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Abstract 12 
 13 
Volatile thiols are very strong-smelling molecules that can impact the aroma of numerous 14 
foods, such as fruit and beverages. Several thiols and thiol precursors have already been 15 
reported in different plants used as raw material for beverage production, either fermented or 16 
not. We focus on those thiols in beverages and their release mechanisms from precursors 17 
during the different biotechnological steps of their processes. Volatile thiols in food can be 18 
classified in two different groups: low-molecular-weight volatile thiols, which impact the 19 
smell negatively, and volatile thiols with higher boiling points, which contribute positively to 20 
the aroma profile. The first part is devoted to volatile thiols without taking into account the 21 
highly malodorous small molecules as H2S, methanethiol, etc. The second part deals with 22 
precursors and the different release mechanisms induced by various processes such as 23 
extraction, roasting or fermentation, and the culture method that can influence the amount of 24 
thiol and their precursors. 25 
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 27 

1. Volatile thiols in beverages 28 
 29 

1.1. Non-alcoholic beverages 30 
 31 

1.1.1. Tropical fruit juices 32 
 33 

Tropical fruits are significant sources of volatile thiol compounds (Table 1) as recently 34 
reviewed by Cannon and Ho (Robert J.  Cannon & Ho, 2018). The different tropical fruits 35 
containing thiol are listed by alphabetical order in the following paragraphs. By extrapolation, 36 
it is possible to deduce their presence in the corresponding fruit juices, although oxidation 37 
reaction during extraction could decrease their levels.  38 

 39 

Table 1 40 
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Durian 41 
Durian is a tropical fruit with strong sulfur aroma not very known in the western countries but 42 
is one of the most popular fruits for Asian peoples. The first thiol identified in durian was the 43 
propane-1-thiol, as well as other low molecular weight thiols in the early 1970s, by distillation 44 
of the pulp (Baldry, Dougan, & Howard, 1972). Another volatile thiol was discovered thirteen 45 
years later in Malaysian fruits, also by distillation of the pulp: the 1-(ethylthio)-ethanethiol 46 
(Wong & Tie, 1995). More than five years later, 5-methyl-4-mercapto-2-hexanone was 47 
identified in a dichloromethane-pentane extract of three Indonesian durian fruits (Weenen, 48 
Koolhaas, & Apriyantono, 1996). The other thiols mentioned in the Table 1 were identified 49 
more recently by Li et al. (Li, Schieberle, & Steinhaus, 2012) including 3MB present in wine 50 
and 3MBT present in beer and coffee. 51 

 52 

Grapefruit 53 
Grapefruit is a citrus fruit that contains a large number of volatile sulfur compounds. Among 54 
the various compounds identified, 1-p-menthene-8-thiol is one of the major contributors to the 55 
grapefruit juice aroma, present in other fruits as guava, orange and pomelo. In fact, this thiol 56 
has a very low odor threshold (0.1 ng/L) and a 200-fold higher concentration in the juice 57 
(Demole, Enggist, & Ohloff, 1982). The 4MMP, also found in different fruits (guava, mango 58 
and orange) and beverages (beer, tea and wine), was identified as a volatile compound in 59 
grapefruit juice using HRGC/MS (Andrea  Buettner & Schieberle, 1999). Some results 60 
showed that 4MMP provides a more authentic aroma compared to 1-p-menthene-8-thiol 61 
(Andrea Buettner & Schieberle, 2001). The grapefruit peel also contains thiols in their oil 62 
with 4MMPOH, present in guava, beer and wine, but does not contain any trace of 1-p-63 
menthene-8-thiol or 4MMP (Lin & Rouseff, 2001). The same team identified 3MH and 64 
3MHA in grapefruit (Lin, Jella, & Rouseff, 2002), also reported in guava, passion fruit, beer 65 
and wine. Finally, Lin et al. elucidated the presence of 2MFT. This compound was also found 66 
in guava, orange, cashew apple, coffee and wine. Two different behaviours were highlighted 67 
during the evaporation process: decrease of all volatile thiols (except for 1-p-menthene-8-68 
thiol), which suggests that there were evaporated; presence of 1-p-menthene-8-thiol, which 69 
can be explained through the reaction of increased concentrations of limonene and hydrogen 70 
sulfide (Lin, Rouseff, Barros, & Naim, 2002). 71 

 72 

Guava 73 
Guava has many thiols in common with grapefruit. The first thiol identified in white and pink 74 
guava was 6-mercaptohexanol by direct extraction of flesh juices with dichloromethane and 75 
analyzed by GC-MS (Shibamoto, Nishimura, Yamaguchi, & Mihara, 1989). It was present at 76 
higher proportion in fresh white guava (GC area peak: 3.1%) than in fresh pink guava (0.6%) 77 
and the authors hypothesized that the difference of flavor between these two types of guava 78 
might be partially due to the presence of this compound. Sixteen years later, Mahattanatawee 79 
et al. and Clery et al. identified three important thiols: 3MH, 3MHA and 4MMPOH, using 80 
headspace and solvent extraction techniques (Clery & Hammond, 2007; Mahattanatawee, 81 
Goodner, & Baldwin, 2005). More recently, three other thiols were identified (4MMP) or 82 
confirmed (1-p-menthene-8-thiol and 2MFT) in guava puree using GC-pulsed flame 83 
photometric detector (GC-PFPD, sulfur mode) (Plaza, Marshall, & Rouseff, 2015).  84 



 85 

Passion fruit 86 
With grapefruit, yellow passion fruit is one of the most studied tropical fruits, likely due to its 87 
very intense aroma. One of the chemical classes standing out in the yellow passion fruit is 88 
sulfur-containing compound and especially thiol. Four volatile thiols were firstly identified in 89 
the passion fruit and among them, 3MH and 3MHA highly contribute to passion fruit aroma 90 
(Engel & Tressl, 1991). Oenologists and winemakers compare the aromas of certain grape 91 
varieties, particularly Sauvignon Blanc to that of passion fruit due to the presence of the 3MH 92 
and 3MHA in these grape varieties (Tominaga & Dubourdieu, 2000).  Lund et al. confirmed 93 
the characteristic notes of tropical fruits from 3MH and 3MHA by sensory approach (Lund, et 94 
al., 2009). Werkhoff et al. identified one more thiol with 3-mercaptohexylpentanoate 95 
(Werkhoff, Güntert, Krammer, Sommer, & Kaulen, 1998). Finally, 3MMB and 3MMBA, 96 
found also in beer, coffee and/or wine, were also identified in passion fruit (Tominaga & 97 
Dubourdieu, 2000). 98 

 99 

Other fruits 100 
Many authors reported thiols in other fruits than those presented above, for example in lemon 101 
(Robert J. Cannon, et al., 2015), mango (Munafo, Didzbalis, Schnell, Schieberle, & Steinhaus, 102 
2014), orange (Schieberle, Fischer, & Grab, 2008) and papaya (Schreier, Idstein, & Keller, 103 
1985). There is no doubt that there are volatile thiols in other fruits than those listed above, 104 
and maybe in all vegetables at trace levels, still not highlighted.  105 

 106 

1.1.2. Coffee 107 
 108 

Roasted and brewed coffee 109 
Coffee is an extensively consumed beverage in the world. The acceptability of coffee is due to 110 
many factors and one of the most contributory factors is aroma composition (Kumazawa & 111 
Masuda, 2003). In coffee, sulfur compounds such as thiols are among the most important 112 
contributors to its aroma despite their presence at relatively low concentration (Sunarharum, 113 
Williams, & Smyth, 2014). The major thiols present in coffee reported in the literature are 114 
shown in Figure 1-coffee, as well as their characteristic odor (Dulsat-Serra, Quintanilla-Casas, 115 
& Vichi, 2016; Vichi, Jerí, Cortés-Francisco, Palacios, & Caixach, 2014). Dulsat-Serra et al 116 
also referenced the concentration of thiols in roasted and brewed coffee. Among them, five 117 
are present in wine or/and beer. 2-furanmethanethiol (2FMT) is reported as a key odorant 118 
compound responsible for the “coffee” odor with notes of roast and fresh coffee (Mayer, 119 
Czerny, & Grosch, 2000). Several factors (degree of roasting or coffee species for example) 120 
can impact the thiol content of coffee (Dulsat-Serra, Quintanilla-Casas, & Vichi, 2016). We 121 
can notice that there is a diminution of thiol concentration when passing from roasted to 122 
brewed coffee due to the low extraction rate of brewed coffee (Mayer, Czerny, & Grosch, 123 
2000; Semmelroch & Grosch, 1996). For example, the concentration for 2FMT is up to 5080 124 

g/kg in roasted coffee and only up to 39 g/L in brewed coffee (Cheong, Tong, Ong, Liu, 125 
Curran, & Yu, 2013; Semmelroch & Grosch, 1996). 126 

Figure 1 127 



 128 

Variety and geographical influence on thiol contents in coffee 129 
The variety and the geographical provenance have been shown to impact the thiol content in 130 
the coffee bean. In fact, 2FMT was reported at higher amounts and with a greater sensory 131 
impact in robusta (Coffea canephora var. robusta) than arabica (Coffea arabica), with a 132 
similar degree of roasting (Holscher & Steinhart, 1992; Semmelroch & Grosch, 1995; 133 
Semmelroch, Laskawy, Blank, & Grosch, 1995; Tressl & Silwar, 1981). This situation is not 134 
general to other thiols, since the 3MBT and 3MMBF levels were comparable in robusta and 135 
arabica (Semmelroch & Grosch, 1995; Semmelroch, Laskawy, Blank, & Grosch, 1995; 136 
Semmelroch & Grosch, 1996). However, the analysis of 2MFT by GC-O showed that the 137 
sensory impact seems to be higher in robusta than arabica coffee (Semmelroch & Grosch, 138 
1995).  139 

 140 

1.1.3. Tea 141 
 142 

Tea aroma is an important factor affecting the character and quality of the product. There are 143 
many kinds of tea but only a very small number is known and consumed. Tea can be divided 144 
into three categories: green tea (unfermented), oolong tea (semi-fermented) and black tea 145 
(fermented). Traces of thiols were detected in Japanese green tea (Sen-cha) only, with 4MMP 146 
and 4-methoxy-2-methyl-2-butanethiol (4MMBT) exhibiting meaty notes (Kumazawa & 147 
Masuda, 1999). The authors suggested that these thiols were involved as key odorants of the 148 
Japanese green tea. However, 4MMP and 4MMBT have not been identified as volatile 149 
component of other kinds of tea (oolong and black tea). 150 

 151 

1.2. Alcoholic beverages 152 
 153 

1.2.1. Wine 154 
 155 

Several studies highlighted the importance of varietal thiols in wine aroma and these sulfur-156 
containing volatile compounds are considered for years now as key compounds (Roland, 157 
Schneider, & Cavelier, 2011). Among these compounds, the most studied are 4MMP 158 
responsible for box tree and blackcurrant buds notes (Darriet, Tominaga, Lavigne, Boidron, & 159 
Dubourdieu, 1995), the 3MH and its corresponding acetate (3MHA) reminiscent of grapefruit 160 
and passion fruit respectively (Tominaga, Furrer, Henry, & Dubourdieu, 1998). They 161 
contribute to the typical aroma of wines, such as Sauvignon Blanc, Petite Arvine, Petit and 162 
Gros Manseng, Melon Blanc, Bacchus, Sémillon, Verdajo, Scheurebe, Maccabeo, 163 
Gewürztraminer, Riesling, Muscat, Colombard and Tokay in white wine, Provence in rosé 164 
wine, Grenache, Cabernet Sauvignon and Merlot in red or rosé wines. Very recently, Capone 165 
et al. found varietal thiols in Chardonnay wine at high concentration (Capone, Barker, 166 
Williamson, & Francis, 2017). Interactions between these thiols lead to different aroma 167 
profiles depending on the amount of each thiol (Lund, et al., 2009) and the level of other 168 



molecules. Other non-varietal sulfur compounds can positively contribute to the wine aroma 169 
through coffee and meaty notes (Figure 1-Wine).  170 

Roland et al. summarized numerous data on thiols reported in the literature in terms of 171 
concentration in wine, aroma descriptors and sensory threshold in model solution. Since this 172 
review, new data were published concerning other wines (Benkwitz, Tominaga, Wohlers, 173 
Lund, Kilmartin, & Nicolau, 2012; Lv, et al., 2017), but the concentrations reported were 174 
included in the concentration range already determined by Roland et al. (Roland, Schneider, 175 
& Cavelier, 2011). 176 

Beyond the varietal effect on thiol amounts in wine, the vine production area seems to have an 177 
impact on thiols concentration. A study comparing the amount of varietal thiols (3MH, 178 
3MHA and 4MMP) in Sauvignon Blanc in different regions of New Zealand and countries 179 
(Australia, South Africa, France and USA) was published one year later (Benkwitz, 180 
Tominaga, Wohlers, Lund, Kilmartin, & Nicolau, 2012). Concerning 3MHA and 3MH, the 181 
concentrations were much higher in Marlborough than in all the other regions (Hawkes Bay 182 
and Wairarapa) and countries studied in 2003 and 2004 vintages. The amount of 4MMP was 183 
found higher in the Wairarapa region. Wines of New Zealand seems to be much concentrated 184 
in these three thiols than those of other countries studied for these vintages. Viticultural and 185 
oenological practices influence the thiols concentration in wine and will be developed in the 186 
second part of this review. 187 

  188 

1.2.2. Beer 189 
 190 

The importance of sulfur compounds as thiols in brewing has been pointed out more than a 191 
century ago (Garza-Ulloa, 1980). Forty-one thiols were evidenced in hops (mainly β-192 
sulfanylalkyl acetates, alcohols and carbonyls) and most of them were found in beer (Figure 193 
1-Hops) (Gros, Peeters, & Collin, 2012). Among them, 3-mercapto-4-methylpentan-1-ol was 194 
identified as a key contributor to the “Sauvignon-like” notes in beer produced with the Nelson 195 
Sauvin (NS) hop variety (Takoi, et al., 2009). Gros et al. studied five hop cultivars 196 
(Tomahawk, NS, Nugget, Cascade and Saaz). Tomahawk appeared particularly rich in 3-197 
mercapto-2-ethylpropanal. Tomahawk and NS seems were found to contain higher levels of 198 
3-mercapto-2-ethylpropyl acetate and 3-mercaptooctanal. NS proved to contain higher 199 

amounts of -sulfanylalkyl alcohols. Finally, 3MH was found in all cultivars, with high 200 
values for Cascade (Gros, Nizet, & Collin, 2011).  201 

3MBT was usually described as an unpleasant flavor, the so-called skunky aroma. This flavor 202 
is caused by ultraviolet light (Hill & Smith, 2000). In fact, the transmission of light to the beer 203 
through the bottle increases 3MBT formation and using green or dark bottle is advisable to 204 
limit this phenomenon (Sakuma, Rikimaru, Kobayashi, & Kowaka, 1991).  205 

 206 

A recent study highlights the content of 3MH, 3MHA and 4MMP in different categories of 207 
beer (Pale ale, Belgium origin, Pils and experimental beers). According to the data, there is no 208 
obvious link between the category of beer and the concentration of these three thiols, with an 209 
important variability in the same category: up to 1200 ng.L

-1
 for 3MH; up to 100 ng.L

-1
 for 210 



3MHA; up to 300 ng.L
-1

 for 4MMP. 3MHA was present only in experimental beers and one 211 
Pale ale and the levels were higher than those of 3MH, which is very different to the reported 212 
concentrations often close to 10% of free 3MH in wine (Roland, et al., 2016). 213 

    214 

1.2.3. Sake 215 
 216 

4MMP is also present in Sake, the traditional Japanese alcoholic beverage brewed by 217 
fermenting rice that has been polished to remove the bran. In fact, steamed rice is saccharified 218 
by glucoamylase of koji mold (a filamentous fungus) and the glucose formed from starch is 219 
then fermented into ethanol using a specific strain of Saccharomyces cerevisiae (Furukawa, 220 
Tanaka, Masumura, Kiyokawa, & Wakai, 2006). The typically pleasant smelling grassy notes 221 
has been very recently attributed to 4MMP in different Sake (Iizuka-Furukawa, Isogai, 222 
Kusaka, Fujii, & Wakai, 2017). The authors reported that this thiol is the characteristic aroma 223 
of sake made from low-glutelin rice. In the same way as in wine, 4MMP is released during 224 
AF from precursors. Iizuka-Furukawa et al. determined the perception threshold of 4MMP in 225 
sake at 1.2 ng/L, similar range as reported in wine and beer (Darriet, Tominaga, Lavigne, 226 
Boidron, & Dubourdieu, 1995; Toru  Kishimoto, Kobayashi, Yako, Iida, & Wanikawa, 2008). 227 
There is no data on the plant variety, the rice production area or the fermentation conditions 228 
on 4MMP concentration.  229 

 230 

In conclusion, for this part, it is interesting to highlight the frequency of appearance of thiols 231 
in beverages reviewed here. Eight thiols appear in at least 4 different beverages (Figure 2). It 232 
is interesting to notice that among these eight thiols, six of them have been identified in wine 233 
and beer, which are the most extensively studied beverages. The correlation between the 234 
number of thiol occurrence and the beverage studied seems to show that the research on thiols 235 
doesn’t reach the same development level between the different beverages. 236 

Figure 2 237 

 238 

2. Release mechanisms from thiol precursors 239 
 240 

The mechanisms of thiols release from their precursors are complex and depend on:  241 

- the plant variety (already discuss in the first part) 242 
- the growing method 243 
- the process (roasting for coffee, fermentation for beer, sake or wine and more simply 244 

the extraction by pressing or grinding) 245 
 246 

 247 

2.1. Formation of thiols in coffee 248 
 249 

2.1.1. Roasting  250 



 251 

Roasting coffee impacts the chemical and physical properties of the initial green coffee beans. 252 
Roasting consists in rapidly brought the green beans to very high temperature (approximately 253 
200 to 250°C), which is then quickly lowered to stop the process. The formation of thiols 254 
during this process is not completely elucidated. However, it is admitted that S-containing 255 
amino acids are important precursors and sulfur source for reactions with other compounds 256 
(for example sugar) that occur during coffee bean roasting (Dulsat-Serra, Quintanilla-Casas, 257 
& Vichi, 2016). 258 

The Maillard-type reaction plays a key role in the thiol formation in roasted coffee. Indeed, 259 
many authors reported the formation of 2FMT and 2MFT from the reaction between aldose 260 
and cysteine in a model system (Cerny, 2008; Dulsat-Serra, Quintanilla-Casas, & Vichi, 2016; 261 
Hofmann & Schieberle, 1997). However, this Maillard-type reaction was dismissed by 262 
Poisson et al. by biomimetic in-bean experiments (Poisson, Schmalzried, Davidek, Blank, & 263 
Kerler, 2009). Another important pathway involves H2S liberated from cysteine or methionine 264 
may react with prenyl alcohol (3-methyl-2-buten-1-ol) to obtain 3MMB (Holscher, Vitzthum, 265 
& Steinhart, 1992). Holscher et al. published that prenyl alcohol was also identified as 266 
precursor of 3MBT. 267 

 268 

The general observation is that not only roasty, but sulfury, earthy and smoky notes improved 269 
during roasting (Grosch, 1998). Mayer et al. proved that 2FMT and 3MBT increased more 270 
and more with the roasting time (Mayer, Czerny, & Grosch, 1999). Roasting temperature also 271 
influences the volatile thiols formation (Baggenstoss, Poisson, Kaegi, Perren, & Escher, 272 
2008). Different kinetics have been reported in the literature, by comparing the evolution of 273 
3MMB and the two corresponding esters during roasting: 3MMB and 3MMBF increase 274 
linearly with the temperature of roasting, whereas 3MMBA increases only at higher degrees 275 
(Kumazawa & Masuda, 2003). Thus, 2FMT and 3MBT/3MMBF have different behaviour: 276 
2FMT is favoured by a long-time process at low-temperature in contrast to 3MBT and 277 
3MMBF (Baggenstoss, Poisson, Kaegi, Perren, & Escher, 2008; Schenker, Heinemann, 278 
Huber, Pompizzi, Perren, & Escher, 2002). 279 

2.1.2. Brewing 280 
 281 

Once the coffee has been roasted, the amount of thiols in the brewed coffee is not proportional 282 
to the initial level in roasted coffee. In fact, the efficiency of the extraction (solid-liquid) 283 
during the brewing process is impacted by physical parameters (water temperature, pressure, 284 
time of extraction and water/coffee ratio) (Mayer, Czerny, & Grosch, 2000; Semmelroch & 285 
Grosch, 1996). However, data on the content of thiols under different coffee brewing 286 
conditions are extremely scarce and only methanethiol evolution is documented (Andueza, 287 
Maetzu, Pascual, Ibañez, de la Peña, & Cid, 2003). Methanethiol is more abundant in 288 
expresso coffee than in other types of brewed coffee, due to the extraction pressure and the 289 
higher ratio between coffee and water. In this type of brewed coffee, the water temperature is 290 
important for the extraction efficiency of methanethiol (Andueza, Maetzu, Pascual, Ibañez, de 291 
la Peña, & Cid, 2003). Although it might be possible to extrapolate methanethiol tendency on 292 



other thiols, supplementary data are needed to highlight the impact parameters of brewing 293 
process without going beyond assumptions. 294 

 295 

 2.2. Formation of thiols by microorganism during fermentation processes: Focus on 296 
3MH and 4MMP 297 
 298 

Prefermentative steps can influence the thiol levels. As an example, prefermentative 299 
operations in grapes as skin maceration could lead to an increase of 3MH and 4MMP in white 300 
wine. Must conservation on lees, another prefermentative process, increases the amount of 301 
3MH and 3MHA in wine, without increasing the amount of precursors during this process 302 
(Roland, Schneider, Charrier, Cavelier, Rossignol, & Razungles, 2011). 303 

 304 

During winemaking or beer brewing, AF is an essential step for the sugar conversion into 305 
alcohol by yeast, but it also impacts other compounds at lower concentration such as 306 
polyphenols and aromas such as varietal thiols.  3MH and 4MMP are produced during AF by 307 

the yeast (Saccharomyces cerevisiae) using a -lyase activity (Cordente, Capone, & Curtin, 308 
2015; Tominaga, Peyrot des Gachons, & Dubourdieu, 1998) from odorless S-conjugate 309 
precursors.  310 

 311 

2.2.1. Grapes and wines 312 
 313 

Precursors and mechanisms of transformation 314 
Several precursor families have been identified in grapes and musts and have been widely 315 
studied. They are listed below by chronological order of identification: 316 

- cysteine S-conjugates to 3MH and 4MMP (Cys-3MH and Cys-4MMP) (Tominaga, 317 
Peyrot des Gachons, & Dubourdieu, 1998); 318 

- glutathione S-conjugates to 3MH and 4MMP (G-3MH and G-4MMP) (Fedrizzi, 319 
Pardon, Sefton, Elsey, & Jeffery, 2009; Peyrot des Gachons, Tominaga, & 320 
Dubourdieu, 2002a); 321 

- cysteinyl-glycine S-conjugates to 3MH (CysGly-3MH) (Bonnaffoux, Delpech, 322 
Rémond, Schneider, Roland, & Cavelier, 2018; Capone, Pardon, Cordente, & Jeffery, 323 
2011); 324 

- S-(3-hexan-1-al)-glutathione (G-3MHAl) and its bisulfite adduct (Thibon, Böcker, 325 
Shinkaruk, Moine, Darriet, & Dubourdieu, 2016);  326 

- γ-glutamyl-cysteine S-conjugate to 3MH (γGluCys-3MH) (Bonnaffoux, Roland, 327 
Rémond, Delpech, Schneider, & Cavelier, 2017; Bonnaffoux, Delpech, Rémond, 328 
Schneider, Roland, & Cavelier, 2018). 329 

 330 

Another pathway was also evidenced: 3MH can result of the addition of a sulfhydryl donor 331 
group to the (E)-2-hexenal during alcoholic fermentation (AF) (Schneider, Charrier, 332 
Razungles, & Baumes, 2006). It has been suggested that H2S could be one of the sulfur donor 333 



(Harsch, Benkwitz, Frost, Colonna-Ceccaldi, Gardner, & Salmon, 2013). Then, sulfonic acids 334 
were hypothesized on structural basis but not identified yet (Duhamel, Piano, Davidson, 335 
Larcher, Fedrizzi, & Barker, 2015). Finally, cysteinyl-glycine S-conjugates to 4MMP 336 
(CysGly-4MMP) and γ-glutamyl-cysteine S-conjugate to 4MMP (γGluCys-4MMP) were not 337 
identified yet. A signal by UPLC-MS/MS using stable isotope dilution assay confirmed the 338 
presence of CysGly-4MMP and γGluCys-4MMP but the intensity of the signal was below the 339 
recommended values for formal identification (Bonnaffoux, Roland, Rémond, Delpech, 340 
Schneider, & Cavelier, 2017). Cys-3MH, G-3MH, CysGly-3MH, γGluCys-3MH, Cys-4MMP 341 
and G-4MMP were quantified in different varieties of grape (Table 2) and Sauvignon Blanc 342 
presented the higher concentration of 3MH precursors (Peña-Gallego, Hernández-Orte, 343 
Cacho, & Ferreira, 2012).  344 

Interconversions between S-conjugates under defined oenological conditions were 345 
highlighted. Firstly, all precursors were partially metabolised during AF (Bonnaffoux, 346 
Delpech, Rémond, Schneider, Roland, & Cavelier, 2018; Concejero, Hernandez-Orte, Astrain, 347 
Lacau, Baron, & Ferreira, 2016), whereas it was commonly accepted by scientific community 348 
that conversion was complete. During fermentation, monitoring of thiol precursor levels in the 349 
fermentation medium showed that G-3MH could be partially cleaved (7%) in γGluCys-3MH, 350 
contrarily to G-4MMP which was practically not metabolised. Regarding dipeptides, 54% of 351 
CysGly-3MH (respectively 6% of CysGly-4MMP) was cleaved into cysteinyl S-conjugates, 352 
while γGluCys S-conjugates were not metabolised (Figure 3) (Bonnaffoux, Delpech, Rémond, 353 
Schneider, Roland, & Cavelier, 2018). For precursors metabolised by the yeast, only a little 354 
part are cleaved by the yeast to give varietal thiols. Indeed, conversion yields of all cysteinyl 355 
S-conjugates precursors into their respective varietal thiols (3MH or 4MMP) were found to be 356 
between 0.17 and 1%(Bonnaffoux, Delpech, Rémond, Schneider, Roland, & Cavelier, 2018; 357 
Jeffery, 2016). The other part of metabolised precursors is still unknown. Different cleavages 358 
could generate some amino acids or sulfur peptides. Finally, the conversion of precursors to 359 
thiols is an epiphenomenon in quantitative terms, but still important to give the aromatic notes 360 
to wine. 361 

 362 

Table 2 363 

 364 

Figure 3 365 



 366 

Another study found different conversion yields, especially for G-3MH. For example, Roland 367 
et al. calculated a conversion yield for G-3MH of 3% (Roland, Schneider, Le Guernevé, 368 
Razungles, & Cavelier, 2010). Therefore, this difference could be attributable to the 369 
assimilable nitrogen, which might be different from one must to another. Although numerous 370 
precursors of varietal thiols have been elucidated, the correlation between the concentration of 371 
thiols in wines and the amount of precursors found in musts is not verified (Pinu, Jouanneau, 372 
Nicolau, Gardner, & Villas-Boas, 2012). That means, other parameters drive thiol release 373 
from precursors. Furthermore, the low conversion yields remain problematic.  374 

 375 

Influence of viticultural and oenological processes on thiol contents 376 
The evolution of the aromatic potential, responsible for the release of varietal thiols, was 377 
studied in order to better understand the biogenesis of these precursors in berries during 378 
maturation. A study on the evolution of cysteinyl precursors in bunches of Sauvignon Blanc 379 
one month before the grape harvest showed a great variability in the precursor content, which 380 
would probably depend on the chemical composition of the berry (assimilable nitrogen for 381 
example) (Peyrot des Gachons, Tominaga, & Dubourdieu, 2000). The combination of sulfur 382 
and nitrogen foliar supply in Sauvignon Blanc vines increases the varietal thiol contents in the 383 
resulting wines, but the authors didn’t report an enhance of precursors (Lacroux, et al., 2008).  384 
However, ammonium fertilization increases cysteine S-conjugates to 3MH, 4MMP and 385 
4MMPOH. The maturation directly affects the concentration of certain precursors in 386 
Sauvignon Blanc (Cys-3MH, G-3MH and G-4MMP) by increasing their initial amount in 387 
berries (Roland, Vialaret, Razungles, Rigou, & Schneider, 2010). The water deficit impacts 388 
the concentration of cysteinyl precursors in Sauvignon Blanc grapes. The amount of Cys-389 
3MH increase with a moderate water deficit, in contrary to Cys-4MMP (cases in Bordeaux 390 
conditions with a moderate water deficit) (Choné, 2001).  391 

Cysteinylated and glutathionylated precursors of 3MH and 4MMP are mainly located in the 392 
skin (Sauvignon Blanc and Melon B.) (Peyrot des Gachons, Tominaga, & Dubourdieu, 393 
2002b). Recently, Jeffery reports data on 3MH precursor concentration for Sauvignon Blanc 394 
grapes undergoing different treatments (Jeffery, 2016). It appears that hand-harvesting yielded 395 
lower precursor concentrations than machine harvest due to the limiting berry damage, 396 
precursor extraction and the enzymatic mechanisms generated. Similarly, precursors increased 397 
during transport or storage of grapes, for the same reason as previously. The precursors of 398 
thiols subjected to increasing doses of SO2 added at harvest decreases proportionally, maybe 399 
due to an inhibition of enzymatic reactions (Capone & Jeffery, 2011). Some studies showed 400 
that Cys-3MH increases in rosé musts of Merlot and Cabernet Sauvignon as a result of 401 
prolonged skin maceration (Murat, Tominaga, & Dubourdieu, 2001). A prefermentative 402 
pressing cycle in the wine cellar increased varietal thiol precursors. Prefermentative cold 403 
storage of the must on their lees did not influence the concentration of Cys-3MH and G-3MH 404 
in Sauvignon Blanc must. However, the content of 3MH and 3MHA in resulting wines 405 
increased significantly and proportionally to the duration of on-lees must cold storage. This 406 
increase could be due to the formation of other thiol precursors, during prefermentative 407 
operations (Roland, Schneider, Charrier, Cavelier, Rossignol, & Razungles, 2011).  408 



During AF, varietal thiols are released by Saccharomyces Cerevisiae yeast through its beta-409 
lyase activity. Some of them have demonstrated their ability to release varietal thiols under 410 
oenological conditions (Dubourdieu, Tominaga, Masneuf, Peyrot des Gachons, & Murat, 411 
2006; Howell, et al., 2004; Murat, Masneuf, Darriet, Lavigne, Tominaga, & Dubourdieu, 412 
2001; Swiegers, Francis, Herderich, & Pretorius, 2006). Furthermore, a cofermentation with a 413 
non S. cerevisiae yeast (Pichia kluyveri) can generates more 3MH and 3MHA in Sauvignon 414 
Blanc wine (Anfang, Brajkovich, & Goddard, 2009) and similarly, an interspecific hybrid (S. 415 
cerevisiae X S. bayanus) was found to enhance the 4MMP concentration compared to its 416 
parent S. cerevisiae. Other parameters can influence the release of varietal thiols, especially 417 
the fermentation temperature. Indeed, AF conducted at 20°C instead of 13°C was found to 418 
increase 3MH, 3MHA and 4MMP concentrations in wine (Masneuf-Pomarède, Mansour, 419 
Murat, Tominaga, & Dubourdieu, 2006) and warmer conditions (around 28°C) result in larger 420 
content of 4MMP. In this latter case, the results seem to be dependent on the yeast strain used 421 
(Howell, et al., 2004). A few studies highlight precursors transport in the yeast cell required 422 
for their cleavage. In S. cerevisiae, the main transporter of G-3MH and G-4MMP inside the 423 
cell is OPT1, while GEX1 expels these precursors out of the cell (Cordente, Capone, & 424 
Curtin, 2015; Dhaouia, et al., 2011). In the same way, only YBT1 seems to play a role in the 425 
transport of G-3MH into the vacuole. Different degradations of glutathione S-conjugates 426 

involved into the vacuole or the cytosol through aminopeptidase to obtain GluCys, CysGly 427 
and cysteine S-conjugates (Cordente, Capone, & Curtin, 2015). Finally, release of 3MH and 428 
4MMP from their corresponding cysteine precursors is mediated by STR3 and IRC7 429 
(Roncoroni, et al., 2011; Thibon, Marullo, Claisse, Cullin, Dubourdieu, & Tominaga, 2008). 430 

Very recently, Takase et al. study the bioconversion of 3MH precursors into 3MH by lactic 431 
acid bacteria. Among species tested, Lactobacillus plantarum is able to metabolised Cys-432 
3MH and CysGly-3MH to produce 3MH (Takase, Sasaki, Kiyomichi, Kobayashi, Matsuo, & 433 
Takata, 2018). However, those results were obtained either in culture medium or on a must, 434 
without the interference of AF. Thus oenological conditions need to be tested to confirm this 435 
observation since few lactic acid bacteria (except Oenococcus oeni) are resistant to these 436 
particular conditions.  437 

 438 

During aging, the wine will undergo structural and aromatic modifications, while some wines 439 
increase their value and quality as they age, others might deteriorate over time, especially 440 
wines susceptible to oxidation. Thiols are chemically unstable because they are easily 441 
oxidable in disulfide, even under mild oxidative conditions (Roland, Delpech, Dagan, 442 
Ducasse, Cavelier, & Schneider, 2016; Sarrazin, Shinkaruk, Pons, Thibon, Bennetau, & 443 
Darriet, 2010). Possible mechanisms of thiol trapping were involved in the presence of 444 
oxygen (Nikolantonaki, Chichuc, Teissedre, & Darriet, 2010). The oxygen transfer rate during 445 
the storage is dependent of the type of stopper (synthetic, cork). In fact, synthetic stoppers are 446 
known for their oxygen barrier properties (Lopes, Saucier, Teissedre, & Glories, 2006). 447 
Nevertheless, the use of cork could cause an absorption of certain volatile compounds into the 448 
stopper that is called scalping. This phenomenon could be responsible for the loss of aroma in 449 
Sauvignon Blanc by trapping 3MH and 3MHA (Brajkovich, et al., 2005). However, it must be 450 
kept in mind that the total absence of oxygen, especially in white wines, results in the 451 
production of reduced dominant odors. A compromise must be made to protect the aromas of 452 
white wines from oxidation without the formation of reduced compounds. The aging on lees 453 



before bottling could be a solution, similarly as natural glutathione or SO2 adding which have 454 
a protecting effect against the loss of fruity notes in wines (Blanchard & 2004, 2004; 455 
Brajkovich, et al., 2005). 456 

 457 

Oenological tannins 458 
Oenological tannin formulations are used in winemaking for the different contribution they 459 
can give to the wine (colour stability for example).  460 

Cys-3MH and G-3MH were identified for the first time in these formulations, from different 461 
biological sources (Grapes, tea, trees, etc …). Very high contents were found in grape skin 462 
tannins (Larcher, Tonidandel, Nicolini, & Fedrizzi, 2013), that could be considered as residue 463 
from  tannins extraction: 464 

- Cys-3MH (between around 0.3 and 200 mg.kg
-1

, median = 9.1 mg.kg
-1

) 465 
- G-3MH (between around 0.2 and 138 mg.kg

-1
, median = 10.1 mg.kg

-1
) 466 

These technological processing aids or additives can be used as a potential aroma of passion 467 
fruit and grape fruit for wine. Oenological tannins could be added before or during AF to 468 
allow the yeast to release 3MH in wine. However, oenological tannin addition must be carry 469 
on carefully since they can negatively impact on wine sensory character even if those authors 470 
didn’t observe detrimental effect at the dosage used (Larcher, Tonidandel, Nicolini, & 471 
Fedrizzi, 2013). 472 

 473 

2.2.2. Hops and malts: mechanisms and precursors 474 
 475 

Occurrence of thiol precursors in both malts and hops was firstly hypothesized in 2008 (Toru 476 
Kishimoto, Morimoto, Kobayashi, Yako, & Wanikawa, 2008) and few years later, Cys-3MH 477 
was identified in hop (Gros, Peeters, & Collin, 2012). Cys-3MH was considered as precursor 478 
of 3MH thanks to an enzymatic degradation promoted by the yeast during bottle re-479 
fermentation or during Belgian beer ageing (Nizet, Gros, Peeters, Chaumont, Robiette, & 480 
Collin, 2013; Tran, Cibaka, & Collin, 2015). The first quantification of Cys-3MH revealed 481 
that Cys-3MH might be present until 1641 ppb as 3MH equivalent in Cascade hop variety 482 
(Gros, Tran, & Collin, 2013). In addition to Cys-3MH, three others precursors of 3MH and 483 
4MMP were identified and quantified into several hop varieties (Chinook, Saaz, Barbe Rouge, 484 
Cascade, Mistral, Aramis Alsace, Strisselspat and Mandarina) using direct LC-MS/MS 485 
analysis and SIDA (Stable isotope dilution assay) (Roland, et al., 2016): 486 

- Cys-3MH: between around 0.130 (Mandarina) and 1.1 mg.kg
-1

 (Barbe Rouge) 487 
- G-3MH: between around 1.3 (Barbe Rouge) and 19 mg.kg

-1
 (Cascade) 488 

- Cys-4MMP: between around 0.005 (Saaz) and 0.04 mg.kg
-1

 (Strisselspat) 489 
- G-4MMP: quantified only in Chinook at 0.01 mg.kg

-1
 490 

 491 
In this study, the distribution of thiol precursors in different hop varieties seems to be very 492 
different. Thiol precursors in those variety are mainly 3MH precursors and G-3MH 493 
represented more than 80 % of the total amount of thiol precursors, except for Barbe Rouge 494 



hops where the levels of Cys-3MH and G3MH are quite similar. Furthermore, the total 495 
amount of thiol precursors is highly dependent of the hop varieties. 496 
 497 
We have to point out that, contrary to grapes, hops are also rich in free thiols. The proportion 498 
of free/bounded thiols (i.e. as thiol precursor) depends on the thiols considered (3MH or 499 
4MMP and in a lesser extent on the hop variety): less than  1% for 3MH free/bounded fraction 500 
in Chinook and Barbe Rouge; up to 23% or 95% for 4MMP free/bounded fraction of Chinook 501 
or Saaz hops respectively (Roland, et al., 2016). Similar experiments on 3MH revealed that 502 
free/bounded fraction ratios are closed to 2% for Citra, 4% for Tomahawk and 7% for 503 
Cascade (Cibaka, Gros, Nizet, & Collin, 2015). Roland et al. also tried to build some 504 
hypotheses about thiol origins from different categories of beer (Pale ale, Belgium origin, 505 
IPA, Pils and experimental beers). They observed an important variability of thiol contents in 506 
the same category of beers. The authors were surprised to observe that 3MHA occurred 507 
practically only in experimental beers with a level higher than those of 3MH. It can be 508 
explained by the specific yeasts or fermentation conditions used during the elaboration of the 509 
experimental beers. Another counter-intuitive fact is that IPA beer, with intensive hopping, 510 
contains relatively low levels of 3MH (less than 180 ng.L

-1
). Thereby, hops might not be the 511 

only source of thiol and thiol precursors for beers. Malts was hypothesized as another source 512 
(T.  Kishimoto, Wanikawa, Kono, & Shibata, 2006). Other precursors need to be investigated 513 
and other precursors should be identified, based on those identified in the grape must: 514 

CysGly-3MH, GluCys-3MH, G-3MH-Al and its bisulfite. 515 

 516 

Other mechanisms of thiol formation have been highlighted more than 60 years ago. Indeed, a 517 
formal mechanism was described for the 3MBT formation which involved isohumulones 518 
(Kuroiwa & Hashimoto, 1961). In fact, these compounds absorbed light to give a radical 519 
reaction and release a carbonyl radical. Then, a decarbonylation to a dimethyl allyl radical, 520 
followed by a reaction including a thiol radical from a sulfur source generates 3MBT. More 521 
recently, this mechanism was fully detailed and comprehensively described (De Keukeleire, 522 
Heyerick, Huvaere, Skibsted, & Andersen, 2008).  523 

 524 

2.2.3. Rices and Sake: mechanisms and precursors 525 
 526 

Up to now, only one publication pointed out the contribution of 4MMP to the aroma of sake 527 
and the putative mechanisms for its genesis (Iizuka-Furukawa, Isogai, Kusaka, Fujii, & 528 
Wakai, 2017). However, G-4MMP was identified in two different sake (Mizuhonoka sake and 529 
Gin-ohmi sake) and in two different rices (Mizuhonoka rice and Gin-ohmi rice) and in koji. In 530 
contrast, Cys-4MMP was not detected in sake, rice of Mizuhonoka and Gin-ohmi and koji, 531 
probably due to the limits of detection of Cys-4MMP (23 µg/L). The authors highlight the 532 
release of 4MMP during AF from a model medium with addition of synthesized Cys-4MMP 533 
and G-4MMP in the absence and presence of sake yeast. The authors concluded that 4MMP 534 
was released from both Cys-4MMP and G-4MMP by sake yeast. However, the relationship 535 
between G-4MMP or Cys-4MMP and their corresponding thiol have not been formally 536 
certified because no filiation in the sake has been made yet. 537 



 538 

Considering the lack of data available for the sake production context, further studies have to 539 
be performed in order to investigated the rice-growing condition impact (cultivars, water 540 
status, nitrogen fertilization) or the process impact (rice drying and storage, fermentation 541 
conditions, final product bottling and storage, …) to better understand the release mechanisms 542 
during sake production. 543 

 544 

2.3. Formation of thiols in non-fermented juice fruits  545 
 546 

Different exotic fruit has been investigated. For durian, few references in literature discuss the 547 
precursors and mechanisms of thiols in durian. Bacteria  in the arils (fleshy envelope 548 
developed around the seed) of the fruit could be part of the mechanism release of thiol 549 
(Suhandono & Utari, 2014). In fact, these bacteria could catalyse the enzymatic release of 550 
hydrogen sulphide and methanethiol from cysteine or methionine respectively (Robert J.  551 
Cannon & Ho, 2018), which can be extended to all thiols in durian presented in Table 1. 552 

 553 

For guava, the concentrations of 3MH and 3MHA evolve differently during maturation 554 
according to the variety of the guava. Concerning pink guava, these thiols increase from green 555 
to overripe, which is the opposite for white guava (Sinuco, Steinhaus, Schieberle, & Osorio, 556 

2010). The authors attempted to isolate and treat precursors with -lyase, but without produce 557 
3MH. Instead, they hypothesized that unsaturated carbonyls, especially (E)-2-hexenal could 558 
be the pathway to the 3MH formation. 559 

 560 

Passion fruit is the most documented fruit concerning release mechanisms of thiols. The first 561 
3MH precursor identified in a passion fruit juice from La Réunion was Cys-3MH. It was 562 
identified using trimethylsilylation and then GC-MS analysis (Tominaga & Dubourdieu, 563 
2000). More recently, three other S-conjugates precursors (G-3MH, CysGly-3MH and 564 

GluCys-3MH) were identified (Fedrizzi, et al., 2012). 565 

These precursors were identified by LC-MS comparing the retention time of the compounds 566 
naturally present in the passion fruit and those synthesized. 567 

With the identification of these compounds, the authors proposed a hypothetical pathway for 568 
the biogenesis of 3MH (Figure 3; in planta and without yeast). Indeed, G-3MH could be 569 
degraded with the cleavage either of the glutamate moiety by a γ-glutamyl transferase 570 
(Grzam, Martin, Hell, & Meyer, 2007) or with the removal of the glycine residue by a 571 
carboxypeptidase (Wolf, Dietz, & Schröder, 1996) to give the CysGly-3MH and γGluCys-572 
3MH respectively. Then, CysGly-3MH (or γGluCys-3MH) could be degraded by a 573 
carboxypeptidase (or γglutamyl transferase) to obtain the Cys-3MH. 574 

 575 

Others hypotheses were discussed for the formation of 3MHA through the esterification of 576 
3MH with the corresponding acid (Tressl & Albrecht, 1986). More recently, it was discovered 577 



enzymes in the passionfruit located in the mesocarp, that could hydrolyse thioesters to their 578 
respective thiols (Edwards, Tapp, Cummins, & Brassington, 2008). This could also explain 579 
the formation of 3MH and 3MHA. 580 

 581 

3. Conclusion 582 
 583 

Thiols and their precursors are widely studied in beverages and food industry and a lot of 584 
release mechanisms were elucidated. It is interesting to note that several precursors, especially 585 
glutathione S-conjugate derivatives were identified in different plant raw materials, such as 586 
grape (and must), tannin, fruits, hop, malt and rice. Except for the passion fruit, all these 587 
plants after AF of must, rice or hop and malt can release varietal thiols according to the same 588 

mechanism: a -lyase induced by a fermentative yeast. However, and except for grape and 589 
wine, there is a lack of knowledge about the hypothetical interconversion between these 590 
glutathione S-conjugates derivatives. In grape and wine, release mechanisms are widely 591 
studied, contrary in rice and sake.  592 

Concerning thiols, several compounds, such as 3MMB, are present in different beverages 593 
(wine, beer and coffee). The mechanisms during roasting coffee such as the genesis of 3MMB 594 
and 3MBT from prenyl alcohol, could be extended to beer and red wine during high 595 
temperatures process (such as thermovinification heats process for example). However, it is 596 
important to notice that the roasting process is done by dry way while the vinification by wet 597 
way, which involved different mechanisms. Maillard reaction formations exist in wine 598 
(Marchand, de Revel, Vercauteren, & Bertrand, 2002), but they occurred mainly during 599 
storage over a very long period.  600 

 601 

  602 
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