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Spatial autocorrelation is a well-recognized concern for observational data in general, and more specifically for spatial 
data in ecology. Generalized linear mixed models (GLMMs) with spatially autocorrelated random effects are a potential 
general framework for handling these spatial correlations. However, as the result of statistical and practical issues, 
such GLMMs have been fitted through the undocumented use of procedures based on penalized quasi-likelihood 
approximations (PQL), and under restrictive models of spatial correlation. Alternatively, they are often neglected in favor 
of simpler but more questionable approaches. In this work we aim to provide practical and validated means of inference 
under spatial GLMMs, that overcome these limitations. For this purpose, a new software is developed to fit spatial 
GLMMs. We use it to assess the performance of likelihood ratio tests for fixed effects under spatial autocorrelation, 
based on Laplace or PQL approximations of the likelihood. Expectedly, the Laplace approximation performs generally 
slightly better, although a variant of PQL was better in the binary case. We show that a previous implementation of PQL 
methods in the R language, glmmPQL, is not appropriate for such applications. Finally, we illustrate the efficiency of a 
bootstrap procedure for correcting the small sample bias of the tests, which applies also to non-spatial models.

Spatial autocorrelation is a well-known concern in the 
modelling of the distribution of species or species richness 
(Keitt et al. 2002, Dormann et al. 2007, Bini et al. 2009), 
community structure (Robertson and Freckman 1995), 
and distribution of phenotypic and genetic variation 
(Stopher et al. 2012, Bradburd et al. 2013). It arises each 
time the value a response variable takes at one point in 
space correlates with its values in nearby localities. Spatial 
autocorrelation may represent the effect of unobserved  
predictor variables that themselves exhibit spatial autocor-
relation. Alternatively, the response may have identical 
expectation everywhere, but may fluctuate randomly and 
in a correlated manner in nearby positions when its value 
in any place depends on the realized values in nearby  
positions at some earlier time. In both cases, the standard 
hypothesis of independence in errors is violated and  
simple statistical tools are inappropriate. It then becomes 
difficult to infer and test properly the effect of the predictor 
variable on the response variable. This problem is well rec-
ognized in population biology, and many approaches  
have been described to address it (see Dormann et al. 2007 
for a survey), but much fewer have been validated.

One way to model spatial autocorrelation in the response 
variable is to consider that it results from random effects 
that are spatially correlated. Generalized linear mixed mod-
els (GLMMs) with spatially autocorrelated random effects 

are therefore a potential general framework for handling 
these spatial correlations. However, as summarized by 
Bolker et al. (2009), complex GLMMs remain challenging 
to fit and statistical inference such as hypothesis testing 
remains difficult. Available software allowing autocorre-
lated random effects have various limitations, in terms of 
range of models allowed, computation limits, dependence 
on user decisions, and criteria of fit. One of the common 
practices is to use variants of penalized quasi-likelihood 
approximations (PQL, Breslow and Clayton 1993;  
summarized later in this paper), which have been imple-
mented in the GLIMMIX procedure in SAS or in the  
glmmPQL procedure in R. The use of the latter procedure 
for spatial analyses rests on a largely undocumented trick 
(Dormann et al. 2007). Other algorithms are discussed in 
the literature, such as Markov chain Monte Carlo methods 
(Diggle and Ribeiro 2007), but it is difficult to fully  
automate their application and, perhaps as a result, their 
performance has not been systematically investigated.

In the ecological and evolutionary literature, a com-
monly used alternative approach for testing the effect of a 
variable in the presence of spatial autocorrelation is the 
partial Mantel test. Several variants of this methodology 
have been described, but it typically first considers a  
regression of a distance matrix of the response variance to  
a geographic distance matrix, then uses the residuals of  
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this first regression in a second regression to some function 
of the environmental variable. Oden and Sokal’s (1992) 
simulation study first pointed problems with such 
approaches. Despite additional criticisms (Raufaste and 
Rousset 2001, Rousset 2002), the approach keep being used, 
and defended (Legendre and Fortin 2010, Appendix 3). 
The simulation study of Guillot and Rousset (2013) show 
that all variants discussed by Legendre and Fortin (2010) 
fail, and can produce a high rate of spurious significant 
results. Indeed all of these methods are subject to an  
earlier criticism which rests only on the distribution of 
samples generated by permutation (Raufaste and Rousset 
2001), rather than on the nature of different test statistics 
as discussed in Legendre and Fortin (2010). What this 
debate shows is that partial Mantel tests will keep being 
used despite their weaknesses, as long as no easy and  
broadly applicable alternative is available. Providing an 
alternative to these tests can be viewed as part of the  
broader problem of estimating and constructing valid and 
efficient (likelihood-based) confidence intervals for fixed 
effects in a GLMM.

In this work, we have developed new tools to address 
these issues. A package, spaMM, has been developed to fit 
spatial GLMMs in R (R Core Team). This is a standard  
R package, i.e. free software running on all major operating 
systems, including a documentation with examples based on 
included data sets. This package uses classical Laplace 
approximations for the likelihood, and the basic model  
for spatial correlation is the Matérn model, which encom-
passes the widely used but more restrictive exponential and 
gaussian correlation models.

In a GLMM, confidence intervals for parameters as well 
as tests of given values can be deduced from likelihood ratios. 
The validity of both types of inferences is assessed by check-
ing the distribution of the likelihood ratio p-values. We 
therefore use our new procedures to assess the performance 
of likelihood ratio tests and of their PQL counterparts, for 
both linear mixed models and for binomial and Poisson 
GLMMs which are relevant for count data in ecological 
studies. In particular, we reconsider the problem of testing 
fixed effects in simulations conditions where small sample 
bias could be expected, as well as conditions closely match-
ing two actual studies. Although likelihood ratio (LR) tests 
tend to be anticonservative, we found generally good perfor-
mance in the simple inferences we considered. To correct for 
small-sample bias of likelihood ratio tests, we will apply a 
parametric bootstrap approach that requires only a small 
number of bootstrap replicates (as little as 100). Together, 
these different methods provide reliable inferences in  
the presence of spatial autocorrelation. For binary data, we 
unexpectedly found that a PQL-based procedure could  
perform better than other approximations to the likelihood.

Methods

Estimation and inference

Spatial GLMMs
We consider GLMMs with spatially correlated random 
effects. For example, we consider observed frequencies of 

one genotype in different spatial locations i. Such data can be 
fitted by a Binomial GLMM with canonical logit link, 
wherein for each location i the data are fitted by a 
Binomial(ni,pi) where ni is the sample size in location i and
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where xi are observed values of predictor variables in spatial 
positions i, b is a vector of associated fixed effect parameters, 
and the bis are random effects in different spatial positions i. 
Likewise, in a Poisson GLMM with canonical log link,  
the data are counts whose expectation ci is of the form

log(ci)  xi b  bi	 (2)

Standard accounts of GLMMs often also include GLMMs 
with Gamma-distributed residual error, and other link  
functions such as the complementary log–log link for  
binomial data. Such cases are included in our procedures, 
but will not be discussed in this paper.

In the general formulation of GLMMs, the bis are 
assumed Gaussian with zero mean and any covariance 
matrix among them can be considered. The vector b of bi 
values is usually represented as b  Zv, where v is a  
vector of independent Gaussian deviates, and Z is a  
matrix which is either known or a function of some  
parameters to be estimated. This representation holds for 
spatial models (Breslow and Clayton 1993, Lee and Nelder 
2001b) because any multivariate Gaussian distribution 
with marginal variance l can be represented as the distri
bution of Zv for a vector v of independently distributed 
Gaussian deviates with zero mean and variance l. Its  
covariance matrix is then lZZ

┬
 (where ┬ denotes  

transpose), which implies that Z can be obtained as the 
Cholesky factor of the correlation matrix, or as the matrix 
square root for symmetric semi-positive definite matrices 
(Golub and van Loan 1996, pp. 143, 149).

In an elementary linear mixed model, there are two disper-
sion parameters, the variance l of the bis, and the variance j 
of the residual error, and the Z matrix is known and described 
as the design matrix of the random effects. In spatial models, 
we distinguish three types of parameters, the previous  
fixed effect and dispersion parameters, and the correlation 
parameters controlling the correlations between the bi in dif-
ferent locations. The correlation parameters affect the value of 
the Z matrix, which is no longer assumed constant in the pro-
cess of fitting the model to the data, but is still commonly 
described as the design matrix of random effects. The xis may 
also be realizations of a spatially correlated process; however, 
all inferences are conditional on the realized values of  
the design matrix X, that is the set of xis for all positions 
(Davison 2003, p. 648; Cox 2006, p. 46), and therefore the 
GLMM analysis makes no assumption whether the elements 
of X are conceived as correlated random variables or not.

Approximation of the likelihood

In mixed models, the likelihood is actually the marginal like-
lihood, integrated over the distribution of random effects. 
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This is often difficult to evaluate, and various approxima-
tions have been developed (Breslow and Clayton 1993, 
Demidenko 2004, Lee et al. 2006). Several of them can be 
formulated in terms of the h-likelihood (Lee and Nelder, 
1996, 2001a). The h-likelihood is the sum of the log  
likelihood of the data as function of the linear predictor  
(i.e. of Xb  Zv in the above examples), and of the log likeli-
hood of random effects values v  (ui) under the assumed 
distribution of random effects:

h(b,v,l,ϕ)  ℓ(y|v;b,ϕ) 1 ℓ(v;l)	 (3)

where ℓ denotes log likelihood, which may be computed 
either as log probability or as log probability density. The 
marginal likelihood for parameters (b,l,j) is the integral  
of exp(h) over the distribution of random effects, and this is 
approximated by a Laplace approximation as

pv v v
( ) ( , , , ) log ( , ) ( )h h H h 


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(4)

where the inferred random effects v̂ are obtained by maxi-
mizing the h-likelihood with respect to v, and H(h,v) is  
the Hessian matrix of the h likelihood with respect to  
the random effects, i.e. the matrix with ijth element 
2∂ 2h/∂ui∂uj; and |.| denotes the absolute value of the matrix 
determinant (Demidenko 2004, p. 12). H(h,v) can be 
expressed in terms of the design matrix Z, of the random 
effect variance, and of GLM ‘weights’ that depend on the 
value of the linear predictor (as function of b and v) and  
the link function (McCullagh and Nelder 1989, p. 40). As 
pn(h) is an approximation for the marginal log-likelihood, 
likelihood ratio tests of fixed effects can be constructed  
from it.

PQL (Breslow and Clayton 1993), which estimates  
fixed effects by maximization of h rather than pn(h) (Lee and 
Nelder 2001a, Demidenko 2004, McCulloch et al. 2008), is 
usually a less accurate approximation of the likelihood,  
up to the point where it has been considered ‘not truly an 
approximation to the likelihood function’ and not allowing 
the use of likelihood ratio tests (Pinheiro and Chao 2006). 
Even the above Laplace approximation may fail for binary 
data, for which a second-order correction has been proposed 
(Noh and Lee 2007).

Inference

Efficient methods to compute likelihoods and to fit models 
to data may not be enough. Indeed, testing a fixed effect in a 
GLMM is a source of persistent concerns for practitioners. 
For linear mixed models, both likelihood ratio tests and 
approximate F and t tests based on effective degrees of  
freedom have been criticized (Pinheiro and Bates 2000, sec-
tion 2.4.2, Baayen et al. 2008, Bolker et al. 2009, p. 132). 
Baayen et al. (2008) suggest an MCMC approach, but it is 
not fully developed and the little simulation results available 
suggest it is conservative (their Table 4 and 5). A reasonably 
fast and more widely applicable method is required.

A LR chi-square statistic with n degrees of freedom  
should have expected value n, but for finite samples,  
its expected value m will differ (as already occurs in linear 

models without random effects). However, the LR test can 
often be corrected in a conceptually very simple way, by mul-
tiplying the LR statistic by n/m: an accurate correction of the 
distribution of the LR statistic can thus be derived from  
consideration of its mean only (Bartlett 1937). In practice  
m may be very difficult to approximate analytically, but it 
can be estimated by a bootstrap approach, an approach that 
is investigated below. This provides an effective correction of 
LR test that is faster than a bootstrap assessment of the  
distribution of p-values. Although this method is not new 
(Rocke 1989, Rayner 1990), it seems to have been over-
looked in practice. For non-spatial models, Pinheiro and 
Bates (2000, p. 88) used a simple design to illustrate  
the biases of LR tests in linear mixed models, and Fig. A1 in 
the Supplementary material Appendix A demonstrates the 
effectiveness of the bootstrap correction in this case.

In the following, we will compare two variants of the 
above methods, denoted ML and PQL/L. In ML, all  
parameters were estimated by maximization of pn. In  
PQL/L, considered for Poisson and binomial GLMMs 
(including the binary case), b is estimated by maximization 
of h as in standard PQL, and all dispersion and correla-
tion parameters are estimated by generic numerical maxi
mization of pn. Reasons for these choices and further 
alternatives are discussed in the Supplementary material 
Appendix B.

Implementation details

To allow the estimation of correlation parameters and  
the investigation of variants of the estimation method, we 
developed the new package spaMM. It is available from  
the Comprehensive R Archive Network (CRAN). It is  
based on the iteratively reweighted least squares algorithm 
(Demidenko 2004, Lee et al. 2006, McCulloch et al. 2008 
for background) for estimation of b, with the gradient and 
Hessian matrix computed as described in Noh and Lee 
(2007) and Lee and Lee (2012). We also implemented a 
Levenberg–Marquardt variant (Nocedal and Wright  
1999, Madsen et  al. 2004) of this algorithm. Dispersion 
parameters were estimated using leverages corrected as in  
Lee and Nelder (2001a). Computation of the corrected  
AIC of Ha et al. (2007) is also included. Beyond the simula-
tions reported below, the code was checked by comparison 
with other R packages, the lme4 package for non spatial  
linear mixed models (Bates et  al. 2012), the HGLMMM 
package (Molas and Lesaffre 2011) for a wide class of non-
spatial mixed models, and the hglm package (Rönnegård 
et  al. 2010) which can fit models with given correlation 
matrix, based on the extended quasi-likelihood method  
(Lee and Nelder 1996).

Spatial correlation model

We assume that the correlation between random effects ui at 
spatial distance d is of the form Mn(rd) where r is a spatial 
scale parameter and Mn(rd) is the Matérn correlation family, 
which can be written as:

Mn(x) ≡ xn Kn(x)	 (5)
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Gaussian distributions with standard deviation (‘spatial 
spread’ ssp) 0.2 or 0.6. It is equivalent to vary r or to vary 
this standard deviation, so only the latter was varied. Then 
an environmental value xi is assigned to each location as a 
simple sequence, xi  (1,…,ns)/ns.

In the Gaussian case, the a value does not affect  
performance, and the residual variance was set to j  0.1. 
The variance of random effects was either l  0.1 or 2.5, 
representing excess relative variance (‘over-dispersion’)  
values of 1 or 25 relative to the residual error. In the Poisson 
model the parameters were chosen so as to achieve a  
similar over-dispersion. The marginal distribution of the 
response is Poisson-lognormal, with mean exp(mf  l/2) 
given the fixed term mf of the linear predictor, and second 
factorial moment exp[2(mf  l)]. From this, the over- 
dispersion relative to the Poisson variance mf is ≈ 1 for 
mf  15 and l  0.06, and ≈ 25 for mf  10 and l  0.763, 
in both cases with marginal mean ≈ 15. In the binomial 
case, there is no simple expression for the moments of the 
marginal (binomial logit-normal) distribution. For small l 
and large binomial sample size N, a Taylor series approxi
mation (Coull and Agresti 2000) suggests that the over-
dispersion is close to that for the Gaussian model with the 
same l, so l  0.1 or 2.5 was considered again and the 
resulting over-dispersion was estimated from the simula-
tions. Given the other assumed values mf  21 (i.e. expected 
frequency pf  1/4) and binomial sample size N  40 in 
each location, the observed over-dispersion relative to the 
binomial variance Npf (1 2 pf) was ≈ 1 and 15, respectively.

Additional simulations were also run for binary data, i.e. 
binomial data with one sampled individual sampled per  
site, which describes presence/absence data. For binary data, 
the number of sites was increased to 100 (still a very  
small total sample size). Other parameters were set as above. 
Binary samples were checked for ‘separation’ (finiteness of 
the fixed effect ML estimates) using the algorithms  
implemented in the safeBinaryRegression package (Konis 
2009). Further, samples with fewer than 10 observations of 
either type were ignored as non-informative.

Real-life sampling designs

In addition, simulations were run in two settings matching 
those of two real-life applications, as described below.

Mueller et al. (2011) have searched for polymorphisms 
associated with migration behaviour in the European  
blackcap Sylvia atricapilla. Their best candidate is the allele 
size polymorphism at the ADCYAP1 locus encoding a neu-
ropeptide, the adenylate cyclase-activating polypeptide 1. 
To take into account correlations generated by gene flow, 
they used partial Mantel tests between per-population  
mean allele size and a score for migratory behaviour, with 
14 populations. Here these data have been reanalyzed  
as a linear mixed model, and a simulation study was per-
formed, matching the spatial positions of the original  
samples, the values of the explanatory variable (mean allele 
size), and dispersion and correlation parameters close  
to estimates from the data (n  0.63, r  0.055, l  0.55, 
j  0.0003). It should be clear that 14 autocorrelated data 
points provide very limited information for estimating  

where Kn is the Bessel function of second kind and order n, 
and n  0 is the ‘smoothness’ parameter (the higher n is, the 
smoother are the realized surfaces at a small scale).  
The Matérn family is appropriate to fit autocorrelated pro-
cesses with more or less rugged realizations, and is the most 
useful correlation model for a wide range of applications 
(Stein 1999, see also Minasny and McBratney 2005, Hoeting 
et  al. 2006, Diggle and Ribeiro 2007). It includes the  
commonly used exponential and squared exponential (or 
‘Gaussian’) correlation functions as special cases (for n  0.5 
and n → , respectively). Both r and n were estimated.

Autoregressive models, either ‘conditional’ (CAR) or 
‘simultaneous’ (SAR) have been even more widely consid-
ered (Dormann et  al. 2007; and the WinBUGS software, 
Lunn et  al. 2000) because they lead to simpler algebra,  
and in particular facilitate the application of fast sparse 
matrix methods. But autoregressive models have notable 
drawbacks as models of spatial autocorrelation (Wall 2004, 
Martellosio 2012), and will not be discussed here, although 
a CAR has been implemented in the spaMM package.  
We also implemented the Matérn correlation function in a 
form suitable for use with alternative procedures in R such as 
nlm and glmmPQL, but encountered several problems with 
the last one, as will be shown.

Simulation study

By definition, the distribution of p-values under a null 
hypothesis should be uniform. Simulations were performed 
to check this property in small samples, for idealized or  
more realistic scenarios of the effect of a variable in a spatial 
landscape.

In both data simulation and analysis, the Matérn  
correlation model is used. We assume linear predictors of  
the form hi  a 1 bxi 1 ui, including the effect of an  
‘environmental’ variable xi, and the random effect ui drawn 
from the multivariate Gaussian distribution with variance  
l and correlations Mn(rd ). The data are simulated for the 
same model, but with b  0. In the Gaussian linear mixed 
model, the response variable is hi  ei, where the residual 
error ei is Gaussian with variance j which is also estimated. 
In the binomial GLMM with logit link (Eq. 1), the residual 
error is that of Binomial sampling. In the Poisson GLMM 
with log link (Eq. 2), the residual error is that of Poisson 
sampling.

For each set of parameters described below, 1000 samples 
were analyzed, each being independent in terms of the  
realized random effects and of the spatial location of samples. 
All results are without bootstrap correction, unless men-
tioned otherwise.

Default simulation design

For simplicity, an identical default set of spatial parameter 
values was considered for binomial, Poisson and Gaussian 
models: the smoothness parameter n was either 0.5  
(exponential correlation) or 4 (closer to Gaussian correla-
tion). r was set to 10, and for each dataset, ns  40 locations 
(indexed as i  1,…,40) were sampled at random pairs of 
geographical coordinates each drawn from independent 
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The mean likelihood ratio for these new samples is then 
computed and used to correct the original likelihood ratio, 
independently for the 1000 original samples analyzed.

Results

Default simulation design

The Supplementary material Appendix C and D shows the 
distribution of p-values for all simulations (Fig. C1 and D1). 
As convenient summaries, we report here the proportion  
of significant tests at the conventional 0.05 and 0.01 levels, 
and the average value of the likelihood ratio chi-square  
statistic, which expectation should equal the number of 
degrees of freedom, i.e. 1 in all cases. If the testing procedure 
is exact, for 1000 simulation replicates the observed values  
of these summaries are expected to fall with probability 
≈ 0.95 in the intervals 0.037–0.063, 0.005–0.016, and 
0.914–1.09, respectively.

Overall it was found that p-values of LR tests derived 
from ML fits were close to uniformly distributed 
(Supplementary material). For the default set of parameters, 
the main deviations for low p values were observed in the 
Gaussian case (Table 1). In this case, LR tests are anti- 
conservative, a known result even for fixed-effect linear mod-
els, and which comes from the approximate nature of 
likelihood ratio tests in small samples. The same trend occurs 
to a much lesser extent in the non-Gaussian cases. This is 
perhaps best summarized by the mean value of the LR chi-
square statistic, which is 1.21 for Gaussian cases, but only 
1.06 and 1.03 for Poisson and binary cases, respectively.

Binary data

The analysis of binary data was less straightforward. First, 
binary data are generally considered the most challenging 
setting for approximations of likelihood. In the present 
application, there is only one draw for each level of the  
random effects, in contrast to other discussions of binary 
data (Breslow and Lin 1995, Pinheiro and Chao 2006, Noh 
and Lee 2007) where there are at least two such draws 
(binary matched pairs). The use of PQL when the number 
of draws is low has been particularly criticized (McCulloch 
et al. 2008), although its performance is expected to improve 
quickly with the number of draws. For binary matched 
pairs, it has also been found that the pn(h) approximation of 
the likelihood could be improved by a second-order Laplace 
approximation (Noh and Lee 2007). We considered all 
three methods for the estimation of fixed effects  
(standard Laplace approximation for ML, second-order 
Laplace approximation, and PQL) and unexpectedly found 
that the PQL variant, PQL/L, performed best for binary 
data (Table 2). PQL/L was similar to ML in the other cases,  
with overall slightly inflated type-1 error, and a (usually 
small) fraction of negative LR, which is not unexpected 
given that the fitting procedure involves maximization  
of two distinct functions for distinct sets of parameters  
(see Methods and Supplementary material).

With only one draw, all methods might be expected  
to perform poorly. However, in contrast to the PQL  

5 parameters under the null model (one fixed effect  
parameter in addition to n, ρ, l, and f), in which case  
small sample biases are expected. This case was therefore 
used to illustrate the efficiency of the bootstrap procedure.

The epidemiological study of Diggle et  al. (2007) pro-
vides another realistic design, already used by Guillot and 
Rousset (2013) to illustrate the performance of partial 
Mantel tests. In this case, a binomial GLMM was applied  
to determine environmental features (altitude and vegeta-
tion features) affecting the prevalence of infection by the 
filarial nematode Loa loa involved in onchocerciasis in  
villages in Cameroon. Here the samples have been drawn 
assuming the reported estimates as in the original study: 
r  1/0.7 and n  0.5, a superset of 197 locations, and the 
corresponding altitude values which are here taken as the 
explanatory variable which effect is tested.

Realized spatial correlations in the simulations

The simulations should cover a wide range of realistic  
levels of spatial correlation. The migration gene example rep-
resents a case of strong correlation over the landscape 
(r  0.75 on average between a sampled position and its  
closest neighbour, average r  0.36 over the landscape). The 
Loa loa prevalence example represents a case of stronger  
correlation among such neighbours and more moderate 
autocorrelation overall (r  0.90 and r  0.13, respectively). 
Such autocorrelation is large enough to substantially impact 
the performance of partial Mantel tests of fixed effects 
(Guillot and Rousset 2013). Our simulation study covers a 
wider set of autocorrelation situations, as shown in Fig. 1.

Bootstrap estimation of LR bias

For the bootstrap estimation of the LR bias, for each sample 
analyzed, 100 new samples are simulated under the null 
hypothesis, with estimated parameters under the null model, 
and with the same spatial locations as the original sample. 

Figure 1. Cumulative distributions of spatial correlations of  
random effects for the different simulation conditions.
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Effects of bootstrap correction

To illustrate the effect of the bootstrap correction, we  
considered bad-looking Poisson and binomial cases from  
the Tables. We further reduced the samples sizes, and per-
formed PQL/L analyses, to accentuate small sample bias 
(with actually limited effect). The results are shown in Fig. 2 
and confirms the effectiveness of the correction. The Gaussian 
case is illustrated in the next section.

Ad hoc sampling designs and glmmPQL performance

Simulations based on the migration gene study design  
exhibit a strong bias of the likelihood ratio test, as expected 
from such small samples. This case was used to check the 
efficiency of the bootstrap (with only 100 replicates) in cor-
recting such a bias (Fig. 3 left).

For LMMs, the data sets can also be analyzed using the 
nlm procedure in R through a syntactic trick as described  
in Dormann et  al. (2007, Appendix). However, this de  
facto constrains the analysis to models without residual error; 
the results are otherwise similar to those of the ML method 
(see Supplementary material Appendix G for details).

In simulations based on the onchorcerciasis study design, 
the likelihood ratio tests based on either ML or PQL/L 
exhibited little bias, while analyses based on glmmPQL  
and the same syntactic trick are strongly anticonservative 
(Fig. 3 right). These comparisons are based on the t-test in 
glmmPQL, as this procedure did not provide likelihood val-
ues. Supplementary material Appendix G also presents the 
distributions of estimates by the different methods for all 

approximation, the pn(h) approximation for likelihood may 
be inaccurately large for large l, and the second-order 
Laplace approximation even more so. For example, consider 
binary data in 6 locations, 5 ‘positive’ and one ‘negative’,  
for spatially independent random effects with linear predic-
tor a  ui (i  1,…,6). The log-likelihood (directly com-
puted by numerical integration) is maximized for a ≈ 2, 
l ≈ 1.4; h-likelihood is maximized for a ≈ 1.7, l ≈ 0; pn(h) 
for a ≈ 11.9, l ≈ exp(7.7), and the second-order approxi
mation appears to increase indefinitely, linearly with log(l) 
for a ≈ 0.

Although the joint estimates actually depend on the 
distinct objective functions used to estimate b and l, this 
example predicts the observed trends. The inaccuracies 
of the Laplace approximations lead to a high frequency 
of ML fits diverging to very large l values, often with no 
inferred spatial correlation, and to very inaccurate LR 
statistics. The PQL/L fits were comparatively much bet-
ter behaved (Table 2). These problems may largely disap-
pear in practice as soon as soon as two draws are made in 
each spatial location (Fig. F1 in Supplementary material 
Appendix F). The ML fits may still be useful under some 
conditions, as the distributions of p-values for samples 
that did not exhibit such a divergence were uniform. 
Likewise, the distribution was uniform if l estimates 
were constrained as  5 (Table 1). However, this con-
straint expectedly raises other problems; for example if 
the true l  100 (with other parameters as in the fourth 
row of the table), the test of fixed effects appears conser-
vative, the mean likelihood ratio chi-square statistic 
being 0.66.

Table 1. Performance of likelihood ratio tests. In each case, the table shows the proportion of significant tests at the conventional 0.05  
and 0.01 levels, and the average value LR of the likelihood ratio chi-square statistic. For l, ‘low’ and ‘high’ values are respectively 0.1  
and 2.5, except for the Poisson case where they are 0.06 and 0.763 (see main text). For binary samples, the l estimates were constrained 
below 5 (see main text).

Gaussian Poisson Binomial Binary (l̂  5)

ssp n l  0.05  0.01 LR  0.05  0.01 LR  0.05  0.01 LR  0.05  0.01 LR

0.2 0.5 low 0.072 0.019 1.161 0.051 0.007 1.05 0.054 0.008 1.062 0.052 0.011 0.995
– – high 0.074 0.022 1.241 0.065 0.018 1.172 0.072 0.011 1.228 0.052 0.013 1.066
– 4 low 0.078 0.017 1.195 0.051 0.013 1.044 0.052 0.011 0.973 0.058 0.016 1.025
– – high 0.059 0.013 1.138 0.048 0.01 0.984 0.041 0.008 0.952 0.055 0.013 1.009
0.6 0.5 low 0.073 0.018 1.182 0.056 0.011 1.079 0.049 0.015 1.014 0.06 0.016 1.045
– – high 0.069 0.018 1.15 0.074 0.015 1.179 0.053 0.009 1.098 0.044 0.011 0.955
– 4 low 0.077 0.019 1.22 0.039 0.01 0.949 0.047 0.006 0.996 0.057 0.017 1.037
– – high 0.091 0.026 1.377 0.048 0.014 1.042 0.043 0.006 0.948 0.051 0.01 1.016

Table 2. Performance of PQL/L likelihood ratio tests. See Table 1 legend for details, except that l estimates were not constrained below  
5 for binary samples. The samples analyzed are exactly the same in both tables.

Poisson Binomial Binary

ssp n l  0.05  0.01 LR  0.05  0.01 LR  0.05  0.01 LR

0.2 0.5 low 0.053 0.008 1.062 0.054 0.008 1.064 0.057 0.01 1.047
– – high 0.066 0.018 1.185 0.077 0.012 1.243 0.06 0.013 1.089
– 4 low 0.054 0.013 1.042 0.052 0.011 0.973 0.067 0.016 1.074
– – high 0.053 0.01 0.995 0.041 0.008 0.955 0.064 0.018 1.086
0.6 0.5 low 0.056 0.011 1.088 0.05 0.015 1.018 0.067 0.016 1.083
– – high 0.076 0.015 1.192 0.056 0.01 1.109 0.051 0.009 0.967
– 4 low 0.04 0.009 0.952 0.047 0.006 0.998 0.06 0.014 1.084
– – high 0.053 0.014 1.062 0.043 0.007 0.958 0.046 0.009 1.023
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The results confirm that some testing biases, leading to 
too narrow confidence intervals, are observed for small 
samples, in particular in the Gaussian case, in which case a 
bootstrap correction is recommended. This correction is of 
more general interest as it should be fast, and easy to  
perform with alternative software, in non-spatial models. 
Otherwise, the testing biases are much smaller than those 
that can be observed for partial Mantel tests. For example, 
for the design based on the onchocerciasis study, Guillot 
and Rousset (2013) found that the error rate of the latter is 
27.5% at the nominal level 5%. The spaMM package 
therefore allows for more reliable inferences. Another 
approach, where standard R software for linear mixed  
models is applied by specifying a dummy random effect, 
may sometimes yield good results but has several draw-
backs. In linear mixed models, ML fits using the lme pro-
cedure effectively constrain the residual error to zero, and 

simulated data sets, highlighting further problems with  
glmmPQL.

Discussion

In this work we have implemented and assessed methods for 
fitting GLMMs, for the poorly implemented case of spatial 
data. Our simulations confirm that these methods allow 
inferences of environmental and genetic effects in spatially 
correlated landscapes. Although we have focused here on 
inferences about fixed effects, the Supplementary material 
shows that the new procedures also provide better estimates 
of the spatial autocorrelation parameters (Supplementary 
material Appendix G, Fig. G1 and G2) and that glmmPQL 
may not provide useful estimates of the variance of the  
autocorrelated random effects.

Figure 3. Distributions of p-values for slope (b) estimates from simulations based on real sampling designs. Left: results of uncorrected  
and bootstrap-corrected likelihood ratio tests for data simulated according to the migration gene study design; right: results of ML and 
PQL methods for data simulated according to the onchocerciasis study design. In contrast to glmmPQL, PQL/L and ML result are barely 
distinguishable.

Figure 2. Effects of bootstrap correction. Left: same parameters as in Poisson case, sixth row in Table 1 and 2, but with only 20  
sampled locations. Right: same parameters as in binomial case, second row in Table 1 and 2, but with only 20 sampled locations with  
20 draws per location.
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values for the full analysis, as well as by more or less ad hoc 
optimization of the code, but not up to the point where 
interactive analyses can be considered. Sparse matrix  
techniques have often been used to analyze large data sets, or 
more generally to speed up computations (e.g. the lme4 
package, Bates et al. 2012). Autoregressive models (Methods) 
have also been considered for the same reason, but as  
the spatial correlation matrices considered in this work  
are not inherently sparse, the feasibility of sparse matrix 
approximations and their ultimate impact on statistical  
inference is not obvious.

For binary data, Laplace approximations have clear 
weaknesses, in particular overestimating the likelihood of 
high variance of random effects. What is usually the  
crudest approximation, penalized quasi-likelihood, was 
here better behaved, and should be used at least whenever 
divergence of l estimates is observed in ML fits. This may 
be sufficient for the simple inferences problems considered 
in this work, but not more generally. Other approxima-
tions to marginal and conditional likelihoods, and algo-
rithms to fit models, could be considered. In particular, 
Diggle et al. (2003) developed MCMC methods for fitting 
the spatial GLMMs considered in this study. These meth-
ods might perform well by the present criteria when prop-
erly used, but this may be difficult to assess insofar as  
they require substantial user intervention on each data set 
(Diggle and Ribeiro 2007, p. 175). More recently,  
Rue et  al. (2009) developed integrated nested Laplace  
integration (INLA), which may give results similar to  
those used in this work (see Lee in discussion of Rue et al. 
2009). Several other techniques are discussed in the litera-
ture (reviewed by Demidenko 2004, McCulloch et  al. 
2008), for mixed models distinct from the present one, and 
distributions of p-values (or coverage of confidence  
intervals) are rarely considered, so it is again difficult to 
anticipate how well they would perform.

A prominent question in the recent literature is how to 
detect the effect of environmental features, rather than  
simply geographical distance, on genetic structure  
(landscape genetics, Guillot et  al. 2009, Storfer et  al.  
2010), and similar questions arise in species distribution 
modelling (Algar et  al. 2013). In a GLMM framework, 
assessing landscape features on gene flow or individual  
dispersal is equivalent to testing whether the correlation 
matrix of random effects is a function only of distance or of 
other effects. This can be tested by comparing restricted 
likelihood values for models with different structures of the 
correlation matrix, provided that effects of landscape fea-
tures on correlations among allele frequencies in different 
locations can be related to correlations among underlying 
Gaussian random effects in a GLMM.

In summary, inference problems in spatially autocorre-
lated landscapes can be addressed by fitting spatial general-
ized linear mixed models. Spatial analyses are recommended 
even in cases when spatial autocorrelation appears non- 
significant because of insufficient power. However, software 
implementations have been limited in various respects,  
and this approach is often ignored in ecological and evolu-
tionary studies. We have shown that valid inferences of  
fixed effects can be performed in small samples, using  
Laplace approximation or even penalized quasi-likelihood 

were also found to diverge in a large proportion of simula-
tions. Likewise, glmmPQL should not be used to analyze 
non-Gaussian spatial data, as it performs substantially 
worse than our implementation for spatial data. This may 
not be a problem with glmmPQL per se, which has been 
shown to perform more satisfactorily in other applications 
(Hamel et  al. 2012), but may stem from the fact that it  
has to be used in a non-standard way, to our knowledge  
not recommended by its authors, for the analysis of spatial 
data.

The main approximations used in this work have already 
been checked and compared to previous proposals such as 
penalized quasi-likelihood or Markov-chain simulation 
methods, mainly in terms of bias and variance of estimators 
for various specifications of the fixed and random effects 
(Lee et al. 2006, pp. 190–192, Noh et al. 2006, Pinheiro 
and Chao 2006, Jang et  al. 2007, Noh and Lee 2007,  
Lee and Lee 2012). With the exception of the PQL/L results 
for binary data, the simulation results can be seen as a  
check of well-established, though approximate, likelihood 
methods for GLMMs. However, there does not appear  
to be comparable simulations for spatially correlated models 
in the literature. Ignoring autocorrelation may have little 
effect on the bias of estimates of fixed effects but should 
result in underestimates of the variance and too narrow  
confidence intervals. Thus, our assessment of the properties 
of likelihood ratio tests is much more informative than  
simple assessment of bias of estimators.

Comparison of models with or without spatial correla-
tions is feasible within the present framework, as the  
model with spatial correlation includes the model without 
spatial correlation as a limit case (when the spatial scale 
parameter r become very large). However, for inference of 
fixed effects, it appears better to always include spatial auto-
correlation in the analysis, even if autocorrelation appears 
non-significant. In particular, a non significant autocorrela-
tion can arise in a real data set because few localities are 
sampled, but this does not necessarily mean that the auto-
correlation does not impact inference of fixed effects, 
because the statistical information about a fixed effect in 
this data set can decrease with increasing assumed level of 
autocorrelation. Such cases can be detected by comparing 
confidence intervals for fixed effect under (say) the  
fitted non-zero autocorrelation, and in a model without 
autocorrelation. However, the proper interval for fixed 
effects is not the one given by the first of these two compu-
tations. Rather, it is given by the profile likelihood ratios, 
which are designed to take into account uncertainty in  
nuisance parameters.

We have considered the Matérn correlation model  
for a first implementation, using generic matrix methods 
applicable to any correlation matrix. A well-known issue  
for mixed models is that the computation time of fitting 
algorithms involving such matrix computations increases 
sharply with sample size, here with the number of sampled 
locations. For example, tests of the effect of climate variables 
on single-nucleotide polymorphisms in Arabidopsis thaliana 
took nearly 10 CPU hours on 2 GHz processors on average 
(52 tests) when a large data set of 948 locations (Hancock 
et al. 2011) was considered. This can probably be shortened 
by first analyzing subsets of the data to define good starting 
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Legendre, P. and Fortin, M.-J. 2010. Comparison of the Mantel 
test and alternative approaches for detecting complex multi-
variate relationships in the spatial analysis of genetic data.  
– Mol. Ecol. Resour. 10: 831–844.

Lunn, D. J. et  al. 2000. WinBUGS – a Bayesian modelling  
framework: concepts, structure, and extensibility. – Stat.  
Comput. 10: 325–337.
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Modelling, Technical Univ. of Denmark.
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regressions. – Econ. Theory 28: 1373–1391.
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with avian migratory behaviour. – Proc. R. Soc. B 278:  
2848–2856.
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approaches. A simple bootstrap method is recommended for 
Poisson and binomial data sampled in fewer than 20 loca-
tions, and more generally for Gaussian data. The present 
work makes all these tasks more practical, and provides more 
reliable inferences of both fixed and random effect parame-
ters than previously available ones (in particular, glmmPQL), 
which cannot be recommended in a spatial context.
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