 1 ď 3 ÿ i"0 3 ÿ j"0 }x j Q d´1 pa j q i } 1 (40) " 3 ÿ i"0 3 ÿ j"0 }Q d´1 pa j q i } 1 " ÿ j }Q d´1 pa j q} 1 (41) ď ~Qd´1
~ÿ j }a j } 1 " ~Qd´1 ~}a} 1 , (42) using, for the last equality, that the terms a j have disjoint monomial support. Lemma 6. For any k ě 3, ~Gk ~ď p4 ~Q12 ~qk´3 , where R is endowed with the 1-norm.

Proof. We proceed by induction on k (the base case k " 3 is trivial since G 3 " id). Let a P R 4k´4 and pb 0 , . . . , b 3 q " Q 4k´4 paq. By (38), we have

}G k paq} 1 ď ~Gk´1 k ´1 p}B 0 b 0 } 1 `¨¨¨`}B 3 b 3 } 1 q . (43)
By induction hypothesis, ~Gk´1 ~ď p4 ~Q12 ~qk´4 and moreover

}B i b i } 1 ď p4k 7q}b i } 1 , since each b i has degree 4k ´7. If follows that }G k paq} 1 ď p4 ~Q12 ~qk´4 4k ´7 k ´1 p}b 0 } 1 `¨¨¨`}b 3 } 1 q . (44)
Next, we note that }b 0 } 1 `¨¨¨`}b 3 } 1 " }Q 4k´4 paq} 1 and, by Lemma 5, ~Q4k´4 paq~ď ~Q12 ~. Therefore ( 45)

}G k paq} 1 ď p4 ~Q12 ~qk´3 }a} 1 ,
and the claim follows.

3. The Noether-Lefschetz locus 3.1. Basic properties. We define the Noether-Lefschetz locus for quartic surfaces and review a few classical properties, especially algebraicity, with a view towards Theorem 14 about the degree and the height of the equations defining the components of the Noether-Lefschetz locus.

3.1.1. Definition. The Noether-Lefschetz locus of quartics NL is the set of all f P U 4 such that the rank of PicpX f q is at least 2. Equivalently, in view of (12), NL is the set of quartic polynomials f whose primitive periods (1) are In particular, NL d,g is equal to some NL d 1 ,g 1 with d 1 ą 0 and g 1 ě 0, so that (49) NL "

ď dą0 ď gě0 NL d,g .
For γ P H Z , let ∆pγq " ph ¨γq 2 ´4γ ¨γ. It is the opposite of the discriminant of the lattice generated by h and γ in H Z , with respect to the intersection product (and it is zero if γ P Zh). It follows from the Hodge index theorem (see [START_REF] Hartshorne | Algebraic Geometry[END_REF], Theorem V.1.9) that for any f P U 4 and any γ P PicpX f q, ∆pγq ě 0, with equality if and only if γ P Zh. If γ ¨h " d and γ ¨γ " 2g ´2, then ∆pγq " d 2 ´8g `8. We obtain therefore that for any d ą 0 and g ě 0, (50) NL d,g "

" f P U 4 ˇˇDγ P PicpX f q : γ ¨h " d and γ ¨γ " 2g ´2( if d 2 ą 8g ´8 ∅ otherwise.
It is in fact more natural to introduce, for ∆ ą 0, the following locus Proof. Assume that X f contains an effective divisor C with Hilbert polynomial t Þ Ñ td `1 ´g. Since X f is smooth, C is a locally principal divisor and gives an element γ of Pic X f . The integer d is the degree of C, so it is the number of points in the intersection with a generic hyperplane, that is d " γ ¨h. Moreover, g is the arithmetic genus of C, which is determined by 2g ´2 " γ ¨γ (Hartshorne 1977, Ex. III.5.3(b) and V.1.3(a)). So f P NL d,g . Conversely, let f P NL d,g . By definition, there is a divisor C on X f such that its class γ in Pic X f satisfies γ ¨h " d and γ ¨γ " 2g ´2. From the Riemann-Roch theorem for surfaces (ibid., p. V.1.6) we get:

NL ∆ . " tf P U 4 | Dγ P PicpX f q : ∆pγq " ∆u (51) " ď dą0 d 2 "∆ mod 8 NL d, d 2 ´∆ 8 `1. (52) Due to (48), NL ∆ reduces to a single NL d,g . Namely, (53) NL ∆ " $ ' ' ' ' & ' ' ' ' % NL 4t,2t 2 `8´∆ 8 , if ∆ " 0 mod 8, NL 4t`1,2t 2 `t`9 ´∆ 8 if ∆ " 1 mod 8, NL 4t`2,2t 2 `2t`1 2´∆ 8 , if ∆ " 4
dim H 0 pX, O X pCqq `dim H 0 pX, O X p´Cqq ě 1
2 γ ¨γ `2 " g `1 ą 0 so that either C or ´C must be linearly equivalent to an effective divisor. Since γ ¨h ą 0, ´C can not be effective and therefore C must be. As above, the Hilbert polynomial of C is given by t Þ Ñ dt `1 ´g.

In light of Lemma 7, the algebraicity of NL d,g is proved by using the Hilbert scheme H d,g . The Hilbert scheme H d,g of degree d and genus g curves in P 3 is a projective scheme that parametrizes all the subschemes of P 3 whose Hilbert polynomial is t Þ Ñ dt `1 ´g.

The Hilbert scheme H d,g may contain components that are not desirable for our purposes. For example H 3,0 , which contains twisted cubics in P 3 , contains two irreducible components [START_REF] Piene | On the Hilbert Scheme Compactification of the Space of Twisted Cubics[END_REF]: a 12-dimensional component that is the closure of the space of all smooth cubic rational curves in P 3 ; and a 15-dimensional component parametrizing the union of a plane cubic curve with a point in P 3 . We would be only interested in the first, not in the second component. So we introduce H 1 d,g , the union of components of H d,g obtained by removing the components that does not correspond to locally-complete-intersection pure-dimensional subschemes of P 3 .

When d 2 ą 8g ´8, Lemma 7 can be rephrased as

(54) NL d,g " proj 1 pf, Cq P U 4 ˆH1 d,g ˇˇC Ă X f ( ,
where proj 1 denotes the projection U 4 ˆH1 d,g Ñ U 4 . Since H 1 d,g is a projective variety, and the condition C Ă X f is algebraic, this shows that NL d,g is a closed subvariety of U 4 (for more details about this construction, see Voisin 2003, §3.3).

We note furthermore that NL d,g is clearly invariant under the action of the Galois group of algebraic numbers. Therefore, it can be defined over the rational numbers.

As a consequence, for any nonnegative integers d and g, there is a squarefree primitive homogeneous polynomial NL d,g P Zru 1 , . . . , u 35 s in the 35 coefficients of the general quartic polynomial that is unique up to sign and whose zero locus is NL d,g in U 4 . Similarly, we define NL ∆ upto sign as the unique squarefree primitive polynomial vanishing exactly on NL ∆ .

3.2. Height of multiprojective varieties. The mainstay of our results is a bound on the degree and size of the coefficients of the polynomials NL d,g . The determination of these bounds is based on (54) and involves the theory of heights of multiprojective varieties as developped by D'Andrea et al. ( 2013), and, before them, [START_REF] Bost | Un analogue arithmétique du théorème de Bézout[END_REF], [START_REF] Krick | Sharp Estimates for the Arithmetic Nullstellensatz[END_REF], [START_REF] Philippon | Sur Des Hauteurs Alternatives. III[END_REF]Rémond (2001a,b), among others. We recall here the results that we need, following D' Andrea et al. (2013). 

3.2.2.

The extended Chow ring. The extended Chow ring (ibid., Definition 2.50) is a tool to track a measure of height of multiprojective varieties when performing intersections and projections. We present here a very brief summary. Bold letters refer to multi-indices and all varieties are considered over Q. Let n P N r and let P n be the multiprojective space P n " P n1 ˆ¨¨¨ˆP nm .

An algebraic cycle is a finite Z-linear combination ř V n V V of irreducible subvarieties of P n . The irreducible components of an algebraic cycle as above are the irreducible varieties V such that n V ‰ 0. An algebraic cycle is equidimensional if all its irreducible components have the same dimension. An algebraic cycle is effective if n V ě 0 for all V . The support of X, denoted by supp X, is the union of the irreducible components of X.

Let A ˚pP n ; Zq be the extended Chow ring, namely (58)

A ˚pP n ; Zq . " Rrη, θ 1 , . . . , θ m s{pη 2 , θ n1`1 1 , . . . , θ nm`1 m q,
where θ i is the class of the pullback of a hyperplane from P ni and η is used to keep track of heights of varieties. For two elements a and b of this ring, we write a ď b when the coefficients of b ´a in the monomial basis are nonnegative.

To an algebraic cycle X of P n we associate an element rXs Z of A ˚pP n ; Zq (ibid., Definition 2.50). If X is effective, then rXs Z ě 0. The coefficients of the terms in rXs Z for monomials not involving η record the usual multi-degrees of X. The terms involving η record mixed canonical heights of X. The definition of these heights is based on the heights of various Chow forms associated to X (ibid., §2.3). For the computations in this paper, we only need the following results.

Let f P Zrx 1 , . . . , x r s be a nonzero multihomogeneous polynomial with respect to the group of variables x 1 , . . . , x n . We assume that f is primitive, that is, the g.c.d. of the coefficients of f is 1. The element associated in A ˚pP n ; Zq to the hypersurface V pf q Ă P n is (ibid., Proposition 2.53( 2 When X and H intersect properly, ones defines an intersection product X ¨H, that is an effective cycle supported on X X H. If X is equidimensional of dimension r, then X ¨H is equidimensional of dimension r ´1.

The following statement is an arithmetic Bézout bound that not only bounds the degree, as with the classical Bézout bound, but also the height of an intersection.

Theorem 9 (ibid., Theorem 2.58). Let X be an effective equidimensional cycle on P n and f P Zrx 1 , . . . , x m s. If X and V pf q intersect properly, then rX ¨V pf qs Z ď rXs Z ¨rf s sup .

This theorem can be applied (as in ibid., Corollary 2.61) to bound the height of the irreducible components of a variety in terms of its defining equations.

Proposition 10. Let Z Ă P n be an equidimensional variety and let X be V pf 1 , . . . , f s q X Z, where f i is a multihomogeneous polynomial of multidegree at most d and sup-norm at most L. Let X r be the union of all the irreducible components of X of codimension r in Z. Then

rX r s Z ď rZs Z ˜logpsLqη `m ÿ i"1 d i θ i ¸r .
Proof. Let py ij q be a new group of variables, with 1 ď i ď r and 1 ď j ď s. Let g i .

"

ř s j"1 y ij f j and X 1 . " V pg 1 , . . . , g r q in P k ˆZ, with k " rs ´1 We first claim that P k ˆXr is a union of components of X 1 . Indeed, let ξ 0 be the generic point of P k and ξ 1 be the generic point of a component Y of X r , so that ξ " pξ 0 , ξ 1 q is the generic point of the component P k ˆY of P k ˆXr . Since X has codimension r at ξ 1 , the generic linear combinations g 1 , . . . , g r form a regular sequence at ξ (in other words, they form a regular sequence at ξ 1 for generic values of the v ij ). Therefore, X 1 has codimension r at ξ. Since P k ˆY Ď X 1 , it follows that P k ˆY is a component of X 1 .

Let X 1 r be the union of the components of codimension r of X 1 . The argument above shows that rP k ˆXr s Z ď rX 1 r s Z . Besides, by repeated application of (ibid., Corollary 2.61), ( 61)

rX 1 r s Z ď rP k ˆZs Z r ź i"1 rg i s sup .
We compute, using ( 59) that (62)

rg i s sup ď logpsLqη `θ0 `s ÿ i"1 d i θ i .
Finally, we note that rP k ˆXr s Z " rX r s Z and rP k ˆZs Z " rZs Z (ibid., Proposition 2.51.3 and 2.66).

Proposition 11. Let X be an equidimensional closed subvariety of P k ˆPn and let Y Ă P n be the projection of X. If Y is equidimensional, then

θ k 0 rY s Z ď θ dim X´dim Y 0 rXs Z P A ˚pP k ˆPn ; Zq,
where θ 0 is the variable attached to P k in the extended Chow ring of P k ˆPn .

Proof. We will argue by induction on r

.

" dim X ´dim Y . When r " 0, this is (D'Andrea et al. 2013, Proposition 2.64).

Suppose now that r ą 0 and X is irreducible. Let Qry, x 1 , . . . , x m s denote the multihomogeneous coordinate ring of P k ˆPn . There is an i, 0 ď i ď k, such that H . " V py i q Ă P k ˆPn intersects X properly (otherwise X would be included in all V py i q and would be empty). Since the fibers of X Ñ Y are positive dimensional, H intersects each fiber. In particular, the set-theoretical projections of X and X X H coincide. As X is irreducible, so is Y . In particular, there is an irreducible component X 1 Ă X X H that maps to Y . By induction hypothesis applied to

X 1 , θ k 0 rY s Z ď θ dim X 1 ´dim Y 0 rX 1 s Z .
Moreover, rX 1 s Z ď rXs Z ry i s sup , and, in view of ( 60), ry i s sup " θ 0 . The claim follows.

If X is reducible, then we apply the inequality above to each of the irreducible components of Y together with an irreducible component of X mapping onto that component.

3.3.

Explicit equations for the Noether-Lefschetz loci. Following [START_REF] Gotzmann | Eine Bedingung für die Flachheit und das Hilbertpolynom eines graduierten Ringes[END_REF], [START_REF] Bayer | The Division Algorithm and the Hilbert Scheme[END_REF], and the exposition of [START_REF] Lella | Computable Hilbert Schemes[END_REF], we describe the equations defining the Hilbert schemes of curves in P 3 . An explicit description of the Noether-Lefschetz loci NL d,g follows.

3.3.1. The Hilbert schemes of curves. For d ą 0 and g ě 0 let H d,g be the Hilbert scheme of curves of degree d and genus g in P 3 . It parametrizes subschemes of P 3 with Hilbert polynomial ppmq . " dm `1 ´g. Smooth curves in P 3 of degree d and genus g, in particular, have Hilbert polynomial ppmq. Let R " Crw, x, y, zs be the homogeneous coordinate ring of P 3 . For m ě 0, let R m denote the mth homogeneous part of R and let qpmq " dim R m ´ppmq.

The Hilbert scheme H d,g can be realized in a Grassmannian variety as follows. A subscheme X of P 3 is uniquely defined by a saturated homogeneous ideal I of R. If the Hilbert polynomial of X is p, then I is the saturation of the ideal generated by the degree r slice I r . " I X R r [START_REF] Gotzmann | Eine Bedingung für die Flachheit und das Hilbertpolynom eines graduierten Ringes[END_REF]Bayer 1982, §II.10), where

(63) r " ˆd 2 ˙`1 ´g,
is the Gotzmann number of p (Bayer 1982, §II.1.17). For practical reasons, we need r ě 4, so we define instead

(64) r " max ˆˆd 2 ˙`1 ´g, 4 ˙.
So X is entirely determined by I r , which is a qprq-dimensional subspace of R r .

Let G be the Grassmannian variety of qprq-dimensional subspaces of R r . As a set, one can construct H d,g as the subset of all Ξ P G such that the ideal generated by Ξ in R defines a subscheme of P 3 with Hilbert polynomial p. In fact, H d,g is a subvariety that is defined by the following condition (ibid., §VI.1):

(65) H d,g " tΞ P G | dimpR 1 Ξq ď qpr `1qu ,
where R 1 is the space of linear forms in w, x, y, z, so that R 1 Ξ is a subspace of R r`1 . Several authors gave explicit equations for H d,g in the Plücker coordinates [START_REF] Bayer | The Division Algorithm and the Hilbert Scheme[END_REF][START_REF] Brachat | Extensors and the Hilbert Scheme[END_REF][START_REF] Gotzmann | Eine Bedingung für die Flachheit und das Hilbertpolynom eines graduierten Ringes[END_REF][START_REF] Grothendieck | Techniques de construction et théorèmes d'existence en géométrie algébrique IV : les schémas de Hilbert[END_REF]). We will prefer here a more direct path that avoids the Plücker embedding.

3.4. Equations for the relative Hilbert scheme. Define the relative Hilbert scheme of curves inside quartic surfaces (66)

H d,g p4q . " tpf, Cq P PpR 4 q ˆHd,g | C Ă V pf qu,
for each d ą 0, g ě 0.

We define the following auxiliary spaces to better describe (66). First, define the following ambient space (67) A

.

" PpR 4 q ˆP ´EndpC qprq´Nr´4 , R r q ¯ˆP ´EndpR r`1 , C ppr`1q q ¯.
Second, let B " tpf, φ, ψq P Au be the set of all triples satisfying the conditions

(i) R r´3 f Ď ker ψ, (ii) R 1 impφq Ď ker ψ, (iii) im φ X R r´4 f " 0, ( 
iv) φ and ψ are full rank.

Finally, we denote by B the Zariski closure of B.

Lemma 12. The map B Ñ H d,g p4q defined by pf, φ, ψq Þ Ñ pf, R r´4 f `im φq is well defined and surjective.

Proof. Let pf, φ, ψq P B and let Ξ " R r´4 f `im φ. Constraint (iv) implies that im φ has dimension qprq ´Nr´4 . Together with Constraint (iii), we have dim Ξ " qprq. Moreover, Constraint (iv) implies that ker ψ has dimension qpr `1q. In particular Since R 1 Ξ " R r´3 f `R1 im φ, Constraints (i) and (ii) implies that R 1 Ξ has dimension at most qpr `1q. So, Ξ P H d,g p4q.

Since R r´4 f Ď Ξ, the polynomial f is in the saturation of the ideal generated by Ξ. Hence, pf, Ξq P H d,g p4q. Conversely, let pf, Ξq P H d,g p4q, then R r´4 f Ă Ξ and there is a full rank map φ :

C qprq´Nr´4 Ñ R r such that im φ complements R r´4 f in Ξ. Furthermore, dim R 1 Ξ ď qpr `1q, because Ξ P H d,g
, so there is a full rank map ψ : R r`1 Ñ C ppr`1q such that R 1 Ξ Ď ker ψ. So pf, Ξq is the image of pf, φ, ψq P B.

Lemma 13. For any a ě 0, let B a be the union of the codimension a components of B. Then " B a ‰ Z ď p15 log pd `2q η `θ1 `θ2 `θ3 q a Proof. Let B 1 be the closed set defined by the constraints (i) and (ii). The constraints (iii) and (iv) are open, so any component of B is a component of B 1 .

In particular rB a s Z ď rB 1 a s Z . Constraint (i) is expressed with ppr `1qN r´3 polynomial equations of multidegree p1, 0, 1q (w.r.t. f , φ and ψ respectively). Namely, ψpmf q " 0 for every monomial m in R r´3 . Each ppr `1q components of the equation ψpmf q " 0 involves a sum of 35 terms (since f , as a quartic polynomial, contains only 35 terms) with coefficients 1. So the 1-norm of these constraints is at most 35 (which is also at most N r , since r ě 4).

Constraint (ii) is expressed with 4ppr `1qpqprq ´Nr´4 q polynomial equations of multidegree p0, 1, 1q. Namely, ψpvφpeqq " 0 for any basis vector e and any variable v P tw, x, y, zu. Each ppr `1q component of the equation ψpvφpeqq " 0 involves a sum of N r terms with coefficients 1. So the 1-norm of these constraints is at most N r .

The claim is then a consequence of Proposition 10, with s " ppr `1qN r´3 4ppr `1qpqprq ´Nr´4 q and L " N r . We check routinely, with Mathematica, that sL ď pd `2q 15 . Theorem 14. There is an absolute constant A ą 0 such that for any d ą 0 and g ě 0 we have

degpNL d,g q ď A d 9 and }NL d,g } 1 ď 2 A d 9 .
Proof. We assume NL d,g is non-emtpy, since these inequalities are trivially satisfied if NL d,g " H with NL d,g " 1. Let P 2

.

" P `EndpC qprq´Nr´4 , R r q ȃnd P 3

.

" P `EndpR r`1 , C ppr`1q q ˘denote the second and third factors of A. Let α . " pqprq ´Nr´4 qN r ´1 and β . " ppr `1qN r`1 ´1 denote the dimensions of P 2 and P 3 respectively. Let E be the projection of B on PpR 4 q ˆP2 . The fibers of the map B Ñ E are projective subspaces of P 3 since Constraints (i) and (ii) are linear in ψ. The dimension of these fibers are β 1 .

" ppr `1q 2 ´1. So, by Proposition 11, (68) in pLη `θ1 `θ2 `θ3 q α`β´α 1 ´β1 ´e`1 (70)

θ β 3 rEs Z ď θ β 1 3 " B ‰ Z . Next, the map B Ñ H d,
ď 3 α`β´α 1 ´β1 ´e`1 . (71)
The exponent is a polynomial in d and g. Unless d 2 ě 8g ´8, NL d,g is empty. So, we may bound the exponent with a polynomial only in d, which turns out to be of degree 9. Therefore, deg NL d,g ď A d 9 for some constant A ą 0.

Similarly, For the following, we write a Ò b for a b . This is a right-associative operation.

mpNL d,g q ď coeff of ηθ α´α 1 ´e 2 θ β´β 1 3 in pLη `θ1 `θ2 `θ3 q α`β´α 1 ´β1 ´e`1 ( 
Corollary 15. There is an absolute constant A ą 0 such that for any ∆ ą 0,

degpNL ∆ q ď A Ò ∆ Ò 9 2 and }NL ∆ } 1 ď 2 Ò A Ò ∆ Ò 9 2 .
In fact, one can obtain the following explicit bounds degpNL ∆ q ď 3 p∆`20q 9{2 and log 2 }NL ∆ } 1 ď p∆ `60q 5 3 p∆`20q 9{2 .

Proof. The first statement follows directly from (53) and Theorem 14 using a different A. The second statement is found by carrying out the arguments in the proof of Theorem 14 with the help of a computer algebra system.

3.5. How good are these bounds? We can compare our degree bounds for NL ∆ to the exact degrees computed by [START_REF] Maulik | Gromov-Witten Theory and Noether-Lefschetz Theory[END_REF], from which it actually follows that (76)

deg NL ∆ " Op∆ 19 2 q.
This sharper bound does not directly imply a sharper bound on the height of NL ∆ but it suggests the following conjecture. This would improve subsequently Theorems 17 and 20. In particular, Equation (2) would be exponential in the size of the coefficients, as opposed to being doubly exponential.

Conjecture 16. There is a constant c ą 0 such that for any ∆ ą 0,

}NL ∆ } 1 ď c Ò ∆ Ò 19 2 .
Now we turn to the details of (76). Following Maulik and Pandharipande (2013) (but replacing q by q 8 ), consider the following power series (77) A

.

" ´27A 2 B 19 `B21 .

ÿ nPZ q n 2 , B . " ÿ nPZ p´1q n q n 2 , Ψ " 108 ÿ ną0 q 8n 2 ,
From (Maulik and Pandharipande 2013, Corollary 2), we have, for any ∆ ą 0,

(79) deg NL ∆ ď coefficient of q ∆ in Θ ´Ψ.
In fact, this is an equality when the components of NL ∆ are given appropriate multiplicities. Let Θrks denote the coefficient of q k in Θ. By (79), we only need to bound Θr∆s in order to bound deg NL ∆ . To do so, replace every negative sign in the definition of Θ by a positive sign, including those in B, to obtain the coefficientwise inequality (80) Θ ď 6 ˆÿ nPZ q n 2 ˙21 .

The coefficient of q k in ´řnPZ q n 2 ¯21 is 

Separation bound

We now state and prove the main results. Recall that a Ò b " a b is right associative and for γ P H Z we defined the discriminant ∆pγq as pγ ¨hq 2 ´4γ ¨γ.

Theorem 17. For any f P Zrw, x, y, zs X U 4 there is a computable constant c ą 1 such that for any γ P H 2 pX f , Zq, if γ ¨ωf ‰ 0, then

|γ ¨ωf | ą `2 Ò c Ò ∆pγq Ò 9 2 ˘´1 .
4.1. Multiplicity of Noether-Lefschetz loci. The multiplicity of some nonzero polynomial F P Crx 1 , . . . , x s s at a point p P C s is the unique integer k such that all partial derivatives of F of order ă k vanish at p and some partial derivative of order k does not. It is denoted by mult p F .

The multiplicity of NL ∆ at some f P U 4 is related to the elements of PicpX f q with discriminant ∆. For ∆ ą 0, let E ∆ be a set of representatives of the equivalence classes of the relation " on H Z defined by

(82) γ " γ 1 if Da P Q ˚, b P Q : γ 1 " aγ `bh.
Lemma 18. For any f P U 4 and any ∆ ą 0,

mult f NL ∆ " # pPic X f X E ∆ q .
Proof. Let Ą NL ∆ be the lift of NL ∆ in r U 4 . Arguing as in §3.1.1, Ą NL ∆ is the union of smooth analytic hypersurfaces:

(83) Ą NL ∆ " ď ηPE∆ P ´1 tw P D | w ¨η " 0u .
Then the same holds locally for NL ∆ .

For any f P U 4 it follows from the smoothness of branches of NL ∆ that mult f NL ∆ is exactly the number of branches meeting at f . The branches meeting at f are described by the elements of Pic X f with discriminant ∆. Two elements γ and γ 1 describe the same branch (that is the same hyperplane section of D) if and only if γ 1 " γ. So mult f NL ∆ is exactly the number of equivalence classes in tγ P Pic X f | ∆pγq " ∆u for this relation. Assume that ε ă ε f and let t and m be as above. As u varies, the number # pPicpX f `um q X E ∆ q has a strict local maximum at u " t. By Lemma 18, so does mult f `um NL ∆pγq . In particular, there is some higher-order partial derivative of NL ∆ which vanishes at f `tm but not at f `um, for u close to but not equal to t. Let α P N 35 be the multi-index for which (86) P

. " 1 α 1 ! ¨¨¨α 35 ! B |α| NL ∆ Bu α P Zru 1 , . . . , u 35 s is this derivative. For a monomial u β . " u β1 1 ¨¨¨u β35 35 we have (87) 1 α 1 ! ¨¨¨α 35 ! B |α| u β Bu α " 35 ź i"1 ˆβi α i ˙uβ´α .
Since `βi αi ˘ď 2 βi , it follows that (88)

› › › › 1 α 1 ! ¨¨¨α 35 ! B |α| NL ∆ Bu α › › › › 1 ď 2 deg NL∆ }NL ∆ } 1 .
Let Q P Zrxs be the integer polynomial Qpxq 

Q ď c Ò ∆ Ò 9 2 and }Q} 1 ď 2 Ò c Ò ∆ Ò 9 2 . We write Q " ř deg Q i"0 q i x i .
Let k be the smallest integer such that q k ‰ 0. Since Qptq " 0, it follows that (92) .

ˇˇq k t k ˇˇď deg Q ÿ i"k`1 ˇˇq i t i ˇǏf ε ă C ´1 f ,
By (84), this leads to

(94) ε ě `2 Ò c Ò ∆ Ò 9 2 ˘´1 ,
for some other constant c which depends only on f . Recall that (94) holds with the assumption that ε ď ε f and ε ă C ´1 f . However, we can choose c large enough so that the right-hand side of ( 94) is smaller that ε f and C ´1 f . Then (94) holds unconditionally, concluding the proof of Theorem 17. 4.3. Quartics with algebraic coefficients. Let K Ă C be a number field of degree D " rK : Qs. Suppose that f P Krw, x, y, zs 4 X U 4 has coefficients that are algebraic integers in K. Let H ą 0 be an upper bound for the absolute logarithmic Weil height for the coefficient vector of f (Waldschmidt 2000, p.77).

Theorem 19. Let f and H, D ą 0 be as above. Then there is a computable constant c ą 1 such that for any γ P H 2 pX f , Zq, if γ ¨ωf ‰ 0, we have

|γ ¨ωf | ą `2 Ò c Ò ∆pγq Ò 9 2 ˘´Dp1`Hq .
Proof. The proof of Theorem 17 carries through, with the sole exception that Qpxq no longer has integer coefficients. If q k is the first non-zero coefficient of Qpxq, then q k is an algebraic integer defined by a polynomial expression r q k pf q in coefficients of f with r q k having integer coefficients. Therefore, the number "1" in (93) must be replaced by a suitable lower bound on the norm of q k . For this, we use Liouville's inequality (ibid., Proposition 3.14):

(95)

|q k | ě }r q k } ´D`1 1 e ´DH deg r q k .
It is easy to see that deg r q k ď deg NL ∆ and }r q k } 1 ď 2 deg NL∆ }NL ∆ } 1 , the latter can be bounded by }Q} 1 . The result follows for some other c. 4.4. Numbers à la Liouville. Let pθ i q iě0 be a sequence of positive integers such that θ i is a strict divisor of θ i`1 for all i ě 0 (in particular θ i ě 2 i .) Consider the number

L θ . " 8 ÿ i"0 θ ´1 i .
As a corollary to the separation bound obtained in Theorem 17, the following result states that L θ is not a ratio of periods of quartic surfaces when θ grows too fast.

Theorem 20. If |θ i`1 | ě 2 Ò 2 Ò θ i Ò 10, for all i large enough, then L θ is not equal to γ1¨ω f γ2¨ω f for any γ 1 , γ 2 P H Z and any f P U 4 with rational coefficients.

Proof. Let l k " ř k i"0 θ ´1 i . Since θ i divides θ i`1 , we can write l k " u k θ k for some integer u k . And since the divisibility is strict, θ i ě 2 i and u k ď 2θ k . Moreover (96) 0 ă L θ ´lk ď 2θ ´1 k`1 , using θ k`i`1 ě 2 i θ k`1 , for any i ě 0. Assume now that L θ " γ1¨ω f γ2¨ω f for some γ 1 , γ 2 P H Z and some f P U 4 with rational coefficients. Then, with (97) γ k

.

" θ k γ 1 ´uk γ 2 ,
we check that ∆pγ k q " Opθ 2 k q and that (98)

0 ă |γ k ¨ωf | " |θ k | |γ 2 ¨ωf | |L θ ´lk | ď C θ k θ k`1 ,
for some constant C. By Theorem 17, we obtain therefore

(99) p2 Ò c Ò θ k Ò 9q ´1 ď C θ k θ k`1 ,
for some constant c ą 0 which depends only on f . This contradicts the assumption on the growth of θ.

4.5. Computational complexity. Given a polynomial f P Zrw, x, y, zs X U 4 and a cohomology class γ P H 2 pX f , Zq, we can decide if γ P PicpX f q (that is γ ¨ωf " 0) as follows: ˘´1 and compute an approximation s P C of the period γ ¨ωf such that |s ´γ ¨ωf | ă 1 2 ε. Then γ is in PicpX f q if and only if |s| ă 1 2 ε. Computing the Picard group itself is an interesting application of this procedure. Algorithms for computing the Picard group of X f , or even just the rank of it, break the problem into two: a part gives larger and larger lattices inside PicpX f q while the other part gets finer and finer upper bounds on the rank of PicpX f q (Charles 2014; [START_REF] Hassett | Effective Computation of Picard Groups and Brauer-Manin Obstructions of Degree Two K3 Surfaces over Number Fields[END_REF][START_REF] Poonen | Computing Néron-Severi Groups and Cycle Class Groups[END_REF]. The computation stops when the two parts meet. Approximations from the inside are based on finding sufficiently many elements of PicpX f q. So while deciding the membership of γ in PicpX f q can be solved by computing PicpX f q first, it makes sense not to assume prior knowledge of the Picard group and to study the complexity of deciding membership as ∆pγq Ñ 8, with f fixed.

Step (a) does not depend on γ, so only the complexity of Step (b) matters, that is the numerical approximation of γ ¨ωf . This approximation amounts to numerically solving a Picard-Fuchs differential equation [START_REF] Sertöz | Computing Periods of Hypersurfaces[END_REF]) and the complexity is plog 1 ε q 1`op1q [START_REF] Beeler | Hakmem. AI memo 239[END_REF][START_REF] Van Der Hoeven | Fast Evaluation of Holonomic Functions near and in Regular Singularities[END_REF][START_REF] Mezzarobba | NumGFun: A Package for Numerical and Analytic Computation with D-Finite Functions[END_REF]Mezzarobba , 2016)). With the value of ε in Step (b), we have a complexity bound of expp∆pγq Op1q q for deciding membership.

For the sake of comparison, we may speculate about an approach that would decide the membership of γ in PicpX f q by trying to construct an explicit algebraic divisor on X f whose cohomology class is equal to γ. It would certainly need to decide the existence of a point satisfying some algebraic conditions in some Hilbert scheme H d,g , with d " Op∆ 1 2 q and g " Op∆q (see §3.1.1). Embedding H d,g (or some fibration over it, as we did in §3.4) in some affine chart of a projective space of dimension d Op1q will lead to a complexity of expp∆pγq Op1q q for deciding membership in this way.

However, if Conjecture 16 holds true, then the complexity of the numerical approach for deciding membership would reduce to ∆pγq Op1q .

  f p1, x, y, zq ,

  3.2.1. Heights of polynomials. Let f " ř α c α x α P Crx 1 , . . . , x n s. We recall the following different measures of height of f : n log ˇˇf `e2πit1 , . . . , e 2πitn ˘ˇd t 1 ¨¨¨dt n . (57) Lemma 8 (D'Andrea et al. 2013, Lemma 2.30). For any homogeneous polynomial f P Crx 1 , . . . , x n s, exppmpf qq ď }f } sup ď }f } 1 ď exppmpf qqpn `1q deg f .

  72)ď pα `β ´α1 ´β1 ´e `1qL3 α`β´α 1 ´β1 ´e (73) ď 2 Opd 9 q . (74) By D'Andrea et al. (2013, Lemma 2.30.3), (75) }NL d,g } 1 ď exppmpNL d,g qq36 deg NL∆ , and this implies the claim, for some other constant A ą 0.

  The asymptotic bound r d pkq " Opx d 2 ´1q, for d ą 4, is well known (e.g.Krätzel 2000, Satz 5.8).

4. 2 .

 2 Proof of Theorem 17. We first apply Corollary 3. Let ε " 4 |γ ¨ωf |. The corollary gives constants C f ą 0 and ε f ą 0 (depending only on f ) such that if ε ă ε f then there exists a monomial m P R 4 and t P C such that (84) |t| ď C f ε and (85) γ P Pic X f `tm .

  (a) Compute the constant c in Theorem 17; (b) Let ε " `2 Ò c Ò ∆pγq Ò 9 2

  To a form Ω one associates the element ΘpΩq of H 2 pX f , Cq given by the map

	(5)	ΘpΩq : rγs

Furthermore, the complex cohomology group H 2 pX f , Cq, which is just H C . " H Z b C, is isomorphic to the corresponding de Rham cohomology H 2 dR pX f , Cq group as follows. Elements of H 2 dR pX f , Cq are represented by differential 2-forms.

  A deformation argument. Let γ 1 , . . . , γ 22 be a basis of H Z . The space H R (resp. H C ) is endowed with the coefficient wise Euclidean (resp.

	Hermitian)
	norm
	(13)

  Smale pφqγ Smale pφq ď 1 34 , then there is a t P C such that |t| ď 2β Smale pφq and φptq " 0

	We define							
	(17)	γ Smale pφq	. " sup kě2	ˇˇˇ1 k!	φ pkq p0q φ 1 p0q	ˇˇˇ1 k´1	and β Smale pφq	. " ˇˇˇφ p0q φ 1 p0q	ˇˇˇ.
	If β								

  . Let γ P H R such that γ ¨h " 0 and

	(18)	|γ ¨ωf | ď	2}ω f } ˆωf ¨ωf	˙}γ}.
	Since γ has real coefficients, we have |γ ¨ωf | " |γ ¨ωf | and we may apply Lemma 1
	to obtain a monomial m and a constant C such that
	(19)	ˇˇφ 1 γ,m p0q ˇˇě C}γ}.	
	It follows in particular that
	(20)			

  NL is the pullback of smooth hyperplane sections of D. Since P is a submersion, Ą NL is the union of smooth analytic hypersurfaces. It follows that NL is locally the union of smooth analytic hypersurfaces.We break NL into algebraic pieces as follows. For any integers d and g, let NL d,g be the set

		ď
	(46)	Ą NL "
		γPH Z zZh

Z-linearly dependent.

The set NL is locally the union of smooth analytic hypersurfaces in U 4 . To see this, let Ą NL be the lift of NL in the universal covering r U 4 of U 4 . Recall P : r U 4 Ñ D is the period map. The Lefschetz (1,1)-theorem implies

P ´1 tw P D | w ¨γ " 0u . That is, Ą

(

47) NL d,g " tf P U 4 | Dγ P PicpX f qzZh : γ ¨h " d and γ ¨γ " 2g ´2u , By replacing γ by γ `h or ´γ, we observe that (48) NL d,g " NL d`4,g`d`2 " NL ´d,g .

  " mpf qη `deg x1 pf qθ 1 `¨¨¨`deg xr pf qθ r .

		))
	(59) rV pf qs Z To such a polynomial f , we also associate (ibid., Eq. (2.57))
	(60)	rf s sup

.

" logp}f } sup qη `deg x1 pf qθ 1 `¨¨¨`deg xr pf qθ r .

3.2.3. Arithmetic Bézout theorem. Let X be an effective cycle and H a hypersurface in P n . They intersect properly if no irreducible component of X is in H.

  g p4q factors through E and the fibers of the corresponding map E Ñ H d,g p4q have dimension α 1 . " pqprq ´Nr´4 qqprq ´1. Finally, let e be the dimension of the fibers of the map H d,g p4q Ñ NL d,g . (If this dimension is not generically constant, we work one component at a time.) Once again, by Since rNL d,g s Z " mpNL d,g qη `degpNL d,g qθ 1 , taking L " 15 logpd `2q, we get deg NL d,g ď coeff of θ 1 θ α´α 1 ´e

	Proposition 11, we obtain	
	(69)	θ α 2 rNL d,g s Z ď θ α 1 `e 2	rEs Z .
			2	θ β´β 1 3

  3A 21 ´81A 19 B 2 ´627A 18 B 3 ´14436A 17 B 4 ´20007A 16 B 5 ´169092A 15 B 6 ´120636A 14 B 7 ´621558A 13 B 8 ´292796A 12 B 9´1038366A 11 B 10 ´346122A 10 B 11 ´878388A 9 B 12 ´207186A 8 B 13´361908A 7 B 14 ´56364A 6 B 15 ´60021A 5 B 16 ´4812A 4 B 17 ´1881A 3 B 18

	and Θ defined by
	(78)	2 22 Θ

. "

  }Q} 1 ď 2 deg NL∆ }NL ∆ } 1 p}f } 1 `1q deg NL∆ .

	and then
	(90)	
	From Corollary 15, we find a constant c depending only on f such that
	(91)	deg

.

" P pf `xmq. By construction Q ‰ 0 and Qptq " 0. Clearly deg Q ď deg NL ∆ , and we check that (89) }Q} 1 ď }P } 1 p}f } 1 `1q deg P .

  we have |t| ă 1, by (84), and it follows that ˇˇq k t k ˇˇď ˇˇt k`1 ˇˇ}Q} 1 . Since q k P Z and nonzero, it follows that

	(93)	|t| ě	1 }Q} 1
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Periods and deformations

2.1. Construction of the period map. For any non-zero homogeneous polynomial f in Crw, x, y, zs, let X f denote the surface in P 3 defined as the zero locus