
Sneak into buildings with KNXnet/IP
Claire Vacherot∗, Orange Cyberdefense, 2020

Abstract. Building Management Systems (BMS) centralize and automate
essential assets in a building. They are often linked to the LAN and sometimes
reachable on the Internet, exposing building automation devices and network
protocols that are usually not designed to handle cybersecurity issues. The paper
focuses on the BMS protocol KNX, which has been left aside by the cybersecurity
community so far. We discuss its technical details and the cybersecurity concerns
raised by implementations. We provide a Python library to perform basic KNX
discovery, communication operations and to write advanced testing scripts. We
explain how to use it through fuzzing script examples. We hope that this library
will be used to find and fix vulnerabilities in building management systems and
as a handy tool for other research material on BMS protocols.

1 Introduction
As part of the "internet of things" trend which tends to connect field-level
devices and protocols to information-level networks, building components such as
lighting, shutters, HVAC, air quality measurement, access control, fire detection,
or security systems are now expected to be monitored, controlled and automated
from one (or more) central location. Such systems are referred to as Building
Management System (BMS) or Building Automation System (BAS) and raise
many cybersecurity concerns. Devices on BMS interact using specific field
protocols, which are now often connected to the LAN and may be exposed on
the Internet. However, these protocols and their implementations on devices
usually do not cope with cybersecurity-related events. By breaching into a
building management system, a malicious user may not only disrupt the facilities’
operations (causing damages to the building, the production and/or impacting
people’s safety and trust in such systems), but also give them a foothold or a
way to move to critical network areas and systems [FS2019].

Although there are research materials on building management systems
[MIRSKY2017], protocols [PEACOCK2019] and devices’ [MCKEE2019] security,
we believe that the subject is far from being exhausted and requires more

∗claire.vacherot@orangecyberdefense.com, https://orcid.org/0000-0001-8236-6599

1

mailto:claire.vacherot@orangecyberdefense.com
https://orcid.org/0000-0001-8236-6599


attention and awareness from a cybersecurity point of view. In this paper,
we focus on the field-bus protocol KNX and its transmission mode over IP:
KNXnet/IP.

1. We share our experience and findings on the overall exposure and (lack
of) integration of cybersecurity measures in KNXnet/IP specifications and
implementations and show that we can already cause severe damages using
legitimate KNX features (Section 2).

2. In order to extend attack scenarios to operations not explicitly provided by
the standard, we propose to use crafted KNX frames to target unprotected
or vulnerable KNXnet/IP implementations and devices. Still, this approach
requires technical knowledge about the frames’ specifications.

3. To address this issue, we propose a Python library to interact with KNX
devices via KNXnet/IP and to read and write frames. We explain how
this library can be used to write legitimate KNX communication scripts
and penetration testing tools (Section 3).

4. Finally, we show how to use our library for more advanced vulnerability
testing and research on KNXnet/IP by presenting a simple fuzzing script
that relies on it (Section 4).

2 What’s wrong with KNX?
The most common BMS protocols include BACnet and KNX [BACS2017]. They
are used to exchange data over field bus (twisted pair, power line, etc.) and
both of them provide specifications for communication over IP (BACnet/IP
and KNXnet/IP). As stated in KNXnet/IP’s system specification overview,
"Widespread deployment of data networks using the Internet Protocol (IP)
presents an opportunity to expand building control communication beyond the
local KNX control bus" [KNX030801]. Needless to say, this also extends the
attack surface and increases the number of attack vectors. On April 14th, 2020,
searching for "BACnet" on Shodan gives 7396 results, including 5271 in the
Unites States (71%). Using the keyword "KNX", Shodan finds 17 767 results,
mostly located in Western Europe. Yet, this may not give the actual distribution
of such protocols in BMS, as BACnet is mostly used in industries and KNX is
also widespread for domestic use and is more likely to be exposed.

2.1 KNXnet/IP basics
KNXnet/IP allows interfacing "from LAN to KNX and vice versa". It re-
quires a KNX-to-IP network connection device (router/gateway), referred to
as KNXnet/IP server in the standard. The server is linked to the IP network
and to one or more KNX subnetworks containing a set of KNX objects (sen-
sors, actuators, controllers). The objects are reachable from the server using
KNX-specific addresses. A supervision software is commonly used to manage
KNX projects and control devices, such as the commercial "Engineering Tool

2



Software" (ETS) developed and promoted by the KNX Association. Figure 1
shows a typical example of a BMS network architecture using KNXnet/IP.

Figure 1: BMS network architecture example using KNX and KNXnet/IP

A KNXnet/IP frame is usually sent over UDP (although the specifications state
that TCP can also be used [KNX030801]) and contains a header and a body
with varying content, as represented in Figure 2. The structure of a frame is
quite complex: the format, order and content of blocks and fields in the body
change for each type of message that can be carried by a KNX frame (read or
send information about devices, change configurations, etc.).

Figure 2: KNX frames representation

2.2 Security considerations
According to the standard’s specification, "For KNX, security is a minor concern,
as any breach of security requires local access to the network" [KNX030801]. Yet,
KNXnet/IP aims at making KNX networks more accessible, by interconnecting
it to "existing data networking technology" (IP), both locally and remotely. In

3



other words: the KNX protocol has not been designed with cybersecurity in
mind and used to rely only on the low exposure of KNX systems. Consequently,
the threats brought by the use of KNXnet/IP have to be handled by the IP
network layer and/or upper-level layers and are not covered by the standard.
Some mitigations are suggested, including the use of VPNs, network isolation,
port filtering, restricting access to the supervision software (ETS) and "use [of]
authentication when opening point-to-point connections". The KNX association
addressed these weaknesses by publishing two extensions to the standard, KNX IP
Secure and KNX Data Secure that manufacturers are free to implement (or not).
Both extensions are independent but can be combined: IP Secure adds datagram
encryption and Data Secure adds an authentication code and a sequence number
to every KNX frame, which should be verified by implementations. Since we
have not encountered any use of these extensions so far, we excluded them from
the scope of this study.

To sum up, the specifications do not provide consistent cybersecurity requirements
and security features are extensions of the standard, which make them look
optional. KNX devices and systems manufacturers are not "required" to follow
these recommendations and when they do, they are indeed described as a
bonus. For instance, a KNXnet/IP gateway we used for this study implemented
authentication, but it was not enabled by default.

2.3 Addressed threats
Threats targeting BMS systems and threats specific to KNX have been discussed
by Brandstetter and Reisinger [BRANDSTETTER2017]. Based on these obser-
vations, we decided to focus on two main threats, described in tables Threat 1
and Threat 2 below.

Threat 1 BMS degradation using regular KNX features
Prerequisites Lack of protection on KNX services (authentication,

network segmentation, etc.)
Process Send valid KNX frames to unprotected KNXnet/IP

servers to act on underlying KNX objects
Expected results Alter BMS operations (turn objects on/off, change

configuration values and thresholds, etc.)

Threat 2 Vulnerability discovery using malicious frames
Prerequisites Vulnerability in the implementation of a KNXnet/IP

server
Operation Send invalid inputs (frames) to test the server’s

robustness (fuzzing)
Expected results Elevate privileges on the server for further usage

(backdooring, network pivoting, etc.)

4



We believe that the following attack scenario, related to Threat 1, is very likely to
happen: A malicious user massively sends valid KNX frames (e.g. configuration
frames) to KNXnet/IP servers exposed on Shodan (nearly 18.000 on April 2020).
This scenario may cause severe damages on a high number of BMS installations
behind exposed KNXnet/IP servers that do not use or implement authentication.
Existing tools implementing the KNX protocol for home automation (e.g. for
Arduino) or the auditing tool KNXmap [TOOL_KNXMAP] can be used to do
so, and do not require any knowledge about the protocol from the user.

As for Threat 2, a large amount of known attacks and vulnerability research
projects targeting IoT, industrial and BMS devices relied on testing network
protocol implementations, often with fuzzing. For instance, McKee and al.
discovered critical vulnerabilities in a BMS controller using a BACnet/IP fuzzer
[MCKEE2019]. However, we haven’t found any targeting KNXnet/IP. Why not?
Our assumption is that crafting frames that are valid enough not to be rejected by
a KNXnet/IP server and invalid enough to cause unexpected behaviors requires
knowledge on how to build KNX frames. Moreover, they can hardly be achieved
with the tools mentioned previously or supervision tools such as ETS, mainly
because they do not offer (sufficient) control over frames’ content.

3 Overview of BOF
The security considerations section from KNXnet/IP’s specifications overview
concludes: "It is quite unlikely that legitimate users of a network would have
the means to intercept, decipher, and then tamper with the KNXnet/IP without
excessive study of the KNX Specifications." [KNX030801]. This assumption
emphasizes that the standard’s security mostly relies on ignorance about the
protocol (supervision software such as ETS do not require extended knowledge
of the standard) and the lack of people willing to dive into the specifications.
Here, the word "decipher" does not seem to be related to cryptography and
could rather be replaced by "understand". However, the concept of "security by
obscurity" that is pledged has still not been proven efficient, neither for security
nor for hiding an actual lack of security considerations [CWE656].

We wrote a Python library that does not (necessarily) require this excessive
study of the KNX specifications from the end user: BOF (Boiboite Opener
Framework). It can be imported and used in Python 3.6+ scripts to interact
with field protocols implementations and devices, and provides means to create,
parse and manipulate frames from supported protocols. The library currently
supports KNXnet/IP, which is our focus, but it can be extended to other types
of BMS or industrial network protocols.

The project’s source code and documentation can be found at https://gith
ub.com/Orange-Cyberdefense/bof. Please note that targeting BMS systems
can have a severe impact on buildings and people and that BOF must be used
carefully.

5

https://github.com/Orange-Cyberdefense/bof
https://github.com/Orange-Cyberdefense/bof


We identified three use cases depending on the end users’ level of knowledge
about the protocol and the specifications, as shown in Figure 3.

Figure 3: BOF use cases

Levels 2 and 3 features are intended for higher-level interaction according to the
standard and require from no to basic knowledge about the protocol. They are
suitable to write scripts related to Threat 1. The following code sample (Listing
1) is an example on how to gain basic information about a KNXnet/IP server
using BOF’s Level-2 features. The expected output is given in Appendix 1.

from bof import knx, BOFNetworkError

knxnet = knx.KnxNet()
try:

knxnet.connect("192.168.1.1", 3671)
frame = knx.KnxFrame(type="DESCRIPTION REQUEST")
knxnet.send(frame)
response = knxnet.receive()
print(response)

except BOFNetworkError as bne:
print(str(bne))

finally:
knxnet.disconnect()

6



Level 1-related content provides means for building from scratch and modifying
every part of a frame, complying with the specifications or not. For instance,
the line frame = knx.KnxFrame(type="DESCRIPTION REQUEST") from Listing
1 can also be written as in Listing 2 :

frame = knx.KnxFrame()
frame.header.service_identifier.value = b"\x02\x03"
hpai = knx.KnxBlock(type="HPAI")
hpai.ip_address.value = "127.0.0.1"
hpai.port.value = 44000
frame.body.append(hpai)

As BOF is primarily a testing framework, the protocol specifications are meant to
be misused and altered. Therefore, we tried to bind the code to the specifications
as loosely as possible, so that a user can make changes to built-in structures
and behaviors. This allows a deeper control over frames in order to write more
advanced testing scripts.

4 Testing KNX devices with BOF
Let’s see how we can use BOF to test KNX devices. As mentioned previously,
sending legitimate KNX frames mostly grants access to legitimate KNX features
(Threat 1). One way to go beyond the features provided on a KNX installation
is to discover exploitable vulnerabilities on underlying devices (Threat 2).

Our approach in this paper is to target them via the KNXnet/IP protocol, by
testing implementations of KNXnet/IP and KNX layers for vulnerabilities. To
do so, we chose to use fuzzing, relying on BOF to craft invalid and unexpected
data embedded in KNXnet/IP frames and send them to devices. As KNXnet/IP
implementations on devices are frequently either written in native languages (C,
C++) or interpreted languages, we expect to find both memory corruption-based
(native languages) and data processing vulnerabilities.

4.1 KNX frames’ representation and use in BOF
Before going further, it’s important to understand how BOF represents and gives
access to KNX frames’ contents. Frames are sent and received as byte arrays.
They can be divided into a set of blocks, which contain a set of fields of varying
sizes. Conforming to the KNX Standard v2.1 [KNX03], the header’s structure
never changes and the body’s structure varies according to the type of the frame
given in the header’s service identifier field. For instance, the format of a
DESCRIPTION REQUEST message is highlighted in Figure 4 extracted from the
specifications [KNX030802]. Figure 5 illustrates how a KNX frame (as a byte
array) is shaped according to this format.

7



Figure 4: KNX frame format for "DESCRIPTION REQUEST" messages

Figure 5: Content of a "DESCRIPTION REQUEST" frame

8



In BOF, frames, blocks and fields are represented as objects (classes). A frame
(KnxFrame) has a header and a body, both of them being blocks (KnxBlock). A
block contains a set of raw fields (KnxField) and/or nested KnxBlock objects
with a special structure (ex: HPAI is a type of block with fixed fields). Finally, a
KnxField object has three main attributes: a name, a size (number of bytes)
and a value (as a byte array). A KnxFrame object based on a frame with the
DESCRIPTION REQUEST service identifier should have the pattern illustrated in
Figure 6.

Figure 6: BOF representation of a "DESCRIPTION REQUEST" frame

As no standard-specific content or behavior shall be found or written to the
code, BOF builds type-dependent frames and blocks according to an external
JSON file containing the definition of message codes, block types and frame
structures. Appendix 2 shows the portion of the JSON file written according to
the specification and used by BOF to create the DESCRIPTION REQUEST frame.

Finally, within a script using BOF, a KnxFrame can be built either from scratch
(creating each block and field one by one), from a raw byte array that is
parsed (usually a received frame) or by specifying the type of the frame in the
constructor. The content of the frame (blocks and fields) can be accessed using
properties created according to their names, such as in the example below. Here,
frame.body and frame.body.control_endpoint are identical, since the body
contains only one block (control endpoint):

>>> bytes(frame)
b'\x06\x10\x02\x03\x00\x0e\x08\x01\x7f\x00\x00\x01\xbe\x6d'

>>> bytes(frame.body)
b'\x08\x01\x7f\x00\x00\x01\xbe\x6d'

>>> bytes(frame.body.control_endpoint)
b'\x08\x01\x7f\x00\x00\x01\xbe\x6d'

>>> bytes(frame.body.control_endpoint.ip_address)

9



b'\x7f\x00\x00\x01'

4.2 Writing fuzzing scripts
For this demonstration, we use BOF to write a fuzzing script to test how devices
handle read and write orders interpreted or relayed by the KNXnet/IP server to
the KNX bus. Such orders are sent as medium-independent KNX data with a
generic structure included in some frames as a special block (cEMI, for Common
External Message Interface) [KNX030603].

We generate inputs following the format of a valid frame that includes a cEMI
block and mutate its fields in order to trigger unexpected behaviors. The aim
is to detect field properties and values that are not securely handled either by
the server or underlying devices so that further tests concentrate on these weak
points. To write this script, we rely on the fuzzing scheme proposed by Jurczyk
[JURCZYK2016] and reproduced in Figure 7. The different steps along with
code samples (in Python 3.6) are given below.

Figure 7: Fuzzing scheme (Jurczyk, 2016)

4.2.1 Choose input

We limit our test set to inputs built regardless of targeted devices’ vendor,
model or implementation details, as the content of a cEMI block should not vary
according to these factors. This implies that, while inputs sent to targets closely
comply with the format defined by KNX specifications (frames with invalid
format are usually ignored by devices), their content is not bound to a specific
context ("dumb inputs"). However, we are confident that BOF can also be used

10



for fine-grained testing of specific implementations with higher code coverage
requirements.

Our script generates and sends inputs based on configuration request frames
[KNX030803], which contain the special block we target, following the format
depicted in Figure 8. The included cEMI block acts as an independent generic
message with its own type within the frame, and can have a different structure
and content depending on the type of operation it carries.

Figure 8: Format of a "CONFIGURATION REQUEST" frame

We start by targeting one type of cEMI message, PropRead.req to read properties
on a device following a format such as in Figure 9 extracted from the specification
[KNX030603]. We could also test for property write requests (PropWrite.req,
which use the same format) and change, for instance, the content of the data
field, which carries a new value for a given property. Such tests would be likely
to cause unexpected behaviors on actual (not simulated) devices.

Figure 9: Format of a PropRead.req cEMI message

11



4.2.2 Mutate input

We first rely on a very basic method to mutate inputs: we write random values
to random fields (one at a time) in the targeted cEMI block and send a frame to
the device for each mutation. This gives us a first overview of how, where and
when targeted devices behave unexpectedly. We write a generator function that
yields one frame (KnxFrame object) per field mutation, as written in Listing 4.
Since the field message code defines the type of message (PropRead.req), we
exclude it from the mutations.

def mutate(propread_req:knx.KnxFrame, trials:int=10000):
fields_to_mutate = [x for x in propread_req.body.cemi.fields if \
x.name != "message code"]

for _ in range(trials):
field = choice(fields_to_mutate)
save = field.value
field.value = bytes(map(getrandbits,(8,)*field.size))
yield propread_req, str(field)
field.value = save

4.2.3 Feed to target

Figure 10: Minimum exchange required for reading a property on a device

Figure 10 schematizes a regular frame exchange involving a CONFIGURATION

12



REQUEST frame. In the fuzzing script, we want to reproduce such exchange and
detect unusual behaviors that could indicate bugs or flaws, based on the way
the test device behaves and responds to mutated frames. Input frames, fields
and data that triggered them are saved for further investigation. To begin with,
we focus on two types of behaviors to detect:

1. Acknowledgement messages with an error status (the configuration request
is invalid but the device did not ignore it)

2. Time out errors (the test device did not respond)

The code sample in Listing 5 shows how we handle the exchange and detect
both behaviors. The complete code can be found on BOF’s repository.

knxnet, channel = connect("192.168.1.1", 3671)
initial = knx.KnxFrame(type="CONFIGURATION REQUEST", cemi="PropRead.req")
initial.body.cemi.number_of_elements.value = 1
initial.body.communication_channel_id.value = channel
sequence_counter = 0
for propread_req, data in mutate(initial):

propread_req.body.sequence_counter.value = sequence_counter
try:

knxnet.send(propread_req)
received_ack = knxnet.receive()
if received_ack.body.status.value == STATUS_OK:

propread_con = knxnet.receive()
if propread_con.sid == "CONFIGURATION REQUEST":

ack_to_send = knx.KnxFrame(type="CONFIGURATION ACK")
ack_to_send.body.communication_channel_id.value = channel
ack_to_send.body.sequence_counter.value = sequence_counter
knxnet.send(ack_to_send)

else:
save("Error in acknowledgement", propread_req, data, received_ack)

except BOFNetworkError:
save("Timeout", propread_req, data)

sequence_counter += 1
disconnect(knxnet, channel)

Here, we respond with an acknowledgement frame as well, since our testing
device would send the same message 10 times if we didn’t. Besides, this behavior
could be taken advantage of for denial of service attacks: sending a single frame
with the source address changed would result in the device sending 10 frames to
a target.

4.2.4 Going further

This simple fuzzing script is only able to give an overview of weaknesses on a
KNX device targeting specific parts of a frame, as a first approach. Here, we
detect unexpected behaviors and associated inputs only by looking at what we

13

https://github.com/Orange-Cyberdefense/bof/blob/master/examples/cemi_fuzzer.py


receive on the client side, but a more efficient way to interpret the results would
be to monitor what happens on the target as well, e.g. with a debugger.

Still, we were able to trigger 20 unexpected behaviors, out of around 1,2 million
test frames sent in one hour of fuzzing our testing device. The next step
is obviously to investigate: to dig into the input frames and conditions that
triggered errors to try to find exploitable bugs. A way to do it is to gradually
restrict inputs and mutations to specific types of messages, fields to modify and
range of values according to how the target responds. The advantage of using
BOF to do so lies in the ability to create and mutate identified and named
frames, blocks and fields, and therefore fuzz while sticking to the specifications.

5 Related work
Work regarding KNX and KNXnet/IP networks’ security is quite introductory so
far. Global security concerns and main threats related to this protocol have been
discussed in BMS security overviews papers and reports [BACS2017], [BRAND-
STETTER2017]. The occasional talks in cybersecurity technical conferences on
this subject usually describe the protocol, highlight its lack of network security
protections and potential impacts, and show how to abuse them by taking
control of targeted installations with valid frames. Among the most recent ones,
Litvinov’s talk at Zero Nights 2015 [LITVINOV2015] and Hui Yu et al.’s talk at
Hack in the Box 2018 [HUIYU2018] follow this pattern.

At the same time, research material on the analogous protocol BACnet/IP
include more advanced approaches regarding cybersecurity. In 2015, Kaur et
al. presented a traffic normalization method to prevent attacks on BACnet
networks [KAUR2015]. Gasser et al. [GASSER2017] evaluated the vulner-
ability of BACnet to amplification attacks and provided a basic BACnet re-
sponse parsing tool [TOOL_BACNETPY]. More recently, Peacock published
a thesis demonstrating anomaly detection methods on BACnet/IP networks
[PEACOCK2019]. A few implementations of BACnet/IP for fuzzing exist
(bacnet-scapy [TOOL_SCAPYBAC], Fuzzowsky [TOOL_FUZZOWSKY]) but
we haven’t found a comprehensive one.

As for related tools, BOF was built following the model of some existing
KNX implementations: First, we have to mention the auditing tool KNXmap
[TOOL_KNXMAP], that we worked with a lot but could unfortunately not use
as a basis for BOF, as it has not been designed to craft and send invalid frames.
Wireshark’s KNXnet/IP dissector is also a very good means to understand KNX
traffic, both when used inside Wireshark and when looking at the dissector’s
source code [SRC_WSDISSECT], which is much more understandable than the
specifications. Finally, some widespread tools include basic contents for KNX
such as the network security scanner nmap, which has scripts for KNX discovery
[TOOL_NMAP].

14



6 Discussion and future work
The cybersecurity world does not seem to know much about Building Management
Systems, and the BMS world does not know much about cybersecurity. There
are a lot of steps to take to make both worlds meet and we wrote BOF to
contribute: we expect BOF, and any future project on BMS cybersecurity we
plan, to provide ways to understand BMS environments and to discover how
they work, how they can be misused and how to test them in order to secure
them. First of all, we wanted to write a tool that can be used without prior
requirements on cybersecurity and / or BMS, but we believe that our next move
should be to contribute to existing cybersecurity projects by adding BMS-related
content and protocol implementations.

BOF is still an ongoing project and so far, we focused on the detailed imple-
mentation of the specification. One can already do the main basic operations,
but there are many types of frames and features in the KNX standard (without
even mentioning the extensions) and not all of them have been implemented yet.
Furthermore, there will still be room for higher-level functions that will make
tests easier. And of course, every contribution is welcome.

7 Appendix
7.1 Sample output for BOF’s KNX discovery script
Output of print(frame) where frame is the KnxFrame object representation of
a DESCRIPTION RESPONSE message received from a server.

KnxFrame object: <bof.knx.knxframe.KnxFrame object at 0x7f7b3b7e42b0>
[HEADER]

<header length: b'\x06' (1B)>
<protocol version: b'\x10' (1B)>
<service identifier: b'\x02\x04' (2B)>
<total length: b'\x00D' (2B)>

[BODY]
KnxBlock: device hardware

<structure length: b'6' (1B)>
<description type code: b'\x01' (1B)>
<knx medium: b'\x02' (1B)>
<device status: b'\x00' (1B)>
<knx individual address: b'\xff\xff' (2B)>
<project installation identifier: b'\x00\x00' (2B)>
<knx serial number: b'\x00\x00T\xff\xf4\x13' (6B)>
<multicast address: b'\xe0\x00\x17\x0c' (4B)>
<mac address: b'\x00\x00T\xff\xf4\x13' (6B)>
<friendly name: b'boiboite\x00\x00\x00\x00\x00\x00\x00 [...]' (30B)>

KnxBlock: supported service families

15



<structure length: b'\x08' (1B)>
<description type code: b'\x02' (1B)>
KnxBlock: service family

<id: b'\x02' (1B)>
<version: b'\x01' (1B)>

7.2 JSON specification file extract
Portion of the JSON file written according to the specifications that is used to
build a KnxFrame object of type DESCRIPTION REQUEST.

{
"service identifiers": {
"DESCRIPTION REQUEST": {"id": "0203"}

},
"bodies": {
"DESCRIPTION REQUEST": [

{"name": "control endpoint", "type": "HPAI"}
]

},
"blocktypes": {
"HEADER": [

{"name": "header length", "type": "field", "size": 1, "is_length": true},
{"name": "protocol version", "type": "field", "size": 1, "default": "10"},
{"name": "service identifier", "type": "field", "size": 2},
{"name": "total length", "type": "field", "size": 2}

],
"HPAI": [

{"name": "structure length", "type": "field", "size": 1, "is_length": true},
{"name": "host protocol code", "type": "field", "size": 1, "default": "01"},
{"name": "ip address", "type": "field", "size": 4},
{"name": "port", "type": "field", "size": 2}

]
}
}

8 References
BACS2017 Building Automation & Control Systems: An Investigation into

Vulnerabilities, Current Practice & Security Management Best Practice
-ASIS Foundation, Security Industry Association, Building Owners and
Managers Association - 2017 -https://www.securityindustry.org/wp-
content/uploads/2018/08/BACS-Report_Final-Intelligent-Building-
Management-Systems.pdf

BRANDSTETTER2017 (in)security in building automation how to create

16

https://www.securityindustry.org/wp-content/uploads/2018/08/BACS-Report_Final-Intelligent-Building-Management-Systems.pdf
https://www.securityindustry.org/wp-content/uploads/2018/08/BACS-Report_Final-Intelligent-Building-Management-Systems.pdf
https://www.securityindustry.org/wp-content/uploads/2018/08/BACS-Report_Final-Intelligent-Building-Management-Systems.pdf


dark buildings with light speed - Thomas Brandstetter, Kerstin Reisinger -
Presented at BlackHat USA 2017 -https://www.blackhat.com/docs/us-
17/wednesday/us-17-Brandstetter-insecurity-In-Building-Automation-
How-To-Create-Dark-Buildings-With-Light-Speed-wp.pdf

CWE656 CWE-656: Reliance on Security Through Obscurity - Common Weak-
ness Enumeration (accessed on 2020-04-23) -https://cwe.mitre.org/data/d
efinitions/656.html

FS2019 Cybersecurity in Building Automation Systems (BAS) - Daniel dos
Santos, Clément Speybrouck, Elisa Costante (Forescout) - 2019 -https://
www.forescout.com/places-in-network/building-automation-system-bas/

GASSER2017 Security Implications of Publicly Reachable Building Automa-
tion Systems - Oliver Gasser, Quirin Scheitle, Carl Denis, Nadja Schricker,
Georg Carle - 2017

HUIYU2018 Hacking Intelligent Building - Pwning KNX & ZigBee Networks
- HuiYu Wu, YuXiang Li (Tencent) - HITB Amsterdam 2018 -https:
//conference.hitb.org/hitbsecconf2018ams/materials/D1T2%20-%20YuX
iang%20Li,%20HuiYu%20Wu%20&%20Yong%20Yang%20-%20Hacking
%20Intelligent%20Buildings%20-%20Pwning%20KNX%20&%20ZigBee
%20Networks.pdf

JURCZYK2016 Effective File Format Fuzzing - Thoughts, techniques and
results - Mateusz "j00ru" Jurczyk - Presented at Blach Hat Europe 2016
-https://www.blackhat.com/docs/eu-16/materials/eu-16-Jurczyk-
Effective-File-Format-Fuzzing-Thoughts-Techniques-And-Results.pdf

KAUR2015 Securing BACnet’s Pitfalls - Jaspreet Kaur, Jernej Tonejc, Steen
Wendzel, and Michael Meier - 2015

KNX03 KNX Standard v2.1 - 03 - System Specification KNX

KNX030603 KNX Standard v2.1 - 03.06.03 - System Specification
-Standardised interfaces - External Message Interface

KNX030801 KNX Standard v2.1 - 03.08.01 - System Specification -
KNXnet/IP -Overview

KNX030802 KNX Standard v2.1 - 03.08.01 - System Specification -
KNXnet/IP -Core

KNX030803 KNX Standard v2.1 - 03.08.03 - System Specification -
KNXnet/IP -Device management

LITVINOV2015 Security in KNX or how to steal a skyscraper - Egor Litvinov
-Zero Nights 2015 -http://2015.zeronights.org/assets/files/20-Litvinov.pdf

MCKEE2019 HVACking: Understanding the Delta Between Security and
Reality - Douglas McKee and Mark Bereza - Presented at Defcon 27, 2019

17

https://www.blackhat.com/docs/us-17/wednesday/us-17-Brandstetter-insecurity-In-Building-Automation-How-To-Create-Dark-Buildings-With-Light-Speed-wp.pdf
https://www.blackhat.com/docs/us-17/wednesday/us-17-Brandstetter-insecurity-In-Building-Automation-How-To-Create-Dark-Buildings-With-Light-Speed-wp.pdf
https://www.blackhat.com/docs/us-17/wednesday/us-17-Brandstetter-insecurity-In-Building-Automation-How-To-Create-Dark-Buildings-With-Light-Speed-wp.pdf
https://cwe.mitre.org/data/definitions/656.html
https://cwe.mitre.org/data/definitions/656.html
https://www.forescout.com/places-in-network/building-automation-system-bas/
https://www.forescout.com/places-in-network/building-automation-system-bas/
https://conference.hitb.org/hitbsecconf2018ams/materials/D1T2%20-%20YuXiang%20Li,%20HuiYu%20Wu%20&%20Yong%20Yang%20-%20Hacking%20Intelligent%20Buildings%20-%20Pwning%20KNX%20&%20ZigBee%20Networks.pdf
https://conference.hitb.org/hitbsecconf2018ams/materials/D1T2%20-%20YuXiang%20Li,%20HuiYu%20Wu%20&%20Yong%20Yang%20-%20Hacking%20Intelligent%20Buildings%20-%20Pwning%20KNX%20&%20ZigBee%20Networks.pdf
https://conference.hitb.org/hitbsecconf2018ams/materials/D1T2%20-%20YuXiang%20Li,%20HuiYu%20Wu%20&%20Yong%20Yang%20-%20Hacking%20Intelligent%20Buildings%20-%20Pwning%20KNX%20&%20ZigBee%20Networks.pdf
https://conference.hitb.org/hitbsecconf2018ams/materials/D1T2%20-%20YuXiang%20Li,%20HuiYu%20Wu%20&%20Yong%20Yang%20-%20Hacking%20Intelligent%20Buildings%20-%20Pwning%20KNX%20&%20ZigBee%20Networks.pdf
https://conference.hitb.org/hitbsecconf2018ams/materials/D1T2%20-%20YuXiang%20Li,%20HuiYu%20Wu%20&%20Yong%20Yang%20-%20Hacking%20Intelligent%20Buildings%20-%20Pwning%20KNX%20&%20ZigBee%20Networks.pdf
https://www.blackhat.com/docs/eu-16/materials/eu-16-Jurczyk-Effective-File-Format-Fuzzing-Thoughts-Techniques-And-Results.pdf
https://www.blackhat.com/docs/eu-16/materials/eu-16-Jurczyk-Effective-File-Format-Fuzzing-Thoughts-Techniques-And-Results.pdf
http://2015.zeronights.org/assets/files/20-Litvinov.pdf


-https://www.mcafee.com/blogs/other-blogs/mcafee-labs/hvacking-
understanding-the-delta-between-security-and-reality/

MIRSKY2017 HVACKer: Bridging the Air-Gap by Attacking the Air Con-
ditioning System - Yisroel Mirsky, Mordechai Guri, and Yuval Elovici -
2017

PEACOCK2019 Anomaly Detection in BACnet/IP managed Building Au-
tomation Systems -Matthew Peacock - 2019 - https://ro.ecu.edu.au/theses
/2178/

SRC_WSDISSECT Wireshark’s KNXnet/IP dissector’s source code on
GitHub -https://github.com/wireshark/wireshark/blob/master/epan/diss
ectors/packet-knxip.c

TOOL_BACNETPY bacnet.py’s GitHub page - https://github.com/tumi8
/bacnet.py

TOOL_FUZZOWSKY Fuzzowsky’s GitHub page - https://github.com/ncc
group/fuzzowski

TOOL_KNXMAP KNXmap’s GitHub page - https://github.com/takeshixx
/knxmap

TOOL_NMAP Nmap’s documentation - https://nmap.org/nsedoc/index.ht
ml

TOOL_SCAPYBAC scapy-bacnet’s GitHub page -https://github.com/des
olat/scapy-bacnet/tree/master/scapy_bacnet

18

https://www.mcafee.com/blogs/other-blogs/mcafee-labs/hvacking-understanding-the-delta-between-security-and-reality/
https://www.mcafee.com/blogs/other-blogs/mcafee-labs/hvacking-understanding-the-delta-between-security-and-reality/
https://ro.ecu.edu.au/theses/2178/
https://ro.ecu.edu.au/theses/2178/
https://github.com/wireshark/wireshark/blob/master/epan/dissectors/packet-knxip.c
https://github.com/wireshark/wireshark/blob/master/epan/dissectors/packet-knxip.c
https://github.com/tumi8/bacnet.py
https://github.com/tumi8/bacnet.py
https://github.com/nccgroup/fuzzowski
https://github.com/nccgroup/fuzzowski
https://github.com/takeshixx/knxmap
https://github.com/takeshixx/knxmap
https://nmap.org/nsedoc/index.html
https://nmap.org/nsedoc/index.html
https://github.com/desolat/scapy-bacnet/tree/master/scapy_bacnet
https://github.com/desolat/scapy-bacnet/tree/master/scapy_bacnet

	Introduction
	What's wrong with KNX?
	KNXnet/IP basics
	Security considerations
	Addressed threats

	Overview of BOF
	Testing KNX devices with BOF
	KNX frames' representation and use in BOF
	Writing fuzzing scripts
	Choose input
	Mutate input
	Feed to target
	Going further


	Related work
	Discussion and future work
	Appendix
	Sample output for BOF's KNX discovery script
	JSON specification file extract

	References

