
HAL Id: hal-03022606
https://hal.science/hal-03022606v2

Submitted on 8 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Gene Regulatory Network Inference Using Ensembles of
Predictors

Sergio Peignier, Baptiste Sorin, Federica Calevro

To cite this version:
Sergio Peignier, Baptiste Sorin, Federica Calevro. Gene Regulatory Network Inference Using Ensem-
bles of Predictors. 33rd IEEE International Conference on Tools with Artificial Intelligence, IEEE,
Nov 2021, Virtual event, United States. �hal-03022606v2�

https://hal.science/hal-03022606v2
https://hal.archives-ouvertes.fr

Ensemble Learning Based Gene Regulatory

Network Inference

Sergio Peignier1,a, Baptiste Sorin1,b, and Federica Calevro1,c

1Univ Lyon, INSA Lyon, INRAE , BF2I, UMR0203, F-69621,
Villeurbanne, France

asergio.peignier@insa-lyon.fr
bbaptiste.sorin@insa-lyon.fr

cfederica.calevro@insa-lyon.fr

Abstract

In the machine learning field, the technique known as ensemble learn-
ing aims at combining different base learners in order to increase the
quality and the robustness of the predictions. Indeed, this approach has
widely been applied to tackle, with success, real world problems from dif-
ferent domains, including computational biology. Nevertheless, despite
their potential, ensembles combining results from different base learners,
have been understudied in the context of gene regulatory network infer-
ence. In this paper we applied genetic algorithms and frequent itemset
mining, to design small but effective ensembles of gene regulatory net-
work inference methods. These ensembles, were evaluated and compared
to well-established single and ensemble methods, on real and synthetic
datasets. Results showed that small ensembles, consisting of few but di-
verse base learners, enhance the exploration of the solution space, and
compensate base-learners biases, outperforming state-of-the-art methods.
Results advocate for the use of such methods as gene regulatory network
inference tools.

Keywords— Bioinformatics, Gene Regulatory Network Inference, Ensem-
ble Learning

1 Introduction

Ensemble learning is a machine learning technique, that combines multiple al-
gorithms, with the aim of leading to better predictive performances than its
constituent algorithms [1, 2]. This approach has been used successfully to deal
with complex real world problems, from different domains, and thus ensemble
learning is recognized as a cutting-edge technique, and it has received interest

1

from the machine learning research community [1, 2]. According to [3], ensem-
ble learning methods have been used increasingly by the computational biology
community, to tackle different tasks such as gene expression analysis, and gene
interaction identification. Indeed, according to these studies, such technique al-
lows to deal effectively with common problems from the computational biology
domain, such as high-dimensional data, and small sample sizes.

An important and challenging task addressed by the systems biology com-
munity, consists in reverse-engineering Gene Regulatory Networks (GRNs) [4],
i.e. complex regulatory interactions between regulators, being transcription fac-
tors (TFs), and their target genes (TGs). Indeed, this is an important challenge,
since the control exert by GRNs on the gene expression, is responsible, to an
important extent, for important biological mechanisms, such as organogene-
sis, development, cell-death and the adaption to changing environmental con-
ditions [5]. Given the importance of this task, the advent of high-throughput
technologies (RNAseq, Microarray) has motivated the development of several
families of algorithms that aim at inferring GRNs from high-throughput data [4].
Each family of methods has its own advantages and drawbacks, each being in-
clined to reveal some particular types of regulatory interactions [6].

In order to overcome the inner biases of individual methods, some previ-
ous works [6] have combined many available GRN inference tools to form a
large ensemble, and obtained better and more robust results, across different
datasets. Robustness is particularly valuable in real world applications, since
it is not straightforward to determine a priori which method should be used
to analyze a dataset, given the differences existing between organisms and the
experimental conditions. Nevertheless, large ensembles incorporating as many
inference methods as possible, are likely to require overwhelming computational
resources, and including some methods may not be beneficial and could even
be detrimental. Therefore, investigating the design of smaller and efficient en-
sembles of GRN inference methods, seems an interesting research path, that has
been under-studied by the computational biology community. In order to tackle
this research question, in this work, we used a methodology based on a genetic
algorithm and frequent itemset mining to design small, robust and competitive
ensembles. We assessed the effectiveness of our methodology by comparing our
ensembles with respect to popular approaches, on benchmark datasets described
in [6]. Our study shows that our ensembles, are robust and valuable tools for the
analysts, specially for real world applications. For the sake of reproducibility,
the experiments and the ensembles implementations are available online 1.

The rest of this article is structured as follows. Section 2 describes the re-
lated work. Section 3 introduces the GRN inference problem, and describes the
methodology, developed in this work, to design suitable ensembles of learners.
Section 4 and 5 describe the experimental setup developed in this work and the
results, respectively. We conclude with a summary and some perspectives.

1https://gitlab.com/bf2i/evening

2

2 State-of-the-art

2.1 Gene regulatory network inference

Algorithms that aim at reverse-engineering GRNs from gene expression data,
have been categorized in three major families [4], as described hereafter.

Model-Based methods infer GRNs by fitting the parameters of a pre-established
model, with respect to experimental data [7]. Then, calibrated models allow to
simulate and analyze the biological system in-silico. Some models, termed Prob-
abilistic Models are grounded in probability theory, and they include approaches
such as Bayesian networks and Gaussian Graphical Models [4]. Other methods
aim at modelling the temporal changes in the expression of genes, through Dy-
namical Models, including Boolean Networks, Dynamic Bayesian Networks and
Ordinal Differential Equations [4].

Data-Driven methods analyze high-throughput datasets, to score the level
of dependency between each TF and each possible TG [4]. Different measures
have been used to score the regulatory links. Some algorithms rely on the
assumption that the gene expression of a TG and its TF should be correlated,
and use correlation statistics or more sophisticated information theory scores
such as Mutual Information, to score regulatory links. Other algorithms are
based on feature importance scores assigned by algorithms that are trained to
predict the levels of expression of a TG from those of TFs. In practice, these
approaches have mostly used regression algorithms [4], but recently classification
algorithms have also been applied successfully [8].

Multi-Network methods infer GRNs by considering heterogeneous sources
of data simultaneously [4]. Indeed, besides using gene expression data, these
methods also rely on TF binding site patterns, or Chromatin Immuno-Precipitation
data. For example the so-called SCENIC method [9], analyzes TF binding
site motifs, in order to refine the results produced by the GENIE3 data-driven
method [10].

2.2 Ensemble Learning

Ensemble learning is a recognized machine learning technique, that has been
applied in the context of supervised learning (i.e., classification and regression),
semi-supervised learning, and unsupervised learning (i.e., feature selection and
clustering) [2]. Conceptually, this technique aims at training a set of base learn-
ers, and then integrating their results, using a voting scheme, to form a consen-
sus solution. In practice, four major kinds of procedures to train a set of learners
have been identified by [1]: 1) Input manipulation, each learner is trained using
a slightly modified version of dataset. 2) Partitioning, each learner is trained
using different subsets (horizontal partitioning) or subspaces (vertical partition-
ing) of the original dataset. 3) Learning algorithm manipulation, each base

3

model is trained with a different parameter setting, or a different algorithm. 4)
Ensemble hybridization, at least two of the former strategies are used at once.
Whereas, regarding the integration of the base learners results, two families of
techniques were described in [1]: 1) Weighting methods combine the individual
results by assigning weights to each base model, and applying a voting scheme
2) Meta-learning methods feed a meta-learner model with the outputs of the
base learners, to produce a final integrated output.

It has been shown, that the performance of an ensemble increases with the
diversity, and the efficiency of its base learners [1]. Indeed, the inherent diversity
of ensemble approaches leads to a better exploration of the solution space than
single learners. Moreover, ensembles of diverse learners can also extend the
solution representations beyond the base learners’ solution space, leading to
more flexible and accurate models. Finally, ensembles have also been used to
lessen the impact of well-known problems in machine learning, such as the curse
of dimensionality, class imbalance, and over-fitting due to small datasets [1].

2.3 Ensemble learning in bioinformatics and GRN infer-
ence

Ensemble methods have been successfully used in many real world applications
from different fields, such as image and speech analysis [11], or bioinformatics
and medicine [3]. Indeed, as reviewed in [3], ensemble learning has been applied
to deal with complex biological problems, such as classifying gene expression
datasets, identifying interaction between genes and predicting regulatory ele-
ments from DNA or protein sequences.

This technique has also been used to develop GRN inference methods. For
instance, GENIE3 [10] and GRNBoost2 [12], are data-driven methods, based
on well-known ensemble learning algorithms, i.e., Random Forest regression [13]
and Gradient Boosting regression [14], respectively. Similarly, in [8], the authors
proposed data-driven methods based on well-known classification ensemble al-
gorithms, namely Random Forest [13], Extremely Randomized Trees [15], Gra-
dient Boosting [14] and AdaBoost [16] . Another method called TIGRESS [17],
aims at training an ensemble of sparse linear regressors on noisy versions a gene
expression dataset, to infer GRNs. All the previous methods use input manip-
ulation, and partitioning techniques to create ensembles, but rely on a unique
kind of base learner, which may induce method-specific biases in predicting
regulatory relationships [6].

In order to overcome this problem, a ranked voting procedure was used in [6],
to combine the outputs from 35 methods, that participated in the DREAM5
challenge, forming a large ensemble, which was termed “Community”. On av-
erage, the Community exhibited better results than its base predictors, and its
performance revealed to be robust across all datasets, unlike base methods.

4

3 Materials and Methods

3.1 Overview

In order to build ensembles of methods that are robust across datasets, a naive
solution would consist in running as many independent methods as possible and
then integrating their results. Nevertheless, including blindly more and more
methods, massively increases the computational requirements, without ensuring
gains in terms of quality.

In this work, we decided to explore small combinations of methods that
lead to suitable and robust results. To do so, we used a genetic algorithm
to explore the space of ensembles (i.e., combinations of base learners), and
select a population of ensembles that exhibit high inference qualities. Then, we
conducted a frequent itemset mining exploration to identify small subsets of base
methods, that are frequently selected together by the genetic algorithm, to form
suitable ensembles. This analysis aims at discovering, understanding and then
exploiting underlying principles that would allow us to combine base-learners
to build efficient and robust ensembles.

3.2 Definitions

Gene expression dataset Let a matrix X ∈ RI×J denote a gene expression
dataset. The expression of gene i in condition j is Xi,j , while Xi,. (resp. X.,j)
represents the vector of levels of expression of gene i (resp. condition j) for all
conditions (resp. genes). The number of genes (rows) and conditions (columns)
in X, are denoted I and J .

Gene Regulatory Networks Let the set of all genes of an organism be
denoted as TG = {tg1, . . . , tgI}, and let TF ⊆ TG be the subset of genes
encoding TFs. The set of regulatory links between TFs and their TGs is E ⊆
(TF×TG), such that (tf , tg) ∈ E means that tf regulates the level of expression
of tg . Then, a GRN is simply modeled as an oriented graph G = 〈TG,E〉, its
nodes representing the organism’s genes, and its edges being the regulatory
interaction between TFs and their TGs.

Data-Driven GRN inference Let us define a function ω : RI×J , TF , TG →
R that aims at computing a score ω(X, tf , tg), to quantify the level of depen-
dency between genes tf and tg . Data-Driven GRN inference rely on such a
function, to score all possible regulatory links between TFs and TGs (excluding
self-loops), i.e., Efull = {(tf , tg) ∈ TF ×TG | tf 6= tg}. Finally, a subset of
Efull is often selected as the inferred GRN, by extracting the links with a score
above a given threshold, or selecting the top-k links.

Ensemble of GRN inference methods Let us consider a set of M GRN
inference methods {m1,m2, . . . ,mM}, and let ωm denote the scoring function
of method m. Then, Ω = {ωm1

, ωm2
, . . . , ωmM

} represents the set of scoring

5

functions of methods in M. Moreover, let V : RM → R be an integration
function, that receives as inputs the scores ωm(X, tf , tg), ∀m ∈M, and outputs
a unique final score, that quantifies the consensus level of dependency between
tf and tg , for a dataset X. Therefore, an ensemble of GRN inference methods
is defined as a pair 〈Ω, V 〉, containing a set of base scoring functions Ω, and an
integration function V .

3.3 Preprocessing

Applying standardisation techniques is an important preliminary step in gene
expression data analysis, as in many machine learning tasks [18]. In this work we
applied the well-known Z-score rows standardization, that ensures that the lev-
els of expression of the different genes are comparable. More formally, each entry
Xi,j of the gene expression matrix is replaced by

Xi,j−µi

σi
, where µi = 1

J

∑
j Xi,j

is the average gene expression of gene i and σi =
√

1
(J−1)

∑
j(Xi,j − µi)2 rep-

resents its standard deviation.
As suggested in [8], the continuous expression vector of each TG was dis-

cretized into K levels (classes), using the Row-Kmeans method. This method
aims at applying the well-known K-means algorithm [19] to cluster the expres-
sion values of the TG into K groups. Then cluster memberships are used as
discrete gene expressions. More formally, ∀j ∈ {1, . . . , J} the gene expression
values Xi,j of gene i, are clustered in K clusters, hence Ck denotes the k-th
cluster, µk is its centroid, and cluster indexes are set according to the centroid
location, i.e., µ1 < µ2, < · · · < µK . Finally, if Xi,j ∈ Ck then Xi,j is dis-
cretized by taking its cluster index k. As in [8], the number of classes was set
to k = 5. This value was determined in [8], for the DREAM5 datasets, by
identifying the elbow in a plot representing, for different number of clusters, the
sum of squared euclidean distance between each gene’s expression vector and
its cluster centroid.

In practice, the z-score and Row-Kmeans implementations from the GReNa-
DIne [20] Python package were used.

3.4 Ensembles of GRN inference methods

3.4.1 Base learners training

In order to study ensembles of GRN inference methods, we relied on the GReNa-
DIne [20] open source Python library, that implements many data-driven gene
regulatory network inference methods, that were used here as base learners. In
practice, GReNaDIne implements 4 methods based on classical statistical mea-
sures, namely Pearson (Pcorr) and Spearman (Scorr) correlations, Kendall-tau
(Ktau) and Mutual Information score (MI). Moreover, this package incorporates
two methods based on Support Vector Machines (one based on classifiers and one
on regressors), and eight methods based on AdaBoost (AB), Gradient Boosting
(GB), Random Forest (RF) and eXtreme Randomized Trees (XRT), for both
classifiers (c) and regressors (r). This package also includes an implementation

6

of TIGRESS [17] as well as another similar method based on stability random-
ized lasso (SRLr). Finally, GReNaDIne includes a method based on Bayesian
Ridge Regression (BRr).

The parameters of these methods were set as in [8,20], to the default values,
that leaded to suitable results. Similarly, for all the algorithms based on decision
trees (i.e. ABc, ABr, GBc, GBr, RFc, RFr, XRTc, XRTr), the number of base
estimators, a major parameter, was set to 100 trees. This value ensured a
good trade-off between quality, and the execution time (both measures tend to
increase with the number of predictors).

3.4.2 Integration scheme

In this work, we used a rather simple integration scheme: first we made the
scores distributions comparable between methods, by standardizing them using
a z-score, and then we derived the final scores, by averaging the base predictors’
standardized scores. This integration scheme does not require to recompute
base learners’ inferences, and thus it is possible to compute base learners’ infer-
ences only once to test many combinations of base methods, saving important
computational resources. Notice that other integration schemes, such as the
Ranked voting procedure used in [6], worth to be assessed in future works.

More formally, let Sm = {ωm(X, tf , tg), ∀(tf , tg) ∈ Efull}, be the set
of scores of all possible regulatory links between TFs and TGs, assigned by
method m ∈ M, M denoting the set of base methods. Moreover, let µSm

=∑
(tf,tg)∈Efull ωm(X,tf ,tg)

|Efull| and σSm =

√∑
(tf,tg)∈Efull (ωm(X,tf ,tg)−µSm)2

|Efull|−1 be the av-

erage and the standard deviation of scores in Sm respectively. Then, for each
regulatory link (tf , tg) ∈ Efull, the ensemble score is simply the average of stan-

dardized base method scores, i.e., ωM(X, tf , tg) = 1/|M|×
∑
m∈M

ωm(X,tf ,tg)−µSm

σSm

3.5 Evolution of ensemble candidates

In order to explore the space of combinations of base methods, and select a
set of efficient ensembles, we relied in this work on a genetic algorithm. The
overall idea is to evolve a population of candidate ensembles, i.e. subsets of the
available GRN inference methods, in order to maximize their fitness, i.e., the
quality of their inferred GRNs.

The Genetic Algorithm evolves a population of SizePop individuals. Each
individual genome encodes an ensemble candidate, and it is represented as a
boolean vector with a size equal to the number of the available GRN inference
methods (here the 17 GReNaDIne methods presented in Section 3.4.1 are con-
sidered). Then, the i-th element of the boolean vector encodes the presence of
the i-th base method, in the corresponding ensemble candidate. More formally,
let L = (m1,m2, . . . ,mL) be an arbitrarily ordered list of L methods, and let
B = (b1, b2, . . . , bL) | ∀b ∈ B, b ∈ {0, 1}, be a boolean vector of size L. The
candidate model encoded by vector B contains a set of methodsM = {m ∈ L},
such that mi ∈M only if bi = 1. All individuals of a population are initialized

7

randomly by setting each element to 1 with a probability pinit (the higher pinit
is, the more methods are integrated in the first generation). At each generation,
children may mutate with a probability pIndivMut. Here, a mutation simply
picks randomly one element of the boolean vector with a probability pGeneMut,
and flips it. And during reproduction, two individuals can undergo a classic
two points crossing-over operation with a probability pcross. The parents of
the new generation are selected, according to their fitness, using a tournament
selection scheme, i.e., TournSize individuals are randomly picked to compete,
and the best one is selected to produce TournSize children. The fitness of an
individual is computed by evaluating its inferred GRN with respect to a gold
standard GRN. More precisely, the fitness of the individual is simply the AU-
ROC evaluation score of the inferred GRN. The AUROC is computed with the
procedure described in Section 4.2. Finally the algorithm iterates a mutation
step and a selection step, for a number NbGenerations of iterations.

In practice, the genetic algorithm was programmed using the DEAP Python
library [21], and the meta-parameters were set as follows. The population size
was set to SizePop = 100 individuals. The mutation probability was set to
pIndivMut = 0.1 (10% of the population), and pGeneMut = 1/|B| (in average 1
gene is affected). The cross-over probability was set to pcross = 0.5, so each
new child has a probability of 0.5 to undergo a cross-over. The number of
individuals involved in a tournament was set to TournSize = 5. Finally, six
values have been explored for pinit, namely 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 as starting
points for the algorithm. Then for each dataset, and each value of pinit, 10
populations were evolved independently. For each run, the best individual of
the last generation, supposedly the best of all, was kept as a suitable ensemble
candidate. Evolving the population for NbGenerations = 10 revealed to be
sufficient to reach high scores w.r.t. those obtained by base learners, as shown
Figure 1. Since our goal is simply to explore the space of promising ensemble
candidates, to subsequently mine frequent associations of methods, instead of
retrieving the optimal ensemble per dataset, optimizing the meta-parameters
was not necessary in this work.

3.6 GRN inference association rules

In order to detect sets of methods that are frequently selected together to
form suitable ensemble candidates, we used a frequent itemset mining proce-
dure. In this context, each base method m is considered as an item, and a
candidate ensemble comprised of a subset of methods M, is an itemset or
transaction. Then, the set of candidate ensembles is a transactions dataset
T = {M1,M2, . . . ,MT } The support supp(M, T) of an itemsetM in T , is sim-
ply the frequency of itemsets in T that are supersets of M, i.e., supp(M, T) =
|{Mt∈T | M⊆Mt}|

|T | . A transactionM is called a frequent itemset if supp(M, T) >

MinSupp, where MinSupp is a threshold defined beforehand. Moreover, a fre-
quent itemset M is said to be maximal if there is no frequent itemset that is a
superset of M, i.e., @M′ ∈ T | M ⊂M′ and supp(M′, T) > MinSupp.

8

0.0 0.2 0.4 0.6 0.8 1.0
Proportion

0.45

0.50

0.55

0.60

AU
RO

C

S. cerevisiae

Generation
0
1
2
3
4
5
6
7
8
9

Method
Ensembles
Base Learners

0.0 0.2 0.4 0.6 0.8 1.0
Proportion

0.60

0.65

0.70

0.75

0.80

AU
RO

C

E. coli

Generation
0
1
2
3
4
5
6
7
8
9

Method
Ensembles
Base Learners

0.0 0.2 0.4 0.6 0.8 1.0
Proportion

0.50

0.55

0.60

0.65

0.70

AU
RO

C

S. aureus

Generation
0
1
2
3
4
5
6
7
8
9

Method
Ensembles
Base Learners

0.0 0.2 0.4 0.6 0.8 1.0
Proportion

0.65

0.70

0.75

0.80

0.85

AU
RO

C

In silico

Generation
0
1
2
3
4
5
6
7
8
9

Method
Ensembles
Base Learners

Figure 1: Empirical cumulative distributions for the last populations average
scores (blue) and the base-learners ones (orange), for each DREAM5 dataset

With this aim, we used the FP-max [22], a variant of the popular FP-growth
algorithm [23], to extract maximal frequent itemsets, from the ensemble can-
didates dataset. In order, to extract only the most interesting combinations,
we set the minimal support threshold to MinSupp = 0.2 (i.e., one out of five
ensemble candidates should incorporate the itemset). In practice, we used the
MLxtend [24] implementation of the FP-max algorithm.

4 Experimental Setup

4.1 Datasets

In order to investigate and assess the use of ensembles of GRN inference meth-
ods, we relied on the DREAM5 benchmark data [6]. This benchmark contains
three datasets obtained from real organisms, namely E. coli , S. aureus and S.
cerevisiae, and an In silico simulated dataset. Each dataset is comprised of a
gene expression matrix, a list of TFs, and a gold standard GRN, i.e., a list of
known regulatory links between TFs and their TGs. Important characteristics
of these datasets are reported in table 1.

The gene expression matrices for E. coli , S. aureus and S. cerevisiae, are
Affymetrix Microarray datasets, downloaded from Gene Expression Omnibus
(GEO)2 platform. According to [6], these datasets underwent a normalization
and filtering procedure that includes: Robust Multichip Averaging background
adjustment, quantile normalization, probeset median polishing and logarithmic

2http://www.ncbi.nlm.nih.gov/geo

9

transformation.
In order to determine the TFs lists for E. coli , S. aureus and S. cerevisiae,

the authors of [6] conducted Gene Ontology (GO) annotation analysis [6]. Then,
they completed E. coli and S. cerevisiae lists, considering respectively a manu-
ally curated TFs list included in the RegulonDB 6.8 database [25] for E. coli ,
and a list of TFs provided in [26] for S. cerevisiae.

The gold standard E. coli GRN, includes only regulatory links with strong
experimental evidence, from the RegulonDB 6.8 database [25]. The gold stan-
dard S. cerevisiae GRN, includes regulatory interactions that were determined
in [27], through the study of ChIP-chip datasets and the query for conserved
TF binding sites motifs. Regarding S. aureus, the authors of [6] included the
prokaryotic regulatory interactions reported in the RegPrecise database [28], as
a proxy of a gold standard GRN, since no experimentally validated GRN was
available for this organism.

Unlike the previous datasets, the in silico dataset, was generated using the
GeneNetWeaver software [29]. According to [6], the In silico GRN structure is
a randomized version of the RegulonDB E. coli GRN, that includes 10% of new
random regulatory links. This GRN, was used to generate a gene expression
matrix, using a dynamical system of Ordinary Differential Equations, based on
a multiplicative regulatory interactions model.

Table 1: Benchmark datasets summary

Dataset Data # cond. # genes # TFs # Links
Egold

Efull
gold

In silico Simulated 805 1,643 195 4,012 0.014
S. aureus Microarray 160 2,810 99 515 0.028

E. coli Microarray 805 4,511 334 2,066 0.013
S. cerevisiae Microarray 536 5,950 333 3,940 0.017

4.2 Evaluation

General procedure The evaluation of the GRN inference methods, against
gold standards, was conducted following the procedure described in [6] In this
procedure, GRN inference is assessed as a binary classification task, where pos-
sible regulatory links are classified as true of false. All the links reported in
the gold standards, are taken as true interactions, for the binary classification.
Nevertheless, all the links missing from the gold standards, should be consid-
ered as false interactions. Indeed, according to [6], an organism’s GRN gold
standard only contains the experimentally tested subset of all its true regulatory
interactions. Therefore, in order to avoid penalizing methods for detecting true
interactions remaining experimentally untested, any link involving a TF or a
TG that was not studied experimentally is excluded from the assessment [6].
Only pairs missing from the gold standard list, and involving both a TF and a
TG experimentally studied, are taken as false interactions.

10

Formal definition Let TG and TF ⊂ TG be respectively a set of genes and
the subset of genes encoding TFs. Let the oriented graph Ggold = 〈TFgold ∪
TGgold, Egold〉 be a gold standard GRN, with TFgold ⊆ TF and TGgold ⊆
TG being respectively the set of experimentally studied TFs and TGs, and
Egold ⊆ Efullgold being the set of true regulatory links among the set of possible

links Efullgold = TFgold × TGgold. Links in Efullgold \ Egold are considered as false

regulatory links, while links in (TF × TG) \Efullgold are not taken into account in

the evaluation. The fraction of true regulatory links Egold/E
full
gold, reported in

Table 1 shows that the datasets exhibit a strong class imbalance.

Evaluation measures As in [6] we assessed the methods using standard
evaluation measures for binary classification, from the machine learning com-
munity, namely the Area Under the Receiver Operating Characteristic curve
(AUROC) [30], and the Area Under the Precision Recall curve (AUPR) [31]
values.

4.3 Experimental protocol

Comparison with DREAM5 ensemble In order to assess the ensemble
candidates, studied and proposed in this paper, we compared their AUROC
and AUPR scores, with respect to those obtained by the ensemble of DREAM5
participants. The performance measures obtained by the DREAM5 ensemble,
on each benchmark dataset, as defined in Section 4.2, have been made available
by [6]. The single GRN inference methods implemented in GReNaDIne [20], as
well as the ensemble candidates presented here, were executed on the DREAM5
benchmark datasets, and their results were assessed against the gold standards
networks, following the procedure described in Section 4.2.

Base learners diversity exploration According to [1, 6], the performance
and the robustness of ensembles increase, when the base learners are diverse. In
order to study the similarities between GReNaDIne predictors, we have selected
Etop, the regulatory interactions that were among the top 50,000 links of at least
one base predictor in one dataset, yielding a total of |Etop| = 419, 904 links, from
the different datasets. Then each link was represented in the base predictors
rank space: let Rtop be a matrix with |M| columns, and |Etop| rows, such that
element Rtopi,j denotes the ranking of the score assigned by method j to the

link i (rank 1 being assigned to the highest score). Finally, the Rtop matrix
was standardized using a column z-score, and then we applied the principal
component analysis [32], to represent the methods in the two first Principal
Components (PC) space.

All experiments were executed on a Intel(R) Xeon(R) 2.40GHz CPU, running
Debian GNU/Linux 10, with a 120 Go RAM capacity.

11

5 Results

Following the aforementioned experimental protocol, seven maximal frequent
itemsets, denoting suitable combinations of base methods, were detected among
the best ensemble candidates. Three out of these combinations, denoted BRSr•SVMr•Trees,
are composed of BRSr, SVMr and a tree-based approach (i.e., RFc, XRTc, ABr),
three other maximal frequent itemsets are combinations of tree-based methods
(i.e., ABR•GBr, GBc•XRTr and ABr•GBc), and the last one is the combination
of BRSr and SVMc.

Combinations of tree-based methods were mostly selected in the In silico
dataset, while other combinations were selected in real datasets, as show the
itemset supports per dataset depicted in Figure 2. Moreover, tree-based ensem-
bles exhibit better AUROC and AUPR scores, for the In silico dataset, and
mediocre results for the real datasets, while the remaining combinations exhibit
decent results for the In silico dataset, and among the best results for the real
datasets, as shown in Figure 2. BRSr•SVMr•Trees revealed to be the most
interesting combination, that dominates the individual methods, as well as the
other combinations, as depicted Figure 3. Thus, even small ensembles of three
methods may be sufficient to have efficient and robust performances. Regarding
evaluation scores, all the methods, including single ones, exhibit lower AUPR
than AUROC scores, as shown Figure 3. This may be due to the datasets class
imbalance, since in this context AUCROC is less sensitive than AUPR [31].

In order to understand the efficiency of the BRSr•SVMr•Tree ensembles,
we investigated the relatedness between base learners, using the Principal Com-
ponent Analysis, as described in the previous section. As shown in Figure 4,
the two highest principal components reveal clusters of methods based on: 1)
MI or correlation measures, 2) ensembles of trees, or ensembles of regularized
linear regressors 3) SVMs 4) BRSr as an outlier. The methods belonging to the
same cluster, are likely to share the same intrinsic biases [6]. Thus including one
method from each cluster, is likely to produce an ensemble with a high inner
diversity, that would compensate the base-learners biases. And this is likely to
be the reason behind the efficiency of BRSr•SVMr•Tree ensembles.

In order to assess this hypothesis, we computed the AUROC and AUPR
scores for ensemble containing BRSr, an SVM-based method, and an ensemble
based method (termed BRSr•SVM•Ens), as well as for ensembles containing
one base-learner from each of cluster of methods. As shown Figure 5, both fam-
ilies of ensembles exhibit significantly better results than base-learners and than
the DREAM5 ensemble for the real datasets, and comparable results for the In
silico dataset. Therefore, the efficiency of the BRSr•SVMr•Tree ensembles, de-
tected using the itemset mining technique, seems to be explained by this general
principle. Furthermore, including one extra method from the correlation-based
family, did not improve the results, for these datasets, but could be beneficial
to deal with other datasets.

Finally, in order to compare the SVM•BRSr•Tree methods, we represented
in Figure 6, the ranking of each combination regarding its AUROC and AUPR
score on each dataset, rank 1 being assigned to the best method, and rank

12

16 to the worst one. According to these results, the most suitable and robust
ensembles, combine BRSr, SVMr and one of the following tree-based methods:
RFr, RFc, XRTc or ABr.

6 Conclusion

This paper explored the use of ensemble learning, as a robust and efficient
approach to infer GRNs, from gene expression data. In practice, ensemble pre-
dictions were computed by averaging the results from single GRN inference
methods, implemented in the GReNaDIne framework [20]. Efficient combina-
tions of methods were designed using a genetic algorithm and a frequent itemset
mining procedure. The resulting ensembles, termed BRSr•SVMr•Tree, revealed
to be efficient and robust across different datasets, outperforming single meth-
ods as well as the robust community method presented in [6]. A subsequent
analysis revealed that the effectiveness of BRSr•SVMr•Tree is due to the in-
ner diversity of its base learners. This result is coherent, with a well-known
ensemble learning principle, that affirms that increasing the diversity of base
methods, tends to improve the ensemble quality, through the compensation of
base-learners biases [1], and a better exploration of the solution space, that is
extended beyond the base learners’ solution spaces.

Future work perspectives include studying: i) more sophisticated combina-
tion schemes ii) internal single methods biases, to retrieve specific patterns, and
how can ensembles reduce the biases iii) strategies to deal with class imbalance
iv) genetic algorithm and frequent itemset parameters sensitivity.

References

[1] O. Sagi and L. Rokach, “Ensemble learning: A survey,” Wiley Interdisci-
plinary Reviews: Data Mining and Knowledge Discovery, vol. 8, no. 4, p.
e1249, 2018.

[2] X. Dong, Z. Yu, W. Cao, Y. Shi, and Q. Ma, “A survey on ensemble
learning,” Frontiers of Computer Science, pp. 1–18, 2019.

[3] P. Yang, Y. Hwa Yang, B. B Zhou, and A. Y Zomaya, “A review of ensemble
methods in bioinformatics,” Current Bioinformatics, vol. 5, no. 4, pp. 296–
308, 2010.

[4] G. Sanguinetti and V. A. Huynh-Thu, “Gene regulatory network inference:
an introductory survey,” in Gene Regulatory Networks. Springer, 2019,
pp. 1–23.

[5] D. Latchman, Gene regulation. Taylor & Francis, 2007.

[6] D. Marbach, J. C. Costello, R. Küffner, N. M. Vega, R. J. Prill, D. M.
Camacho, K. R. Allison, D. Consortium, M. Kellis, J. J. Collins, and

13

G. Stolovitzky, “Wisdom of crowds for robust gene network inference,”
Nature methods, vol. 9, no. 8, p. 796, 2012.

[7] L. E. Chai, S. K. Loh, S. T. Low, M. S. Mohamad, S. Deris, and Z. Zakaria,
“A review on the computational approaches for gene regulatory network
construction,” Computers in biology and medicine, vol. 48, pp. 55–65, 2014.

[8] S. Peignier, P. Schmitt, and F. Calevro, “Data-driven gene regulatory net-
work inference based on classification algorithms,” in 2019 IEEE Interna-
tional Conference on Tools with Artificial Intelligence (ICTAI). IEEE,
2019, pp. 1–8.

[9] S. Aibar, C. B. González-Blas, T. Moerman, H. Imrichova, G. Hulselmans,
F. Rambow, J.-C. Marine, P. Geurts, J. Aerts, J. van den Oord et al.,
“Scenic: single-cell regulatory network inference and clustering,” Nature
methods, vol. 14, no. 11, p. 1083, 2017.

[10] A. Irrthum, L. Wehenkel, and P. Geurts, “Inferring regulatory networks
from expression data using tree-based methods,” PloS one, vol. 5, no. 9, p.
e12776, 2010.

[11] W. Zhuang, Y. Ye, Y. Chen, and T. Li, “Ensemble clustering for internet
security applications,” IEEE Transactions on Systems, Man, and Cyber-
netics, Part C (Applications and Reviews), vol. 42, no. 6, pp. 1784–1796,
2012.

[12] T. Moerman, S. Aibar Santos, C. Bravo González-Blas, J. Simm,
Y. Moreau, J. Aerts, and S. Aerts, “Grnboost2 and arboreto: efficient and
scalable inference of gene regulatory networks,” Bioinformatics, vol. 35,
no. 12, pp. 2159–2161, 2019.

[13] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp. 5–32,
2001.

[14] J. H. Friedman, “Stochastic gradient boosting,” Computational statistics
& data analysis, vol. 38, no. 4, pp. 367–378, 2002.

[15] P. Geurts, D. Ernst, and L. Wehenkel, “Extremely randomized trees,” Ma-
chine learning, vol. 63, no. 1, pp. 3–42, 2006.

[16] Y. Freund, R. Schapire, and N. Abe, “A short introduction to boosting,”
Journal-Japanese Society For Artificial Intelligence, vol. 14, no. 771-780,
p. 1612, 1999.

[17] A.-C. Haury, F. Mordelet, P. Vera-Licona, and J.-P. Vert, “Tigress: trustful
inference of gene regulation using stability selection,” BMC systems biology,
vol. 6, no. 1, p. 145, 2012.

[18] C. Cheadle, M. P. Vawter, W. J. Freed, and K. G. Becker, “Analysis of
microarray data using z score transformation,” The Journal of molecular
diagnostics, vol. 5, no. 2, pp. 73–81, 2003.

14

[19] S. Lloyd, “Least squares quantization in pcm,” IEEE transactions on in-
formation theory, vol. 28, no. 2, pp. 129–137, 1982.

[20] S. Peignier, P. Schmitt, and F. Calevro, “Grenadine: data-driven
approaches to infer gene regulatory networks in python,” Jun.
2020, working paper or preprint. [Online]. Available: https://hal.
archives-ouvertes.fr/hal-02863880

[21] F.-M. De Rainville, F.-A. Fortin, M.-A. Gardner, M. Parizeau, and
C. Gagné, “Deap: A python framework for evolutionary algorithms,” in
Proceedings of the 14th annual conference companion on Genetic and evo-
lutionary computation, 2012, pp. 85–92.

[22] G. Grahne and J. Zhu, “Efficiently using prefix-trees in mining frequent
itemsets.” in FIMI, vol. 90, 2003, p. 65.

[23] J. Han, J. Pei, Y. Yin, and R. Mao, “Mining frequent patterns without
candidate generation: A frequent-pattern tree approach,” Data mining and
knowledge discovery, vol. 8, no. 1, pp. 53–87, 2004.

[24] S. Raschka, “Mlxtend: Providing machine learning and data science
utilities and extensions to python’s scientific computing stack,” The
Journal of Open Source Software, vol. 3, no. 24, Apr. 2018. [Online].
Available: http://joss.theoj.org/papers/10.21105/joss.00638

[25] S. Gama-Castro, H. Salgado, M. Peralta-Gil, A. Santos-Zavaleta, L. Muniz-
Rascado, H. Solano-Lira, V. Jimenez-Jacinto, V. Weiss, J. S. Garcia-Sotelo,
A. Lopez-Fuentes et al., “Regulondb version 7.0: transcriptional regulation
of escherichia coli k-12 integrated within genetic sensory response units
(gensor units),” Nucleic acids research, vol. 39, no. suppl 1, pp. D98–D105,
2010.

[26] C. Zhu, K. J. Byers, R. P. McCord, Z. Shi, M. F. Berger, D. E. New-
burger, K. Saulrieta, Z. Smith, M. V. Shah, M. Radhakrishnan et al.,
“High-resolution dna-binding specificity analysis of yeast transcription fac-
tors,” Genome research, vol. 19, no. 4, pp. 556–566, 2009.

[27] K. D. MacIsaac, T. Wang, D. B. Gordon, D. K. Gifford, G. D. Stormo, and
E. Fraenkel, “An improved map of conserved regulatory sites for saccha-
romyces cerevisiae,” BMC bioinformatics, vol. 7, no. 1, p. 113, 2006.

[28] P. S. Novichkov, O. N. Laikova, E. S. Novichkova, M. S. Gelfand, A. P.
Arkin, I. Dubchak, and D. A. Rodionov, “Regprecise: a database of curated
genomic inferences of transcriptional regulatory interactions in prokary-
otes,” Nucleic acids research, vol. 38, no. suppl 1, pp. D111–D118, 2009.

[29] T. Schaffter, D. Marbach, and D. Floreano, “Genenetweaver: in sil-
ico benchmark generation and performance profiling of network inference
methods,” Bioinformatics, vol. 27, no. 16, pp. 2263–2270, 2011.

15

[30] T. Fawcett, “An introduction to roc analysis,” Pattern recognition letters,
vol. 27, no. 8, pp. 861–874, 2006.

[31] J. Davis and M. Goadrich, “The relationship between precision-recall and
roc curves,” in Proceedings of the 23rd international conference on Machine
learning. ACM, 2006, pp. 233–240.

[32] K. Pearson, “Liii. on lines and planes of closest fit to systems of points in
space,” The London, Edinburgh, and Dublin Philosophical Magazine and
Journal of Science, vol. 2, no. 11, pp. 559–572, 1901.

16

In Silico S. aureus S. cerevisiae E. coli

ABr GBr

GBc XRTr

ABr GBc

BRSr SVMc

BRSr RFc SVMr

SVMr BRSr XRTc

BRSr ABr SVMr

0.68 0.2 0.02 0.033

0.8 0.04 0.02 0.05

0.84 0 0.14 0.12

0 0.04 0.48 0.28

0 0.44 0.22 0.28

0 0.36 0.24 0.45

0 0.34 0.3 0.45

0.0

0.5

E. coli In silico S. aureus S. cerevisiae

GBc XRTr

ABr GBr

ABr GBc

BRSr SVMc

ABr BRSr SVMr

BRSr SVMr XRTc

BRSr RFc SVMr

0.71 0.82 0.61 0.54

0.72 0.84 0.63 0.54

0.72 0.85 0.63 0.55

0.81 0.73 0.71 0.6

0.79 0.82 0.7 0.6

0.81 0.79 0.68 0.58

0.8 0.79 0.67 0.6

0.6

0.8

S. cerevisiae In silico S. aureus E. coli

BRSr SVMc

BRSr SVMr XRTc

BRSr RFc SVMr

GBc XRTr

ABr BRSr SVMr

ABr GBr

ABr GBc

0.06 0.22 0.24 0.4

0.057 0.3 0.24 0.38

0.058 0.33 0.24 0.37

0.034 0.37 0.16 0.22

0.051 0.46 0.23 0.35

0.036 0.52 0.18 0.24

0.037 0.51 0.19 0.24

0.2

0.4

Figure 2: Support, AUROC and AUPR scores for the maximal itemsets ex-
tracted, computed for each dataset. Ensembles that include SVMr, BRSc and a
method based on decision trees are represented in green, and other combinations
in red.

17

In silico E. coli S. aureus S. cerevisiae
0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

AU
RO

C

Single
Other Ensemble
SVM BRSr Trees

In silico E. coli S. aureusS. cerevisiae
0.0

0.1

0.2

0.3

0.4

0.5

AU
PR

Single
Other Ensemble
SVM BRSr Trees

Figure 3: AUROC and the AUPR scores obtained by each GRN inference al-
gorithm from GReNaDIne, on the DREAM5 dataset (gray). Single methods
parallel plots and boxplots are represented in gray, while BRSr•VSMr•Trees
ensembles parallel plots are depicted in red, and other ensembles in blue.

300 200 100 0 100 200 300 400
PC 0

200

100

0

100

200

300

PC
 1 SRLrMI

XRTr

Pcorr

BRSr

TIGRESS GBr

SVMc

Scorr

RFc
RFr

ABr

ABc

XRTc
GBc

Ktau

SVMr

Figure 4: Single methods represented along the first and second Principal com-
ponents.

18

In Silico E. coli S. aureus S. cerevisiae
0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

AU
RO

C

DREAM5 Community
BRS SVM Ens
BRS SVM Ens Corr
Single

In Silico E. coli S. aureus S. cerevisiae
0.0

0.1

0.2

0.3

0.4

0.5

AU
PR

DREAM5 Community
BRS SVM Ens
BRS SVM Ens Corr
Single

Figure 5: Boxplots representing, for each DREAM5 dataset, the AUROC and
the AUPR obtained by SVM•BRS•Ens ensembles (red), SVM•BRS•Ens•Corr
ensembles (green), single GReNaDIne methods (gray) and the DREAM5 com-
munity (red line)

19

In
 S

ili
co

E.
 c

ol
i

S.
 a

ur
eu

s
S.

 c
er

ev
is

ia
e

ABr BRSr SVMr
BRSr RFr SVMr
BRSr GBr SVMr
BRSr GBc SVMr
BRSr RFc SVMr

BRSr SVMr XRFr
BRSr GBr SVMc
BRSr RFc SVMc

BRSr SVMr XRFc
BRSr GBc SVMc
ABc BRSr SVMr

BRSr SVMc XRFc
ABr BRSr SVMc

BRSr SVMc XRFr
BRSr RFr SVMc
ABc BRSr SVMc

3 7 3 2
2 5 2 10
6 6 1 7
9 4 4 5
14 2 8 6
1 8 6 16
7 13 10 3
11 3 14 8
15 1 7 14
10 14 11 4
16 10 5 9
13 12 15 1
4 15 9 13
5 9 13 15
8 11 12 12
12 16 16 11

2

4

6

8

10

12

14

16

In
 S

ili
co

E.
 c

ol
i

S.
 a

ur
eu

s
S.

 c
er

ev
is

ia
e

BRSr RFc SVMr
BRSr SVMr XRFc
BRSr RFc SVMc
ABr BRSr SVMc
ABr BRSr SVMr

BRSr SVMc XRFc
BRSr GBc SVMr
BRSr GBr SVMr
BRSr RFr SVMr

BRSr GBc SVMc
BRSr GBr SVMc

BRSr SVMr XRFr
BRSr RFr SVMc

BRSr SVMc XRFr
ABc BRSr SVMc
ABc BRSr SVMr

14 3 2 3
16 1 1 4
12 2 8 2
1 6 11 6
5 5 6 8
13 4 9 1
10 7 5 7
6 8 3 12
2 13 4 13
9 9 12 5
4 12 10 9
8 10 7 14
3 14 13 11
7 11 15 10
11 16 16 15
15 15 14 16

2

4

6

8

10

12

14

16

Figure 6: Heatmaps representing, for each dataset, the ranking of
SVM•BRSr•Tree combinations, regarding their AUROC (top) and AUPR (bot-
tom) evaluation scores (rank 1 being assigned to the best method)

20

