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Abstract

Standard flavors of density-functional theory (DFT) calculations are known to fail

in describing anions, due to large self-interaction errors. The problem may be circum-

vented by using localized basis sets of reduced size, leaving no variational flexibility

for the extra electron to delocalize. Alternatively, a recent approach exploiting DFT

evaluations of total energies on electronic densities optimized at the Hartree-Fock (HF)

level has been reported, showing that the self-interaction-free HF densities are able to

lead to an improved description of the additional electron, returning affinities in close

agreement with the experiments. Nonetheless, such an approach can fail when the HF

densities are too inaccurate. Here, an alternative approach is presented, in which an
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embedding environment is used to stabilize the anion in a bound configuration. Simi-

larly to the HF case, when computing total energies at the DFT level on these corrected

densities, electron affinities in very good agreement with experiments can be recovered.

The effect of the environment can be evaluated and removed by an extrapolation of

the results to the limit of vanishing embedding. Moreover, the approach can be easily

applied to DFT calculations with delocalized basis sets, e.g. plane-waves, for which

alternative approaches are either not viable or more computationally demanding. The

proposed extrapolation strategy can be thus applied also to extended systems, as of-

ten studied in condensed-matter physics and materials science, and we illustrate how

the embedding environment can be exploited to determine the energy of an adsorbing

anion - here a chloride ion on a metal surface - whose charge configuration would be

incorrectly predicted by standard density functionals.

1 Introduction

Charge-transfer processes are of paramount importance in many technological and biological

processes1 and they are exploited in many energy-conversion devices, such as solar cells2

and electro-catalysts.3 It is thus unfortunate that practical implementations of density func-

tional theory (DFT), which is the most widespread electronic-structure method in materials

science, fail in describing a wide range of negatively-charged atomic and molecular species.

The issue is linked to the approximate form of the unknown exchange-correlation func-

tional in DFT, which contains a spurious fraction of the electron-electron self-repulsion, also

known as self-interaction error (SIE).4 The SIE is particularly severe for anions of atoms

and small molecules, for which a careful inspection of the single-particle eigenvalues often

reveals positive HOMO energies.5 Small anions are thus incorrectly predicted to be unbound

by routinely-used density functionals.

If a localized basis set is employed, the HOMO levels can be artificially confined through

the use of a reduced basis. While calculations with a fully-converged basis would result
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in the extra electron being lost to the continuum,6 the pragmatic approach that exploits

moderate basis-set sizes (MBS) allows to self-consistently optimize anion electron densities

using DFT. Despite reasonable concerns,7 the MBS approach allows to calculate electron

affinities (EAs) as total energy differences between neutral and negatively-charged species,8

with results that are overall rather accurate, with mean-absolute errors (MAEs) of the order

of 100-200 meV.9

Burke and coworkers have shown how the large errors in the HOMO energies of atomic

anions can be reconciled with the accuracy of the corresponding total energies.10,11 Briefly,

the approximate treatment of exchange and correlation gives rise to an almost rigid upshift

of the Kohn-Sham (KS) potential with respect to the exact KS reference. The shift is such

that a barrier emerges at several angstroms from the nucleus. Standard localized basis-sets

only sample the ‘inner’ potential region, so that positive HOMO levels appear as bound even

though they are actually resonances in the fully-converged basis-set limit. Nevertheless,

the potential shift that strongly affects the HOMO energies has little effect on the self-

consistently computed electron densities, therefore enabling the calculation of accurate total

energies.6

An approach that has been successfully applied to calculate EAs of atomic10,11 and molec-

ular12 systems consists in evaluating DFT total energies from electron densities that are non-

self-consistently computed using other electronic-structure methods. In particular, feeding

the PBE density functional13,14 with densities optimized at the Hartree-Fock (HF) level al-

lows to calculate EAs with a lower MAE than the MBS one.12 In contrast with approximate

DFT functionals the HF framework is one-electron self-interaction free,4 and it consistently

returns negative HOMO energies even for the anionic systems that are metastable in most

DFT approximations.12 However, problems can still arise for systems for which HF densities

are not accurate enough. This approach is also not ideal for extended (metallic) systems,

for which the computation of the HF exchange is very expensive, and HF provides a poor

reference.
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In this work, we propose an alternative scheme that allows stabilizing localized anion con-

figurations within a DFT framework. By exploiting a continuum embedding environment

that favors electron localization, we are able to self-consistently compute anion densities

and total energies for properly bound systems. The artificial contribution that derives from

the embedding can be removed through extrapolation to zero embedding intensity, allowing

to estimate EAs in the absence of the environment. Specifically, we suggests two possible

embedding schemes. In the first one, a dielectric embedding, analogous to the one employed

in implicit solvation models to mimic the solvent response, provides an electrostatic stabi-

lization of bound states. In the second scheme, an ad-hoc confining potential favors electron

localization by providing instead a de-stabilizing contribution for the delocalized states. The

two schemes provide very similar results, with the MAE computed for the G2-1 EA data

set15 being in the range 0.12-0.15 eV. This approach thus allows one to estimate the in-

trinsic density functional accuracy within a self-consistent framework. In contrast with the

MBS approach, our strategy is not limited to localized basis-set and thus one can reach a

well-defined basis-set convergence limit.

Furthermore, the strategy can be trivially applied to solids and periodic systems, consid-

ering the very limited additional cost of the embedding procedure with respect to standard

DFT calculations. As an example, we consider here a system constituted by a chloride ion

and a Pt(111) surface, modeled as a periodically repeated slab. Standard PBE-DFT predicts

Cl− to be unbound,10,11 displacing a considerable fraction of the electron beyond charge neu-

trality on the metallic substrate, even at large distances between the slab and the ion. We

show here that the dielectric embedding allows to stabilize the configuration in which the full

additional charge is localized on the chlorine atom. Extrapolation to vanishing embedding

intensity allows to estimate the correct energy of the Pt(111) + Cl− system.

The article is structured as follows. Section 2 describes the embedding procedure and

it presents the computational parameters employed in the calculations. Results on the EA

extrapolation for the various embedding schemes investigated, and the comparison with
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previous approaches is then reported in Section 3.1. The application of the dielectric extrap-

olation method to extended systems is then illustrated in Section 3.2. Finally, the conclusions

are presented in Section 4.

2 Methods

2.1 Dielectric Embedding

We first consider a dielectric embedding, as typically employed in continuum solvation models

to mimic the electrostatic response of the solvent on the embedded solvated system. Namely,

an interface function s(r) is defined in terms of some of the system’s degrees of freedom and

chosen to smoothly vary between the value of 1 in the volume where the embedded system’s

degrees of freedom are present and the value of 0 in the embedding region. In particular, we

have tested here two possible cavity definitions: the electron density-based function from the

revised self-consistent continuum solvation (SCCS) model16–18 and a rigid interface function

based on atom-centered spheres from the soft-sphere continuum solvation (SSCS) model.19

In the former, the cavity function is defined using the following piece-wise definition:

sSCCS (r) =


0 ρel (r) ≤ ρmin

1− t
(

ln ρmax−ln ρel(r)
ln ρmax−ln ρmin

)
ρmax > ρel (r) > ρmin

1 ρel (r) ≥ ρmax

(1)

where t (x) is a smooth step function that goes from 0 to 1, with continuous first and second

derivatives:

t (x) = x− sin (2πx)

2π
. (2)

The interface is defined in terms of two physically intuitive parameters, ρmax and ρmin, that

control how close to the embedded system the interface lies: the smaller their values, the

further away from the embedded system is the interface. The interface function s(r) is used
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to construct the embedding dielectric function ε(r), which in the SCCS model takes the

following form:

εSCCS (r) = exp (ln ε0 · (1− sSCCS (r))) . (3)

The second cavity definition exploits instead interlocking spheres centered on the system’s

nuclei with a smooth error-function profile:

sSSCS (r) = 1−
∏
a

1

2

[
1 + erf

(
|r−R| − ra

∆

)]
, (4)

where the ra quantity defines the radius of the sphere and the ∆ parameter regulates the

smoothness of the transition. Following the original SSCS model, we have set ra = αrvdWa ,

where rvdWa is the van der Waals radius of the element corresponding to the atom a as

defined in the universal force field library,20 and α is a dimensionless scaling parameter. The

dielectric function in the SSCS model is defined according to:

εSSCS (r) = (1− ε0) sSSCS(r) + ε0. (5)

Similarly to Equation 3, also Equation 5 allows to recover the vacuum permittivity (ε = 1)

inside the quantum-mechanical region, where s(r) is equal to one, and a constant permittivity

ε0 in the surrounding volume, where s(r) assumes a value of zero.

The electrostatic energy of the embedded system will be expressed as

Eel =
1

2

∫
ρ (r)φ (r) dr =

1

2

∫
ρ (r)φsys (r) dr︸ ︷︷ ︸
Esys

+
1

2

∫
ρ (r)φpol (r) dr︸ ︷︷ ︸
Epol

, (6)

where Esys and Epol can be seen as the electrostatic contributions that arise from the interac-

tions within the embedded system and between the system and the embedding environment,

respectively, ρ (r) = ρel (r) +
∑

a ρ
ion
a (r−Ra) is the total (electron and nuclear) charge den-

sity of the embedded system and the electrostatic potential φ (r) = φsys (r) + φpol (r) is the
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solution of the generalized Poisson equation:

∇ · ε (r)∇φ (r) = −4πρ (r) . (7)

The modified electrostatic potential tends to stabilize localized anions’ electronic densities:

indeed, it provides an electrostatic stabilization, which is greater for charged and dipolar

systems. In the dielectric embedding we can play with the intensity of the embedding

(in this case the dielectric permittivity of the environment ε0) to fictitiously stabilize the

electronic density of difficult (unbound) systems and extrapolate their energies for vanishing

embedding (i.e. for ε0 → 1).

2.2 Confining potential

The second embedding environment is a confining potential contribution to be added to the

Kohn-Sham potential. In particular, such contribution may be defined as proportional to the

value of the complementary of the interface function. The corresponding energy contribution

can be written as:

Econfine =

∫
κ (1− s (r)) ρel (r) dr, (8)

where the confining constant κ is a positive tunable parameter, which acts as a destabilization

factor for the electronic density that spills out of the interface. The corresponding addition

to the Kohn-Sham potential is given by

vconfine (r) = κ (1− s (r))− κ
∫
ρel (r′)

δs (r′)

δρel (r)
dr′ = κ (1− s (r))− κρel (r) ds

dρel
(r) . (9)

The last term naturally vanishes if the interface function is not an explicit function of the

system electron density. This is the case, for instance, if the cavity from the SSCS model

(Equation 4) is employed. In order to evaluate the electron affinity of a system, we can

simulate it in the presence of a fictitious confining potential and look at its total energy after
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removing the corresponding non-physical energy contribution (Equation 8). By extrapolating

this energy to vanishing confinement conditions, the energy of a non-embedded system can

be estimated, even for those cases where unbound states would make optimization of the

electronic density impossible.

2.3 Electron Affinities Calculations

Electron affinities (EAs) have been computed as energy differences between the neutral

species and the corresponding anions (∆SCF approach). Consistently with Ref.,12 we have

computed adiabatic EA values by considering optimized equilibrium geometries for both

the neutral and the negatively charged species, and by additionally including (harmonic)

zero-point energy (ZPE) corrections:

EA = (E0 +
1

2

N∑
i

~ω0,i)− (E−1 +
1

2

N∑
i

~ω−1,i) = ∆E + ∆ZPE, (10)

where ∆E = E0 − E−1 is the total energy difference between the neutral and the anionic

species and ∆ZPE = 1
2

∑N
i ~ω0,i− 1

2

∑N
i ~ω−1,i is the corresponding difference between ZPE

contributions. Note that the sums extend over the N = 3NA − 6 vibrational degrees of

freedom of each molecule (N = 3NA − 5 for linear molecules), where NA is the number of

atoms in the molecule.

2.4 Computational Details

All calculations have been performed with the Quantum ESPRESSO (QE) distribu-

tion.21,22 For the simulations involving continuum embeddings, we have used the ENVI-

RON module23 for QE, where we have also implemented the confining potential. Note that

for the dielectric embedding calculations the non-electrostatic terms that are typically em-

ployed to estimate cavity, repulsion and dispersion contributions to solvation energies have

not been considered here.17,18 We have used the PBE generalized-gradient approximation for
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the exchange-correlation functional13,14 and pseudo-potentials from the Standard Solid-State

Pseudopotential library24 (SSSP efficiency 1.0). Plane waves up to a kinetic energy of 40

Ry and 320 Ry have been used for the expansion of the wave-function and of the density,

respectively.

We have performed Γ-only spin-polarized calculations using a cubic box with a 13 Å-long

side, if not mentioned otherwise. The Martyna-Tuckerman reciprocal-space correction,25

opportunely generalized for dielectric embedding26 when necessary, has been employed to

remove artifacts from periodic-boundary conditions (PBC). We have verified that the com-

puted EA values are well converged with respect to the cell size and other computational

parameters (see Supporting Information).

Vibrational calculations have been performed using the finite-difference approach as im-

plemented in the relevant tool in the atomic simulation environment (ASE).27 The harmonic

frequencies have been obtained by diagonalizing the force-constant matrix, constructed from

the forces computed for two (opposite) displacements of 0.015 Å per atom and Cartesian

coordinate.

3 Results and Discussion

3.1 Electron Affinity Extrapolation

Figure 1 and Figure 2 illustrate how the two proposed extrapolation procedures can be

implemented for a representative molecular species (CH, for all other species see Supporting

Information). In Figure 1, the vacuum energy difference between the neutral and the anionic

form of CH has been obtained by extrapolating results of calculations performed in an

embedding dielectric continuum. In particular, we consider the energy difference ∆E ′ (ε0):

∆E ′ (ε0) =
[
E0 (ε0)− Epol

0 (ε0)
]
−
[
E−1 (ε0)− Epol

−1 (ε0)
]

= ∆E (ε0)−∆Epol (ε0) , (11)
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where ∆E (ε0) = E0 (ε0)−E−1 (ε0) is the total energy difference between the charge-neutral

and anionic species, respectively, both embedded in a dielectric medium with dielectric con-

stant ε0. ∆Epol (ε0) = Epol
0 (ε0)−Epol

−1 (ε0) is the corresponding energy difference between the

dielectric polarization contributions to the electrostatic energy of the systems (see Equation

6). The vacuum energy differences ∆E is obtained by extrapolating to ε0 = 1 a polynomial

fit of ∆E ′ (ε0) as a function of the dielectric permittivity. We note in passing that vacuum

results could be equivalently obtained by taking the ε0 → 1 limit of the energy difference

∆E (ε0), since both Epol
0 (ε0) and Epol

−1 (ε0) tend to zero for ε0 approaching the vacuum dielec-

tric constant. We have found, however, that by subtracting the polarization contributions to

the total energies we obtain smoother functions of ε0, which are thus preferable for numerical

extrapolations.

0 5 10 15 201
0

+1.400

+1.420

+1.440

+1.460

+1.480

+1.500

+1.520

+1.540

E′
 / 

eV

CH

SCCS
SSCS

Figure 1: Dielectric extrapolation of ∆E ′, using the SCCS cavity (blue curve) or the SSCS
cavity (cyan curve) for a representative molecule (CH).

The two curves in Figure 1 differ in the choice of the cavity function s(r). In particular,

we have tested the electron-density-based cavity from the SCCS model (Equation 1) and the
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cavity based on atom-centered spheres from the SSCS model (Equation 4). While we observe

different trends for the various molecules and cavities (the trend is not always monotonic),

we always obtain smooth ∆E ′ vs ε0 curves that allow for a stable polynomial extrapolation

to ε0 = 1.

Figure 2 shows how the vacuum ∆E value for unbound anions can be alternatively extrap-

olated using the confining potential described in Section 2.2. Note that the atom-centered

interface function from the SSCS model has been employed to construct the confining poten-

tial. The following energy difference has been considered in this second type of extrapolation:

∆E (κ) = E0 (κ)− E−1 (κ) . (12)

where E0 (κ) and E−1 (κ) are the total energy of the charge-neutral and anionic species,

respectively, where we have explicitly indicated the dependence on the confining potential κ.

For the confining potential case, we have found that sufficiently smooth curves can be ob-

tained without the need of subtracting the confining energy contributions from the respective

total energies, and we have thus used these for the vanishing-embedding extrapolation.

Figure 2 illustrates two equivalent extrapolation approaches based on the use of the

confining potential. On the one hand, the vacuum energy difference ∆E can be obtained

for vanishing confining potentials, i.e. by taking the κ → 0 Ry limit of ∆E(κ). On the

other hand, the same result is obtained by keeping fixed the magnitude of the potential

but systematically increasing the size of the cavity, thereby shifting the confining potential

to larger distances from the anion. Using the SSCS interface function, this is achieved by

increasing the value of the α parameter, which is the scaling factor that multiplies the ionic

radii of the atom-centered spheres that constitute the cavity (see Equation 4). As shown in

Figure 2, the vacuum ∆E value for CH can be obtained by either extrapolating ∆E(κ) to

κ = 0 Ry or to 1/α = 0. A polynomial fit is employed for the extrapolation in both cases

(more details are provided in the Supporting Information).
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Figure 2: Extrapolation of ∆E using the confining potential and the SSCS cavity. ∆E is
plotted as a function of the confining potential (κ, green) and as a function of the scaling
factor of the soft-sphere radii (1/α, red).

Figure 3 shows how the dielectric embedding and the confining potential stabilize lo-

calized electronic states that would otherwise be unbound, using the CH−3 species as an

illustrative example. In particular, Figure 3 reports the energy dependence of the HOMO

and of the lowest-energy delocalized level on the parameters that define the two embedding

environments: the dielectric constant of the medium ε0 and the confining potential factor κ.

For what concerns the dielectric embedding (Figure 3A), both the energy of the HOMO and

the one of the delocalized level decrease with increasing ε0. Indeed, both states are stabilized

by the dielectric embedding, due to the larger electrostatic interaction with the polarization

charge density. Localized states like the HOMO, however, undergo larger stabilizations for

increasing values of ε0. This is intuitively understood from the fact that a higher electron

localization is linked to larger potential gradients, which give rise to larger polarization den-

sities and, in turn, to more negative electrostatic energy contributions. Thus, the dielectric

embedding stabilizes both localized and delocalized states, but it promotes electron local-
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ization by providing a larger stabilization to the localized states than to the delocalized

ones.
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Figure 3: Orbital energies as a function of the dielectric constant of the embedding medium
ε0 (left) and the asymptotic confining potential κ (right) for CH−3 . Blue and orange lines
illustrate the energies of the anion’s HOMO and the lowest-energy delocalized state, re-
spectively. Different line styles and symbols illustrate the various cells sizes employed (the
corresponding cubic cell’s side is reported in the legend). As a reference, the black curve
illustrates a line with a slope of one.

Figure 3B illustrates corresponding trends for the confining potential embedding. This

second embedding approach introduces a destabilizing term that affects both the HOMO

and the delocalized states. This is clearly visible from the energy increase of the two levels

for increasing values of κ. The latter, however, undergoes a larger destabilization, following

a linear trend. In particular, the upward potential shift of the delocalized level coincides

with the value of the confining potential applied (cf. line with unitary slope in Figure 3B).

In contrast, the HOMO energy follows a milder dependence on κ, since the corresponding

state is mostly localized in the region of space where the confining potential is zero. There-

fore, the confining potential embedding fosters electron localization through a destabilizing

contribution, which is larger for delocalized states than for the localized ones.

Figure 3 also illustrates how the delocalized energy levels are affected by the volume of

the cell employed in the calculations. While the HOMO energies are not affected by the cell
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size and they virtually remain constant when increasing the cubic box side from 13 Å to 17

Å, the delocalized levels are considerably affected by a volume change. This is consistent

with a ‘particle-in-a-box’ model, where the minimum-energy level shifts down for increasing

volumes. According to this picture, the minimal embedding conditions for which localized

anion states can be effectively stabilized are a function of the cell size. We observe, in fact,

that the threshold values of ε0 and κ that allow for converging anion calculations shifts

to larger values with increasing cell volumes. These thresholds can be identified with the

points where the (localized) HOMO level becomes lower in energy than the corresponding

delocalized state, i.e. the points where the blue and orange curves cross in Figure 3.

The results of the different extrapolation techniques considered are illustrated in Figure

4 for all the molecules of the G2-1 set. We also report the results of vacuum calculations for

the molecules whose anion calculation converged for the cell size considered (13×13×13 Å3).

For these molecules, all techniques lead to extrapolated values that agree within less than

30 meVs with the reference vacuum results. Overall, the dielectric extrapolation technique,

using either the SCCS or the SSCS cavity, and the confining-potential extrapolation approach

based on either the zero-potential or the large-cavity limit, give rise to total energy differences

between neutral and anion species that are in good agreement with each others. The largest

deviations are observed for the confining potential extrapolation scheme based on the cavity

size: the infinitely-large-cavity limit, in fact, is approached rather slowly (see Figure 2),

introducing the largest error in the extrapolated values.

EA estimates are obtained by adding ZPE corrections to the extrapolated energy dif-

ferences between the optimized neutral and anionic species (see Equation 10). In order to

determine the ∆ZPE corrections, we follow an approach that is analogous to the one em-

ployed to extrapolate ∆E values to vacuum conditions, using the frequencies computed for

the anion and for the neutral species in different embedding environments. While all de-

scribed approaches can in principle be employed for this purpose, we determine the ∆ZPE

corrections using the only dielectric extrapolation technique in combination with the SSCS
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Figure 4: Vacuum extrapolated ∆E values computed for all the elements of the G2-1 set.
The various extrapolation methods are compared to each other: blue and cyan bars are for
the dielectric extrapolations using the SCCS cavity and the SSCS cavity, respectively; the
green and red bars are for the confining-potential extrapolations to zero potential and large
cavity, respectively; the ∆E values computed in vacuum are plotted as black bars (no bar is
shown if the anion calculation did not converge).

cavity and apply those to all extrapolation methods. The computed values of ∆ZPE (see

Supporting Information) agree well with the values determined in Ref.12 . Our approach,

however, allows to consistently determine ZPE corrections using the same scheme that is em-

ployed to calculate the energy differences ∆E. This instead is not possible for the approaches

that exploit different electronic-structure method for the optimization of the electron density

and for the energy evaluation (e.g. the HF-PBE method from Ref.12).

Predicted EA values for the G2-1 set are plotted against experimental data in Figure

5. Results are compared to the MBS calculations and to EA values obtained by perform-

ing PBE-DFT calculations on pre-computed Hartree-Fock electron densities (HF-PBE ap-

proach).12 The mean absolute errors (MAEs) for all theoretical models considered here are

presented in Table 1. Considering the good agreement across the various extrapolation meth-

ods (Figure 4), which is reflected in the similarity of the corresponding MAEs (Table 1), only

one set of extrapolated data is plotted in Figure 5 (tabulated EA values computed using all

the extrapolation approaches are reported in the Supporting Information). The various ex-

trapolation methods generally return similar level of agreement with experimental data, with
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the MAE across the G2-1 being approximately 0.12 eV. A slightly larger MAE (0.146 eV)

is obtained for the confining-potential extrapolation method based on the cavity size. We

ascribe this to the larger uncertainty in the determination of the vacuum EA, due to the

observed slower convergence towards the large-cavity limit as obtained with this strategy.

Overall, the MAE obtained for the various extrapolation methods is very similar to what

obtained through the MBS. This is not surprising, as both the embedding extrapolation

calculations and the MBS ones are based on the PBE density functional for both the density

optimization and the energy evaluation. A lower MAE (0.079 meV) is obtained using the

HF-PBE method, which is consistent with the use of higher quality densities; similar results

could be expected here using simple self-interaction corrections.28,29

It is important to stress the fact that the embedding extrapolation approach described

here does not aim at producing highly accurate electron affinities, as the limiting factor of the

method’s accuracy is the density functional employed in the underlying electronic-structure

calculations. However, the proposed scheme provides two main advantages with respect

to available methods. First, it provides a framework that is fully self-consistent, and that

makes use of a single electronic-structure methods for the electron density optimization and

the energy estimate, enabling consistent geometry optimizations and frequency calculations.

Most importantly, it can be employed in combination with any basis-set type, including

plane waves, and it can be straightforwardly applied in combination with extended systems,

as illustrated in the following section.

Table 1: Mean absolute errors (MAEs) for the various theoretical methods considered.

Method MAE (eV)
MBS12 0.115

HF-PBE12 0.079
Dielectric extrapolation (SCCS) 0.123
Dielectric extrapolation (SSCS) 0.123

Confinement extrapolation (energy) 0.115
Confinement extrapolation (cavity size) 0.146
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Figure 5: Theoretically-computed EAs versus corresponding experimental values for the G2-
1 set. Red symbols corresponds to results obtained from the extrapolation method (vanishing
potential limit in the confining-potential embedding), while grey and yellow symbols are for
the moderate basis set (MBS) method12 and for PBE calculations based on Hartree-Fock
densities (HF-PBE),12 respectively.

3.2 Application to Extended Systems

Plane-wave calculations on isolated anions that are predicted to have a positive HOMO by

DFT present severe converge issues. This is because the system tends to delocalize the frac-

tion of the additional electron that can not be bound by the nuclei. If the simulation box,

however, includes a second subsystem that can accept the unbound charge, like e.g. a metal

surface, a different and problematic aspect can emerge. Indeed, under these circumstances,

the lowest-energy electron density configuration involves the extra electron to be split be-

tween the anion and the metal, regardless of the distance between the two subsystems.

As a study system, we consider here a chloride ion sitting at 10 Å from a Pt(111) surface.

The surface has been modeled as a bulk-like 4-layer slab, constructed using the computed

equilibrium lattice constant a = 3.961 Å. A 3×3 multiple of the surface primitive cell has

been considered, and the first Brillouin zone has been sampled with a 6×6×1 Γ-centered

k-point grid. A large separation between periodic replicas of the slab (40 Å) has been
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introduced along the surface normal.

Figure 6 shows the HOMO energy calculated for an isolated Cl− ions in a continuum

embedding environment as a function of ε0. Similarly to what observed for CH−3 (see Figure

3), the HOMO energy, which is positive (thus unbound) under vacuum conditions (ε0 = 1),

rapidly decreases for increasing values of ε0. Figure 6 also reports the Fermi energy of

the Pt(111) slab, εF , as a function of ε0. εF increases with increasing ε0: the dielectric

continuum, indeed, screens the surface dipole, thereby lowering the work function across

the interface or, in other words, increasing the Fermi level with respect to the asymptotic

electrostatic potential, which is set as the zero.
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Figure 6: The HOMO energy of an isolated Cl− anion (blue) is plotted as a function of the
dielectric constant of the embedding medium. The Fermi energy of the Pt(111) slab, εF , is
shown in green. A 15×15×15 Å3 cubic cell has been employed for the isolated anion. The
SSCS cavity, with an α parameter of 1.2 has been employed to set the boundary between
the quantum-mechanical and the embedding regions.

The HOMO energy of the chloride ion, as the LUMO energy of the neutral Cl atom,

should lie below the Fermi energy of the Pt slab. However, in a vacuum environment, the

large SIE that affects Cl− shifts the HOMO to an energy that is considerably larger than εF .

A fraction of the extra electron is thus expected to be transferred to the Fermi level of the

metal, even if the subsystems lie at very large distance from each other. This is a well-known

issue in the context of the so-called ion-unbalance model for electrochemical interfaces.30 This
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model exploits the alignment of single-particle energies to drive the formation of an electrified

metal surface and charged electrolyte particles in an overall charge neutral unit cell. The

large DFT SIE, unfortunately, prevents the formation of anions with the full expected charge,

with consequences on their solvation environment.

Figure 7 A illustrates the charge computed for the chlorine atom in the simulations that

include the metal surface. In order to determine the net Cl charge we split the simulation cell

in two parts using as dividing surface the plane that bisects the vertical distance between

the ion and the uppermost Pt layer. The partial charge assigned to each subsystem is

then obtained by integrating the charge distributions that reside in the corresponding cell

partition. For vacuum conditions, the chlorine charge is approximately −0.5, meaning that

close to half of an electron actually resides on the platinum slab. The Cl charge gradually

decreases for increasing values of ε0 until it reaches the value of ∼ −1 for ε0 ∼ 5. This trend

can be explained on the basis of the relative difference between the anion HOMO energy and

the metal Fermi energy. Indeed, the difference between the two becomes smaller and smaller

for increasing values of ε0 up to ε0 ∼ 5 (Figure 6). For larger values of ε0, the HOMO energy

becomes lower than the Pt Fermi energy, and we consistently observe full occupancy of the

Cl− HOMO.

Figure 7 B illustrates the total energy of the Pt(111) + Cl− system, computed as a

function of the dielectric constant of the environment. While a smooth energy trend is

observed for large values of the dielectric constant of the medium, a sudden drop is observed

at ε0 ∼ 5, in correspondence of the ε0 value at which charge transfer to the surface starts

to take place. Nevertheless, we can obtain the energy of the system with the correct charge

configuration (i.e. with the electron beyond charge neutrality sitting entirely on the Cl atom)

by extrapolating the total energies computed for large ε0 values, for which the chlorine charge

is close to −1. We thus extrapolate the value expected for vacuum conditions (ε0 = 1) from

these energies using a polynomial function. The procedure leads to a total energy that differs

from the result of the self-consistent vacuum calculation by a considerable amount (∼ 2.5

19



0 5 10 15 20 25 30
0

1.0

0.5

0.0

Cl
 c

ha
rg

e

A Pt(111)+Cl

0 5 10 15 20 25 30
0

0

5

10

E
E p

ol
E(

0
=

1)
 / 

eV

B

Figure 7: (A): The partial charge on the Cl atom is plotted as a function of the dielectric
constant of the embedding medium. (C): total energy of the Pt(111) + Cl− system as
a function of the dielectric constant of the medium. Note that the dielectric polarization
contribution has been subtracted from the total energy in order to obtain a smoother curve.
The zero has been set as the energy of the system in vacuum. The full dots illustrate the
computed energies (the solid line guides the eye). The energies that correspond to a chlorine
charge of ∼ −1 (i.e. the values corresponding to ε0 ≥ 8) have been used for the dielectric
extrapolation. The extrapolating curve is illustrated by a dashed line and the star symbol
indicates the energy extrapolated to vacuum conditions.
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eV), which is consistent with the significant different charge state of the two subsystems.

4 Conclusions

Summarizing, we have presented a strategy that allows to stabilize localized anion config-

urations within a DFT framework. This is achieved by means of a continuum embedding,

whose effect on the calculations can be removed through extrapolation to zero intensity.

Two embedding schemes, based on a dielectric medium that favors electron localization and

a confining potential that penalizes delocalization have been tested and shown to provide

virtually identical EAs estimates through ∆SCF calculations.

The proposed strategy allows one to estimate the accuracy of self-consistently-evaluated

density functionals without relying on electron densities optimized using other electronic-

structure methods. The MAE obtained with the PBE functional for the G2-1 dataset is in

line with previous estimates based on the MBS approach, but, in contrast with the latter,

our framework presents well-defined basis-set convergence limits and it is not specific to

localized basis functions. In addition, the functional extrapolation procedure allows for

straightforward force evaluations, which enables self-consistent geometry optimizations and

frequency calculations.

The extrapolation method described here can be similarly applied in the context of

periodic calculations for extended systems. As a study case, we have shown how the dielectric

embedding can be employed to stabilize the correct charge configuration for the Pt(111)+Cl−

system, and how the corresponding energy for vacuum conditions can be obtained by a

suitable extrapolation procedure.
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